Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi

Similarity reasoning for local
surface analysis and recognition

by

Elia Moscoso Thompson

Theses Series DIBRIS-TH-2021-XXXIII

DIBRIS, Universita di Genova
Via Opera Pia, 13 16145 Genova, Italy http://www.dibris.unige.it/

Universita degli Studi di Genova

Dipartimento di Informatica, Bioingegneria,

Robotica ed Ingegneria dei Sistemi

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

Similarity reasoning for local
surface analysis and recognition

by

Elia Moscoso Thompson

March, 2021

Dottorato di Ricerca in Informatica ed Ingegneria dei Sistemi
Indirizzo Informatica
Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Universita degli Studi di Genova

DIBRIS, Univ. di Genova
Via Opera Pia, 13
I-16145 Genova, Italy
http://www.dibris.unige.it/

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum
(S.S.D. INF/O1)

Submitted by Elia Moscoso Thompson
DIBRIS, Univ. di Genova

Date of submission: March 2021
Title: Similarity reasoning for local surface analysis and recognition

Advisor: Dr. Silvia Biasotti
Istituto di Matematica Applicata e Tecnologie Informatiche (IMATI) ‘E. Magenes’ - CNR,
Genova, Italy

Ext. Reviewers:
Dr. Daniela Giorgi
Prof. Marco Tarini
Prof. Remco C. Veltkamp

Abstract

This thesis addresses the similarity assessment of digital shapes, contributing to the
analysis of surface characteristics that are independent of the global shape but are
crucial to identify a model as belonging to the same manufacture, the same ori-
gin/culture or the same typology (color, common decorations, common feature ele-
ments, compatible style elements, etc.). To face this problem, the interpretation of
the local surface properties is crucial.

We go beyond the retrieval of models or surface patches in a collection of mod-
els, facing the recognition of geometric patterns across digital models with different
overall shape. To address this challenging problem, the use of both engineered and
learning-based descriptions are investigated, building one of the first contributions
towards the localization and identification of geometric patterns on digital surfaces.
Finally, the recognition of patterns adds a further perspective in the exploration of
(large) 3D data collections, especially in the cultural heritage domain.

Our work contributes to the definition of methods able to locally characterize the
geometric and colorimetric surface decorations. Moreover, we showcase our bench-
marking activity carried out in recent years on the identification of geometric fea-
tures and the retrieval of digital models completely characterized by geometric or
colorimetric patterns.

Acknowledgements

First and foremost, a HUGE thank you to my tutor Dott. Silvia Biasotti: she guided and sup-
ported me throughout my PhD as only the best tutors do and without her this thesis would not
exist. Me being the sole author of this work does not make justice to all the thing she helped me
with.

A special thank goes to Dott. Michela Spagnuolo, the director of CNR-IMATI: she encouraged
me to address this research topic and connected me to other international research groups. I also
thank everyone at CNR-IMATT E. Magenes: each one of you contributed directly or indirectly
to my work and to keep going through this journey.

Another huge thank you goes to Dr. Julie Digne and Prof. Raphaelle Chaine from CNRS-LIRIS,
for mentoring me in one of the most crucial aspects of my thesis and for working together all
these years.

Then, I thank all the people at DIBRIS involved in my thesis, Prof. Enrico Puppo, Prof. Manuela
Chessa and Prof. Paola Magillo, as well as the PhD course coordinator Prof. Giorgio Delzanno.

Thanks to the reviewers of this manuscript, Dott. Daniela Giorgi, Prof. Marco Tarini and Prof.
Remco Veltkamp, for their corrections and precious suggestions.

Thank to every author and co-author that worked with me on my publications: these collabo-
rations means a lot to me and gave me valuable experience in communicating my researches to
others.

Finally, I would like to thank the project GRAVITATE, that partially founded my research during
all these years.

And thank YOU, for having even the slightest look at my thesis! It means a lot.

Way less formal acknowledgments [ITA-ENG]

[ITA] Ciao! Grazie per star leggendo queste parole. Ovviamente, devo un sacco di ringraziamenti
a Voi, dove Voi ¢ un sacco di persone. Tuttavia, invece di partire con il classico ‘Ringrazio la
mia famiglia -lista e aneddoto-, amici -lista e aneddoto-’, voglio provare qualcosa di diverso ¢
piu breve. In altre parole, ¢ tempo di partire per una tangente infinitamente poco coerente col
contesto in cui si trova. Se questa cosa vi fa strano, piacere sono Elia, spero che diventeremo
amici!

Essendo i ringraziamenti di una tesi, partiamo da quello. Occorre premettere una cosa: come
molti di voi saprete, i0 sono molto pigro e umile (e bello, ovviamente). La combo delle prime
due proprieta mi ha messo veramente i bastoni tra le ruote durante tutti questi anni di tesi (e
anche prima). Tuttavia, I’ammontare di supporto e aiuto che ho avuto da Voi ¢ stato (e continua
ad essere) infinito. Ogni membro della mia famiglia, ogni partner, ogni amico andato e venuto
mi ha dato un aiuto che va da una piccola spintarella a una spinta che ‘ahia-ma-che-male-fai-
piano’ per farmi andare avanti. Spesso, non vi meritavo. Altre volte vi meritavo, ma vi ho
deluso. Qualunque fosse 1’esito della vostra spinta sappiate che, anche se vale veramente poco,
non smettero mai di sentirmi in debito con ognuno di Voi.

Non intendo ringraziare tutti uno ad uno, in questa parte. Siete tantissimi, cari e care (o car*,
come si dice ma mi sapeva di automobile) e non bastano il quintuplo delle pagine di questa tesi
per menzionare tutti (la verita: ci ho provato due volte e non ne sono capace, qualcuno mi insegni
pls). Tuttavia, tutte le persone in questa infinita lista si meritano un grazie per, alla fine, lo stesso
motivo. Infatti, crescendo, mi sono reso conto di quanto sia difficile essere pazienti e gentili
col prossimo, specialmente se questo prossimo ¢ un po’ un culo pesante. Voi, tuttavia, lo siete
stati con me, in qualsivoglia forma e misura, e questa ¢ una cosa che tendo spesso a dimenticare.
Mettere questo fatto nero su bianco mi ricorda che la vita ¢ piu bella si ha un ‘Voi’ da ringraziare.

Grazie per avermi sopportato. Grazie a chi ¢ stato, e chi ¢ ancora, parte di me.

Troppo melenso? Delusi di non aver letto il vostro nome da nessuna parte? Voi mi avete nominato
nei vostri ringraziamenti e vi sentite presi in giro? Volete sapere i vostri meriti nel dettaglio? Mi
hai cresciuto nella pancia per 9 mesi e volevi di piu? (questo si applica a un numero molto
ristretto di persone) Allora scrivimi o chiamami, saro felice di parlarti in modo meno melenso di
tutto quello che avresti voluto sentire davanti ad una birra (o qualunque cosa beviate per essere
felici). Questo vale oggi e per sempre (e se non sono povero ve la offro pure, va la).

Questo ¢ tutto! Ora per cortesia fate finta di leggere la tesi e ditemi che ¢ bella cosi il mio ego si
gonfia un pochino.

[ENG] Hello there! Thank you for reading these words. Of course, I own many thanks to You,
where You is a very large number of people. However, instead of the classic ‘I thank my family,
friends, etc’, I would like to try something different and shorter. In other words, it is time to
begin a speech about something out of context. If this surprises you, well, nice to meet you, I’'m
Elia, I hope we’ll become friends!

Being thesis acknowledgments, let’s start from that. One thing beforehand: as You probably
know, I’'m lazy and humble (and beautiful, of course). This combo of the first two properties
really put a spanner in the works for all these years (and even before that). However, the amount
of help and support You gave me (and that you keep giving me) was immense. Every member of
my family, every partner, friend who has come and gone has given me help ranging from a little

push to a ‘ohi-wait-calm-down-it-hurts’ push to keep me going. Often, I didn’t deserve you. Or |
did, but I disappointed you. Whatever the result of your push, know that I will never stop feeling
indebted to You, even if this doesn’t mean much to you.

I don’t plan to thank you one by one, as I said. There are not enough pages in the world to
properly thank you (the real reason: I tried two times and both drafts suck, please teach me how
to do it). However, I must thank all the people in this infinite list for, fundamentally, the same
reason. Indeed, growing up I realized how hard it is to be kind and patient to others. However,
You have been with me, in whatever shape and amount, which is something that is easy to forget.
Even now, despite all these years my English is still terrible, how did you manage to reach this
point of the acknowledgments without giving up? It is amazing! Putting this pen to paper makes
me realize how better life is if one has a “You’ to thank.

Thank you for putting up with me. Thank you for being a part of me.

Is this too silly for you? Are you disappointed? Did you mention me in your acknowledgments
and now you regret it? Do you want more details on your merits? Did you grow me in your belly
for 9 month and you wanted more from me? (this may relate to a very small number of people)
Then contact me! We can talk about whatever you want in front of a beer (or the drink of your
choice that makes you happy). This is true today and forever (and, if I'm not poor, I’ll offer the
drinks).

That’s all folks! Now please pretend to read my thesis and tell me that’s good so I can inflate my
ego a tiny bit.

Table of Contents

[[ntroduction|

I Preliminary concepts|

[Chapter 1 State of the art|

[Chapter 2 Pattern-related surface properties|

2.1 ~ Color properties on surfaces|,

2.2 metri rf: h r1zationl e e e e e e e

I Pattern Descriptors|

[Chapter 3 Edge Local Binary Pattern|

(3.1 Method description|
[3.1.1 The edgeLBP description|.

[3.1.2 Parameter settings| L

[3.1.3 Computational cost|

[3.2 Expertmental results| L

10

11
13
20

26
26
28
31

37

[Chapter 4 Mean Point Local Binary Pattern|

A1

Method description| L.

4.1.1 The mpLBP descriptor]

4.1.2 Parameter settings|

%)

Experimental results|o 0.

4.2.1 Different choices of the ring sampling scheme|. . . .

4.2.2 Computational cost|

[Chapter 5 Benchmarking activities|

51

Performance measures for pattern retrieval methods|

52

Retrieval of gray patterns depicted on 3D models|

53

Feature Curve Extraction on Triangle Meshes|

3.1 Evaluation of feature curve characterization methods

54

Retrieval of surface patches with similar geometric reliefs|. .

541 Datasetl
5.4.2 Resultsl

53

Il Pattern Recognition|

[Chapter 6 The surface pattern recognition problem|

6.2

Geometric pattern recognition| L.

6.3

Open challenges|.

54
54
55
58
59
66
67

70
70
72
72
73
79
79
91
92
93
98
99
100

106

[Chapter 7 Patch Characterization via Energy Optimization and Local Similarity|

(7.1 Preliminaries on the Graph-cut definition and 1ts application to 3D models| . . .

[7.2 Query point sampling|

[7.3 Signals extraction|

(7.4 Graph-cutsetup|

[7.5 Surface segmentation|

(/.6 Examples

[Chapter 8§ Learning-based approaches|

[8.1 Signal aggregation based on dictionary learning|

[8.1.1 Surface sampling and signal extraction|

[8.1.2 The case of sparsityequalto 1|,

IV Future works an nclusi

n

[Chapter 9 A search engine for 3D shape collections|

[9.1 Conceptual model|.

(9.2 Simularity assets|.

(9.3 User-driven dataset navigation|

[Chapter 10 Concluding remarks|

115

. 116

118
119
121
123
124

133
134
135
136
138
140
142
144
146

151

152
153
155
160

170

174

Introduction

The digital revolution is impacting most aspects of our society and its success largely depends
on the capability of digital sciences to answer the many challenges posed by the vast amount
of digital data available in all fields. Extracting knowledge out of big raw data is among the
predominant goals, together with making algorithms smarter and faster. This is particularly chal-
lenging for digital content that is highly structured, as in the case of 3D digital representations
of real or designed objects (e.g., archaeological artifacts). In recent years, there is a wealth of
joint collaborations between Cultural Heritage and Computer Graphics experts. On the one hand,
archaeologists recognize that the development of quantitative methods for the analysis and de-
scription of archaeological fragments would contribute to many tasks, both in terms of efficiency
and effectiveness. On the other hand, the research questions posed by archaeologists pose new
challenges to computer scientists on the characteristics that the methods developed must possess
and the problems to be addressed. As an example of fruitful collaboration between Computer
Graphic and Cultural Heritage experts, we mention the GRAVITATE project [UUTCIC™] that
aimed at facilitating the analysis and retrieval of fragments that possibly relate to each other and
draw archaeological hypotheses previously impossible to make.

Archaeological motivation

In archaeological excavations, Cultural Heritage artifacts are often found in various stages of
incompleteness, with parts either totally missing or components of their overall structure being
fragmented in various pieces. A tedious task for conservators is to re-compose these fragmented
objects into their original shape. The reasons for such an investment are various: the more
complete the shape of an object the better its typology-based classification. A complete shape of
an object is more indicative of its function in the past and finally a restored object has a higher
aesthetic value than its fragmented parts and thus more appealing for its musealisation. The
restoration process involves many aspects such as the detection of common edges, the overall
morphology or the continuation of patterns along their external face (such as decorations, either
painted or incised, etc.). Since archaeological excavations often yield thousands of artifacts,
the restoration work occurs once these objects are already stored in deposits. Moreover, it may

occur that fragments belonging to an object are stored separately and thus the restorer must
rely on drawings or digital acquisitions of the fragments in order to propose possible joining
of fragments, often supported by similarities in the decorations along their external face or the
recognition of common details. In case fragments are stored in different locations and/or under
separate administrations, a physical restoration is an almost impossible task.

As in many other challenging scenarios, these difficulties may be simplified with the aid of
automatic tools that act on digitalised versions of the archaeological artifacts the experts need to
work on. Indeed, a restoration process based on digital quantitative methods rather than visual
observation may optimize the entire restoration process, making it faster and more accurate. In
algorithmic terms, this analysis requires a translation of the needs of Cultural Heritage experts
into quantifiable descriptions and methods that suit their interest. Aspects of interest for Cultural
Heritage experts and that need to be take into account by the algorithms are, for instance, the
color, the size, the overall shape, the thickness of the object, the object decorations, the way
certain details are depicted (e.g.: the eyes of a statue can be represented differently from one
civilization to another), etc.. On one hand, some of these measurements are easily converted
into quantities and compared: for example, the size of a model can be estimated by considering
the size of the minimal bounding box. Thus, if we consider two objects, their encumbrance
can be easily compared. On the other hand, many aspects of interest have no easy description.
Decorations, for example, include a wide range of elements, from the corrugations that shape the
eye of a statue to the repeated curls on the head of a bas-relief depiction of a man representing
its hair. Indeed, decorations cannot be easily converted into a quantifiable descriptor that allows
for an easy local comparison between models.

Problem statement

Within this scenario, this thesis focuses on decorations characterized by small variations of ge-
ometry or color, like a circle or something slightly more complex, repeated over the surface of an
object without altering the overall surface shape. In this work, we refer to this kind of decoration
with the term of surface patterns (or just patterns). This kind of decorations was relevant in the
use-case of the GRAVITATE project, as well as a characteristic of many other collections. A cor-
respondence of these surface decorations can be easily found in images, under the name of image
textures. While the analysis of image textures is largely studied and counts different methods for
both their formalization and characterization, the same does not happen for surface patterns. This
is partially justified also by the kind of data: indeed, working with images it is different than with
meshes or point clouds, as the last two structures are representations less structured, not unique
and are, in general, heavier to process. Still, the similarities between surface patterns and image
textures characterization problems lead us to wonder if it is possible to deal with surface patterns
with approaches similar to those used in image texture analysis. Starting from these considera-
tions, the scientific question that this thesis aims to answer, at least partially, is: How to extend

Figure 1: A visual representation of the pattern recognition problem as intended in this work.
Two query models (), are covered by a pattern. Such a pattern is then identified (both in terms
of presence and location) on the models M.

to digital surfaces what has been done for image textures? In practice, this means addressing the
problem of pattern recognition on surfaces in the same terms as for images.

Our research focuses on the characterization of the patterns available on a given model and
on their identification/recognition on other models. We call this task the pattern recognition
problem. More formally, we define a surface pattern (or a pattern) a repeated, oriented basis
structure element that is present on a surface S; such an element that can be described by one
or more surface properties. The base structure element can represent a variation in color or
geometry of the surface and can assume different shapes, like a circle, a segment, and so on.
The size of this detail is small enough to not affect the overall bending of the surface even
when it is geometric. In this manuscript we deal with two kinds of patterns: geometric patterns
(defined by surface corrugations) and colorimetric patterns (defined by the color distribution on
the surface). We formalize the pattern recognition problem as follows (we refer to Figure [T] for
a visual representation). Let us considers a set of query pattern samples ();, i.e., a set of (small)
sample surface fully characterized by a single pattern, and a set of models)/;. where a model M;
may have one, multiple or none pattern located somewhere on its surface. For each ();, the goal
is to understand if the pattern represented on (); is also present on M; (for all the M) and, in case
of a positive match, to locate it on the surface. In the current literature, the pattern recognition

Qv Vi i

Figure 2: A visual representation of the pattern retrieval problem. A query model Q with a bark-
like pattern impressed on its surface is selected. In the ideal case, models with bark-like patterns
are retrieved before then models with different reliefs, independently of the global geometry of
the models. The ’check” and “’cross” marks highlight models that are relevant or non-relevant to
the query.

(as intended in this manuscript) is faced in very specific cases (i.e.: on data with significant
constraints on the models characteristics) and to the best of our knowledge no one has proposed
a general pattern description method able to deal with multiple patterns on a single model. We
also explore a strictly related problem, called pattern retrieval problem. This problem (refer to
Figure [2]for a visual overview) consists in assessing the similarity among 3D models on the
basis of the patterns that they are fully covered by. In other words, the characterization is strictly
based on the pattern and does not take in consideration the size of the overall model, its shape,
etc..

Parallel to our research, we looked for way to provoke interest in our research field. We did it
by working on a series of contest called SHape REtrieval Contest (SHREC) [VRST06]. Such
contests provides many resources to compare and evaluate 3D retrieval methods. The tracks
organized during the years have covered different tasks with respect to different aspects (met-
ric learning, outlier detection, correspondence, robustness, stability, registration, classification,
recognition, pose estimation, machine learning, etc.) on different kind of 3D data (rigid or non-
rigid models, partial or complete models, sketch-based 3D retrieval) and in generic or domain
specific models (CAD, biometrics, architectural, protein, etc.).

Contribution

Overall, this thesis deals with the automatic characterization of digital surfaces based on their
patterns. Preliminary, to address the geometric pattern characterization problem, we need to
better understand which method better characterizes small reliefs and features on a surface. For
this reason we have created two benchmarks: one for evaluating algorithms for curvature estima-
tion and the other for addressing feature curve recognition. Indeed, feature recognition is more
addressed in the literature than pattern recognition but roots on the strictly related concept of
analyzing well-distinctive geometric variations.

The pattern retrieval allows us to start facing the problem of characterizing patterns without
bothering about its position on the surface. As a solution for this problem, we proposed two
methods called edge Local Binary Pattern and mean point Local Binary Pattern. Both methods
achieved state of the art performances and are validated on many datasets. We supported the
pattern retrieval research with an extensive benchmarking activity that counts three benchmarks
on three different kinds of pattern: colorimetric patterns, geometric patterns and river gravel bed
scans.

The main contribution of my thesis lies in the solutions proposed to the pattern recognition
problem. To meet this challenge, we faced several challenges and had to carefully understand
and analyze the task, both in terms of which data representation use and which methods for
local analysis have been previously explored in this direction. Our efforts took the shape of two
promising research paths, one based on an engineered descriptor and another on learned ones. In
the engineered method we mix local similarity with an energy minimization problem faced with
the graph-cut method. In the learning-based approaches we investigated two methods that exploit
the potential of the dictionary learning and of the convolutional neural network infrastructure to
characterize patterns.

Simultaneously, we created datasets and metrics for evaluated methods for retrieval of geometric
and colorimetric patterns on surfaces, the recognition of curve features and geometric patterns
and the classification of river bed gravels. In particular, we have actively contributed to the
identification of strategies and trends in these topics that are strictly related to this thesis topic.

Finally, we foresee dataset exploration as a possible future application context for our pattern
recognition solutions, indeed, we propose a search engine design in which our pattern recognition
solutions could easily fit.

Organization of the thesis

This thesis is divided in four parts. The first three parts are further divided in three chapters,
while the last part is made by two chapters.

Part [I| introduces the preliminary concepts required to frame our work including an overview
of the current literature and concept used. Chapter [T] overviews the current literature regarding
the contributions to the pattern retrieval and recognition problems. The most pertinent contribu-
tions to each problem are briefly described in each section. Since the number of methods and
algorithms able to deal with pattern recognition on surfaces is very limited, we focused on two
approaches that are interesting but address the problem of recognizing one pattern per model.
Chapter [2] is an introduction to the surface properties we use to characterize colorimetric and
geometric patterns. While such an introduction is straightforward for the first ones, geometric
variations require an in-depth analysis of the current literature, as many different approaches are

available, with different pros and cons. Our measure of choice will be the surface curvature
and, to understand which approximation of this concept better suits our purposes, we make a
comparative analysis of different curvature estimation methods.

Part |lIl examines the pattern descriptor methods we developed for the pattern retrieval problem
and our benchmarking activity. Chapter [3|examines the design of the edge Local Binary Pattern,
a pattern descriptor we developed initially for geometric patterns and further extended on colori-
metric patterns and tested on multiple datasets. Results achieved state of the art performances
and are still competitive to the most recent contributions. Chapter 4| presents a second pattern
descriptor that achieves performances similar to the edge Local Binary Pattern, with a lower
computational cost. In this chapter we describe how the method is defined and how it performs
on different datasets, comparing the results with other methods. Chapter [5] describes the three
benchmarks we worked on regarding the pattern retrieval problem. The main difference between
them is the kind of models and patterns considered: the first is on gray-scale patterns, the second
is on geometric reliefs and the last is on river gravel bed scans.

Part [[TI] showcases our contribution to the pattern recognition problem. Chapter [6| deepens the
challenges of the pattern recognition problem. Indeed, several significant challenges are dis-
cussed in their aspects, starting from the type of data involved to the need of dealing with large
models. Chapter [/| presents our method for characterizing patches of a model via energy op-
timization and local similarity. The energy minimization aspect is faced using the graph-cut
method. Patches with patterns are compared to each other using a pattern retrieval method. In
Chapter [8| we face the pattern recognition problem using two learning approaches. The first ap-
proach uses a signal aggregation method based on the well known sparse decomposition method,
while the second is based on a multi-view approach of a surface patches combined with a convo-
lutional neural network.

Part focuses on future developments and applications of the research done in Part |[I| and
Part[[TI] Chapter [9|proposed the dataset exploration as one of the research axes of a search engine
built on a dataset of 3D models. We propose the design for a search engine defined for datasets of
different nature and that can easily adapt to new datasets and new similarity criteria with respect
to those already implemented. In this regard, the research proposed in this thesis can become
new axes of this search engine. Finally, the summary of what we achieved in this work and the
conclusive discussions can be found in Chapter [0}

Part I

Preliminary concepts

10

Chapter 1

State of the art

The goal of this chapter is to overview how pattern characterization stands in the Computer
Vision literature. This work distinguishes mainly between geometric patterns (characterized by
small surface variations) and colorimetric patterns (characterized by variations of the colors of
the object scans).

Methods in the current literature for shape retrieval and matching can be classified according to
their type of input, their local or global nature, their robustness to noise, their model represen-
tations, their invariance to shape transformations and their suitability to partial matching[[TV08,
TCL"13, BCBBI16].

A quantitative analysis of the feature matching performance of local shape descriptors over stan-
dard datasets has been recently proposed in [YZC17]]. Most of these methods analyze the surface
on the basis of its global appearance, discarding surface details and local shape variations. For in-
stance, the SHOT descriptor [ISDS11]] is meant to solve point-to-point correspondences among
sets of feature points. Similarly, the Fast Point Feature Histograms [RBB09] (or FPFH) are de-
fined to align overlapping point clouds. An example of the potential of the FPFH is shown in

Figure[I.1]

Since SHOT and FPFH can be seen as implicit solvers of local matching for 3D data, they were
adopted, in general, to address the similarity by local characterization. However, this approach
results weak when working with patterns, since the global shape of the surface is relevant in the

use cases of these methods, when in pattern characterization the description must be only local
(or rather, independent from the global surface).

On a similar note, the concept of self similarity is related to the pattern analysis as well. By
assuming that a surface has details that repeat multiple times with different quality and embed-
dings, one can use the combined data given by all the iterations of that level of detail and convert
it into useful data. For example, in [HCDC17] the self similarity of 3D point clouds are used to

11

B

Figure 1.1: The alignment obtained by the FPFH. Left: two point clouds of the same object in

different positions. Center and left: two views of the alignment computed by the FPFH. Image
from [RBBO09].

Figure 1.2: Detail enhancement as proposed in on an archaeological model. Left: the

initial scan and one detail. Right: the same model and detail after the detail enhancement. Image
from [HCDCI17].

enhance the details of the surface, tackling a problem called super resolution. Figure shows
the detail enhancement on a Persepolis slab.

Overall, self-similarity and partial similarity are the key concepts currently referred to detect
repeated, local features over a surface [YZC17]]. For instance, the method [GCOO06]
uses surface curvatures for recognizing salient shape features. Once these features are computed,
they are mapped using a geometric hashing mechanism that determines the best transformation
among these regions by means of a voting scheme. Such a technique is able to recognize re-
peated surface features (circles or stars) over a surface but, being based on geometry hashing,
it is scale dependent and suffers of the local definition of “curvature” that could become insuf-
ficient when dealing with highly eroded or perturbed surfaces. Similarly, [IT11] observed that

12

though isolated feature points often do not suffice, their aggregation provides adequate informa-
tion regarding similarity. Then, the combination of segmentation techniques with the neighbor
description of the feature points yields the detection of similar parts in bas-reliefs and archae-
ological artifacts. However, every surface part was considered as stand alone and no particular
attention was allocated to the detection of repeated patterns. Moving further in this direction, the
method proposed in [TBF18] adopts the Hough transform to fit aggregated sets of feature points
into template curves: while this approach naturally overcomes the problem of finding multiple
instances of the same curve, it requires the surface can be locally projected on a plane and the
vocabulary of possible local shape elements is limited to those that have an algebraic expression.

1.1 Pattern Retrieval

The pattern retrieval counts several approaches. We recognize two strategies that tackle this
problem. On one hand, one could reduce the data dimension, i.e., to project the 3D data into an
opportune plane (image) and apply an image pattern recognition algorithm to the projected data.
On the other hand, one can work on the definition of a pattern description directly on the surface,
which is not straightforward as it involves the treatment of three-dimensional data.

The generalization of several image descriptions to (even textured) surfaces has been explored
in several works, e.g. the meshHOG [ZBH12] and the meshSIFT [SKVSI13]. However, most
of these methods mainly addressed the shape matching problem without focusing on the local
variations.

A detailed evaluation and comparison of methods for 3D texture retrieval and comparison can be
found in [BCA™16] and several SHREC contests [CBA™ 13, BCA™ 14, GFF"15]]. Focusing on
the colorimetric information, the descriptors adopted so far, include: feature-vectors, where the
color is treated as a general property of the overall shape, [Suz01], or its subparts in [GG16]; local
or global views of the objects [WCL ™08, [PZC13]]; correspondences among feature points (e.g.,
the CSHOT descriptor [[TSDS11]]); the tracking of the evolution of the color channels sub-level
sets [BCGS13|].

As a reference to the first typology of methods, I mention the method in [OVSP13]] for tree
species classification. There, the geometric variations of the tree trunk models are represented
with a 3D deviation map over a cylinder that is flattened on a plane using the Principal Compo-
nent Analysis (PCA) technique. Then, the geometric textures are compared using variations of
the complex wavelet transform [KBCO6]; see [OVSP13] for a detailed implementation analysis.
Similarly, [ZPS™16] adopts a deviation map and projects the reliefs and engraves of rock artifacts
into an image and classifies them (see Figure [.3).

Moreover, due to the success of deep neural networks in different application domains, deep
learning-based 3D shape features have been proposed for 3D shape analysis. In [WSK™15] au-

13

e

o e o e
i) pint clomd i pregecued degpih map A H ol Ly S il wiifunrsreel ilerial e My
Figure 1.3: Deviation map computation in : (a) the scanned point cloud viewed from
the projection direction; (b) the projected depth map; (c) the deviation map; (d) the deviation
map with enhanced topographic structure emphasizes peck-marks that make up the engraving.

Image from [ZPS™16].

thors proposed to represent 3D shapes as a probability distribution of binary variables on a 3D
voxel grid. Boscaini et al. employed the windowed Fourier transform to points on
the meshed surface to form a local frequency representation. These local frequency representa-
tions are then passed through a bank of filters to form a deep representation for 3D shapes. By
constructing a geodesic convolution operator, Masci et al. generalized the convolu-
tional neural network to non-euclidean manifolds for 3D shape retrieval and correspondence.

In the remainder of this section we overview the methods developed in the last years for the
pattern retrieval problem. In particular, we focus our attention on the mesh Local Binary Pat-
tern 'WBB135], the Tutte/meanC/SIFT/FV and the most perform-
ing learning-based methods proposed in the last SHREC contest on the subject [MBG™20].

Mesh Local Binary Pattern

The Mesh Local Binary Pattern (meshLBP) extends the LBP to triangle meshes, ad-
dressing 3D pattern classification and retrieval directly on the surface mesh. The main idea
behind the meshL.BP is that triangles play the role of pixels; there, the 8-neighbor connectivity
of images is ideally substituted by a 6-neighbor connectivity around triangles. Rings of pixels
became rings of faces, built with a sort-of front weave expansion from each face. Figure [1.4]
shows how a face is created on a uniform mesh. Working on (non-textured) meshes, the role of
the gray-scale color is replaced by the mean curvature but it is also possible to use color informa-
tion stored in the texture. The meshLBP provides an efficient coding of a 3D pattern, providing a
compact representation of the pattern. This has been shown by testing variations of this method as
in TWB19b]], from the same authors, on recent benchmarks [BMTA ™17, BMTB™18]].
Moreover, meshes with patterns usually have a high resolution, in order to represent the patterns
of the surface decently enough to be characterized. This usually leads to mesh simplifications
(in terms of number of faces and vertices), that almost always create irregularities, either in
terms of connectivity or non-uniform vertex distribution. These facts jeopardize the efficacy

14

(e) () (g) (h)

Figure 1.4: Row 1- Construction of an ordered ring of the meshLBP: (a) Initial Fout facets (blue);
(b) Bridging the gap between the pairs of consecutive Fout facets with the Fgap facets (yellow);
(c) The obtained ordered ring; (d) Ordered ring constructed around a central facet. Row 2 -
Multiresolution mesh-LBP construction: (e) Extraction of the next sequence of Fout facets, as
the facets adjacent to Fgap and which are not part of the current ring; (f) Extracting the Fgap

facets; (g) The second ordered ring extracted; (h) Five concentric ordered rings. Image from
TBB16].

of an expansion strategy based exclusively on elements of the mesh for detecting and coding
representation-independent features. This aspect is deepened in Chapter [3]

Imporved Fisher Vector for pattern characterization

In [Gial8], the main idea is to tackle the pattern retrieval problem by considering images that
encode the patterns on the surface. The proposed approach exploits the pooling of local invariant
features based on the Improved Fisher Vector (IFV) for relief pattern characterization.
This is inspired by the great success of applying the same method in the context of image textures.
On one hand, classical fisher vector (FV) store the mean and the covariance deviation vectors per
component of a Gaussian Mixture Model (GMM) fitted to the unlabeled data. On the other hand,

15

Figure 1.5: Images obtained mapping the mean curvature evaluated on patch vertices onto the
parametrization coordinates. Top row, left: mesh renderings. Top row, left: images obtained with
the best fitting plane. Bottom row: images obtained on boundary constrained parametrization
(after geodesic circle cropping). Image from [Gial§].

IFV improves the performance of the representation by applying a nonlinear kernel to the vector
components and applying [— 2 norm normalization. To apply the IFV to the dataset as done
by the author, it is necessary first to extract an image from each model. To do it, the mesh is
uniformly remeshed to simplify the estimates and regularize the meshes. Then, the mesh must
be projected on a plane, from which the image is sampled. The best method proposed in that
work is based on the Tutte embedding [FHO5|], mapping the patch boundary onto a circle on the
plane. The author then crops a large geodesic area that should include all the pattern elements
characterizing the texture class. By fixing the pixel/patch size ratio, images are sampled from the
projected patches. An example of the passage from 3D model to image is shown in Figure [T.5]
The pixel color depends on the mean curvature values of the vertices that fell in the respective
square of the pixel grid. The final result is an 8-bit depth image. Local features are then estimated
on the resulting raster images using the SIFT transform. The SIFT descriptor is estimated in all
the peaks detected by a multiscale Difference of Gaussian detector. A Gaussian Mixture model is
then fitted to the estimated set of features, which is then encoded by the IFV encoding. The latter
is the descriptor of the pattern on the patch, that is used to estimate the similarity between patches
based on their pattern. The results are validated on a recent benchmark [BMTA*17]. However,
being limited to just an image of a fixed size per model is limiting in case of patches with odd
bendings. Moreover, the images can be flowed in the latter case. The third model in Figure [I.3]
is an example of a strong surface bending that was not resolved by the Tutte embedding.

16

o | |

| d .
}f I e .nwm _5 DeneaBlockd DenseE|ockd 1 DenzeBlocks
t | —

= ' BN
7 =¥ : {18, 18, 258) i9, 3, 236)
; Global Average Global Avarage
: Paaling Pesding
Input Shape: {300, 200, 3) o l.ﬂﬁ.\ ¥ .
Feature vector

Figure 1.6: Illustration for step three “Extracting Feature by concatenating feature vectors from
different layers of pre-trained models” of the DFE method (the figure illustrates the step when
using Dense-Net-201). Image from [MBG™20]].

Deep Feature Ensemble

In [MBG™20]], Nguyen-Dinh et al. proposed a method called Deep Feature Ensemble, which
classifies patterns based on multiple pre-trained nets. The first step of this method is to upright
the 3D object by transforming the object into a new 3D coordinate system so that the object
stands vertically across the y-axis for the ease of rendering. Then, an image is extracted from the
model so that it has the most relief pattern selected. Such images are used as representatives of
the models. The authors propose using these pre-trained models to extract features of each image
(or pattern). Many high-performance models such as ResNet [HZRS13]], DenseNet [HLP"19]],
VGG [SZ14], and Efficient-Net [TL19] suit this purpose. The authors propose to synergize
the information extracted from different intermediate layers of different pre-trained networks by
assembling feature vectors. First, a square image containing patterns is given to a pre-trained
neural network. Then, the output tensor of a chosen intermediate layer of that network with the
shape of (h, w, channelsize) passes through a Global Average Pooling Layer to create a vector
with a length of (channelsize,) used as a feature vector. The use of the Global Average Pooling
makes for more robust results with respect to spatial translations in the images. Finally, the
Deep Feature Ensable descriptor is obtained by concatenating all the output of the pre-trained
nets. A visual representation of the way authors ensemble the feature vectors from different
layers in different models is shown in Figure Descriptors are compared with metrics such as
cosine similarity, L' or L? distance and so on. The authors combine Average Query Expansion

17

intermediate Concatenated
Cropped patterns faature vectars feature vectors Dissimlilarity matrix

L s STH=—

' i LT
By e

= -

Exftract features Global pooling and Calculate distances
feature concatenation with query

expansion

Figure 1.7: Overview of the third and fourth steps of the Deep Feature Ensemble method (DFE).
Image from [MBG™20].

(AQE)[AD17] with a view to helping our model to remove noises. This method is summarized
in Figure

In the same contest, Gigli et al. proposed the DPML method, which starts from the extraction of
patch images from the mesh surfaces and uses them to train a Siamese Neural Network [CHLOS]]
to learn a distance function between each pair of images. More precisely, the first part of this
method is dedicated to obtain multiple images of the object that contain only local textures.
The goal is to project the local neighborhood over a plane and obtain an elevation image. For
this reason, only the neighborhoods that are as flat as possible are selected. To estimate such a
property, the covariance based features are used. Validated neighborhoods are projected over the
tangent space of the surface.A regular grid is defined over the tangent space, and each element
of the grid corresponds to a pixel of the image. The intensity values of the image correspond
to the distance between the points projected over the element and the tangent plane. In order to
obtain a uniform sized patch the method crops them to obtain images of size 231 x 231 (equal to
the smallest image extracted with this process). For each patch, crops are computed so that there
is the minimum number of void pixels in each image. An overview of this process is reported
in Figure [[.8] The second part of the DPML method consists in selecting the images that are
used to train a Siamese neural network with the Triplet Loss. The architecture is composed of
three CNNs sharing the same weights. In this case the VGG16 [SZ14], without fully connected
layers, is chosen as CNN. The CNNs work in parallel taking as input a triplet of images and
generating a comparable feature vector, as shown in Figure The Triplet Loss minimizes the
distance between an anchor and a positive, both of which have the same identity, and maximizes

18

Figure 1.8: Pipeline of the first steps of the DPML method. A local neighborhood is projected
over a plane and an elevation image is derived.

the distance between the anchor and a negative of a different identity, i.e. an image from a
different object [CSSB10]. Finally, the distance A between two objects S; and S; is defined as
the minimum distance between any couple of images belonging to the two surfaces:

A(S“SJ) = min (S(Ih,fk),

h,ke{l mi}x{l,...,m]-}

where (I, I1,) is the similarity function learned by the Siamese neural network.

Histogram of Double Distance Transform

For colorimetric patterns, during the SHREC’ 18 is on colorimetric patterns retrieval [MTW*18§]],
Velasco-Forero considers the texture on the mesh as binary ones, i.e., only containing white and
black vertices. A function that maps each interior vertex (exterior) on the mesh with the distance
to the nearest vertex on the exterior (interior) set of vertices is defined. A color shape is defined as
S = (V,S, F), where S is a closed triangles mesh in R? and F : S — R3 represents the mapping
from each vertex in the mesh to a given color space. The descriptor is computed by these four
steps. For a given mesh, vertices are divided in two sets: the set of white vertices (V) and that of
black vertices (V},). Then, the k-nearest neighbor graph (k-NNG) of V,, on V}, and the k-NNG
Vy, on V,, are computed. Finally, histograms are computed on the following quantities:

NormDyv,(v) = Disty(v,V,)/Disty(v,V,),

NormDyv, (v) = Disty(v,Vy,)/Disty(v, Vy);

respectively Vv € V, and Vv € V,. The concatenation of the computed histograms is the
pattern descriptor. A comparative analysis of the performance of these methods for geometric
and colorimetric pattern retrieval is exhibited in Chapter [5

19

e - -
e . - —
negative ‘ —_— ONN il

Figure 1.9: Overview of the network of the DPML method. Such a network consists of a batch
input layer and a deep CNN. It defines the image embedding by using a triplet loss during train-

ing. Image from [MBG™20].

O0eo

1.2 Pattern Recognition

The problem of pattern recognition is crucial for applications such as the classification and recon-
struction of fragmented artifacts of archaeological dataset based on the representations of local
features (like how hair, beards or fabrics are represented on statues and similar artifacts). Such a
task, that is still open and only a few methods have been proposed. In particular, there are two
contributions that go in the direction of the pattern recognition problem as we intended in this
work.

Automatic shard classification
The first one is from Debroutelle et al. [DTC™17]], which defines a method for the automatic

classification of 3D scans of shards with respect to their decoration. In particular the five most
characteristic decorations, represented in Figure[I.10] define five different classes that are used

20

Figure 1.11: Highlighting the relief patterns: (a) depth map projected from the 3D points, (b)
improved depth map by inpainting step, and (c) local variance map. Image from [DTC™17].

to locally characterize the surface.

First, the 3D point clouds are converted to depth maps by projecting them onto planes. This
allows for a projection that does not cause any undesired distortion of the scanned object once
processed. The projection is done using the PCA. To avoid issues with uneven samples (which
may lead to black pixels that contain no info from the points), these ‘black’ areas are automati-
cally detected and filled using a smoothing estimator propagating along the image gradient. The
estimator is a weighted average of the neighborhood and the fast marching level-set method was
used to fill missing image information. Then, a histogram normalization is applied to the depth
map. Finally, a local variance estimator was applied on the depth map to highlight shallow relief
information. Figure[I.TT]shows an example of this process in action.

The local variance operator acts as a high pass filter to remove the curvature of the shard. Next
a saliency map is extracted. The saliency region is assumed to be the highest textured region in
the local variance map. As the elements making up the pattern have geometrical shapes, authors
apply a detector of corner points and a density-based spatial clustering to extract the saliency
region. Authors use the FAST method for finding the saliency value. Examples of the
final saliency map and all the previous one obtained for all five classes are shown in Figure[T.12]

Then, the authors binarize the salicency maps by thresholding the map values, using the Niblack’s
algorithm plus an optimization that reduced the number of artifacts left by the Niblack’s
algorithm. An example of the final binary maps are shown in Figure [I.13] The classification
of the models is divided in two steps: the characterization of feature based on the binary maps

21

Clus B Class {lass I Claw E
1 vals) I 5ticks) {Sgmures ¥ rows) | heyrnns|
E
:
<]
X
4
=
=
G
2
=
L]
[
|
k]
-
5
3
=)
;] 3

Figure 1.12: A selection of shards of the five most representative classes and their respective

maps versions. Image from [DTC™17].

and the use of the extracted feature as input to train a multiclass support vector machine (SVM).
First, author apply the pyramid histogram of visual words (PHOW) as a descriptor in
the saliency region, which is a variant of the dense SIFT descriptor [Low04], extracted at multiple
scales through a spatial pyramid scheme. A series of SIFT descriptors was computed on a regular
grid with a spacing of the map pixels and different circular supports for scale variation (radius of
4, 6, 8, and 10 pixels). This sampling with overlapping patches at multiple scales was considered
to efficiently characterize the repeating frieze. Then, the K-means clustering was used to build a
codebook of visual words compiled from tens or hundreds of thousands of SIFT descriptors. The
final classification is done with a C-SVM, with the one-against-all strategy. Different kernels are
considered by the authors, with the best results obtained by the Gaussian kernel with a y-square
distance [DD09]. While the work above is in spirit close to the goal of this manuscript, there are
multiple limitations that block it from being a method that can be generalized to a more broad

22

Figure 1.13: Top row: the final binary maps. Bottom row: the respective 3D point cloud. Image
from [DTC™17].

use. Mainly, the fact that the shape of the scanned objects is basically flat or close to flat avoids
entirely the problem of distortions when converting 3D data into 2D data.

Tree specimens classification based on bark reliefs

The second contribution is the one presented by [OVSP13]. The goal of that work is to classify
tree specimens from terrestrial laser scans. To solve the problem, the idea is to classify the trees
based on their bark texture, which in the context of this work can be identified as a pattern. In
Figure [I.14] we report the scans of the barks of the most common tree specimens, according to
the authors.

The similarity is mainly driven by a patch in correspondence of the truck at a fixed height and
size. This allows patches roughly similar from tree to tree, which simplifies the characterization
of the bark relief. Indeed, the relief is extracted by considering the difference between the original
patch and its smoothed version. This leads to a 3D deviation map, which then is converted
into a 2D deviation map via the Maximum Variance Unfolding [WPS05] (MVU) dimensionality
reduction algorithm. The latter step basically transforms the 3D deviation map into a height map.
Figure [[.15[Top) shows the 2D deviation map for the five most common tree specimens.

The main idea is to cluster the points over a certain height in order to define clusters or regions
whose shape allows the authors to classify the different specimens. This is achieved by a thresh-
olding process first (empirically set equal to the median value of the deviation values), followed
by the DBSCAN [EKSX96]]. Results of this process are shown in Figure [I.15(Bottom).

From the deviation map and its segments, the authors compute four characteristics that are used
to classify the scans: the number of clusters per segmented 2D deviation map, the roughness, the
principal component analysis (PCA) features and the shape and intensity features. In particular,

23

hornbeam oak spruce beech pine

Figure 1.14: 3D point clouds of the five tree species. Image from [OVSP13]].

N Bin N

hornbeam beech pine spruce
Bl e

|I L . ‘.‘r *"l
'T'l f \ .gﬁr !

5 -

| - s
I'ﬂ' . . e B = L T
hornbeam beech pine spruce

Figure 1.15: Top row: an example of 2D deviation map for each of the five species. Bottom row:
an example of segmented 2D deviation map for each of the five species. Image from [OVSP13].

PCA features are a set of values that can be computed from an application of the PCA to the clus-
ters of points, like the percentage of the total variance explained by each principal component,
the maximum and the median distances between the observations and the center of the data set,
the longest and shortest diameter, etc.. The minimum, maximum, mean, median and standard
deviation values of these PCA features for all the clusters of the segmented 2D deviation map
are used as for classification. The shape and intensity features are obtained from each cluster by
considering a set of shape and intensity estimations. Again, authors use the median, the mean,
the standard deviation, the minimum and the maximum of the intensity and the shape features of
all the clusters and use them as classification attributes. This makes for a total of 128 features
that can be extracted from each bark scan. Authors used the Random Forest classifier
to select the 30 most relevant features, using datasets of trees with ground truth. Overall, this
method classifies a 3D object based on its pattern and it is further extended in to almost

24

planar surfaces for the characterization of pecking decorations in rocky arts. However, such an
height map analysis cannot be trivially extended to a general surface, due to the assumptions on
the overall shape of the latter. Indeed, models with non-trivial topology make the local analy-
sis required in the pattern recognition problem much more complex (i.e.: it is much harder to
distinguish local surface variation from overall variations).

25

Chapter 2

Pattern-related surface properties

Patterns characterization depends on the study of surface properties that can define a pattern,
being the characterization of a pattern modeled as a (small) property variation. This thesis deals
with geometric patterns and colorimetric patterns. This chapter focuses on the properties used
to characterize these two kinds of patterns. It is worth mentioning that this chapter is mainly
devoted to the geometric properties of the surface. Indeed, we observed very minor changes
in performances when considering properties similar to the gray-scale defined in different color
spaces. Moreover, an in-depth analysis of all the existing ones is out of the scope of our work.
However, for completeness, in the following section we briefly introduce the color space and we
consider in our tests.

2.1 Color properties on surfaces

Colorimetric patterns are encoded by analyzing the variation of the color channels of the embed-
ding one finds more appropriate for a given dataset. For example, a dataset with colorimetric
patterns that depend strongly on the contrast can be described by the variation in the gray-scale
embedding, or the HSV. On the other hand, if patterns are mainly of one color (e.g.: red), it
could be useful to embed the colors in a color space that has one channel focused on that hue
(e.g.: RGB, CieLab, CMYK).

We tested multiple color embeddings and, for our tests, the CieLab color space resulted in the
best choice, for multiple reasons. Mainly, since our main application is assisting archaeologists
in their reasoning, we look for patterns that they can spot with their eyes. This makes the CieLab
color distribution very appealing, since it correlates the Euclidean distance between the colors
(in that color space) with the color difference experienced by the human visual system.

The CieLab is a color-opposing embedding of the visible spectrum in which the difference be-

26

'||f}_-~J

Figure 2.1: Representation of the color distribution in the CieLab color space. Source: https:
//en.wikipedia.org/wiki/CIELAB_color_spacel

tween colors with opposite tones (formally, complementary colors) is reflected in the position
of the colors in the color space. In other words, assuming that the color space is a flat disk,
opposite colors are placed in opposite poles. In particular, the way complementary colors are
placed in the CieLab color space is similar to the one humans have, this does not happen in the
other commonly adopted color spaces, such as the RGB. Figure [2.T|represents the way colors are
distributed based in the CieLab color space. It has three color channels that, when combined, are
able to represent the visible spectrum of light. These channels are the L-channel, which is related
to the human concept of luminosity, the a-channel, which represents the red/green balance, and
the b-channel, which represents the yellow/blue balance. As a side note, despite the appearance,
the L-channel is not a translation, stretching or compression of the commonly adopted gray-scale
of the RGB color space.

For our tests, the L-channel resulted enough to characterize the colorimetric pattern of our
datasets. While some artifacts have decorations with a lot of different colors and variations,
for ancient ones many colors are faded and the ones that are still visible are mainly defined by
the contrast of two colors instead of the variations in the single color tones.

27

https://en.wikipedia.org/wiki/CIELAB_color_space
https://en.wikipedia.org/wiki/CIELAB_color_space

(@) (b () (i) ()

Figure 2.2: Geometric texture extraction based on height functions: (a) the armadillo model; (b)
a curved sample patch; (c) the smoothed surface; (d) the extracted geometric texture image; (e)
the reconstructed texture on a plane. Source: [LHGMO3].

2.2 Geometric surface characterization

A completely different and more in-depth analysis is required for the geometric patterns. Several
properties could describe and characterize local variations in the geometry of the surface, like the
well known height functions (or height maps), the Laplace Beltrami operator and the curvature.

For example, in a local characterization via elevation (or height function) a pattern is defined as
a vector of displacements with respect to the underlying shape [LHGMO3]| or in terms of rotation
and displacement lengths from the normal vector [ADBAQ9]]. The underlying shape is usually
obtained via smoothing. A technique based on this approach is used, for example, to face the
problem of texture synthesis and transfer [LHGMOS5]|, as shown in Figure 2.2]

On a similar note, starting from the theory, the Laplace operator generalizes the second order
derivative to higher dimensions and characterizes the variation of a function. Indeed, the solution
to the Laplace eigenvalue problem Af = —\f is an orthonormal eigensystem (with an infinite
number of base elements). Thinking of the surface as a vibrating membrane, the higher is the
eigenvalue, the higher is the corresponding frequency. In other words, smaller details of the
surface can be found at higher frequencies. The discretization of the Laplace operator, which is
called Laplace-Beltrami operator, requires complex calculations, thus it is usually approximated
by different formulations. For example, a well known formulation of this operator is

the following:
1 .
Avi = - > (cotan(ay;) + cotan(Bij)), 2.1

JEN (v;)

where v; is a vertex of the mesh, N (v;) is its one ring neighborhood, «;; and f3;; are the angle
opposite to the edge v;v; in the two triangles adjacent to v;v;. The applications of this operator
are numerous, such as shape analysis (global and local), synthesis and shape correspondence.

Last but not least, the curvature is the geometric property most used to describe the concept of

28

n

Figure 2.3: Representation of the normal curvature to the surface X in a point z. The oriented
vector IV represents the normal vector in z. On the right, the surface is sectioned along the plane
7 that generates the curve £. The radius of the osculating circle in z relative to 7 determines the
normal curvature.

geometric surface variations. Its definition starts from the concept of the principal curvatures,
which measure the maximum and minimum bending in different directions of a regular surface at
each point x. The latter must be a differentiable point (in the 3D Euclidean space) of the surface
(let us call it XJ). To compute the bendings in all the possible directions in x, one has to define the
intersection between the surface and a plane that passes through x and that contains the normal
vector in x. Because of the regularity hypothesis on the surface, the intersection will always
result in a curve, on which the classic definition of curvature can be applied (i.e.: the reciprocal
of the radius of the osculating circle). The extreme curvature values assume the name of maximal
curvature ki and minimal curvature ky and, together they are called principal curvatures of the
surface at x. The values are considered positive if the curve turns in the same direction of the
normal, and the negative otherwise. An example of the plane/surface intersection is depicted in
Figure 2.3l While k; and k, already contain local surface information, usually a combination
of the two is used for more synthetic surface analysis. For example, the Gaussian curvature K
is an intrinsic property defined as k1k,. Another example is the mean curvature H, an extrinsic
property defined as %(lﬁ + ko). Similarly, the shape index SI is another extrinsic property defined
ka+k1

as %arctanm. All these possible combinations can serve different scopes (e.g.: K could be

used to classify a point as elliptic, hyperbolic or parabolic) with their pros and cons.

Among elevation, Laplace-Beltrami operator and curvature, we focus our attention on the latter.
To our experience, in our use cases, the height functions as they are are still too sensible to the
deformations of the surface. Also, in some models the pattern is lightly chiseled on the surface,
which makes the height map less significant. Notice that we uses a variation of the elevation
in Chapter [7] and Chapter [8} we thus do not discard this option entirely, still its performance
with its classic definition are far lower with respect to those of the property we opted for (see
later). Different is the problem with the Laplace Beltrami operator: to the best of our knowledge,

29

Figure 2.4: Representation of the mean curvature on some real artifacts. Colors scales with the
values of the curvature. Notice how it is almost impossible to distinguish between patterns and
non patterns just based on the colors and how easier the task became once configurations of
values are taken into count (e.g.: a beard is characterized by a ‘line’ of vertices that have the
same curvature value).

computing higher frequencies of its solution is highly demanding in terms of computational cost,
especially with meshes with a very high number of vertices. Indeed, our use cases have very high
resolution models, which usually makes the use of this operator prohibitive.

For these reasons, we focus our attention on curvature and the different ways to approximate it
on surfaces to promote the identification of well-detailed and isolated geometric variations of the
surface while discarding the whole shape structure.

Indeed, it we will use the curvature variations between different points of the mesh as starting data
for our pattern descriptors. That is because the curvature, in its continue definition, is sensitive
enough to vary on any pattern, assuming configurations of curvature values that repeats over the
pattern area (see Figure [2.4).

While the curvature punctual value is not enough for a classification by itself, an effective and
compact description of these configurations will lead to a proper pattern descriptor definition.
However, since we are working with 1) machines with finite precision and 2) on surface dis-
cretization, the way we approximate the concept of curvature is of major importance and it needs
to be deepened.

30

Figure 2.5: The test-beds for the curvature estimation benchmark for small reliefs. Models 5 & 6
come from the GRAVITATE use case [UUTCIC™]. The red areas contain 20000, approximately.

2.3 Comparative analysis of curvature evaluation methods

The obstacle in actually using the curvature in a real world scenario is that the way it is computed
on triangulations (and point clouds) is not trivial. For example, triangulations are flat faced (with
zero curvature), thus the curvature is concentrated along the edges and vertices (on which the
surface is not differentiable), while point clouds are not even surfaces. However, in the current
literature, there are mainly three approaches to the computation of curvature on meshes [GG06].
The first deals with the problem by moving the problem in the continuum, with local surface
fitting. The second looks for equivalent descriptors starting from basic properties of continuous
operators but directly applied to the discrete settings, with an eye of regard for the validity of dif-
ferential properties during the computation. Finally, the third looks for discrete approximations
of differential properties of surfaces, from which the curvature can be derived. An analysis of
these approximations performances is necessary for the use-cases of our work.

For the work described in this thesis, the existing benchmarks for the comparison of curvature
estimators presents a limitation. In particular, the curvatures estimations are evaluated on al-
most smooth surfaces and by looking at the overall surface without focusing on the details. On
the contrary, the following comparison focuses on the practical behaviour of the algorithms on
local geometric variations, such as chiselling, incisions, small bumps on the surface, to assess
the capability of different approaches to identify local features or, as expected, patterns. Differ-
ently from [GGO6, and [VVPT16], the models considered in these comparisons do not
correspond to smooth surfaces and are all obtained with scans of real objects. Unfortunately,
this means that it is impossible to know the exact curvature values to compare the estimations
obtained. For this reason, the evaluation is mainly visual and quantitative metrics are provided
only for the localization of curvature values on specific features and the frequency of the out-
lier values. Seven 3D models are selected, trying to cover a wide range of different reliefs that
are significant when looking for the characterization of local features and details. Figure [2.5]
overviews the selected models. Triangulated meshes are used to represent these surfaces, which
is a standard-de-facto representation of models reconstructed from laser scans and for which
there is a rich variety of algorithms.

31

All surfaces are sampled with 1M vertices, with the exception of M1 and M7, which have ~
550K vertices. Figure [2.5] visually represents the vertex density for each model; the red regions
contain 20000 vertices, approximately. The local variations in these surfaces come in various
shapes and degrees, ranging from sharp variations (facial traits of M/ and M4) to smooth ones
(hairs of M3 or scales of M2), from small ones (like the hair of M1, M5 and M6) to bigger ones
(scales of M2), from frequently repeated (circlets of M5 and M6) to more localized ones (door
decorations of M7).

We selected eight representatives of the various curvature estimator strategies. Far from being
exhaustive, our selection falls on implementations that are freely available and, in our knowledge,
of common use in the geometry processing community. Namely, we are considering:

* the Algebraic Point Set Surface (AP) fitting method [GGO7, \(GGGOS] as implemented in
[CCCT08];

* the curvature discretization based on the cotan discretization of the Laplace-Beltrami op-
erator (MA) [MDSBO3] following the implementation provided in [CCC*08];

¢ the pseudo-inverse quadratic fitting method (QF) in [CCCT08];
* the normal cycles approach (NC) [CSMO3]] as in [Pey];

* the curvature estimation based on an adaptive re-weighting of the vertices in the neighbor-
hood proposed in [KSNSO7]] (KA) (authors’ implementation);

* the discrete estimation of the second fundamental form proposed in [Rus04] (TR) (author’s
implementation);

* the normal curvature estimation based on the Euler formula proposed in [DWO05] (DO)
(authors’ implementation);

* the least-squares curvature tensor approximation and iterative diffusion smoothing pro-
posed in [ChuO1] (CH) (authors’ implementation).

As a broad classification, the proposed method are divided in: fitting methods, based on the fitting
of mathematical surface primitives (for instance quadratic surfaces like spheres, or cubic Bézier
patches or Hermite RBF fitting) [GI04,|/CP03, GGO7,\GGGO8, PV18]; direct discretization meth-
ods of the curvature in a vertex (e.g., in terms of the angle excess or variations [MPS™04]]) and
of the curvature tensor [MDSBO03, Tau95a, Rus04, KSNSO7, DWO05, ZGYL11]; indirect approx-
imations of related quantities (e.g. second form) [CSMO3, (CSMO06, ILBS07]].

For every method that allows the user to tune its parameters (namely NC, KA, AP, MA) the
default algorithm settings as proposed by the authors are used, without altering the neighbour
size or the smoothing intensity. While this is in itself a fair way for comparing different methods,

32

[M1 | M2 [M3 | MA | M5 | M6 | M7 |
AP[[55% [17.1% | 83% | 1.6% | 54.7% |51.3% | 76.8%
CH|> 0.05% 0.9% | 1.0% [>0.05%| 10.3% | 10.5% | 35.1%
DO|| 0.1% | 2.6% | 0.7% | 0.1% | 28.2% | 26.6% | 52.4%
KA(> 0.05%| 1.1% [> 0.05%> 0.05%| 26.4% |24.3% | 49.0%
MA| 0.8% | 5.8% | 47% | 03% | 31.2% |29.4% | 60.7%
QF|| 04% | 23% | 0.5% |>0.05%| 24.7% |23.7% | 49.3%
NC| 0.7% | 24% | 0.1% [>0.05%> 0.05%| 0.1% | 0.2%
TR| 0.1% | 2.0% | 0.3% |[>0.05%| 26.2% | 24.6% | 51.1%

Table 2.1: Percentage of mesh vertices classified as a outliers.

there could be a parameter optimization that better suits the proposed problem. Anyway, the lack
of criteria for tuning the parameters and the lack of ground-truths suggested to keep the default
settings. Depending on the technique, different surface variations are highlighted: this implies
there is not a best method for all applications. Not only, the peculiarity of a method like the
sensitivity to small scales of the geometric variations, could become a detriment in applications
that need, for example, a noise estimation.

The comparison is limited to the mean curvature values. Figure[2.6|visually overviews the results
we obtained. The mean curvature is represented with colors and it ranges from —2 (blue) to 2
(red). Such an interval intuitively spans the visible curvature variations in the 3D models (i.e.:
a rough approximation of the theoretical extreme values of the curvature). Curvature values
that exceed from that interval are considered as outliers. An exception is the NC method, which
approximates the tangent bundle of the curvature tensor rather than the curvature values. Looking
at the curvature variation we select the interval [—0.05, 0.05] as a reference interval for NC.

As already highlighted in [VVPT16] every approximation algorithm suffers from ambiguities,
like the non-uniqueness of the fitting surface or the sensitivity of the method to local perturba-
tions. Looking at Figure @ it is possible to see that DO, CH, KA, MA, QF and TR output
very similar mean curvature estimations. This group of methods is able to effectively highlight
small repeated variations (beard and circlets in M5 and M6), while consistently keeping at O the
curvature estimation on the flat areas. A downside is that these methods seem to output mainly
extreme curvature values (around +2) and 0, rarely passing through other values (it can be ob-
served by the lack of orange/light blue vertices). DO (see M2) presents a greater continuity of
the colors.

In this sense, the best approximation is obtained by NC (especially visible in M1 and M2). Also,
NC is one of the few methods that put high contrast in the curvature values on convex/concave
areas of the model, together with AP. A downside of AP is its sensitiveness to really small
variations, especially visible in the flat areas in M7.

33

<

Figure 2.6: Visual representation of the mean curvature values for the eight algorithms.
The color-bar is reported at the bottom. The values for NC are re-scaled into [—2,2] from
[—0.05,0.05].

Tables [2.1] and [2.2] present some statistics on the outlier distribution. For this analysis, the ab-
solute value of the curvature estimations is considered. The values in Table [2.1] represent the
percentage of vertices that are out of the expected curvature interval. The values in Table [2.2]

34

give an idea of the range of variation of the mean curvature in correspondence of the outliers (in
terms of the 5 — th decil, last permil and maximum value). The results in Table suggest that
for meshes with dense vertices like those adopted in our experiments, the NC approach is the
most stable in terms of the absolute variation of the mean curvature. Considering both Tables
and the 5 — th decil, which is an approximation of the average of the mean curvature in the
outliers, is very close to 2 in most cases. Note that the adopted definition of the curvature outlier
is based on the empirical observation that for many smooth surfaces the mean curvature values
are enclosed in the interval [—2, 2]; however, the presence of many outliers does not necessarily
imply that a method is unstable. Also, as in the case of NC, the values estimated by a given
method could be consistent in terms of variation even if the values are not those that we expect
from the theory behind the curvature on surfaces. This fact confirms that all the methods provide
a reasonable estimation of the curvature values, with the exception of NC, which captures the
curvature variations rather than its values.

The results show that no single estimator is suitable for all possible input data but the methods
that smooth the curvature estimation in a vertex neighbour provide visually and quantitative
better performances when highlighting features on scans of manufacts. The NC method, for the
combination of availability, relief characterisation and quickness in computation, results as the
best method between those compared.

For the rest of this manuscript, the curvature will be estimated with the NC method.
Related publications

* E. Moscoso Thompson and S. Biasotti, A Preliminary Analysis of Methods for Curvature
Estimation on Surfaces With Local Reliefs. In The Eurographics proceedings, 2019.

35

] M1 | M2 | M3 [M4 | M5 | M6 | M7 |
2.56 2.98 2.71 2.47 4.61 4.77 8.10
AP|| [9.28] [15.73] | [11.74] [8.19] [30.53] | [31.66] | [72.47]
<10° > | < 105 > |< 22.58 >I< 11.55 >|< 77.27 >|< 87.44 >|< 363.7 >
2.30 2.50 2.70 2.34 2.66 2.76 3.56
CH|| [14.04] | [14.61] | [13.65] [6.30] [12.18] | [12.21] | [25.53]
< 14.04 >{< 39.77 >< 36.71 >/ < 6.30 > |< 112.9 >|< 185.1 >|< 2649 >
2.24 2.44 2.47 2.31 3.28 3.33 4.76
DOJ| [31.08] | [10.45] | [37.97] [8.88] [22.31] | [20.86] | [35.11]
< 31.94 >|< 22.73 >{< 187.1 >(< 8.92 > |< 164.1 >< 139.2 >< 582.4 >
2.27 2.36 2.33 2.33 3.17 3.20 4.38
KA| [55.71] [7.49] [40.09] [6.95] [12.92] | [12.73] | [27.48]
< 55.71 >|< 17.42 >|< 40.09 >| < 6.95 > |< 78.18 >< 56.50 >|< 5296 >
2.34 2.66 2.99 2.40 3.38 3.47 5.06
MA|| [15.89] | [14.65] | [38.48] | [12.20] | [93.92] | [130.8] | [119.1]
< 84.21 >< 26.51 >|< 1097 >|< 23.34 > < 10® > | < 10" > | < 10° >
2.34 2.57 2.39 2.31 3.24 3.27 4.44
QF|| [23.67] | [22.70] [8.90] [7.30] [17.15] | [18.37] | [37.53]
< 32.23 >{< 74.22 >|< 182.9 > < 7.30 > |< 1074 >|< 6465 >|< 9568 >
0.056 0.056 0.056 0.052 0.054 0.057 0.064
NC| [0.246] | [0.459] | [0.112] | [0.060] | [0.092] | [0.213] | [0.303]
< 0.260 >{< 0.821 >{< 0.115 >{< 0.060 >< 0.092 >< 0.213 >< 0.337 >
2.22 2.44 2.35 2.24 3.18 3.23 4.61
TR|| [12.93] [8.32] [14.84] [6.61] [14.29] | [14.49] | [34.26]
< 12.93 >« 14.23 >|< 42.34 >| < 6.61 > |< 29.34 >< 43.14 >|< 6485 >

Table 2.2: Approximated 5 — th decil, [last permil] and <maximum values> of the curvature in

correspondence of the outliers.

36

Part 11

Pattern Descriptors

37

Chapter 3

Edge Local Binary Pattern

The recognition of geometric patterns requires a good characterization of the local shape proper-
ties, which has to be: robust to different model representations; sensitive to the local geometric
variations that characterize the surface; as much as possible independent of the surface bending,
while keeping a reasonable computational complexity. A descriptor with these characteristics is
not enough to solve the pattern recognition problem by itself, but it is sufficient to face the pattern
retrieval one. The retrieval of image texture is largely addressed and many methods exist in the
literature. This chapter proposes a novel extension of one of the most famous of these methods,
namely the Local Binary Pattern description [OPH96, (OPMO02]. Such an operator is easy and
quick to compute, while being very robust and flexible.

The proposed extension, called edge Local Binary Pattern (edgeLLBP), is:

able to deal with surface tessellations whose faces are made of convex polygons;
* robust to non-uniform surface samplings;
* invariant to object Euclidean transformations (roto-translations)

* able to deal with surface tessellations characterized by non-uniform vertex distributions
and different types of faces, such as triangles, quadrangles and, in general, convex poly-
gons,

* very competitive with the at the time state of the art.

With respect to a previous extension of the LBP to triangle meshes, the so-called meshLBP
[WTBdAB15, WBB13]], the edgeLBP evaluation is based on the vertices of the tessellation. Then
it adopts a sphere-mesh intersection approach to determine the rings around a vertex and define

38

a re-sampling criterion to obtain the same number of samples on each ring. A MatLab imple-
mentation of this method can be found on GitHub at https://github.com/E1iaMTH/
edgeLBP.

Experimental results exhibit very good performances on various datasets, showing the good po-
tential of the proposed approach for real world applications. Before starting the presentation of
the method, we outline the Local Binary Pattern as implemented on images.

Local binary Pattern

The LBP is a reference description for texture recognition in still images [OPH96]. A lot of
LBP variations exist [BJNL14] and they all share a similar idea: comparing a pixel with its
neighbor pixels in a particular order, then treat a statistic on the results of the comparison as a
descriptor (usually histograms). In the following, two variations of the LBP on gray scale images
are presented. These are the ones used in the first iteration of the meshLBP and are used in the
rest of the manuscript.

Let I be a gray-scale image characterized by a pattern, ¢ € I a pixel and h the function such that
h(i) is the gray-level value of 7. We denote RING" = {iy,...,ig} the set of 8 pixels adjacent
to 4, see Figure [3.1fa). Usually, the ring RING is clockwise ordered moving from the top left
pixel. A binary string str of 8 bits is associated with ¢ to code the variations of the gray-scale
values of 4 and the pixels in RING?.

For each i; € RINGY, the value str(j) is defined as follows:

1 if h(i) < h(i))

str(j) = { 0 otherwise G-
The LBP operator labels the pixel ¢ with a scalar value derived from str as follows:
8
LBP(i) =Y _ str(j)ax(j), (3.2)

J=1

where oy 1s a weight function that determines the size of the descriptor. The most popular choices
for oy, are: ay(j) = 1Vj and ay(j) = 27 V3.

To achieve a multi-resolution description, it is possible to extend the LBP operator through a
multi-ring coding [OPMO2]. For each pixel i, a sets of concentric rings centered in i (RING?,
RING:, ..., RIN G%r) with increasing radii values is considered, see Figure a—b). Note that
the rings are non necessarily square rings of pixels. Each ring is sampled with a pre-defined
number p of pixels, so that the string str has the length p on every ring, as shown in Figure
3.1(c) for p = 8. Finally, the multi-ring LBP descriptor is a matrix whose k-row corresponds to
the LBP descriptor relative to RI NG),. For completeness, note that the way rings are defined is

39

https://github.com/EliaMTH/edgeLBP
https://github.com/EliaMTH/edgeLBP

r o i/-\
v N
e Zbs
| (
!/ n \!/

X

—

N Z]
N[7

(@p=8r=1.2 b)yp=24,r=3.2 c)p=8,r=3.2

Figure 3.1: (a-b): Rings with different radii r relative to the pixel ¢. (c): Uniform down-sampling
(from 24 to 8) for the pixels of the ring in (b). The down-sampled ring is represented by the red
pixels.

not unique: we consider concentric rings of pixels, but is also possible to consider the Euclidean
distance between the central pixel and its neighborhood and to select the pixels that contribute to
a given ring by proximity.

3.1 Method description

This Section is dedicated to the description and setup of the edgeLBP. The following Sections
explore the method pipeline in details, as well as the parameter settings and the experimental
results.

3.1.1 The edgeLLBP description

The multi-ring LBP operator is extended to deal with surface tessellations using a sphere-mesh
intersection technique. With the term surface tessellation, we mean a polygon mesh T' =
(V, E, F') which is a collection of vertices V, edges E and faces F' that defines the surface of a
polyhedral object. In our settings, we also assume that the faces are convex polygons. Popular
examples of surface tessellations are triangle meshes, quadrangulations, or Centroidal Voronoi
Tessellations (CVT) [DFG99], some examples of possible surface representation are shown in
Figure 3.2 While a pixel grid has the same connectivity anywhere, surface tessellations can
be widely irregular. By irregular we mean that the vertices can be non uniformly distributed
over the surface. Furthermore, the faces of the tessellation may have different area, shape and
number of edges. We also assume that each pattern property can be coded as a scalar function
defined on the vertices of the tessellations, formally, i : V' — R. The notion of ring is crucial for

40

(b)

Figure 3.2: Detail of three surface tessellations of the same pattern: (a) a triangle mesh, (b) a
quadrangle mesh, (c) a convex polygon mesh.

(@) ® © @

Figure 3.3: (a): The ring of the vertex v (in blue) formed by vertices over a triangle mesh; (b):
multiple rings of a single vertex are shown; the black dots in (c) (p; in our notation) represent the
intersections between black rings in (b) and the edges of the mesh; (d), from top to bottom: first,
S; corresponds to the connected component that contains v, the other component is discarded,;
second, S} is non-simply connected and v is non-admissible.

the LBP description. In case of triangle meshes, an intuitive transposition of the notion of ring
would be a ring defined as a set of vertices. In Figure[3.3[a) we show the ring of the vertex v with
the sequence of red edges and vertices. Indeed, the irregularity of the mesh elements strongly
influences rings defined on mesh elements only, because it would not be invariant to different tes-
sellations of the surface, even simple edge swaps. Rings that are associated to different elements
of the tessellation could carry information about surface portions with a significantly different
shape.

To overcome these limitations, given a surface tessellation 7', we define the ring of a vertex
v € V as the intersection of the surface tessellation with a sphere centered in v of a given radius
r. Then, we look at the intersections p; between the sphere and the edges of the tessellation,
creating a set of points Q = {p1, ps, . . ., Px }» that approximates the curve that is the intersection
between the sphere and the surface. We linearly interpolate the set () to obtain a continuous and
closed curve C that represents the ring; C is oriented counterclockwise with respect to the vector
in v normal to 7. The value h(p;) on the points of () is determined by the weighted average of

41

the value the function / assumes on the vertices that limit the edge e € E such that p; € e. In
general, the number of elements of () varies from one ring to another, because of the increasing
radius and the irregularity of the tessellation. To keep the number of elements constant on every
ring, we sample C with a fixed number p of points; we call p the spatial resolution.

To achieve a multi-ring representation, for any vertex v € V' we consider n, rings, RING}. Let
Sy be the surface portion of 7" that contains v and has the ring; as its boundary, k =1...n, —1,
then the relation S;) C Sy, holds for each k. We take advantage of this relation to optimize
the sphere-tessellation intersection adopting a region growing expansion around the vertex v.
Examples of the intersection of the sphere at increasing radius around a vertex are shown in

Figure [3.3b-c).

Similarly to the standard LBP approach and to avoid a possible ambiguity close to the surface
boundaries, we consider as admissible only the vertices for which all the n, rings are closed
curves.

In general, the sphere-surface intersection can produce multiple, closed curves that bound either
a multiple connected or a disconnected portion of surface; some examples are shown in Figure
[3.3(d), for a detailed vertex classification based on a sphere-mesh intersection approach we refer
to [MPS™04]. Using a region growing approach, S is the portion of the sphere-surface intersec-
tion that contains v. If the boundary of S}/ is a closed curve, v is considered an admissible vertex,
otherwise it is non-admissible for the edge-LBP. Note that with the edge-LBP we are interested
to code local geometric variations on the surface (like corrugations, incisions, and so on), there-
fore the radius r should be kept small with respect to the overall dimension of the surface. This
implies that the choice of the radius r is crucial for the type (and the size) of the patterns we
are going to identify; indeed it must be not too large to avoid mixing global and local surface
information and not too small to be significant. In practice, multiply-connected regions appear
only in case of topological noise, like small handles and self-intersections of the mesh and in our
experiments over thousands of tessellations we never met admissibility problems.

The routine that is adopted to evaluate the edgelLBP over a single ring of a vertex and how to
extend it to a multi-ring representation is detailed in the following.

1. RingExtraction - The ring () given by the intersection between the sphere of radius r
centered in v and the tessellation edges is computed according to the procedure detailed in
Algorithm [I] The function VE(v) calls the basic function to the data structure that returns
the list of all the edges that are incident to the vertex v. Once the edges that intersect the
sphere with center v of radius r are identified (lines 2-15 of Algorithm[I)), the coordinates of
the intersection points p; are computed (the function EdgeSpherelntersection numerically
evaluates the intersection of an edge with a sphere).

We propose a method to sort () with respect to a starting point p. p is selected according to
a shape-based criterion and therefore is rotation and translation invariant. Starting from p
the function SortingP counter clock-wisely sorts the points of () with respect to the normal

42

bt >

S =1
P - L
RN ¥ Al
.iul-ﬁ.‘""".:' LA lnir’; -::
Figure 3.4: Arrows represent the orientation of vector that connect a vertex v with the starting
point of the rings centered in v; from left to right, details on a surface mesh of 20K vertices and

two re-samplings with 10K and 5K vertices: the choices of p is robust to mesh decimation and
depends on the local geometry of the surface.

to the surface in v. Even if this sorting would not influence the «; representation we adopt
in this chapter, it would become crucial if considering the o, one. The point p verifies the
relation:
p = argmax h(p;).
Pi€Q

In Figure [3.4] we detail the choice of p for three meshes that correspond to three different
resolutions of the same model. There, for each vertex we depict the unit vector defined as
n = mf;:—zu- As expected, the starting point of the rings is stable in most of the vertices
of the mesh. This fact was confirmed in numerous experiments we performed on meshes
of different resolutions. In case of symmetries around a vertex, multiple choices of the
starting point are possible: we select the candidate point that is the farthest from the other

elements of ().

2. RingResampling - Given aring () representing a simple, closed curve we identify p equidis-
tant samples si, k = 1,...,p on () as detailed in Algorithm The values h(sy) are
linearly approximated (function Sample in Algorithm [2) as follows: denoting p; and p;1
the two consecutive points of () on which the sample s falls, the value h(sy) is equal
to the weighted mean of h(p;) and h(p;y1). At the end of this procedure, the values
h(sg),k =1,...,p are returned in the array S.

3. edgelBP Evaluation - Once the value of the function h is known on the sample set S,
the evaluation of the edgeLBP on the vertex v is straightforward. Here the function «
represents the weight function o .

When extending the edgeLBP evaluation to multiple rings, the RingExtraction procedure is mod-
ified to take advantage of the nested nature of the rings; i.e., rings are computed increasingly with

43

Algorithm 1: RingExtraction.
Notes: d is the Euclidean distance, U is the list of the edges that may have a p; on them
(initially empty), L is the list of edges the algorithm has already checked.

Input : A tessellation T'= (V, E, F'), a vertex v € V, aradius r > 0.
Output: A set () of samples p; of the ring with center in v of radius r.

1 begin

2 | L0

3 U+ VE(v)

4 while U # () do

5 for e = (v1,v2) € U do

6 if (d(v1,v) —r) % (d(v2,v) —r) < 0 then

7 | L+ Lu{e}

8 end

9 if (d(vl,v) —r) <0 or (d(v2,v)—r) <0 then

S o S S G e Y
® 3 N 0 R @ o = =

19

20 end

| U<+ UUVE(u)U VE(vy)
end
mark e

end
RemoveMarked(U)

end
fore € L do
‘ Q « EdgeSpherelntersection(e,r,v)
end
return Q < SortingP(Q,T)

respect to the radius 7. The initialization in Algorithm|[I]of the set U of edges that are suitable for
the sphere-surface intersection, starts from the edges that originated the previous ring and does
not take into account edges already visited. Moreover, only the biggest ring RING,,, is sorted:
we sort all the other rings centered in the vertex v consistently with this sorting. In particular,
we consider the plane 7 passing through v with w = n(v) X (v — p) as its directional vector,
where n(v) is the normal, unit vector to the surface in v and p is the starting point of RING,,,.
Then, we choose as the starting point on each ring the closest point to p and order all the rings
counterclockwise with respect to the normal in v.

In our settings, we opted for a uniform distribution of the ring radii. For instance, denoting 7,4,
the maximum radius is will be ez 2Tmez ==y .
Ny Ny

44

Algorithm 2: RingResampling
Input : A set Q of intersection points, the function h, the spatial resolution p.
Output: An array S of p scalar values sj.

1 begin

length < > d(pi,pi + 1)

__ length
dl = length

idl‘end — 2

index < 1

s(1) « h(py)

while size(S) # m do

while d,.(p1, pidz,,,) — dl - index < 0 do
1dTengt+

end

index++

S < Sample(h(pide,,q—1)s P(Pidw,na))

1dT epg++

e 0 N A il A W

-
N =D

[
w

14 end
return : S

15 end

3.1.2 Parameter settings

While the choice of the number of rings n, follows the classic LBP approaches, the values of
T'maz and p are set on the basis of the following reasonings:

* p corresponds to the number of samples over each ring. In the case of a circle on a flat
surface, it would correspond to the number of sectors that would divide the angle 27.
Based on our tests, this parameter should be included between 12 and 18 (for flat surfaces,
this would correspond to a uniform sampling with an angle that ranges from {5 to %);

* Tmae Tepresents the radius of the biggest sphere used to define the rings. It can be chosen
by the user on the basis of the size of the variations (patterns) to be coded. Nevertheless,
we also suggest two possible automatic ways to define r,,,., both based on the assumption
that a pattern on a surface should be quite small with respect to the global size of the model.
Namely:

- Tyaz = %\/g . This is a scale-invariant radius based on a fraction of the area of the
whole surface, where a represents the area of the surface model.

— Tmaz = ele. This is a calibration of the radius based on the average length el of the
tessellation edges and e is a constant, € € [10, 20].

45

Algorithm 3: edgeLBP Evaluation

Input : The array S, the pivot value h(v).
Output: The value edgeLBP(v).
1 begin

2 for idz = 1 : numel(S) do
3 if L(S(idx)) < h(v) then
4 ‘ str(idz) < 0
5 else
6 | str(ide) « 1
7 end
8 end
return : edgeLBP(v) < >_ str(j)a(j)
9 end

Notice that, while the second choice is influenced by the tessellation, the first definition is
not, since it only depends on the area of the model.

Given the surface tessellation 7', its edgeLBP descriptor Dy is defined as a feature vector; in
particular, the value DT'(n,m) corresponds to the number of vertices that assume edgeLBP
value m on the RING,,. The size of DT is equivalent to n,(p + 1). Since in the experiments
we are mostly interested in a probability histogram of the distribution of the edgeLBP values, we
adopt ~ Dr a5 the edgeLBP descriptor, where by 7, we mean the cardinality of the set V' of the
Vertlces of T. Through this normalization of 7" we achieve robustness to the number of vertices
of the surface representation.

We define the (dis)similarity between two tessellations A and B as the distance between their
corresponding edgelLBP descriptors D4 and Dp. Since the edgeLBP can be thought of as a
matrix, any feature vector distance is suitable to evaluate the similarity between two edgeLBP
descriptions. In the experiments shown in this paper, we adopt the Bhattacharyya and the >
distances [DDO9]], which are widely used in image processing. For the discrete case, the Bhat-
tacharyya distance between two distributions ¢ and 1 of a scalar random variable X has the
following formulation:

dpha(¢,¥) = /1= BC(¢,0), BC($,0) = > /o(w)i(w),

zeX

where BC' is called the Bhattacharyya coefficient. We also tested other distances (like the Eu-
clidean distance and the Earth Mover’s Distance [[DDQ9])) but the results obtained with the Bhat-
tacharyya and the y? distances provided the best performances. In most of the experiments, the
Bhattacharyya and the y? distances behave equivalently, when different we specify in the text
the distance adopted.

46

For a set of surface tessellations, the (dis)similarity values are stored in a distance matrix Dist,
where Dist(i, j) = dpn(D;, D;) is the distance between the descriptor of the tessellation ¢ and
j. The diagonal values of Dist(i, i) are zero.

3.1.3 Computational cost

Given a surface tessellation 7" with n,, vertices, we briefly discuss the computational complexity
of the routines involved in the edgeLBP evaluation.

We assume that the tessellation in input is stored in an appropriate data structure, therefore the
cost of computing the relations among the elements of the tessellation (e.g., vertex-edge, face-
vertex, vertex-face) is constant or O(n,), depending on the relations. Also, the shape properties
are precomputed: the curvature estimation proposed in [CSMO3]] has computational complexity
O(n, logny).

If the tessellation 7" has a boundary, the creation of the list of the vertices that are admissible
for the edgeLLBP operator is based on the distances of the vertices from the boundary. This
preprocessing phase is done using the kd-tree, which cost is O(n,, logn,,).

For each vertex that is admissible, the computation of the intersection between a sphere and
the edges of the tessellation has complexity O(n,) (in the worst case), and, therefore, the cost is
O(n?) for the whole surface. It is worth noticing that this cost holds if the sphere intersection pro-
cesses all the vertices of the tessellation for every vertex. On average, the radius of the sphere is
considerably small and diminishes the average computational complexity to O(n, logn,). Ring
re-sampling has linear complexity with respect to the number of elements of the rings; in the
worst case the number of elements in the rings of a vertex v can become O(n, - n,), where n,
is the number of rings (and it is constant). Thus, the re-sampling of all the rings costs at most
O(n?) operations and, in average, the computational complexity is again O(n, logn,,).

Finally, the computation of edgeLLBP histogram is linear in the number of samplings of the tes-
sellations that are O(n, - p - n,); since n, and p are two parameters that are constant, the cost is

O(ny).

3.2 Experimental results

The edgeLLBP is able to deal with both geometric and colorimetric patterns. For example, perfor-
mances are evaluated on the SHREC’ 17 dataset on relief retrieval [BMTA™17], which contains
geometric patterns. It is composed of 720 triangle meshes derived from knitted objects, grouped
into 15 classes (see Figure [3.5|b)), each one made of 48 textile patterns. Each class has been
created from 15 base surfaces (embedding a single textile pattern into 12 different positions);

47

!r I. T, ?’\._.,\\-._. ||.|' -
2 l' N \ :Ir!\- ‘ ,r'
| ':. : -"h b it |1-r { t

Classl Class2 Class3 Classd

Class1 Class2 Class3 Classa Classs f (ISP [e
T8 Na M.
U s e

Class5 Classé Class? Class8

- : £ ._'I- -_ RAR Y i I g ol d Wi ;' [L\-;._-:
Class6 Class7 Classg Class9 i I}HI". h\:‘ ﬁ&:ﬁ""
LLe - s T

Class® Class10 Class1ll Class 12
o I [e o
Class10 Class1l Classi2 Classi3 Class13 Class14. ClasslS

(a) (b)

Figure 3.5: (a): the 13 models used to originate the first dataset. (b): the knitted patterns of the
SHREC17 contest [BMTA™17].

then, each surface was modified with four mesh re-samplings. Again, two datasets can be de-
rived: the first one is related to the complete dataset of 720 models and aims at evaluating the
overall robustness and stability of methods with respect to different mesh representations. The
second one groups the 180 original meshes according to their textile pattern and it is better suited
to analyze the capability of a method of effectively recognizing a pattern independently of the
overall surface embeddings.

The evaluation tests have been performed using a number of classical information retrieval mea-
sures, namely the Nearest Neighbor, First Tier, Second Tier, Discounted Cumulative Gain, e-
measure, Precision-Recall plot, confusion matrices and tier images.

To compare the edgeLBP with the other participants of the SHREC’ 17 pattern retrieval bench-
mark, we use the two configuration parameters: runl/ (p = 12 and n,, = 7) and run2 (p = 15 and
Ny = D). T'maz 18 set 10mm for both runs and is obtained by measuring the size of the patterns of
three randomly selected surfaces. The maximum curvature is used as /i function. Other curva-
tures (mean and minimum curvature) lead to similar performances. For more details on why we
use curvature, please refer to Chapter 2]

48

Original Dataset Complete Dataset

Method | NN [I-Tief2-TiefmAP| e [DCG Method | NN [I-Tie2-TiefmAP| e [DCG

LBPI 0.339/0.207(0.353(0.2500.2370.250 LBPI 0.828]0.248(0.400(0.283/0.232(0.697
GI HOG 0.089/0.069(0.130(0.1180.0970.373 GI HOG 0.686/0.107]0.176(0.1310.1020.561
IDAH-2 0.339/0.182(0.27110.215/0.181(0.503] IDAH-2 0.306/0.141]0.244(0.163/0.127/0.559
CMC-1 0.600(0.342(0.461(0.371/0.274{0.641 CMC-1 0.718]0.258]0.372(0.2600.247(0.673
CMC-2 0.633]0.363|0.494(0.3900.293(0.662 CMC-2 0.763]0.272]0.389(0.271/0.261/0.686
CMC-3 0.533/0.281|0.394(0.308/0.242(0.596 CMC-3 0.647/0.219]0.323|0.218/0.208/0.639

SQFD-HKS (0.106/0.066(0.137/0.123(0.1020.376 SQFD-HKS 0.536/0.117(0.192(0.1390.1100.558
KLBO-FV-IWKS|0.522/0.295|0.412(0.3070.247/0.603] |[KLBO-FV-IWKS]|0.986/0.333(0.449|0.3390.3320.759
KLBO-SV-IWKS]|(0.489|0.249|0.375(0.273/0.235(0.570, [KLBO-SV-IWKS]|0.978|0.287|0.409(0.296/0.283/0.732

edgeLLBP - runl 10.922/0.683|0.825/0.7160.5800.863| | edgeLBP - runl |0.979/0.619|0.763(0.651/0.4130.894
edgeLBP - run2 |0.911/0.689|0.844/0.7250.5900.865 | edgeLBP - run2 |/0.986/0.634/0.780(0.6690.421/0.902

Table 3.1: Retrieval Performances obtained by the edgeLBP compared with the scores of the best
performing methods in [BMTA™17] on the SHREC17 datasets. The best runs are in bold.

CMC-2 'KLBO-FV-IWKS LBPI edgeLLBP - run2

Figure 3.6: Best confusion matrices in the SHREC17 retrieval pattern contest (Original Dataset)
in comparison to that of the edgeLLBP.

Table [3.1]reports the edgeLBP performances on the Original and Complete datasets and the best
runs obtained by the SHREC’ 17 participants, who are indicated with the same label used in the
SHREC’17 report [BMTAT17]. In the case of the Original Dataset, our method provides the
best results in all the scores, showing a good capability of discriminating the geometric patterns.
In the case of the complete dataset, our results significantly overcome the other participants
in each measure, only the NN measure is equivalent to the (KLBO-*) runs. As stated in the
SHREC report [BMTA*17], the NN value of methods that analyze the global geometry (such
as the KLBO-* run) is biased by the presence of three variations of each mesh in the original
dataset. In this case, each mesh sampling keeps the same overall embedding but degrades the
mesh connectivity and approximates the original reliefs. For this reason, global methods are
made easy to find as the Nearest Neighbor one of the mesh variations; however, they rapidly
degrade when the query range increases, like reflected by the FT and ST scores.

Figure [3.6] compares the confusion matrix derived from the best edgeLBP run (run2) against

49

Original Dataset Complete Dataset

Class 1 I o T o] 7 L 7 Glass 1 e B R) ol

Class 2 [t BEL" .. < .,&ll z Class2 g i vl %\}l S

Glass 3 [i Bl Eralal |- Class 3 [7, 3 I E S BNEE

=iy " | N ':"'E o P ;:: Class 4 | T . - B EIES E_ ™

Class 5| ¢ il i3 F!:; F o o] 1" Clazs 5 £ R

Class B _,'i"' _-::_ = . Al ¥ Class5 5| RS * o i 5

cass7[-f 17| [- Tl Kl Class 7 1 5|} i it K§

Class B _:;uyu HEHEY Class 8 | b A 1]

Class9 [iF | | 221° I Class D (x| © e 0| . TR T BRE-Hen

Class 10 ° . ; 13 | Class 10 ¥, B B .

cass 11 2 [z bl o O Class 11 ii? Hi § Ll

Class 12|77 [=i Err—(& Class1z |4 | It |l g 5 “

Class 13 T =N : i Cinss13 | = | | . L

cassul- | 1= | |- T [= i Class 14 [} | |} -]

Ciass 15 i ,: [E]- MIE | casss ||| HJ - R 1af [

%% .&.:'l‘-.{b@..f:l T

‘ﬁdﬁjﬁ oF Gﬂ’ ‘j:c- cﬁ? AT RS G-“ﬂ?d'” P é:_;a-#@ﬁ_,@#@v%@#

L e

-
-
B -

ﬂ L i i v} " i -
@ as 04 08 il 1 0 02 o 0.8 LT} 1
e CME] == BHIE === LERI
— e~ OMEE === KLBG FY-IWHE — edgslBP nnt
- CME-] e KL BOSV- WKS ockgolBP nnd

Figure 3.7: Tier image and Precision-Recall plots of the original dataset (left) and complete
dataset (right), using the edgeLBP - run2. In the tier images, rows represent the queries, the NN
1s marked in black, the FT in red and the ST in blue.

the three best runs in [BMTA*17)]. Similarly, Figure top) depicts the tier images both on the
Original and the Complete datasets of the edgeLLBP, run2. In the case of the complete dataset, it is
worth noticing that adding three variations of the original patches does not alter the overall mask
of the tier image, highlighting the coherence of the retrieval performance among the original
dataset and its variations.

Finally, Figure [3.7] (bottom) plots the Precision-Recall curves in both the dataset configurations
and compares the best edgeLBP performance (run2) with the best runs in [BMTAT17]. The

50

Pattern of Lotus ' Pattern pf Guilloche Pattern of Scales
Scales and bud Circles (Painted) vl V2
L
AR .". .
W == [] P

Guilloche

Striped Pattern of Six Petals Chequer

vl v2

Figure 3.8: Left: The colorimetric patterns in the GRAVITATE dataset used for an evaluation of
the edgeLBP description performances. Right: The scale and guilloche classes contain decora-
tions that are semantically the same but differ from the geometric point of view (for instance the
number of curved lines, for this reason we subdivided them in two different classes.

overall performance of the edgeLBP successfully deals with the SHREC’ 17 dataset and generally
improves with respect to the other participants of more than 20%; in our opinion this reveals that
the method combines the efficacy of a local pattern characterization with a mesh independent
and embedding invariant description.

The edgeLLBP description of a pattern is also validated on multiple colorimetric pattern datasets.
For example, in we used the edgeLBP to classify pre-segmented fragments from the
GRAVITATE dataset. We selected the most frequent patterns and created a dataset
of colorimetric ones (CP dataset). A list of the classes is represented in Figure 3.8[Left). In
particular, two of the classes (labelled Pattern of Scales and Guilloche) present a large intra-class
variation that from the geometric point of view suggests to split them into two sub-classes (see
Figure [3.8(Right)). We then consider four classes instead of two (Scale v1, Scale v2, Guilloche
vl and Guilloche v2). From models with colorimetric patterns, we extracted a dataset of 49
patches grouped into 10 classes, where each class contains from 4 to 7 elements.

The classification performance obtained by the edgeLBP is evaluated with respect to the Nearest
Neighbor, Fist Tier and Second Tier per class of pattern. Moreover, we report the Confusion
Matrix over the pattern classification obtained with the NN classifier.

Multiple settings are used in our tests, with encouraging results. In Figure [3.9] we detail the
performances for the best edgeLBP runs. We see that specific patterns like the Guilloche ones
are well classified while more complex decorations like the Six petals, the Lotus and Bud and

51

edgeLBP settings: n,qq = 5, p = 15, 7 = 0.5cm

ClassLabel || NN | FT | ST | e | nDCG Guilloche 4
Six Petals
Guilloche v1 || 1.000 | 1.000 | 1.000 [0.171] 1.000 .;hgqur
Six Petals 0.500 | 0.500 | 0.767 [0.270] 0.720 Striped band
Chequer 0.857 | 0.571] 0.738 [0.271] 0.811 Pa.L. [Painted)
_ Letus and Bud
Striped band || 0.800 | 0.200 | 0.400 [0.222] 0.544 S
P.o.C. (Painted) || 1.000 | 1.000 | 1.000 [0.171] 1.000 Scales v2
Lotus and Bud || 0.500 | 0.333 | 0.583 [0.171| 0.666 Gaillochs ¥

Pattern of Curves

Scales v1 0.429 | 0.310 | 0.619 [0.316] 0.579 LopTo RO g
Scales v2 1.000 | 1.000 | 1.000 [0.171] 1.000 83e3z28;ges
Guilloche v2 || 1.000 | 1.000 | 1.000 [0.171] 1.000 ZE0BESR0 84
Pattern of Curves|| 0.500 | 0.250 | 0.250 [0.086] 0.424 = ‘E’; LE 3 EJ
| Overall [0.735[0.582[0.723 [0.217] 0.758 | - &

Figure 3.9: Classification performances of the edgeLBP over the colorimetric patterns selected.

the Scales (v1) are often confused. We think that this effect depends on two effects: the non
uniform decoration (there are thin and fat lines together) and the fact at the moment we are
able to consider only one channel at a time (the L-channel corresponds to the luminosity thus
forgetting the other colorimetric information).

More tests on colorimetric patterns with the edgeLBP description are shown in Chapter [5

52

Conclusions

In this chapter we extensively presented the edgeLBP, a novel pattern descriptor that performs
very well also on very recent benchmarks. The edgeLBP descriptor is based on local samples on
the model mesh and is based on the intersection of the edges of the mesh and spheres of different
radii. This induces a solid local sampling scheme that is then described using the Local Binary
Pattern. The major downside of the edgeLLBP is the computational cost, which is high due to the
number of sphere-edge intersections required for each vertex of the mesh.

Related publications

* E.Moscoso Thompson, S. Biasotti, Description and retrieval of geometric patterns on sur-
face meshes using an edge-based LBP approach. Pattern Recognition, 2018.

* E. Moscoso Thompson, S. Biasotti, Edge-based LBP Description of Surfaces with Colori-
metric Patterns. Eurographics Workshop on 3D Object Retrieval, 2018.

* E. Moscoso Thompson and S. Biasotti, Retrieving color patterns on surface meshes using
edgeLBP descriptors. Computers & Graphics, 2019.

* E. Moscoso Thompson, S. Biasotti, G. Sorrentino, M. Polig, S. Hermon, Towards an Au-
tomatic 3D Patterns Classification: the GRAVITATE Use Case. Eurographics Workshop
on Graphics and Cultural Heritage, 2018.

53

Chapter 4

Mean Point Local Binary Pattern

A further extension of the LBP description to surfaces is introduced, which is able to deal with
any surface described as a set of points. This description is designed to deal with point clouds
from, for instance, laser scans of archeological fragments. However, if the surface is given as
a tessellation, this set of points can be the set of vertices, supplemented by additional points
sampled on the faces if the number of vertices is low. This implies that this method is able to
work with both point clouds and tessellations. The points are organized in a kd-tree structure
that permits an efficient search of the neighbors [FBF77] to extract concentric rings needed by
the LPB descriptor. Rings are adaptively sampled so that an equal sector” area is preserved
along the neighbour rings without changing the width of the rings. The experiments show how
the new descriptor, named mean point Local Binary Pattern (mpLBP for short), considerably re-
duces the computational cost with respect to its direct competitor, the edgeLBP, while preserving
competitive retrieval and classification performances.

The robustness of the mpLBP descriptor is further challenged, considering different surface
bendings, presenting the mpLBP performance on models obtained from scans of archaeological
fragments and by analyzing the efficiency of the descriptor and its characteristics when different
neighborhood shapes and sampling rules are chosen.

4.1 Method description

This section is devoted to the description and setup of the mpLBP. The following sections explore
the method pipeline in details, as well as the parameter settings and the experimental results.

54

Figure 4.1: A mpLBP descriptor at point v (marked with a light-blue star in (a)). (b): neighbor-
hood S[?] of © is shown with a dark sphere. (c): point density in S[?]. (d): regression plane 7 ,
(e): clustering into sectors. (f): resulting punctual descriptor, represented as a ‘circular’ feature
vector.

4.1.1 The mpLBP descriptor

This section introduces a statistical descriptor that aggregates values of the local descriptors
computed at a set of positions on the surface. The input surface model can be a point cloud or a
tessellation (in the last case, the vertices are input points for the descriptor).

Similarly to the edgeLLBP, the mpLBP procedure can be described by two main steps: the creation
of the punctual descriptor and the LBP evaluations that are further combined to create the mpLBP
descriptor.

4.1.1.1 mpLBP punctual descriptor

Let S be a point set embedded in the 3D Euclidean space and a surface property defined on .S,
h : S — R, a function defined on S whose values depends on the pattern we want to describe
(e.g.: curvature-based values in case of geometric patterns, a color-based property in case of
depicted decorations, etc.). Let us consider the point © € S and the set S[9] of the points v; € S
at a distance from ¢ at most equal to r, i.e., S[0] = {v; € S|d(0,v;) < r}. We will discuss the

55

Figure 4.2: Left: illustration of the Gaussian filter adopted to weight the points (in white) in a
given sector (in purple). The colors of the Gaussian range from blue (0) to yellow (1). Right:
example of a neighborhood that could occur if the radius 7 is larger than 7,,,.,: points are samples
on two disconnected parts.

choice of the radius r later in this section. Gathering the sets S[0] means visiting the points of
S several times. Since 3D models with patterns need to be at high resolution (thus described by
a high number of points), the way the distance relations between points are computed must be
efficient. In our implementation, these relations are computed using a kd-tree. This structure is
computed once per model (with a computational cost of n log(n)).

Points in S[0] are projected on a plane 7, obtained using linear regression on S[0]. When the
density is high enough and if the radius is chosen appropriately, that plane may be interpreted
as an approximation of the tangent plane. The projected points are sorted in n,. concentric rings
based on their distances from v.

The number of rings is given by the parameter n,., that we call radial resolution. Each ring is
defined, for j = 1---n,, as follows:

S[i); = {vi € S[E)ld(T, v:) € [ry1,my)}, 75 = j—

ny

Each S[7]; is divided in p; sectors, delimited y some regularly spaced angle values 6. Note that
p; may vary along the rings, in order to obtain sectors with similar areas. We call p; the spatial
resolution. More formally, we define the sector k of the ring j (sector (7, k) for short) of the point
v as:

5[77]1? = {v; € S|d(v,v;) € (7’]'71,73]791 € (0k-1,6k]},

where 0, = k’Q’r k = 1,...,p;. Finally, we assign to each sector (j, k) a value sec(0) as the

representative of the function £ in that sector. Figure represents the pipeline to build the
punctual descriptor. Note that the punctual descriptor can be seen as a feature vector by simply
stacking the values of the descriptor on each ring.

As it usually happens in the LBP implementations, we excluded the computation of the punctual
descriptor at points that are close to the boundary of the model (if any). If the boundary of the
model is known, it is enough to consider only the points that are at least at distance r from the

56

boundary. In addition, if a point punctual descriptor has more than 411 > ; bj empty sectors, we
consider it invalid and discard that point. When the intersection of the sphere of radius r with the
point cloud generates multiple surface components like those in Figure (Right), we consider
such a configuration non acceptable and refine the point neighborhood by selecting a smaller
value for r. Indeed, for a given model M we assume that the projection onto 7 is injective
and that the surface locally captured by the sphere is locally homeomorphic to a topological
disk. Moreover, we assume the existence of a radius 7,,,,, Which is the maximum value for the
parameter 7 such that all the points on M have an acceptable description.

4.1.1.2 Local Binary Pattern evaluation

The mpLBP punctual descriptor is the point neighborhood representation to which we apply the
LBP encoding technique. If the radius r is small enough with respect to the curvature and the
thickness of the object, we can suppose that the rings of the punctual descriptor are locally close
to concentric rings using geodesic distance to v. Thus, each sector can be seen as the evaluation
of h at a sample of the surface. For all the points v in S, we define L BP(v) the feature vector of
n, elements as follows:
LBP(%); = > _(str[t];)s,
k
oy 0 if sec(0)f < h(D)
(str[ol;)x = { 1 otherwise

Then, the mpLBP descriptor of S (mpLBP(S)) is the histogram of the LBP values of the points
of S. As a final step, the mpLBP is normalized, i.e., all the entries of mpL B P(.S) are divided by
the number of points considered in the histogram, enhancing the stability of the descriptor.

The mpLBP(S) is a) ;(p; + 1) sized feature vector. Intuitively, we can visualize it as a hor-
izontal concatenation of the rings of the multiple feature vectors in Figure @.I(f). In particular,
the j — th ring generates a feature vector of p; + 1 entries, where mpLBP(S);) is equal to the
number of points v in S such that LBP(v); = m (with j = 1,...,n, and m = 0, ..., p)).

It is worth mentioning that if the neighborhood of a point is rotated significantly around the
normal of the point, its punctual descriptor changes. On the contrary, if the rotation is small, the
punctual descriptor is stable; indeed, the Gaussian filter adopted to weight the points is stable
under rotations smaller than a fraction of the angular sector. In other words, if the grid of sectors
(Figure [d.1fe)) is slightly rotated, the punctual descriptor does not vary significantly. Moreover,
we recall that the LBP value per ring (as intended in this chapter) is rotation invariant (because it
is a sum of 0 and 1 values on the whole ring), we can conclude that the pattern descriptor of the
mpLBP is robust to rotations of the surface. This fact has been verified by applying a random
rotation to each point neighborhood: the results indicate an almost perfect stability in this sense.

57

4.1.2 Parameter settings

The three parameters of the mpLBP are: the radius r (used to set the neighborhood size around
each point of \S), the radial resolution n, and the spatial resolution p;. This is similar to the
parameter set of the edgeLBP as described in Chapter 3] the main difference being that for the
edgeLBP the parameter P is fixed across all the rings. In the following, we present some hints
on how these parameters should be tuned. The intuition suggests that the mpLBP ability of
detecting a pattern depends on the size of the neighborhood of each point, i.e, the size of the disk
must be related to the pattern size. Moreover, the denser the ring sampling, the more complete
information is stored, at the cost of a larger storage size.

* r: neighborhood radius shown as a dark bubble in Figure {.1(b). r should be set so that
neighborhoods contain at least one part of the pattern that we want to describe (e.g.: if the
pattern is defined by chiseled circles, the bubble should contain at least one circle entirely).

* n,: it defines the radial resolution and should be fixed together with p; (see below).

* p;: it represents the spatial resolution and varies over the different rings.

Choice of the rings and sampling scheme The mpLBP description adopts as the point de-
scription a set of circular rings such that the spatial resolutions p; guarantee that all the sectors
have the same area. For this reason, we selected p; = multP(2j — 1), multP € N,. In this
case, p; depends on n,.. This degree of freedom was tuned by the parameter mult P (that replaces
the p; parameters). For instance, in Figure [.1(c) the parameters are n, = 7 and multP = 2,
which means that S[0] has 7 rings, where S[0]; has 2 sectors, S[0], has 6 sectors and S[v]3 has
10 sectors, etc.

However, similarly to the LBP for images, different types of rings may be used. Both the shape
of the ring (square, elliptical...) and the sampling scheme (or rather considering only part of the
neighborhood) may be changed in order to better suit a given dataset. In general, not symmetrical
sampling schemes are a valid option in this context. Indeed, the punctual descriptor converts a
patch of a surface into a sort of image. Therefore, it would make sense to straightforwardly adopt
a square neighborhood and its variations, following the image literature on pattern recognition. In
general, it is also possible to define various scheme variations of the standard punctual descriptor.
We focus on different sampling areas of the point neighborhood. In the following, we depict some
possible neighborhood and sampling strategies.

* Scheme I: same concept of the mpLBP punctual descriptor, but both the descriptor and
the sectors are shaped as squares. Figure 4.3a) shows how the square neighborhood of the
points are divided in sectors. The parameters of this descriptor are half the diagonal of the
square (a sort of radius, thus we still refer to it as) and the square root of the number of
sectors (or rather, the number of sectors along the sides of the square) labelled with pxres.

58

(a) (b) (c) (d)

Figure 4.3: Various sampling schemes. In (a) we show the grid used to create the square punctual
descriptor (Left) and the final punctual descriptor (Right). Color goes from blue to yellow, rep-
resenting the value of the sector. In (b,c,d) we highlight (in blue) the sectors that are considered
in Schemes 2,3, and 4.

* Scheme 2: same as the mpLBP punctual descriptor, but only one every two sectors is kept
on each ring (e.g., sectors 1, 3, etc.). In our tests we selected only odd sectors; anyway also
even indices could be equally considered. In practice, adopting such a strategy we half the
number of samplings.

* Scheme 3: similar to Scheme 1, but the first rings are kept in their entirety. The implicit
assumption behind this scheme is that smaller rings need a denser sampling.

* Scheme 4: same as the mpLBP punctual descriptor, only the sectors with an index j such
that j = 1 4+ 4n with n € N, are considered. Similarly, to Scheme 1, this strategy aims at
decreasing the number of samples.

A representation of these variations are shown in Figure[4.3]

4.2 Experimental results

The mpLBP is validated on the same benchmarks the edgeLBP was validated on, for a better
comparison between the two methods. Further stability tests are reported, to confirm the stability
of the descriptor despite its simpler definition with respect to the edgeLBP. After looking at the
performances of the different sampling schemes on the SHREC’17 benchmark, the computa-
tional times of the two methods on the same model are compared.

Performances on the SHREC’17 benchmark In addition to the methods of that
obtained the best performances, we compare the mpLBP with the edgeLBP and the SIFT-based
method in [Gial8]. Among all the settings tested, the best performing ones are r = 14, n, = 7
and multP = 4. Since most of the models in the dataset have low resolution, we resampled them

59

Original Dataset Original Dataset
Method [[NN| FT | ST [mAP| e phDCG Method [[NN | FT [ST [mAP| e [nDCG

CMC-2 0.633/0.363(0.494(0.3900.293)0.662 CMC-2 0.7630.2720.389(0.2710.261/0.686
KLBO-FV-IWKS|0.5220.2950.41200.307/0.247/0.603 KLBO-FV-IWKS|0.9860.333(0.4490.3390.332/0.759
edgeLLBP - run2 |0.9110.6890.8440.7250.590 0.865 edgeLLBP - run2 |/0.986/0.634,0.7800.6690.421/0.902
T/mC/SIFT/FV |0.8720.7100.8490.7410.457,0.883 T/mC/SIFT/FV {0.9930.7120.8500.7390.647/0.929
mpLBP - Cmax ((0.9330.7060.845/0.7440.449/0.871 mpLBP - Cmax ((0.9940.678/0.8200.7380.653/0.931
mpLBP - Cmin {0.922(0.7320.861/0.7380.442/0.862 mpLBP - Cmin {/0.9970.677(0.815/0.7330.653/0.931
mpLBP - Cmean [0.9110.7330.861/0.7630.4470.888 mpLBP - Cmean|(0.994(0.7020.841/0.7590.665| 0.938
mpLBP - Cmean*{|0.9170.733/0.863(0.761/0.427|0.875 mpLBP - Cgauss|0.9940.6780.8200.7380.653 0.931
mpLBP - Cmean*||0.9220.7280.8620.763/0.426/0.877 mpLBP - SI {(0.997/0.688/0.813/0.737/0.650/0.930
mpLBP - Cgauss |0.9390.707/0.8450.744/0.483 0.872 mpLBP - HF {0.9990.3830.4800.431/0.419/0.802
mpLBP - SI |{0.911)0.7290.835/0.74900.440/0.876
mpLBP - HF {/0.6720.353/0.451/0.431/0.281{0.658

Table 4.1: Results on the SHREC’17 benchmark, both the Original (Top) and the Complete
(Bottom) Dataset. We mark with x the runs to which we added to each point neighborhood a
small rotation of the tangent parametrization around the point normal (from 0 to 27r).

to 40000 vertices using the Remesh tool [AFO6]. Table reports the mpLBP scores together
and compares them with the other methods, with respect to NN, FT, ST, e-measure, mAP and
nDCG. In this table we also include the results obtained when testing the independence from the
cut of the grid on the neighborhood of the points. The results show that adding this rotation does
not influence critically the results of our method.

The mpLBP scores equivalently or slightly better than the edgeLBP and T/mC/SIFT/FV over the
SHREC’17 benchmark on geometric patterns, with small variations depending on the surface
property chosen. Overall, over this benchmark, the mpLBP performs well with all the curvature-
based properties; in particular, the mean curvature provides slightly better retrieval performances.
However, the NN performance over the complete dataset of mpLBP with the height field high-
lights how this property is able to characterize a model and its re-samplings but it is less robust
to different surface bendings.

Performances on the SHREC’18 benchmark The performance of mpLBP on this benchmark
is compared against those obtained in [MTW 18] and [MTB19]. The parameters settings with
the best evaluations are » = 0.10, n, = 7, multP = 1 (setl) and r = 0.14, n, = 7, multP =1
(set2). Table .2 summarizes the best scores obtained.

Over this benchmark, mpLBP and edgeLLBP perform equivalently, even if the time for evaluating
the edgeLLBP on this dataset is approximately twenty times higher than the mpLBP (details on the
computation costs are provided in Section 4.2.2). Indeed, to guarantee the decorations were in-
telligible, the original surfaces were densely sampled (100 vertices, each) and this corresponds
to a demanding task for the edgeLBP. On the contrary, this is a good basis for mpLBP because

60

Single Pattern Dataset

Run [NN [FT ST |mAPk [nDCG
TWB3 [0.755[0.502(0.688/0.577(0.4550.795
V2 [0.82 [0.51 0.731/0.593(0.481/0.808
edgeLBP-R4[0.915/0.717/0.879/0.766/0.60 [0.898
edgeLBP-R5(00.950(0.740/0.892/0.790/0.606/0.911
mpLBP - 5¢11]0.965(0.739(0.862(0.781/0.6000.910
mpLBP - 5¢120.960(0.744/0.8640.762/0.590/0.900

Complete Dataset

Run [NN FT ST |maP e |pDCG
TWB3]0.593(0.417(0.564/0.4600.3760.711
V2 0.79 (0.433|0.594/0.493/0.39 0.753
edgeL.BP-R4|(0.903/0.673|0.827(0.722/0.55710.878
edgeL.BP-R5/0.923/0.667/0.8050.727(0.54610.878
mpLBP - 5e¢1|(0.90310.739/0.862(0.668/0.5200.850
mpLBP - 5e12/(0.907/0.573/0.735(0.639/0.5100.840

Table 4.2: Performance scores over the Single pattern dataset and Complete dataset of the
SHREC’ 18 benchmark.

the key issue for its success is that the point cloud is dense enough, i.e., most of the sectors of
the descriptors should not be empty.

Performances on the GRAVITATE dataset We run the mpLBP on both datasets with 4 differ-
ent settings. The results are compared with those of the edgeLBP on the GRAVITATE datasets.
In particular, on GRAVITATE(geo) we used the Shape Index as the h function. In Table the
best mpLBP run we had is compared to the edgeLBP results.

As a general premise, since the dataset classes contain few models (fewer than 10), even a vari-
ation of 0.1 in the scores means that only one model is miss-classified. The performances of the
edgeLLBP and mpLBP are comparable, with differences that depend on the type of pattern and
the quality of the model. This can be observed by the overall performances of the runs. Looking
at the single class performances, the NN measures are almost identical, with the edgeLBP being
slightly more efficient on the geometric patterns. The opposite is true on the colorimetric ones,
where the patterns are more degraded. This may be explained by the fact that since the mpLBP
scouts an entire area for each sampling (sector) rather than a single point to code the evolution of
the ring properties, it slightly averages the local surface properties simulating a slight smoothing
effect. This can be positive in case of noisy colorimetric patterns but it could lead to a confusion
between geometric noise and actual small surface variations.

61

edgeLBP settings: n, =5, P = 15, r = 0.5cm mpLBP settings: n,, =7, P = 15,7 = 0.5cm

ClassLabel [NN FT [ST e pDCG ClassLabel [NN FT [ST e pDCG
Guilloche v [[1.000 [1.000 [1.000 [0.171 [1.000 Guilloche v1 [[1.000 [1.000 [1.000 [0.171 [1.000
Six Petals (0.500 0.500 0.767 0.270 0.720 Six Petals ~ |0.500 [0.400 (0.767 (0.270 (0.709
Chequer 0.857 0.571 (0.738 0.271 0.811 Chequer |[1.000 0.714 0.976 0.316 0.924
Striped band |(0.800 0.200 0.400 0.222 (0.544 Striped band (0.600 0.250 0.500 0.189 (0.567

P.o.C. (Painted) {|1.000 [1.000 {1.000 0.171 [1.000 P.o.C. (Painted) |{1.000 [1.000 {1.000 0.171 [1.000
Lotus and Bud (|0.500 (0.333 |0.583 (0.171 (0.666 Lotus and Bud (|0.500 (0.417 |0.583 (0.143 (0.566

Scales vl |0.429 [0.310 0.619 0.316 0.579 Scales vl [0.571 0.357 0.643 0.263 0.680
Scalesv2 [[1.000 [1.000 [1.000 0.171 [1.000 Scalesv2 |0.750 0.333 0.667 0.171 (0.673
Guilloche v2 ||1.000 [1.000 |1.000 0.171 [1.000 Guilloche v2 |[1.000 [1.000 [1.000 0.171 [1.000
Pattern of Curves|0.500 0.250 [0.250 [0.086 0.424 | |Pattern of Curves|(0.500 0.167 [0.250 0.100 (0.427
[Overall [0.735 0.582 [0.723 [0.217 0.758 | [Overall _ [0.742 [0.693 0.918 [0.211 [0.755 |

Table 4.3: Results on the GRAVITATE datasets of colorimetric patterns, and comparison with
those of the edgeLBP.

Robustness of the descriptor

We analyzed the robustness of the pattern descriptor of a fixed pattern when the latter lies on
surfaces with different bendings.

Robustness to noise The popularity of scanning devices that can digitize objects increased the
number of acquired 3D models available. However, acquired data can be corrupted by acqui-
sition noise. Furthermore, objects can be degraded by time or other factors, which can lead to
corruption of the patterns that lie on the surface of the object.

Noise in general is an unwanted variation of a signal (the surface, in this case) usually of high
frequency. Patterns also are usually small, thus the noise is a problem that is worth addressing.
We added noise with various amplitudes to some of our test models. Such variations change the
h function and as a consequence the whole punctual descriptor. Depending on the pattern nature,
we considered different noise addition. The geometrical patterns are corrupted with a Gaussian
noise on the vertices, based on a parameter \,, expressed as a percentage of the diameter of the
smallest bounding sphere. The values of A\, considered are 0.2 and 0.4. See Figure (4.4{(Left) for
an example of mesh degradation.

Colorimetric patterns are instead corrupted by adding small variations to the RGB values stored
on the model vertices. Such variation is bound to the parameter)., an integer value added to
each RGB channel (we assume the three channels to range from 0 to 255). For example, A\, = 5
added three random offsets in the interval [—5, +5] to each color channel. In our tests, we used

Ae € {5, 7} (see Figure [4.4] (Right)).

The noise tests are run on the SHREC’ 17 Original dataset for the geometric patterns and on the

62

A =0 A=02 X\ =04

d F / i / r Fé /
A/ &/ - £ M

Figure 4.4: Pattern distortion when noise is randomly added. Left: a geometric pattern is cor-
rupted using increasing Gaussian noise. Right: an increasing random noise is added to each RGB
color channel.

SHREC’17: Original Dataset, geometric noise
Method INN FT ST |mAP nDCG
mpLBP - set/ Clean (0917 0.711 0.859 (0.743 0.420 (0.861
mpLBP - set/, A\, = 0.20.911 0.693 (0.846 (0.733 0.380 |0.790
mpLBP - set/, \, = 0.4/0.872 (0.618 0.769 0.664 [0.350 [0.753

SHREC’18: Single Pattern Dataset, colorimetric noise
Method INN FT [ST |mAP nDCG
mpLBP - set/ Clean |0.965 0.739 [0.862 [0.781 0.600 (0.910
mpLBP - set/, A\, = 50915 0.514 0.653 [0.586 [0.440 (0.822
mpLBP - setl, \. = 7)0.75 0.332 0.445 0.457 0.355 [0.741

Table 4.4: mpLBP performance for data corrupted with noise. Top: the Original Dataset of the
SHREC’17 benchmark, Bottom: Single Pattern Dataset of the SHREC’ 18 benchmark.

SHREC’18 Single pattern dataset for the colorimetric one. Results are reported in Table §.4]
We observe that the performances significantly decrease in presence of heavy noise, while the
mpLBP is robust in case of lighter one. We think that this behaviour derives from the strategy
we adopt to evaluate a property in the sectors. Indeed, the use of the weighted mean for each
sector balances the small variations of the i function, while it starts being less efficient in case
of higher variations (in this case, all the sectors become similar).

Robustness to surface bendings A very relevant feature of a pattern descriptor on surfaces is
its robustness to different bendings of the underlying surface. To test this, we created a pattern
of circlets and applied it to surfaces with more and more severe bendings. These models are
reported in Figure[4.5|(First row). Since they are generated from a synthetic surface and adopting
an isotropic bending we are guaranteed that the models possess the same pattern. In the second
row of Figure[4.5] the corresponding descriptors are shown. A similar test is done using a pattern
made up by small crosses (see Figure - Third and Fourth rows). From the results, one can
observe that the pattern descriptor changes depending on the embedded pattern. Moreover, it

63

| FlatSurface | Bendingl Bending2 Bending3 Bendingd |

2 norm of each pattern descriptor of the bent surfaces
from the same pattern embedded into a flat one

Flat Surface Bending 1 Bending2 Beinding3 Bending4
Circles 0.237 0.032 0.058 0.0794
Crosses 0.089 0.084 0.100 0.105

Figure 4.5: Examples of two patterns embedded on surfaces with gradually stronger bendings.
Colors of the descriptor go from blue to yellow. The table reports the distances in L? norm be-
tween the pattern descriptor of the pattern embedded on the flat surface and on the bent surfaces.
The mpLBP is stable to different bendings.

remains quite close, although not perfectly identical, for the same pattern across the bending
changes. This shows that the descriptor is more sensible to changes in the patterns it describes
and far less sensitive to the surface bending.

Robustness to different model samplings The models with a low resolution were re-sampled,
increasing the vertex density to reach a reasonably dense representation. Therefore, it is worth
exploring the behaviour of the pattern descriptor when it is computed for different sampling

64

Model 1 (class 8) Model 2 (class 12)
40k 30k 20k 40k 30k 20k
15k Th 3k 15k 7k 3k
Figure 4.6: Pattern descriptor robustness to different samplings. The number of vertices of the
model is on top of the respective pattern descriptor.

density of the same model. We used the SHREC17 Original Dataset for this experiment. We
selected two of the models of this dataset (one from class 8 and one from class 12) and down-
sampled it from 40000 vertices to 3000 vertices, with various steps, using the default sampling
scheme implemented in [AF06]. Figure [4.6) shows the pattern descriptor computed. It is easy
to notice that the pattern descriptor holds its shape and changes when the number of vertices
considerably decreases (although in the examples 7000 is still sufficiently stable with respect to
the higher samplings we noticed that around 10000 vertices is a good quality compromise). This
test shows that it is possible to have similar performances when re-sampling with different vertex
resolutions, but it is necessary to have a minimum vertex density in order to have more stable
pattern descriptors (in this case, approximately 10000 vertices or more).

Robustness to different choices of the parameters The choice of the mpLBP parameters (r,
n, and multP) is crucial for the performance of the method because they are closely related at
the resolution a pattern is analysed. Anyway, we noticed that the performance of the mpLBP
is quite stable for small variations of the parameters. In other words, slightly changing the
parameters (all three of them) will not jeopardise the performances of the method. This fact was
experimentally confirmed by selecting 27 variations of the best mpLBP run over the SHREC17
original dataset (see Table [4.1). The performance in terms of NN, FT and ST scores of the
mpLBP are reported in Figure [4.7] for all these 27 settings. On the horizontal axis we report the
parameter setting, while the vertical axis represents the performance score (different colours are
used for the NN, FT and ST, respectively). The performances are very similar for all the settings.
The maximum discrepancy observed across all the evaluation measures is around 0.05, which is
very tiny, especially considering that it occurs only once in 27 runs.

65

LR ERT
-
Ea

: N NN v
5 KT i T vidlas
4 1 Al i B vl
il
R S = % & 5 & T % T . % by %
- a - -
‘;: 'H:.H' f" {'_w."\- e _?3 Fo E . o ‘IS' {:‘Ft .cll'-a 'H.\" };\.‘t‘ {'Q" \.“" ;,S P‘: ;?" 3 dﬁ" k- 3 3;\ h3 }{‘\. 5
L - R A &F &

. i ool S TR VT . E .

5o B = 5
AT e 1 Rl Rl Rl gl - g Rl o il B = A" 4
0 Tl % i T LI TR SR S L I R, el A

Figure 4.7: The performances of 27 different mpLBP runs on the SHREC17 dataset, with dif-
ferent parameter settings. The dashed lines represent the mean value of the respective evaluation
measure.

4.2.1 Different choices of the ring sampling scheme

We evaluated four variants of the point neighborhood sampling schemes on the SHREC’17 Orig-
inal dataset. As shape properties, we considered the height-field because of its simplicity and
rough shape description and the Mean curvature because it generally performs well over geo-
metric patterns. Scheme 1 is computed using r ranging from 7 to 15 and pxres ranging from
10 to 16. To evaluate Schemes 2, 3 and 4 we extracted the standard punctual descriptor with
parameters r = 14, n, = 7 and multP = 4 and we considered only the sectors highlighted in
the schemes. In this section, we report only the most significant runs. Table 45| summarizes the
results of the tests of mpLBP with these settings. In particular, when using sampling scheme
1 with h equal to the Mean Curvature, we use » = 10 and pzrres = 16, while when using
sampling scheme 1 with h = HF', we set r = 7 and pzres = 12. Note that the size of the
mpLBP descriptor varies according to the different neighborhood sampling schemes. Looking
at the retrieval performances, we notice that mpLBP with scheme 1 (with a square-based point
neighborhood) performs poorly compared to the other schemes. This is not really surprising
because a square-like point neighborhood inserts an orientation and an anisotropic sampling of
the model. Unlike images where a square-like neighborhood is compliant with the intrinsic grid
structure, for a surface, a circle or a geodesic neighborhood better reflect the intrinsic surface
metric. Schemes 2 and 3 highlight that other sampling strategies over a circular neighborhood
are possible and lead to good performances. On the contrary an excessive sparse sampling like
the one proposed by Scheme 4 jeopardises the mpLBP performance. These results highlight that
the mpLBP technique can be adapted to different schemes.

66

SHREC’17: Original Dataset, scheme variants
Parameters NN FT ST mAP e nDCG

Scheme 1 - Mean C0.739 0.395 0.534 0.481 (0.324 0.705

Scheme 1 - HF |0.794 0.504 0.622 0.560 [0.360 [0.755
Scheme 2 - Mean (C|0.928 0.707 0.835 [0.746 (0.447 |0.878
Scheme 3 - Mean C|0.928 0.667 0.804 [0.715 (0.436 (0.861
Scheme 4 - Mean C0.856 0.596 0.745 (0.658 (0.418 (0.813

Table 4.5: Retrieval results of the various sampling schemes on the SHREC’ 17 Original Dataset.

4.2.2 Computational cost

The mpLBP algorithm is implemented in around 200 MATLAB lines of code. The most expen-
sive part, in terms of computational cost is the creation of the punctual descriptor, which is based
on a kd-tree (with a computational cost of nlog(n)). This characteristic allows the mpLBP algo-
rithm to run in a much shorter time if compared, for example, with the edgeLBP, while keeping
similarly high evaluation scores. By running both edgeLBP and mpLBP on meshes with different
number of vertices (from 5000 to 120000 vertices) and different parameter settings, we can see
the huge gap between the timings of the two methods (see Table [d.6). Tests are run on a personal
computer Intel Core 17 processor (at 4.2 GHz) with 32Gb RAM. The edgeLBP (as currently im-
plemented) has the number of sectors per ring constant across all the rings. In order to have a fair
comparison, we also set the number of sectors to be constant for mpLBP (i.e., p; = p withp € N
fixed). We observed that n, and P do not affect the computation times that much. Indeed, the
radius size and the number of vertices are the biggest bottlenecks. Figure §.8] provides another
computational time comparison between edgeLBP and mpLBP showing the much more severe
increase of the edgeLBP computational cost compared to the cost increase of the mpLBP. These
timings are those obtained on the 120k vertices mesh, with r = 4.5, n, = 4 P = 15. Trends
obtained by changing the parameters of both methods are almost identical to the ones reported
(only the time scale (y-axis scale) changes based on the radius). It is worth also mentioning
the different number and size of inputs demanded both methods. On one hand, the edgeLBP
requires many relations between the triangulation elements (vertex-face, edge-edge, etc.), which
may require a significant computational effort when computed on large meshes. On the other,
the mpLBP barely requires the normal of the point clouds or on the vertex of the triangulation.

67

5K [=25 =35 =45
n, =4, P =12 22.04/2.88 | 16.89/1.38 19.06/1.35
n, =7, P=12] 15.74/1.59 | 19.91/1.55 24.54/1.60
n, =4, P=18| 11.40/1.27 | 15.89/1.48 17.12/1.38
n,=7,P=18| 16.14/1.95 | 20.39/1.88 30.18/2.55
10K [=25 r=3,5 r=4,5
n, =4, P =12 59.33/423 | 79.09/4.62 92.31/5.09
n, =7, P=12| 71.69/435 | 9558/493 | 116.51/5.46
n, =4, P=18| 52.92/3.95 | 76.55/4.77 83.54/4.95
n, =7, P =18| 72.43/501 | 95.86/5.53 | 140.23/6.25
15K | =25 =35 r=4,5
n, =4, P =12 81.13/531 | 118.42/7.48 | 143.29/8.00
n, =7, P=12] 107.26/6.63 | 143.08/7.52 | 178.01/8.40
n, =4, P = 18] 81.92/5.96 | 115.85/7.38 | 128.10/7.49
n, =7, P=18| 107.83/7.53 | 143.77/8.19 | 188.56/9.32
30K [r=25 r=3,5 r=4,5
n, =4, P = 12| 341.81/19.90 | 516.53/28.52 | 651.99/33.08
n, =7, P = 12|| 454.23/23.30 | 618.36/28.36 | 805.07/33.72
n, =4, P = 18| 348.93/20.43 | 507.31/28.21 | 583.39/30.31
n, =7, P = 18] 456.26/25.10 | 621.50/29.75 | 811.99/35.25
90K || =25 r=3,5 r=4,5
n, = 4, P = 12/2378.79/109.323661.28/158.43[4344.93/196.08
n, =7, P = 12]3024.61/122.584142.54/157.74 5200.46/194.75
n, = 4, P = 182344.02/110.053481.22/160.97 3989.87/179.15
n, =7, P = 183034.85/128.344145.79/163.19/ 5704.31/201.03
120K || =25 r=3,5 r=4,5
n, =4, P = 12]4314.18/165.656612.18/260.30| 8341.62/335.82
n, =7, P = 12//5583.24/189.33[7812.26/260.18| 9954.04/332.90
n, = 4, P = 184236.92/170.22/6586.75/262.25| 7626.82/309.25
n, =7, P = 185596.74/198.12/7806.80/266.27]10438.45/348.40

Table 4.6: Computational times for edgeLBP and mpLBP (in seconds). The top-left cell of each
table indicates the number of vertices.

68

[P |
o L E
£ ¥ * |
51 E B £
3 | -

4

ol
[. |
- :
e gl B

Al |

Meimliat ol e

Figure 4.8: Computational time trends for the mpLBP and edgeLLBP (in logarithmic scale).

Conclusions

In this chapter we presented the mpLBP, a pattern descriptor with good performances on recent
benchmarks. It is similar in spirit to the edgeLBP (see Chapter[3) with a way lower computational
cost. Indeed, the edge-sphere intersection sampling scheme is replaced with a local average of
the property that describe the patterns. The neighborhood of each point is computed using the
kd-tree. While the performances are at most ‘only’ on par with those of the edgeLBP, the mpLBP
remarkable quickness makes it an important contribution when working with very high resolution
models or with point clouds.

Related publications

* E. Moscoso Thompson, S. Biasotti, J. Digne, R. Chaine, mpLBP: An Extension of the
Local Binary Pattern to Surfaces based on an Efficient Coding of the Point Neighbours.
Eurographics Workshop on 3D Object Retrieval, 2019.

* E.Moscoso Thompson, S. Biasotti, J. Digne, R. Chaine, mpLBP: A point-based represen-
tation for surface pattern description, Computers & Graphics, 2020.

69

Chapter 5

Benchmarking activities

The creation of datasets and their ground truth is the basis on which to build a competitive and fair
evaluation system, driving also the identification of new research directions. The intrinsic goal of
developing a new benchmark is not unique: it ranges from the need of a summary of the methods
able to face a given task to highlighting what is still missing or needs further developments.

With this goals in mind, we organized five SHREC tracks whose challenges revolve around our
research topic. This chapter presents them, sorted by year of publication of the respective final re-
ports. One of the reports, in particular, addressed the geometric pattern recognition problem: for
this reason, the thoughts and conclusions developed in that contest are presented as a preliminary
discussion of that problem and deepened in Chapter [0

This chapter is organized as follows: we initially introduce the performance evaluation measures
we use in most of our benchmarks (Section [5.1)). Then, our first benchmark on colorimetric pat-
terns is described in Section followed by the one focused on aspects that are preliminary to
our research as addressed the problem of feature curve recognition Section Finally, we pro-
posed two contest on geometric patterns (Section [5.4Jand Section[5.5). These three contributions
are described in the following sections, after the performance evaluation measures we used to
compare the methods in each benchmark.

5.1 Performance measures for pattern retrieval methods

The research in information retrieval has led a number of performance metrics [R1)79, BYRN99]]
that can be adopted also to evaluate the performance of 3D retrieval and classification meth-
ods [TV04, SMKFO4]]. While a single measure is not enough to fully assess the quality of a
method, the combination of multiple measures gives a global view of the various methods, high-
lighting different properties (goodness of the method per model, class or overall with respect to

70

multiple criteria). In the following we list the performance measure used in our benchmarks.

Nearest Neighbor (NN), First tier (FT), Second tier (ST). These measures check the fraction of
models in the query class also appearing within the top k retrievals [SMKFO4]]. In the case of
NN, £ is 1 and corresponds to the classification rate if the nearest neighbor classifier would be
performed. Given a class of |C| elements, k is |C'| — 1 for the FT and k is 2 (|C'| — 1) for the ST.
Higher values of the NN, FT and ST measures indicate better matches. These measures range in
the interval [0, 1].

Normalized Discounted Cumulated Gain (nDCG). This measure [SMKF04] is based on the as-
sumption that relevant items are more useful if appearing earlier in the list of the retrieved items.
The nDCG is based on the graded relevance of a result with respect to the query. Then, the value
is normalized with respect to the ideal outcome of that query.

Average precision-recall curves, mAP and e-Measure (e). Precision (P) is the fraction of re-
trieved items that are relevant to the query. Recall (R) is the fraction of the items relevant to the
query that are successfully retrieved. More formally,

_ |ANnB| R_|AOB|
Bl AT
where A is the set of relevant elements (true positive and false positive items) and B is the set of
positive items. By plotting the precision value with respect to the recall value we obtain the so-
called recall vs. precision curve: the larger the area below such a curve, the better. In particular,
the precision-recall curve of an ideal retrieval system would result in a constant curve equal to
1. For each query, we have a precision-recall (PR) curve. In our context, results are evaluated
on the mean of all the PR curves. The mean Average Precision (mAP) corresponds to the area
between the horizontal axis and the average precision-recall curve and ranges from O to 1. The
higher, the better. The e-Measure (e) derives from the precision and recall for a fixed number of
retrieved results (32 in our settings), [R1j79]. For every query, the e-Measure considers the first
32 retrieved items and is defined as e = ﬁ, where P and R represent the precision and
recall values over those results, respectively.

P

G.D

Confusion matrix. To each run we associate also a confusion matrix C'M, that is, a square
matrix whose order is equal to the number of classes in the dataset. For a row ¢ in C'M, the
element C'M (i,) gives the number of items which have been correctly classified as elements of
the class i. The elements C'M (i, j), with j # 4, count the items of the class ¢ which have been
misclassified and j corresponds to the class in which they were wrongly classified. An ideal
classification system should be a diagonal matrix. The sum _, C'M (i, j) equals the number of
items in the class 7. Generally, the confusion matrix is non-symmetric.

Tier images. Similar to the confusion matrix, the tier image visualizes the matches of the NN, FT
and ST. The models of a class are grouped along each axis so it is easier to interpret, following
the definition in [SMKFO04]. With this configuration, the optimal tier image clusters the pixels
related to NN and FT on the diagonal.

71

Receiver Operating Characteristic (ROC) curve and AUC value. ROC curves are largely used
to evaluate the classification performance of a method and are suitable to assess retrieval issues,
too. The ROC curve shows the ratio between False Positive Rate and True Positive Rate for each
model at different classification thresholds. In our scenario, the classification thresholds are the
number of models in each class (20) multiplied by a scalar value that goes from 1 to the number
of classes in the dataset (11). The higher the curve, the better. A coarse comparison between the
methods based on the ROC curves can be derived also by the AUC value (namely the area under
curve value), which is the measure of the area under the ROC curve. The higher this value is, the
better. Anyway, note that an AUC value of 0.5 means that the corresponding method is not able
to classify the models at all. In this work, we consider the mean of all ROC curves.

5.2 Retrieval of gray patterns depicted on 3D models

The aim of this benchmark [MTW 18] is to evaluate the performance of retrieval algorithms
for 3D surfaces decorated with one or more gray patterns. The web page is available at http:
//shrec.ge.imati.cnr.it/shrecl8_color/.

5.2.1 Dataset

The dataset consists of 300 surfaces characterized by different patterns. We created a set of
20 base models, selecting triangles meshes from the cups and vases classes of the SHREC’07
Watertight model contest [GBPQ7] and the goblets class of the COSEG [WAvVK ™ 12]] datasets, see
Figure[5.1] All models are oriented, connected and locally regular, triangle meshes with at most,
two boundary components. The rationale behind the choice of these base models is the fact that
these shapes do not possess a geometrically privileged point of view, many of them (e.g., cups)
have an interior and exterior face and trivially projecting them in a plane is not possible without
distorting the surface.

We created 15 black and white textures (obtained via manual painting): 10 textures (called Single
textures) are characterized by a single pattern while 5 more textures (called Double textures) are
obtained joining the 10 textures two by two, see Figure [5.2] The 15 textures have been applied
to all the 20 base meshes using a semi-automatic procedure, which required a manual fix of the
geometry of some models. Each pattern is applied so that it keeps the same scale over all the
models. Then, the colorimetric information is stored in the vertices of the triangle mesh M.
At the end of this process, every model is covered by a black and white pattern on at least the
30% of its surface, while the rest of the surface is only black or only white (see Figure [5.3d as
an example). Assuming that the maximum value of the luminosity is 100, we uniformly alter
the luminosity of each model with a fixed amount that is an randomly selected from the set
{0,8, 16,24, 32,40, 48, 56, 64, 72}.

72

http://shrec.ge.imati.cnr.it/shrec18_color/
http://shrec.ge.imati.cnr.it/shrec18_color/

Figure 5.1: The models used as base surfaces.

This results in a more or less faded version of the original model, see examples in Figure[5.3b-c).

The number of vertices of the 300 models in this dataset ranges from 95K to 107K . Similarly
to the outcome of many laser scan systems, the colorimetric information related to each model is
stored as a RGB value associated with each vertex (no texture images are provided).

5.2.2 Results

The challenge of this contest is to group the objects of the dataset according to the pattern im-
pressed on them. The overall geometric shape of the object is not relevant; in practice the meth-
ods are asked to classify an object using the local, colorimetric properties. 9 runs are evaluated

73

Class | Class 3 Clasa 3 Clasa 4 Class 2

& 5 8 8 @
e 8 & & B
& & & 8 @
& & & 8 @

e OO0
l.i.‘.!-l.
e 8 & 8 9

e OO0
PO & & & & &

L lass i

ks 8

-

B
-
-

1
nnn€>>>>>§

o lass Qb

i
=

r,
_}Q

Class 11

Figure 5.2: Textures (patterns) depicted on the models.

£

Figure 5.3: Models in the dataset of this contest, with different fades. The first two models are
fully covered by a single pattern, the third presents a faded double pattern while the surface of
the last model is partially covered with the pattern decoration and the rest is uniformly black.

according to the following classifications:

» The Single Pattern Dataset contains the 200 models of the dataset that are characterized

by a single pattern (Single textures). Models in this dataset are grouped in 10 classes of 20
elements.

74

* The Complete Dataset contains also the 100 models characterized by Double textures that
mix the 10 single textures. Models in this dataset are grouped in 15 classes, each class
contains 20 elements.

A summary of the evaluated methods is reported in the following. For additional details we refer
to [MTW 18]

1. Color distribution on a model in CieLAB space color (H Bl and HnBl). A baseline
method based on color histograms (H Bl) and normalized histograms (HnBl).

2. From Mesh to Image using Ordered Ring of Facets (ORF) for gray Texture Retrieval by
Claudio Tortorici, Naoufel Werghi and Stefano Berretti (I'W B*). The algorithm extracts
images holding the color texture information of a region of the surface. The images are
extracted using the Ordered Ring Facet (ORF) [WTBdBI15, TWB15]. The comparison
between two models is done using Bhattacharyya distance. The runs differ for the number
of sampled images.

3. Histogram of Double Distance Transform by Santiago Velasco-Forero (V' x). This method
is described in Chapter [I] The runs differ for the number of bins of the concatenated
histograms.

4. Edge Local Binary Pattern (edge L BP) detailed in Chapter 3]

For each setting, given a query model, its relevant models are the models with the same pattern(s)
of the query. We highlight that, when considering the complete dataset, the models characterized
by a double texture are not in the same class of the models that have its single texture components.

The retrieval performance of each run has been evaluated in both the Single Pattern and Com-
plete datasets. With respect to the results in [MTB18]], the results obtained on these dataset are
those reported in the respective extended issue [MTB19]. The settings used in the tests are the
following:

R1: n,.q =5, P =15, R = 0.04;
* R2:nyuq =7, P=12, R = 0.04;
* R3: n,qq =5, P =15, R = 0.03;
* R4: n,oq =5, P =15, R = 0.05;
* R5: nyqq =5, P =15, R = 0.08.

75

Single Pattern Dataset Complete Dataset

1 LN
t‘ 18 F }:
" \"-'.'?-_._; il ":i
"l“ . ‘\"\h__ - : \}.-ht‘\“’
£l Sy oot S '\-?S:‘*‘"u
i L] iy F___'? i} i . \‘-
A Yern., B DN
\ S — % '|. =1 ?-_:\
’ \ “Jp T =
J \ — = \
N o | e T T
[+ C.-‘ 2 04 .5 L".‘\':-. L':'n' .|.E'.IE dlE ‘ L'I' C.-’ J; n.... Uj-1l a4 L‘.J\':-. L"J.'n' llE'.IE .‘B
Aol Aecall
HnBI TWB2 wmen =\/2
MT v v TWBS v = /3

Figure 5.4: The Precision-Recall plots for all the runs reported in this contest.

Single Pattern Dataset Complete Dataset

Run [[NN|FT | ST | ¢ hDCGmAP Run [[NN|FT [ST | ¢ hDCGmAP
HBI [[0.52/0.141]0.230.097/0.501[0.233 HBI [00.4670.115/0.16 0.139/0.548/0.184
HnBI [(0.595]0.5210.7730.425/0.698 0.564 HnBl [00.55700.4370.6460.509] 0.75 (0.481
TWB1 [[0.71/0.4540.6320.338/0.679/0.516 TWBI1 [0.5930.3670.5140.419/0.758/0.408
TWB2 0.615/0.46(0.6750.362/0.681(0.523 TWB2 [[0.45(0.3790.5530.439] 0.75 0.424
TWB3 0.7550.5020.6880.376/0.7110.577 TWB3 [0.5930.4170.5640.455/0.795|0.46
Vi 0.82[0.450.7250.3860.743/0.571 Vi 0.770.4120.5840.474/0.798(0.472)

V2 [[0.82]0.51/0.731/0.39|0.753/0.593 V2 [[0.7910.4330.5940.481/0.808/0.493

V3 [0.8150.474/0.71 0.376/0.733/0.557 V3 [[0.7810.3940.5690.463/0.7860.462
edgeLBP-R10.9050.6990.8630.594/0.8880.749 |edgeLBP-R1] 0.87(0.646/0.8050.551/0.865/0.697
edgeLBP-R20.9050.70600.8700.590/0.8890.749 |edgeLBP-R2]0.8930.647/0.807/0.542/0.86410.696
edgeLBP-R30.9000.6310.8270.555/0.8580.682 ledgeLBP-R3]0.857/0.56300.74100.489/0.820/0.610
edgeLBP-R40.9150.7170.879/0.60 [0.898/0.766| edgeLBP-R40.9030.6730.82700.557)0.878(0.722
edgeLBP-R5]0.9500.7400.8920.606/0.911/0.790 edgeLBP-R50.9230.6670.8050.546/0.878/0.727

Table 5.1: Summary evaluation over the single pattern dataset (left) and over the complete dataset
(right).

Table [5.1] reports the outcome of the algorithms on this benchmark. Average PR curves are
displayed in Figure [5.4] Confusion matrices are reported in Figure [5.5 and Figure [5.6] Finally,

76

HnBI edgeLBP TWB3 V2

t . 3 a4 L] L] T L] L] t k. 5 4 i L] 7 2 [] t . 3 a4 L] L] T 2 L] t k. 5 4 i L] o L3 D to
Figure 5.5: The best confusion matrices over the single pattern dataset.

HnBI edgeLBP

TWB3 V2

¥l o4 B8 7 & 040 it 124304 5 i 33 & B8 7 & 040 it 6245044 5 i F3 4 E 8 7 & 040 11 (245044 45 i F3 &4 B8 7 8 040 it 624044 15

Figure 5.6: The best confusion matrices over the complete dataset.

the best tier images per participant is reported in Figure[5.7]and Figure [5.8]

The recall-precision curves in Figure [5.4] and the statistics in Table [5.1] indicate that the pattern
retrieval task is challenging on this dataset. Even if the proposed dataset is not a real world
dataset (with a huge variety of shapes and color patterns) it presents two important challenges
that the pattern retrieval on 3D surfaces problem must face: (i) the impossibility of encoding the
colorimetric information of a mesh in a single image and (ii) the presence of the same pattern
over a number of different shape embeddings.

Interestingly, the performance of the methods is quite stable over the single pattern and the
complete datasets, with a quite limited degradation on the complete one (the largest decrease for
the NN value is approximately 15% for the T'WW Bx runs). Besides the NN evaluation, in which
there is an average variance of values, the FT, ST, e and nDCG measures seem to be similar for
most methods, polarizing in a range of values for each measure ([0.45,0.50] for FT, [0.65,0.75]
for ST and so on). The outliers are HBI, whose performances are really low, as expected for an
histogram-based method without any local analysis of the gray distribution, and edgeLLBP, whose
performances overcome the other runs of approximately 10%.

77

edgelPB

Figure 5.7: The best tier image per participant on the single pattern dataset. NN are marked in
black, FT in red and ST in blue.

V2
T T T T o T T T T LI T

e 0 £, I B
o 0 - R 1= [|

i

T e

] L L, .

R PO & - i T e o TR % ol - o y
T Ty Y Y R Y A Y Ry Y R

=i :;

Figure 5.8: The best tier image per participant on the complete dataset. NN are marked in black,
FT in red and ST in blue.

More details of the performance of the methods over the different classes are shown in the con-
fusion matrices and tier images, see Figures[5.3] [5.6] [5.7] and [5.8] Confusion matrices help us
understand which are the hardest patterns to correctly deal with. For the baseline method, the
confusion matrices show that there are multiple pattern classes that are tricky for them. This is
especially true for the HBI run on the Complete dataset. For the methods who submitted more
runs, the confusion matrices show a quite stable behavior on the classes of the benchmark, de-
spite the runs different settings. On all runs, the tier images confirm the trends revealed by the
confusion matrices.

All runs submitted to this track are based on feature vectors. In the case of the baseline methods
(simple histograms of the L-channel values) the description does not encode any information of
the gray distribution in the vertex neighbor. All other methods propose strategies for coding the
colorimetric information evolution in a region around the vertices. From the retrieval results it
seems that methods that works directly on the mesh are independent of the tessellation (MT and
V*) achieve better performances.

78

5.3 Feature Curve Extraction on Triangle Meshes

In the context of this manuscript, a surface feature is a local surface variation that is not repeated
more than a couple of times. In other words, a surface feature is intended as a bending of
the surface that shapes a part of interest (e.g.: the eye of a statue is a feature, while the hand
of a statue is not). Related to this definition, a surface feature curve (or feature curve) is a
line that delineates a surface feature. Feature curves derive from the human perception and
interpretation of a surface, both in terms of localization and width. On a more practical level,
feature curves are mostly defined by ridges or valleys, thus characterized by principal curvature
extremes. Psychologists and computer vision scientists who studied how humans perceive a
shape have identified curvature variations, in terms of changes from convex to concave regions,
as a key element of the human perception [PT96].

Since local variations are a component of both patterns and surface features, the research field
of finding feature curves could help the pattern analysis by removing parts of the surface that are
not of interest for the pattern analysis. While the identification of feature curves can be related to
the identification of a relative feature, this is not mandatory. Most methods tackle the problem by
looking directly for the feature curves. For example, in [APM135]] groups the salient points into
a curve skeleton that is fitted with quadric spline approximation. It is also possible to consider
entire families of curves, like in [HT10, HT11], proposing them as a natural way to describe
line drawings and silhouettes. However, most of the proposed methods still have difficulties in
dealing with partial information or fails in correspondence of noise.

This Section presents the benchmark we designed to evaluate methods for the feature curve de-
tection [MTAM™19]. We meant this analysis as a complement of pattern recognition because the
analysis of archaeological findings is born from their combination. Since this task differs from
the rest in terms of result structure, we briefly introduce the evaluation measures we considered
in this benchmark.

5.3.1 Evaluation of feature curve characterization methods

We consider as a feature curve a set of vertices of a model that jointly define a contour, a valley or
aridge on the mesh. The mesh boundary (if it exists) is considered nor a feature curve, neither the
noise artifacts (e.g., from scan inaccuracy and/or smoothing/resampling operations). An efficient
method for feature curves extraction, as intended in this benchmark, needs to group sets of mesh
vertices so that each set identifies a single feature curve.

As a further evaluation, we compare the similarity estimation between the feature curves each
method found, if it allows such a comparison.

The dataset consists of 15 surfaces characterized by at least one feature curve. Some of the

79

M1 (50541) M2 (83556) M3 (92902) M4 (25397) MS5 (25411)

M6 (33910) M7 (18319) M8 (18659) M9 (25280) | MI10 (214868)

MI11 (11144) M12 (11433) M13 (7919) M14 (30174) MI15 (5192)

Figure 5.9: Overview of the dataset of the SHREC’ 19 on feature curve detection. In the brackets
of each model is the corresponding number of vertices.

models are obtained through scans, while others are made in silico. Some models are de-
rived from the Visionair shape workbench (http://visionair.ge.imati.cnr.it/)
and the Turbosquid repository of 3D models (https://www.turbosquid.com/Search/
3D-Models). The original models of the ornaments from which derive the models from 4 to
10 are availabel thanks to the courtesy of the prof. Karina Rodriguez Echavarria. Both vertex
distribution and density vary from mesh to mesh. Figure[5.9 shows an overview of the models,
together with their number of vertices.

The definition of a ground truth for this task is a challenging job, since no formal definition of a
feature curve on surfaces exists. The ground truth was defined by people from the IMATI-CNR
(Italy) staff, requested to highlight the vertices of each model if, in their opinion, they were part

80

http://visionair.ge.imati.cnr.it/
https://www.turbosquid.com/Search/3D-Models
https://www.turbosquid.com/Search/3D-Models

) O W
Figure 5.10: The final ground truth of the contest. Top: the feature curves on the models; Bottom:
the feature curves represented one by one.

of feature curves. Then, a ground truth based on these individual annotations has been created.
An overview of the final ground truth is shown in Figure

For a given model M, the outcome of each method is expected to be a set of n,; separate lists fp;
of vertices, resembling the set of n,, feature curves highlighted in the ground truth. More for-

81

mally, the expect result format is a set of lists P(M) = {fp1, fpe, ...} for each M in the dataset.
The evaluations are done by comparing this set with the set GT' (M) = {fci, fea, ..., fen,, } of
feature curves defined in the ground truth. We consider two classifications:

* [Overall Comparison](O-comp): all the feature curves found on each model are jointly
evaluated with the described evaluation measures, matching them with the ground truth
data. More formally, the sets U; fp; and U; f¢; are compared.

* [Curve-by-curve Comparison](CbC-comp): let us consider a feature curve fc; of the
model M and the set P(M) of feature curves proposed by a participant. In the lists in
P(M), the closest to f¢; is selected and compared. The closest curve is selected by the
same people that defined the ground truth by voting the curve in P(M) which overlaps f¢;
the most.

Methods

Four methods were considered. Depending on the design choices, the results vary in pre-
cision, sensitiveness and overall quality. The methods description is now reported, follow-
ing [MTAM™19].

Spectral based saliency estimation for the identification of features (SBSE)

This method works in two steps. The first step estimates the saliency of each vertex using spec-
tral analysis. The magnitude of the estimated saliency identifies if a vertex is a feature or not.
Based on the geometry, it is possible to say that the feature vertices represent the edge of a feature
curve (both crests and valleys) or corners. At the second step, the mean curvature of the extracted
features is estimated and it is used to classify the different feature curves (if they exist). Addi-
tionally, the information related to the mean curvature and the saliency of each feature curve are
used to find similarities with feature curves of other models. The execution time of the algorithm
depends on: (i) the size of the mesh and (ii) the size of the patches, but generally, it is very fast.

Definition and computation of vertex saliency For each of the n vertex v;, a patch P; =
{Vi,Vi,,..., v, } vertices is created, which consists in the & geometrical nearest vertices to the
vertex v; based on their coordinates (typically £ = 15). These points are used to define a matrix
N, € RE+DX3 for each vertex:

T .
Ni:[ni,nil,...,nik} R \V/’l:lj___’n

82

where the normal n; of the vertex v; is defined as:

> ng;

_JEN;

ni—w7 Vizl,...,n,

where n.; is the normal of the j-th face of the mesh and N is the first-ring area of the vertex i.
For each vertex, the associated covariance matrix R; = NZ-TNZ- is decomposed:

where U; € (R)?*? denotes the eigenvectors matrix and
A; = diag(Nix, Nig, Aiz)

The value s; is the saliency of v; and it is defined as the value given by the inverse norm — 2 of
the corresponding eigenvalues:

1

S; = 3 5 7 = 1, o, n.
\/)‘il + Ay + Aj3
s; is normalized to be in the [0, 1] range as follows:
g ST min(si) i=1,....n

maz(s;) — min(s;)’

This method assumes that a small value of saliency means that the vertex lies in a flat area, while
a big value indicates that the vertex belongs to an edge or corner. This characterization depends
by the number of dominant (or main) eigenvalues. For example, considering a cube, a vertex that
“has” three, two or one dominant eigenvectors is, respectively, on a corner, on an edge or on a
flat area.

A k-mean algorithm is used for separating the normalized values of the saliency into five different
classes. The first two are considered as non-feature vertices, while the other are actual feature
vertices.

Clustering of salient vertices The feature curves are identified by grouping the feature vertices
based on mean curvature m, values. Since the initial number of feature curves is unknown for
each model, the optimal number of clusters is supposed to range from 1 to 5 and it is estimated
using the Calinsky-Harabasz clustering evaluation criterion, followed by the k-means algorithm
that performs the actual clustering.

Moreover, the feature curve similarity among models is assessed through the histograms of
saliency and mean curvature. More specifically, for a given model the histograms of the s value

83

and the normalized mean curvature are computed (respectively 5 € R1%%! and 7in € R'9%1). Then
they are horizontally stacked in the vector ¢ = [$, 7i2]. The correlation coefficient 7 of two models
A and B defined by the vectors g4 and g3 is:

20

;(in - qA)(qBi - Qb)

\/ (3 (aa, — 20)(3 (a5, — @)

T =

i=1 =1

where ¢, represents the mean value. The lower r is, the higher is the similarity between A and B.

Point aggregation based on angle and curvature saliency (PCs)

Two methods were proposed, labelled PCs:A and PCs:C, respectively. Both have the same ap-
proach: defining a set of candidate vertices with a significant difference in a given property. Then
candidate vertices that might be on a flat region and/or small fragments are removed, to reduce
noise in the output. With this approach, all the feature curves obtained on a single model are
grouped, thus we consider these methods only in the overall comparison. The core difference
between the two methods is how the candidate vertices are determined.

Angle-based vertex saliency (PCs:A) The first method works in three steps. First, the angle 6;
between each pair of connected triangles (by one edge) is computed. Then, if 6; > amean;(6;)
(with mean equal to the average value), the two extremes of the relative edge are considered as
candidate vertices. « is set equal to 1.3 in most cases, aside from 1.6 for Model2 and 2.6 for
Model3. Second, if two candidate vertices share an edge larger than the double average length
of the edges the two candidate vertices are removed. Finally, a graph with each pair of candidate
vertices as nodes is created. All the connected components of this graph are computed and, if
the number of vertices in a component is less than 1% of the number of vertices of the mesh, the
vertices are removed.

Normal curvature-based vertex salicency (PCs:C) The second method runs in three steps.
First, the oriented normals per-triangle are computed and for each vertex the normal of a vertex is
the average of the weighted sum of its incident faces, with weights being proportional to a face’s
area. For each edge in the mesh, if its extremes are p;, po, with normals n, ny, an estimation of
its curvature is given by:
(n2 —n1)(p2 — p1)
lp2 — p1?

Second, the average curvature of each vertex v; is estimated as the geometric mean of the absolute
values of all the edge curvatures of incident edges at the selected vertex. This evaluation is

curv =

84

smoothed by averaging the value with those of its immediate neighbors. This is repeated multiple
times. Vertices with large touching triangles indicate that the surrounding area is relatively flat
and thus filtered away, checking if their adjacent vertices have length larger than some value
proportional to the average of the edge length. Of the remaining vertices, those that have a
curvature value larger than a + k(mean;(curv(v;))) are flagged as possible elements of some
feature curves. This formulation derives from the following observation: if the curvature value is
larger than the average, at some point then it is highly possible that it is part of some curve, but
in a sample with mostly noisy texture, this limit needs to be relaxed. In this method, a = 0.025
and £ = 0.7. Finally, to reduce noise, the components with fewer vertices are removed. Also,
large components that have no nearby other flagged vertices are removed.

Point-based multi-scale curve voting (PMCYV)

This method extracts feature lines from meshes using a voting system based on a set of 3D curves
generated in the direction of minimal curvature in anisotropic regions.

Point cloud sampling and curve generation Each mesh M is converted to a dense point cloud
with a uniform point cloud P through a uniform sampling weighted by the face area. Feature
curves as intended in this benchmark are characterized by a small curvature along the feature and
a large curvature in orthogonal direction. The curvature is evaluated using the APSSlocal surface
estimation [[GGOQ7]. Curves are generated at five levels of scale, based on the size of the neighbor
used to approximate the surface with APPS, namely ¢; = 5(2 +i€e),7=0,...,4 where € is the
median edge lengths in M. P is sub-sampled in 5 sparse point clouds P; using a Poisson disk
sampling, with radius r; = f—g plus an additional cloud P;, with r; = %’ For each t;, curves are
iteratively generated from each point in P; as follows:

Pj+1 = pTOj(Pj + Av(pj))

with A = %0 v(p;) is the direction of minimal principal curvature computed on P;. proj
projects a point on the APPS surface approximation of P;, ensuring that the curve remains close
to the surface. The iterations stop after reaching a maximum, set at 10°, or if the curve leaves the
curved area, i.e. if M > «, where k; is the maximal curvature, K; is set to the 90" centile
of maximal curvature absolute values calculated in P, at scale ¢; and « is set to 0.5. In order
to filter noise or insignificant features, if the number of iterations is lower than 50, the curve is
discarded.

Voting-based feature line extraction The vertices of M accumulate votes from the extracted
neighbor curves. Each vertex of each curve accumulates a vote in its neighboring mesh vertices.
The size of the spherical neighborhood is €. A vote is a negative scalar coefficient for valley lines

85

and positive for crest lines, with absolute values ranging from O to 1 according to the distance
between the curve vertex and the mesh vertex. Sign is used to balance the sum of vertices close to
both valley and crests. Finally, a region growing process delineates an individual set of vertices
based on these votes. A region grows from a vertex to its neighbor if the sum of the votes has the
same sign and if its absolute value is greater than %me, where V... 1s the maximal absolute
value of votes on the vertices of the mesh.

Feature curve characterization via mean curvature and algebraic curve recognition via
Hough transforms (MHT)

This feature curve recognition method derives from the technique described in [TBEF18|] and
works in three steps.

Feature point characterization The vertices at which the mean curvature is significant (e.g
with high maximal and low mean curvature values) are selected as feature points. The curvature
is estimated using [Pey|]. Feature points are obtained by filtering the distribution of the mean
curvature by means of two thresholds m and M. Note that m and M are two input parameters.
Their value varies according to the precision threshold set for the property used to extract the
feature points (e.g., in our case, two typical values of m and M are 15% and 85%, respectively).

Feature curve aggregation Feature points are aggregated to determine the elements that po-
tentially correspond to a curve. Once detected, the set of feature points is subdivided into smaller
clusters (that is, groups of points sharing some similar properties) by using a clustering algo-
rithm. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) method
[EKSX96], 1s adopted which groups together points that lie close by marking as outliers isolated
points in low-density regions. The DBSCAN algorithm requires two parameters: a threshold
used as the radius of the density region, and a positive integer that represents the minimum num-
ber of points required to form a dense region. As feature curves, the output of the DBSCAN
algorithm is submitted. To estimate the density of the feature points and, therefore, the minimum
number of points in a region, the K-Nearest Neighbor (KNN) [FBE77]] is used. In general, the K
value of the KNN search is set to 15 for MHT1 and to 4 for MHT?2.

Curve approximation using Hough transforms Finally, the feature curves are fitted with
template curves to recognize their type and quantify the parameters characterizing such a fea-
ture. This step is obtained following the procedure based on the Hough transform described in
[TBF18]. In this contest, the following dictionary of curves is considered: circles, Lamet curve,
citrus curve, geometric petal and Archimedean spiral, see [TBF18] for details. In general, com-
binations or additional families of curves are possible [Shi95]. The peculiarity of the Hough

86

transform is to estimate in a family of curves, the parameters of the curve a = (aq,...,a,)
that better fits a given set of points. The curves considered have at most one or two parameters.
Depending on the curve, these parameters estimate its bounding box, diagonal, radius, etc.

The distance between the two curves C; and C, is defined as the norm L' of the parameters
corresponding to these curves, i.e., d(Cy,Cs) = |ac,, ac,|1, where a¢, and ac, are the parameters
of the curves C; and Cs, respectively. Note that such a notion of distance assumes the curve
parameters are homogeneous in terms of the properties measured; this implies that the distance
between two feature curves is computed only if they belong to the same family.

Performance evaluation

Apart from the well-known Hausdorff distance between two sets of points, there is not a standard
measure for the evaluation of this kind of task. Also, notice that despite being curves, the ground
truth for this contest is defined by sets of points that are not sorted, thus distances for ordered
polylines like the Fréchet distance are not suitable [EGHP™02]. We used the Direct Hausdorff
distance [DDOQ9], the Dice coefficient [TH15]] and the Jaccard index [[TH135]]. More precisely:

e The Direct Hausdorff distance from the points a € A C R? to the points b € B C R? is
defined as follows:

ditraus(A, B) = maz e ayminpep)d(a, b),

with d the Euclidean distance. As a reference, the well known Hausdorff distance between
A and B is
max{ddHaus(A7 B)) ddHaus (Bv A)}

In order to have coherent evaluation through different models, measurement are done on
resized models so that their loads are as close as possible.

* The Dice coefficient between two sets (let them be S and R) is defined as

2|S N R
dice(S,R) = ———,
S| + |R|
where | - | denotes the number of elements. It ranges from 0 (no match), to 1 (perfect
match).
» The Jaccard index is defined as:
, dice(S, R)
dSSR)y= ——7" 7
jaccard(S, R) 2 —dice(S,R)’

that varies from O to 1, the higher the better.

87

The Direct Hausdorff distance score is used to evaluate how well the overall shape of the curves
extracted by the different methods fit the ground truth and vice-versa. The other two measures are
used to evaluate the precision of the methods. While a score of 1 is not mandatory for a method
to be considered good, the higher the value is, the better the extracted curve fits its ground truth
counterpart. Six runs are evaluated. For the SBSE and MHT* we had runs for both the feature
curve characterization and the feature curve similarity task. The PCs results report an unique
feature curve per model so they are considered in the overall comparison only. The results for
the curve-by-curve classification are reported in Table Those for the overall evaluation are
splitted into two tables for format reasons and are reported in Table |5.3| and Table

If interested in the strongest features (in terms of bending) of a model, SBSE provides a quick
overall preview of the related feature curves, quite robust to noise.

SBSE is able to extract the jointed feature curves even in presence of acquisition noise, with good
precision, as shown in Figure [5.11(Top)(a). PMCV has impressive precision in its extraction
process. Such a precision could be ideal to identify different features that share a jointed feature
curve. Figure[S.TT(Top)(b) shows how this method is able to separate the L-shaped bumps of the
mesh with different feature curves. It usually detects more feature curves than those selected in
the ground truth. The main reason is that this method extracts the set of valley and crest lines
in the mathematical sense, while the ground truth focuses on a user-specified subset. It may
also happen that the curve generation stops at non anisotropic areas such as corners. In that
case, a feature line is separated in several curves. The feature lines provided by the PMCV are
generally thicker than those in the ground truth. If required, a thinner set of lines can be obtained
by reducing the distance used for the curve voting, although representative features could be
discarded in this way. About the PCs runs, while they do not separate the feature vertices in
different feature curves, they almost always provide a super-set of the vertices of the ground truth
jointed feature curves. Also, as shown in Figure[5.11[Top)(c,d), the methods are very precise in
case of very sharp features, as those in Models 5 and 9. A good balance between precision and
vertex clustering is obtained by MHT, which recognizes most of the expected feature curves,
balancing the number of vertices recognized and the curve fragmentation (with respect to our
ground truth). An example of this is shown in Figure [5.1T(Top)(e,).

For the feature curve similarity task, SBSE provides a global distance between two models based
on histogram-based feature vectors. For example, M4 and M10 are considered similar based
on this evaluation, as well as M11 and M12, M7 and M8, M6 and M9. MHT provides instead
a similarity measure among the single feature curves, even those in the same model. In other
words, it performs a local similarity evaluation of the models. The similarity evaluation is doable
with curves that are obtained using the same family of curves. For instance, the eyes in Model 11
and 12 are mutually considered similar, as well as each pair of rings on Model 14. An example
of curves sorted by similarity in a single family is shown in Figure [5.1T(Bottom).

As a final remark, the feature curve characterization contributes to give an overall interpretation
of a model and combines with the pattern recognition problem allowing for the removal of un-

88

|

O-comp - dg1qys from GT to Parts

| |

O-comp - d g qys from Parts to GT

|

Model[SBSEPCs:APCs:CPMCVMHTIMHT2| [Model[SBSEPCs:APCs:CPMCVMHTIMHT?]

M1 |0.068 0.054 0.105 0.675 1.570 1.570 M1 ||0.225 5.924 0.225 0.311 0.280 0.280
M2 1|0.054 0.060 0.032 0.079 0.071 0.060 M2 |[1.407 0.128 1.643 0.012 0.041 0.020
M3 {/0.074 0.006 0.005 0.001 0.048 0.048 M3 {|0.388 0.001 0.184 0.278 0.061 0.061
M4 [|3.047 3.694 2.771 0.162 3.555 3.555 M4 |{1.055 0.969 1.055 0.258 0.209 0.209
M5 {|0.887 1.019 2.100 0.921 1.019 1.019 M5 ||0.166 0.037 0.029 0.029 0.250 0.250
M6 [|1.229 0.033 1.049 2.246 0.650 0.089 M6 |{1.399 1.101 1.101 0.680 1.101 1.276
M7 1|0.018 0.010 0.028 0.016 0.012 0.012 M7 /0.017 0.043 0.031 0.026 0.078 0.078
M8 /0.062 0.006 0.027 0.037 0.011 0.011 M8 |0.019 0.039 0.028 0.016 0.044 0.044
M9 |1.622 0.165 1.699 1.716 0.081 0.081 M9 ||4.288 0.260 0.496 0.215 1.442 1.442
M10 |2.427 0.003 0.582 2.348 4.585 4.585| | M10(0.229 0.723 0.422 0.411 0.022 0.022
M11 {/0.091 0.009 0.035 0.013 0.045 0.045| | M11 {0.013 0.043 0.015 0.039 0.015 0.015
M12{0.062 0.036 0.064 0.011 0.040 0.010| | M12{(0.009 0.030 0.012 0.220 0.036 0.038
M13/0.035 0.057 0.023 0.070 0.013 0.013| | M13{(0.068 0.060 0.091 0.054 0.067 0.067
M14 1/0.024 0.004 0.027 0.004 0.010 0.010| | M14 |(0.007 0.019 0.013 0.008 0.008 0.008
M1510.004 0.009 0.077 0.145 0.030 0.030| | M15/0.090 0.090 0.051 0.022 0.009 0.009

|

O-comp - Dice coefficient

| |

O-comp - Jaccard index

|

Model[SBSEPCs:APCs:CPMCVMHTIMHTZ] [Model[SBSEPCs:APCs:CPMCVMHTIMHT?

M1 |0.345 0.352 0.354 0.479 0.452 0.452 M1 |0.209 0.213 0.215 0.315 0.292 0.292
M2 [|0.421 0.494 0.475 0.482 0.210 0.213 M2 ||0.266 0.328 0.312 0.318 0.118 0.119
M3 1|0.411 0.492 0.508 0.383 0.292 0.292 M3 1/0.259 0.326 0.340 0.237 0.171 0.171
M4 1|0.342 0.496 0.513 0.392 0.449 0.449 M4 |0.207 0.330 0.345 0.244 0.289 0.289
M5 |0.427 0.586 0.582 0.563 0.555 0.555 M5 ||0.271 0.414 0.411 0.392 0.384 0.384
M6 [|0.279 0.446 0.467 0.525 0.445 0.451 M6 ||0.162 0.287 0.305 0.356 0.286 0.291
M7 /0.306 0.426 0.508 0.550 0.501 0.501 M7 ||0.181 0.270 0.341 0.379 0.334 0.334
M8 [|0.316 0.412 0.498 0.543 0.518 0.518 M8 ||0.188 0.260 0.332 0.372 0.350 0.350
M9 ||0.221 0.533 0.502 0.447 0.474 0.474 M9 ||0.124 0.363 0.335 0.288 0.311 0.311
M10 ||0.425 0.466 0.498 0.516 0.402 0.402| | M10{/0.270 0.304 0.331 0.347 0.252 0.252
M11 ||0.389 0.579 0.554 0.562 0.562 0.562| |M11 ||0.241 0.407 0.383 0.391 0.391 0.391
M12(/0.548 0.711 0.727 0.666 0.667 0.637| | M12(0.378 0.552 0.571 0.500 0.501 0.467
M131|0.298 0.553 0.537 0.405 0.976 0.976| | M13|/0.175 0.382 0.367 0.254 0.953 0.953
M141/0.304 0.565 0.517 0.512 0.882 0.882| | M14|/0.179 0.394 0.348 0.344 0.788 0.788
M15 ||0.584 0.659 0.631 0.536 0.917 0.917| | M15(/0.412 0.491 0.461 0.366 0.847 0.847

Table 5.2: The evaluation measures of the O-comp classification. The dyj4,s distance measure
is computed from groundtruth (GT) to the feature curve proposed by the participants (Parts) and
vice-versa. The lower its score is (0 at best), the better. For the Dice coefficient and the Jaccard
index, the higher the score is (1 at best), the better. Refer to Figure to see which model is

evaluated in each cell. Bests results are highlighted with bold font.

wanted parts of the models that causes variations in the geometry of the model comparable to

those that define patterns as well.

89

CbC-comp classification - Part 1

dgHaus from GT to Parts

dqHaus from Parts to GT

Dice coefficient

Jaccard index

[FC id][SBSEPMCVMHTIMHT?

C id[[SBSEPMCVMHTIMHT?

od[SBSEPMCVMHTIMHT?)

Mod[[SBSEPMCVMHTIMHT?2)]

11

0.604 0.014

0.013 0.013

11

0.035 0.006 0.006 0.006

11

0.121 0.650 0.636 0.636

11

0.064 0.482 0.466

0.466

1.2

0.601 0.036

0.034 0.034

1.2

0.016 0.006 0.006 0.006

12

0.145 0.450 0.413 0.413

12

0.078 0.290 0.260

0.260

1.3

0.575 0.084

0.039 0.039

1.3

0.052 0.021 0.110 0.110

1.3

0.244 0.435 0.503 0.503

13

0.139 0.278 0.336

0.336

14

n.c. 0.041

0.064 0.064

14

n.c. 0.021 0.020 0.020

14

nc. 0.499 0.445 0.445

14

n.c. 0.332 0.286

0.286

1.5

0.555 0.056

0.035 0.035

1.5

0.031 0.006 0.006 0.006

1.5

0.180 0.434 0.578 0.578

15

0.099 0.277 0.406

0.406

1.6

0.527 0.128

0.050 0.050

1.6

0.057 0.113 0.118 0.118

1.6

0.214 0.458 0.481 0.481

1.6

0.120 0.297 0.316

0.316

1.7

0.541 0.027

0.028 0.028

1.7

0.083 0.020 0.062 0.062

1.7

0.041 0.382 0.338 0.338

1.7

0.021 0.236 0.204

0.204

1.8

nc. ~0

n.c. n.c.

1.8

n.c. 0.049 n.c. n.c.

1.8

n.c. 0447 n.c. n.c.

1.8

nc. 0.288 n.c.

n.c.

110

0.547 0.035

0.024 0.024

110

0.028 0.082 0.081 0.081

1_10)

0.126 0.354 0.334 0.334

1_10]

0.067 0.215 0.200

0.200

2.1

0.673 0.005

0.674 0.016

2.1

0.011 0.171 0.012 0.012

21

0.094 0.296 0.025 0.048

21

0.049 0.174 0.012

0.025

2.2

0.467 0.005

0.468 0.013

222

0.006 0.081 0.004 0.003

22

0.194 0.542 0.147 0.449

22

0.108 0.372 0.079

0.289

23

0.461 0.013

0.461 0.015

23

0.006 0.004 0.007 0.014

23

0.164 0.633 0.119 0.332

23

0.089 0.463 0.063

0.199

2.4

0.681 0.003

0.681 0.019

2.4

0.005 0.118 0.004 0.004

2.4

0.265 0.457 0.176 0.461

2.4

0.153 0.296 0.096

0.299

2.5

0.686 0.002

0.688 0.019

2.5

0.018 0.155 0.018 0.017

2.5

0.060 0.102 0.033 0.082

25

0.031 0.054 0.017

0.043

2.6

0.473 0.002

0.475 0.018

2.6

0.010 0.127 0.017 0.016

2.6

0.077 0.537 0.009 0.029

2.6

0.040 0.367 0.004

0.015

2.7

0.461 0.004

0.462 0.017

2.7

0.015 0.166 0.015 0.017

2.7

0.041 0.076 0.016 0.035

2.7

0.021 0.040 0.008

0.018

2.8

0.475 0.005

0.476 0.022

2.8

0.013 0.146 0.017 0.018

2.8

0.062 0.337 0.018 0.044

28

0.032 0.202 0.009

0.023

29

0.453 0.002

0.454 0.017

29

0.016 0.169 0.017 0.016

29

0.029 0.339 0.015 0.019

29

0.015 0.204 0.007

0.010

2_10

0.674 0.002

0.674 0.018

2_10

0.015 0.185 0.020 0.018

2_10)

0.104 0.032 0.022 0.038

2_10

0.055 0.016 0.011

0.019

211

0.686 ~ 0

0.686 0.022

211

0.011 0.146 0.017 0.017

2_11

0.078 0.248 0.037 0.044

2_11

0.040 0.142 0.019

0.022

2_12

0.683 0.003

0.685 0.016

2_12

0.004 0.131 0.005 0.005

2_12

0.174 0.474 0.107 0.282

2_12]

0.095 0.310 0.056

0.164

3.1

n.c. 0.092

n.c. n.c.

3.1

nc. 0172 n.c. nc.

3.1

nc. 0443 n.c. nc.

3.1

n.c. 0.284

n.c.

n.c.

32

0.414 0.007

0.062 0.062

32

0.035 0.097 0.016 0.016

32

0.586 0.487 0.497 0.497

32

0.415 0.322 0.331

0.331

4.1

0.048 0.005

0.036 0.036

4.1

0.023 0.313 0.035 0.035

4.1

0.300 0.126 0.426 0.426

4.1

0.176 0.067 0.270

0.270

422

0.124 0.027

n.c. n.c.

42

0.092 0.005 n.c. n.c.

42

0.159 0.590 n.c. n.c.

42

0.086 0.419 n.c.

n.c.

5.1

0.021 ~ 0

0.102 0.102

5.1

0.887 0.470 1.086 1.086

5.1

0.381 0.304 0.414 0.414

51

0.235 0.179 0.261

0.261

6_1

n.c. 0.005

n.c. 0.561

6_1

n.c. 0.079 n.c. 0.008

6-1

n.c. 0.663 n.c. 0.046

6-1

nc. 0.496 n.c.

0.023

62

0.053 0.006

1.021 1.021

62

0.060 0.279 1.213 1.213

62

0.318 0.357 0.516 0.516

62

0.189 0.217 0.348

0.348

7-1

0.012 0.007

0.010 0.010

7-1

0.070 0.220 0.048 0.048

7-1

0.333 0.479 0.528 0.528

7-1

0.199 0.314 0.359

0.359

8.1

0.012 0.007

0.017 0.017

8.1

0.064 0.314 0.046 0.046

8.1

0.313 0.454 0.533 0.533

8.1

0.185 0.294 0.363

0.363

9_1

2.459 0.005

0.016 0.016

9_1

1.638 0.228 0.071 0.071

9.1

0.218 0.270 0.390 0.390

9.1

0.123 0.156 0.242

0.242

Table 5.3: The first part of the evaluation measures of the CbC-comp classification. The dgpqus
distance measure is computed from groundtruth (GT) to the feature curve proposed by the partic-
ipants (Parts) and vice-versa. The lower its score is (0 at best), the better. For the Dice coefficient
and the Jaccard index, the higher the score is (1 at best), the better. Refer to Figure to see
which model is evaluated in each cell. Model 1.9 and is not reported since no one was able to
detect it. Bests results are highlighted with bold font. The value ~ 0 indicates a value lower than

0.001.

Related publications

* E. Moscoso Thompson, G. Arvanitis, K. Moustakas, N. Hoang-Xuan, E. R Nguyen, M.
Tran, T. Lejemble, L. Barthe, N. Mellado, C. Romanengo, S. Biasotti, and B. Falcidieno,
SHREC’19 track: Feature Curve Extraction on TriangleMeshes. In Eurographics Work-

shop on 3D Object Retrieval, 2019.

90

CbC-comp classification - Part 2

dqHaus from GT to Parts

dqHaus from Parts to GT

Dice coefficient

Jaccard index

[FC id][SBSEPMCVMHTIMHT?2)

C id[SBSEPMCVMHTIMHT?]

Mod[[SBSE PMCVMHTIMHT2

Mod]]|

SBSE

PMCVMHTIMHT?]

10_1

5.031 0.001

0.019 0.019

10_1

0.108 0.150

0.049 0.049

10-1

0.331 0.394

0.311 0.311

10_1

0.199 0.245

0.184 0.184

102

3.192 0.285

n.c. n.c.

102

2.42713.239 n.c.

n.c.

1022

0.131 0.433

n.c. n.c.

102

0.070 0.276

n.c. n.c.

111

0.102 0.035

0.033 0.033

111

0.007 ~ 0

0.005 0.005

11-1

0.497 0.627

0.680 0.680

111

0.331 0.457

0.515 0.515

112

0.028 0.062

0.048 0.048

112

0.018 0.008

0.011 0.011

1122

0.367 0.393

0.404 0.404

112

0.225 0.245

0.253 0.253

113

n.c. 0.011

0.011 0.011

113

nc. 0.013

0.015 0.136

113

n.c. 0.546

0.553 0.553

113

nc. 0.375

0.382 0.382

114

0.171 0.039

0.014 0.014

114

0.091 0.009

0.062 0.062

114

0.043 0.511

0.489 0.489

114

0.022 0.343

0.323 0.323

115

n.c. 0.005

0.005 0.005

115

n.c. 0.028

0.006 0.006

11.5

nc. 0.778

0.705 0.705

115

nc. 0.637

0.544 0.544

12_1

0.137 0.083

0.065 0.143

12_1

0.064 0.005

0.040 0.006

12_1

0.190 0.588

0.535 0.230

12_1

0.105 0.416

0.366 0.130

122

0.006

n.c.

0.005 0.155

122

0.008

n.c.

0.069 0.008

122

0.817

n.c.

0.713 0.131

122

0.690

n.c.

0.554 0.070

123

n.c. 0.023

0.004 0.078

123

n.c. 0.011

0.019 0.016

123

0.137

n.c.

0.286 0.237

123

0.074

n.c.

0.167 0.134

124

0.027 0.051

0.029 0.029

124

0.006 0.005

0.007 0.007

124

0.553 0.572

0.514 0.514

124

0.382 0.400

0.346 0.346

125

0.082 0.026

0.031 0.097

12,5

0.005 ~ 0

0.004 0.006

125

0.557 0.766

0.774 0.450

12,5

0.386 0.621

0.631 0.290

13_1

~ 0 0.022

0.067 0.067

13_1

0.035 0.076

0.013 0.013

13-1

0.574 0.567

0.976 0.976

13-1

0.403 0.396

0.953 0.953

14_1

0.716 0.006

~0 ~0

14_1

0.002 ~ 0

0.003 0.003

141

0.227 0.559

0.979 0.979

14_1

0.128 0.388

0.958 0.958

1422

0.464 0.006

0.011 0.011

1422

~0 ~0

0.004 0.004

1422

0.224 0.529

0.987 0.987

1422

0.126 0.359

0.974 0.974

143

0.464 0.007

~0 ~0

143

0.003 ~ 0

0.003 0.003

143

0.219 0.509

0.978 0.978

143

0.123 0.341

0.957 0.957

144

0.470 0.007

0.006 0.006

144

0.004 ~ 0

0.004 0.004

144

0.002 0.450

0.942 0.942

144

0.001 0.291

0.891 0.891

145

0.672 0.008

0.006 0.006

145

0.023 0.003

0.004 0.004

145

0.001 0.489

0.795 0.795

145

< 0.001 0.323

0.660 0.660

14.6

0.654 0.007

0.015 0.015

14.6

0.007 0.004

0.004 0.004

146

0.027 0.657

0.646 0.646

14.6

0.013 0.490

0.477 0.477

147

0.655 0.007

0.008 0.008

147

0.011 ~0

0.010 0.010

147

0.178 0.655

0.739 0.739

147

0.098 0.487

0.586 0.586

148

0.667 0.006

0.008 0.008

148

0.024 ~ 0

0.069 0.069

148

0.153 0.576

0.667 0.667

148

0.083 0.404

0.500 0.500

149

0.721 0.007

0.012 0.012

149

0.004 ~ 0

0.002 0.002

149

0.002 0.478

0.897 0.897

149

0.001 0.314

0.814 0.814

1410

0.703 0.007

~0 ~0

1410

0.004 ~ 0

0.006 0.006

14_10)

0.227 0.516

0.919 0.919

1410

0.128 0.348

0.851 0.851

14_11

0.708 0.007

0.003 0.003

1411

0.004 ~ 0

0.004 0.004

1411

0.004 0.465

0.952 0.952

1411

0.002 0.303

0.908 0.908

1412

0.500 0.007

0.012 0.012

1412

0.004 0.003

0.002 0.002

1412

< 0.001 0.446

0.956 0.956

1412

< 0.001 0.287

0.916 0.916

1413

0.494 0.007

0.011 0.011

1413

0.004 ~ 0

0.004 0.004

14_13

0.226 0.510

0.954 0.954

1413

0.127 0.343

0.911 0.911

14_14

0.513 0.007

~0 ~0

14_14

0.003 ~ 0

0.004 0.004

14_14

0.225 0.465

0.983 0.983

14_14

0.127 0.303

0.966 0.966

14_15

0.519 0.007

0.004 0.004

14_15

0.004 0.003

0.002 0.002

14_15

< 0.001 0.464

0.980 0.980

14_15

< 0.001 0.302

0.961 0.961

14_16

0.470 0.006

0.009 0.009

14_16

0.004 0.004

0.004 0.004

1416

0.002 0.466

0.907 0.907

14_16

0.001 0.304

0.830 0.830

15_1

0.260 n.c.

0.009 0.009

15_1

0.010 n.c.

0.030 0.030

15_1

0.512 n.c.

0.913 0.913

15_1

0.344 n.c.

0.840 0.840

152

0.151 0.022

0.007 0.007

152

0.010 ~ 0

0.013 0.013

152

0.732 0.662

0.921 0.921

152

0.577 0.494

0.853 0.853

Table 5.4: The second part of the evaluation measures of the CbC-comp classification. The
daraus distance measure is computed from groundtruth (GT) to the feature curve proposed by
the participants (Parts) and vice-versa. The lower its score is (0 at best), the better. For the
Dice coefficient and the Jaccard index, the higher the score is (1 at best), the better. Refer to
Figure to see which model is evaluated in each cell. Model 1_9 and is not reported since no
one was able to detect it. Bests results are highlighted with bold font. The value ~ 0 indicates a
value lower than 0.001.

5.4 Retrieval of surface patches with similar geometric reliefs

We built a benchmark for geometric pattern retrieval [MBG™20]. Our collection of 3D models
is characterized by different classes of reliefs on the models surface. These reliefs represent
different kinds of materials, like bark wood or rocks, and structures, like bricks. The peculiarity
of the models proposed in this contest is that a realistic geometric pattern (derived from real
texture images) is applied to a number of base models, some of which have a non-trivial topology
(with handles, tunnels, boundaries, etc.).

91

(@ (b) (© (d) (e) (®)

Figure 5.11: Top: An example of the results from SBSE (a), PMCV (b), PCs:A (c), PCs:C (d),
MHT1 (e) and MHT2 (f). Bottom: the most similar feature curves to the feature curve extracted
on Model 6 (in red) according to the MHT similarity evaluation. From the second images, from
left to right, the extracted feature curves on other models from closest to farthest, are shown.

Twenty runs were evaluated in this contest. The performances of the methods reveal that good
results are achieved with a number of techniques, both with and without learning approaches.

5.4.1 Dataset

The dataset consists of 220 triangulated surfaces. Each one of them is characterized by one of
11 different geometric reliefs.

To create the models, we selected the 20 base models already used in Section Then, a
set of 11 textures is selected from the free dataset of textures available online from the site Tex-
ture Haven that contains a set of natural, high quality texture images made from scanned
maps. Most of these textures represent real bricks, floors, roofs surfaces and rock or wood materi-
als. We transform each texture in height values suitable to create a geometric relief by converting

92

Figure 5.12: An example of the transformation process from texture to height map. For each
couple of images: on the left, the original textures are shown. On the right, the final height-map
obtained. This process can end with a binary image (just black and white, as in the example at
the Top) or a gray-scale one (like that at the Bottom).

each texture into a gray-scale image. The brightness and the contrast values of each image were
tuned for each image, based on the values that better enhance the details of the respective color
texture. The obtained height field map is applied to the models: initially, the texture is projected
onto the target model. Depending on the surface bending, this procedure deforms the texture.
To limit this effect, each model is fixed by hand, in particular, in correspondence of significant
distortions and parts of the surface with complex geometry (like tight handles). Finally, we raise
the vertices of the triangle mesh based on the gray-scale value of the previously processed image
along the normal vectors of the models. The same process is repeated for all the textures. A
couple of examples of the conversion of a texture into a height map are depicted in Figure[5.12]
Finally, the models are slightly smoothed to minimize the perturbations in the color derived from
the gray-scale conversion of the textures and the models are sampled with 50000 vertices. Base
models, height fields and examples of the final 3D models are shown in Figure[5.13]

5.4.2 Results

The challenge proposed in this contest is to group the models only according to the geometric
reliefs impressed on them, rather than their shape. In other words, a perfect score is obtained if a
method is able to define 11 groups of 20 models each, each group with the models characterized
by one of the 11 different geometric reliefs.

A summary of the evaluated method is reported in the following. For additional details, we refer

to [MBG™20].

1. Augmented Point Pair Feature Descriptor (APPF D — FK). This is a 3D object descrip-
tor made of local features that capture the geometric characteristics or properties of a set
of surface patches, each centred at a point, which incorporates the geometrical relation
between the latter and its nearest neighbors. Different runs differ in the number and kind

93

Hase Models Mexnanes | helghi maps [Final madels Texamiples)
Classd Class3

e
o

U | m—— A]

?ﬁhﬁ_ha

[e

Class|

Figure 5.13: (Left): the 20 base models on which the reliefs are applied. (Center): the 11
transformed textures used as height-fields on the base models (the brighter the color, the higher
is the value of the field in that point). (Right): a sample of the final models of the dataset of the
contest.

Il

of histograms for their feature description.

2. Orientation Histogram (O H). Images are extracted from the models and their gradient is
used to compute histograms of modules and angles of the latter. The runs differ from the
number of bins of the histogram.

3. Deep Feature Ensamble (DF'E). Images are extracted from the models and the output
of multiple CNNs are used together to classify the patterns. Runs differ from the kind of
DenseNet used. This method is described in Chapter [T}

4. Deep Patch Metric Learning (DPM L). It trains a Siamese neural network using images
extracted from the models. The runs differ in the way the patches generated are pre-
processed and in the use of data augmentation. This method is described in Chapter [I]

5. Signature Quadratic Form Distance and PointNet (PointNet+SQF D). Sipiran et al. pro-
posal consists of computing the distance between two shapes using the Signature Quadratic
Form Distance (SQFD) over descriptions of local patches. Runs differ for the
number and size of the patches.

6. Smooth-Rugged Normal Angle (SRN A). This method outlines the geometric texture by
using a per-vertex quantity and extracts a representative feature vector which is used to test

94

against every other model in the database.

7. Variations of the meshLBP (meshLBP). It builds a LBP description from the triangles
of a mesh on the basis of different local filters and uses an histogram to characterize the
patterns. Runs differ for the kind of filter applied. This method is described in Chapter [I]

8. Correspondence matching based on kd-tree Fast Library for Approximate Nearest Neigh-
bors (kd — treeFFLAN N) This method is based on using the kd-tree Fast Library for
Approximate Nearest Neighbors (FLANN [EBE77]) correspondence matching to match
the query of the other objects in the database. Local features are then matched using the
KD Tree FLANN correspondence matching method.

Table [5.5] summarizes the performances of all the twenty runs submitted for evaluation. The
best performances for each measure are highlighted in bold. With respect to the results reported
in [MBG™20]], we add the performances of the edgeLBP descriptor (with parameter setting:
R = 0.11, n,qq = 5, P = 15). Many methods achieve good or very good performances. For
example, 6 methods have an NN value above the level of 0.9, i.e. they have a classification rate
above 90%. Similarly, the same 6 methods have the mAP value greater than 0.7 and the nDCG
greater than 0.8. Also, note that 2 methods have the ST score above 0.99 which, having all the
classes 20 models each, means that the models with the same 3D texture as a query are generally
found within the first 39 retrieved models, with very few exceptions.

For a better visual comparison of the methods, only the Confusion Matrix and Tier Image of
the best run of each method are reported in Figure [5.15] and Figure [5.16] respectively. ROC
curves and Precision-Recall plots of the best run for each method are shown in Figure [5.14] As
also reflected by the area under the ROC curve, methods with AUC greater than 0.97 provide
a better classification than other methods. For completeness, the PR plots and the ROC curves
of all the runs submitted are listed in the Appendix. This more complete overview of the runs
highlights that the performances of a method show the same trend for the different runs, with
small qualitative variations between the different parameter choices.

Overall, the best performances are obtained by the DFE method, which uses a pre-trained neural
network. We observe that the NN, FT and ST scores for the methods based on transfer learning do
not change significantly. This fact suggests that, if they have success, these methods have a larger
capability of ranking the models that contains a texture similar to the query at the beginning of the
list of the items retrieved, while the other methods drop around 0.3 from NN to FT. However, also
methods that do not use learning techniques perform well (like the meshLBP, OH, SRNA and
edgeLBP). We notice that these methods are all based on feature vectors. Some methods share
some background, for instance, the meshLLBP-so run and the OH methods use of the Sobel Filter.
However, among the three meshLLBP-based runs submitted to this track, the best performances
are reached by the meshLLBP run that is based on convolution-like operations extended to a
triangle mesh. Among the methods that extend to 3D models the LBP description, the edgeLBP

95

INN FT ST |mAP |DCG AUC |
APPFD-FK(runl) [0.186 [0.204 0332 [0.235 [0.523 [.211 [0.672
APPFD-FK(run2) [0.132 [0.186 0299 [0.212 [0.497 [0.192 [0.632
APPFD-FK(run3) [0.186 [0.192 [0.318 0228 [0.507 [0.203 [0.682

OH(runl) 0.791 0.406 [0.567 (0.470 (0.737 0.377 [0.817
OH(run2) 0.750 0374 0.517 0.418 0.709 0.341 |0.779
OH(run3) 0.714 0.405 0.575 0.469 (0.732 0.382 (0.818

DFE(runl) 0.982 10.920 1.000 10.930 0.974 0.715 0.987
DFE(run2) 0.982 0913 1.000 0926 (0973 0.714 10.986
DFE(run3) 0.982 0.865 [1.000 0.896 (0.963 0.693 10.980
DPML(runl) 0900 0.836 0.990 0.868 0.941 0.686 (0.974
DPML(run2) 0.982 0.887 10.992 0912 0.968 0.690 (0.978
PointNet+SQFD(run1)|0.095 0.095 0.184 0.168 (0.440 0.113 (0.569
PointNet+SQFD(run2)(0.077 {0.099 (0.203 |0.171 |0.442 |0.122 |0.582
PointNet+SQFD(run3)(0.173 |0.119 0.225 0.190 |0.470 |0.137 |0.605
SRNA(runl) 0905 0493 0.670 0.548 (0.802 (0.447 10.869
SRNA(run2) 0.923 0494 0.683 0.563 (0.811 (0.453 |0.882
meshLBP-so 0909 0.631 0.764 0.687 (0.872 0.516 (0.870
meshLBP-sh 0.895 0.601 |0.759 0.656 (0.853 0.522 |0.875

meshLBP 0.905 0.671 0.832 0.726 (0.884 [0.570 |0.909
kd-tree FLANN 0.686 |0.312 |0.424 [0.359 [0.656 |0.283 |0.690
edgeLBP 0.982 0.809 10.945 0.855 (0.949 0.651 10.959

Table 5.5: Nearest Neighborhood, First Tier, Second Tier, mAP, nDGC, e-measure and AUC
value of all the submitter runs.

confirms its superior performances; moreover, the edgeLBP obtains the best scores among the
non learning-based methods and, in many measures, is comparable to learning-based methods.

A common characteristic of most methods is the sampling of one or more representative patches
as a pre-processing step. It consists of a single patch (like in the case of the DFE, OH, DPML, kd-
tree FLANN runs) or multiple ones (like in the APPFD-FK, PointNet+SQDF, SRNA, meshLBP
runs). In general, the selection of a single patch seems to lead to good results with the excep-
tion of the SRNA and meshLLBP methods, which compute a more statistical approach on the
representative patches.

Methods that convert the model into point clouds (APPFD-FK) or that are based on CNNs trained
on point clouds (PointNet) seem to be sub-optimal for this task. Probably these methods lose
information on local details (for instance, the sampling process in the APPFD-FK focuses on
the representation of the global geometry) and do not capture the subtle geometry and structure
variations of local patterns and reliefs. On a similar note, the authors of the kd-tree FLANN

96

weirn BPPE TR A g |
= g |
e G wsA
—i TP rand]
P s Qs |
s i = Sl bty
i e 1
= - iy L
£ - il P

[BTy

LELEF (L]

Figure 5.14: Left: Overview of Precision-Recall plots of the best run for each method. Right:
overview of ROC curves of the best run for each method.

APPFO-FE[manl] st
Clawws 1
[+
Ly |
[=F ")
Tl &
[=F=" 1}
Clams, 7
(=777]
Rl W
Ol 10
it 11 1 o |
i o T R L R b TS
AdEEOentsy AT A g
Prosbrel Wt +:5 OF D A D) AR KA)

Clamss 1 [Ol 1 [Chawn [

O 2 L+ = Lty 3

Dl 7 (=5] il 3

L Ol & I Chijein &

Cloms T [=C R Tl

Chomy B Ty Ty 8

Ol T (=" T, 7

[="" 8] Claws B Chiesn B

[] b [R Chin

sy 10 s 10 3 | [= "R

s 11 1) 11 (=R]

ot g T L T M i AL R S
A ﬂﬁ%’ﬁﬁfﬁ# A5
rossh AP e LANK

s 1 Tl T

Clawd & Thist

Ol 3 Chima 1

ks Dl b

[="] T |

Oy =

=" T8 Lhiss |

Claas B Chama A

Clist b e

Ol 101 Ol 10

i | [= RN [="0)

e T T LT & b -\..5..1:.1.'.1.“-\.1.3

AR AR AR

Figure 5.15: Overview of the confusion matrices of the best run for all the methods.

method suggest that the performance of their methods will probably be improved by considering

97

APPFD-FE[manl] s SHEEEA] OF Effam]
Sl FETES 1 Claw |] | a7 Clawn, 1 T F
e -~ TEn = e
Ol 3 b L s 3] (¥l - (=" | |
B e T B S Clams 4 3= Gl +H
Clam & = BB s o % 2] Clams % _il_
ro— I LI Cha 01 | — 1
s T H o ¥i T Chaiees T 3 W
u..ti.";;' i Chia s B L _, o 0 I
s # C Tl T s B | ﬁ ‘Um!|# ¥
(== R Ji] o LT = i 10} (=" B[]
l'.'l.r:rlltr:l ; '1-_" s 11 § M EEE Gt 11 .0
. = Iﬂ.-".‘\.'\{l‘-\:l.\."\- e '.‘\.‘Q.":-"\- N TR R
AR A o
muﬂi mmun‘mn AR KA)
ro— " E Ol 1 X TR I=I1L] Clams | L
Caams 3 : e R mE e Exes 3 | TN Bl
Gl 7 Chii 3 i T nm:ll‘hl -lnl
-3 i Claas i © b8 5 T gl o | “
Clams T [= T AL RN, 04 o . {1 F
The @ e i] [E%1) T Clas B T
Ol T Chams T X H i Ot T
Ol Eld B & -r: 1 Chasa. il
[+] ;_u...u:.:' - i Claseis, I |
Chimn 11 a8 il s #l o i 14
s 11 "H" i 11 I H_ o 1
5..-.,.1!,.*-\.5.._ e R T e L B T T P
SR ey @fﬁfﬁﬁ*’g{ A ﬁ#‘g{p’
sk shLAP gl P
Tl 1 1 JIT TR Chp 1 BN EERIEE
Class T Chtatsy 7 1 1 1l
e 1 hima 0 | R i
D d F* il i | § = ||
ik L] = ik] . |
e i e H
Class T Ty T 1] + il
[= "5] 1 (=" |
J.‘Elr - s, |
Chan 1 |] i R R lamlﬂ .
&= 1 LT TTHr | o 11 (A1
A L L !l-'\:ll-"“hﬁh.\.
AR B AR R G

Figure 5.16: Overview of the tier images of the best run for all the methods.

a smaller representative patch. With the current size of the patch, the global geometry of the
model is still kept in consideration and it biases the results. This fact highlights the importance
of analysing a surface with reliefs by local approaches (but that are robust to noise).

From the Confusion Matrices we observe that no class was impervious to all approaches. On the
other hand, Tier Images highlight that some methods (DFE and meshLLBP in particular) tend to
confuse class 10 (straight horizontal lines with some double lines) and class 2 (just straight lines)
or class 4 (bricks). Indeed, all these classes have a set of horizontal and parallel lines which lead
to some uncertainty in the classification (especially classes 10 and 2).

5.5 River gravel characterization

The quantitative analysis of the distribution of the different types of sands, gravels and cobbles
shaping river beds is the task performed by hydrologists to derive useful information on flu-
vial dynamics and related processes (e.g., hydraulic resistance, sediment transport and erosion,
habitat suitability) [CCB16]. It is worth mentioning that traditional tools and methods, based

98

Figure 5.17: Example details of photographs used for the photogrammetric reconstruction. Top
left Class1. Top right: class 3. Bottom left: Class 5. Bottom right: Class 8.

on handling of samples and sieves ([Wol54]), are expensive, time-consuming and bed invasive.
Thus, the development of fast and accurate methods able to provide a reasonable estimate of the
gravel distribution based on images or 3D scanning data would be extremely useful to support hy-
drologists in their work. In the following, we describe the benchmark proposed in
to evaluate the suitability of state-of-the-art geometry processing tools to estimate the gravel
distribution from digital surface data.

5.5.1 Dataset

Surface bed-material sampling produces particle frequency distributions of their sizes that are
not directly applicable to those obtained through volumetric sampling, which is the reference
method to sediment-transport models. In particular, a finer fraction is more probable to entirely
appear on the surface, whereas coarser ones are likely to protrude or to be mostly covered by
other grains. The conversion model is still an open issue [MF97]]. In this work, we tried to
address the first step of a methodology that from surface images finally attains the volumetric
grain-size distribution.

The starting point for the realization of our benchmark has been the creation, in the laboratories

99

of DICAM Department, at the University of Trento, of realistic mock-ups of river beds, built
within rectangular wooden boxes 60 x 80cm? and composed of gravels and cobbles with known
size ranges and fractions. The aim is the identification of the size of sediment mixture of the
grains dwelling on the surface of the bed samples. Attention was paid, in the preparation of the
sample, to assure a frequent appearance of any grain-size fraction. At this initial stage, simple
bi-modal mixtures were selected. The surfaces, nonetheless, were not levelled by templates, but
coarsely arranged by hands, to make the mock-up surface as natural as possible. 8 different
mixtures of gravels with size selected in known ranges have been employed:

* Class 1: 3-5cm

* Class 2: 3-5 cm and 4-6 cm mixed

* Class 3: 3-5 cm and 6-10 cm mixed
* Class 4: 4-6 cm

* Class 5: 4-6 cm and 10-20 cm mixed
* Class 6: 6-10 cm

* Class 7: 6-10 and 10-20 cm mixed

* Class 8: 10-20 cm

These mock-ups have been captured with a digital camera from different viewpoints also captur-
ing the box, which is of known size. Figure shows example details of the captured images.
3D models of the mock-ups have been subsequently created using photogrammetric software
(Agisoft PhotoScan). Thanks to the box reference, the correct scale factor of the surface has been
established. The resulting untextured 3D models have been divided in patches, each one associ-
ated to the corresponding grain size composition. The resulting dataset is a set of 256 patches,
representing 8 different classes of grain size distributions. Patches are triangulated meshes rep-
resenting surfaces of about 25x25 cm with a single connected component and no holes and about
10K vertices like those shown in Figure

Given the 256 surface patches obtained with the previously described procedure, we created a
small set with two examples of each class that was available to the participants with the associated
ground truth labelling. The remaining 240 patches were distributed as test data in random order
with no associated labels.

5.5.2 Performances and results

This benchmark consists in 5 methods, together with 2 two baseline approaches.

100

i L S, B

(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4
(e) Class 5 (f) Class 6 (g) Class 7 (h) Class 8

Figure 5.18: Example renderings of surface patches belonging to the 8 classes.

1. Baseline 1: (Joint) Histograms of Min/Max Curvature (CH, C' JH). A basic method to
detect surface features related with gravel size is to measure curvature values. This method
encodes the patterns as histograms of minimum and maximum curvatures at two different
scales.

2. Noise characterization (NC'). The method tries to categorize each model assuming that
the given dataset consists of surfaces which have been affected by different levels of noise,
instead of estimating geometric features.

3. Baseline 2: Mean Point LBP (mpL BP). Different runs have different n,.q4, P and R
values.

4. Mesh-Local Binary Patterns (mesh L B P). Runs differ the descriptor shape.

5. Maximum Inscribed Circle on Depth Image for Gravel Size Estimation (M IC — DI). The
key idea of this method is to find circles with maximum sizes that can be fit in non-edge
areas of the depth image of a gravel patch.

We evaluated the retrieval scores (see Table [5.6) from the dissimilarity matrices submitted by
the authors. The method providing the best results is the joint curvature-based benchmark, get-
ting all the highest scores. This may appear surprising, as it is relatively simple, but it should
be considered the lack of clear shape priors for the gravels. Methods based on variants of the
local binary pattern designed for surface meshes also provided good results. For the MeshLBP
method, it is interesting to note that the simple global histogram of the standard version per-
formed significantly better than the Improved Center-Symmetric Binary Pattern. Figure [5.19
shows the precision vs recall plot for all the methods on the whole database. Precision is not
too high at intermediate recall values: the effects of the difficult "mixed” classes as well as the
irregular depth of the base surface make the task not too trivial.

The difficulty of correctly classifying gravel mixtures is visible in Figure [5.20] displaying the
mean average precision estimated on the examples of the different classes by all the methods.

101

1
8= CH

o8 i
\ ——CJH
0.8 NC
0.7 mpLBPl
D s =&— mpLBP2
o ~+— mpLBP3
§ 05 = MeshLBP
o 04 i MeshLBPZ-G
{:-3 == p s L B P2 GE
ﬂz MIC-DiY
S e MC-DEZ
01

—— MHC-DHE

0
o 0L 02 03 04 05 0B O7 08 08 1

Recall

Figure 5.19: Precision-recall plot showing the performances of all the methods proposed on the
whole database.

| Method NN [FT ST [DCG mAP |
CH 063 051 074 052 079 [0.53
CIH 073 058 [0.83 [0.59 0.84 0.61
NC 0.16 015 029 .16 053 [0.19
mpLBPl [0.59 041 0.60 041 [0.74 .42
mpLBP2 [0.61 042 0.63 043 [0.75 .44
mpLBP3 [0.57 045 068 046 076 047
MeshLBP (068 [0.55 0.81 056 [0.82 0.58
MeshLBP2-G[0.56 044 0.72 045 [0.75 [0.46
MeshLBP2-GP[0.53 [0.41 0.68 042 [0.73 0.44
MIC-DI1 [0.12 029 057 (030 [0.62 037
MIC-DI2 [020 029 050 (029 [0.61 [0.31
MIC-DI3 045 036 064 [038 0.69 0.40

Table 5.6: Retrieval scores obtained with the different baselines and submitted dissimilarity
matrices. Joint histograms of curvatures provided the best scores (highlighted in bold)

Higher values are often found for single type classes (1,4,6,8). It is also possible to see that
while for the pure classes 1 and 8 the ranking of the method is the same and results are good, for
the intermediate mixed and pure classes, the different descriptors present variable rankings.

If we create a pure class retrieval task by considering only the dissimilarity entries of the 4 pure
classes, we can evaluate the performances of the different methods in such task using the same

102

- CH
-—-CJH
NC
mplLBP1
—a—MmpLBP2
—»—mplLBP3
—4— MeshLBP
== MeshLBP2-G
" == MeshLBP2-GP
MIC-DI1
—— MIC-DI2
o == MIC-DI3

mAF

Gravel class

Figure 5.20: Plot showing the mean average precision obtained on each different gravel size class
(1-8) with the different methods.

scores (see Table [5.7(Left)) and the precision vs recall plot (Figure [5.2T(Right)). As expected
the results, in this case, are better, and the ranking of the methods only slightly changed. It is
possible to see that the simplest 1D concatenated histograms perform here better than the LBP-
based methods and the image-based method is ranked higher than in the global task.

If we create a mixed class only retrieval task by considering only the dissimilarity entries of
the 4 classes mixing gravels of different size ranges, we get relatively poor scores (see Table
[5.7(Right)) and the precision vs recall plot shows a different ranking of the methods (Figure
[5.21[(Right)). Simpler surface descriptors and image based techniques seem more sensitive to
the increased complexity related to the more complex gravel distributions. More sophisticated
methods are probably needed to better capture generic distributions of gravels.

103

| Method |[NN[FT|ST| ¢ DCGmAP | Method |[NN|FT|ST| ¢ DCGmAP

CH 0.95/0.820.980.81/0.95|0.84 CH 0.570.500.840.51/0.78(0.52
CJH 0.930.830.980.82 0.96 |0.85 CJH 0.620.53(0.93/0.55/0.80(0.56
NC 0.320.260.500.27,0.630.31 NC 0.300.270.51)0.28 0.64 |0.31
mpLBP1 |0.830.500.720.50/0.82|0.55 mpLBP1 |0.590.410.600.41/0.74|0.42
mpLBP2 0.730.530.760.52/0.83|0.59 mpLBP2 0.61/0.420.630.43/0.75|0.44
mpLBP3 {/0.760.57/0.800.57/0.84|0.63 mpLBP3 |0.570.45/0.680.46/0.76|0.47
MeshLBP [(0.930.790.970.78/0.94|0.82 MeshLBP |(0.600.580.960.590.840.62

MeshLBP2-G |0.9300.75/0.950.74{0.92{0.78 MeshLBP2-G |0.490.55/0.950.58/0.80{0.59
MeshLBP2-GP0.900.730.940.72/0.91|0.76| MeshLBP2-GP|0.510.540.940.56/0.80|0.57

MIC-DI1 |0.240.610.840.64,0.76|0.59 MIC-DI1 |0.120.290.5700.30/0.62|0.37
MIC-DI2 |0.240.580.790.58 0.80|0.61 MIC-DI2 0.200.290.500.29/0.61|0.31
MIC-DI3 |0.730.640.840.65/0.85|0.68 MIC-DI3 |0.450.360.640.38/0.690.40

Table 5.7: Left: retrieval scores obtained with the different baselines and submitted dissimi-
larity matrices by considering only rows and columns corresponding mixed type gravel classes
(2,3,5,7). Best scores are highlighted in bold. Right: retrieval scores obtained with the different
baselines and submitted dissimilarity matrices by considering only rows and columns corre-
sponding to single range gravels (classes 1,4,6,8).

Precision

Figure 5.21: Left: precision-recall plots estimated on the dissimilarity sub-matrices correspond-
ing only to single range gravels (classes 1,4,6,8). Right: precision-recall plots estimated on the
dissimilarity sub-matrices corresponding only to mixed size gravels (classes 2,3,5,7).

Conclusions

In this chapter we showcased most of our benchmarking activity, which mainly focuses on pattern
retrieval of geometric and colorimetric patterns. These works highlighted the high interest of this
problem in the Computer Graphics community. This task is faced with different strategies and,
especially in the last years, we observed the rise of machine-learning based approaches.

104

Related publications

* E. Moscoso Thompson, C. Tortorici, N. Werghi, S. Berretti, S. Velasco-Forero, S. Biasotti,
SHREC’18: Retrieval of Gray Patterns Depicted on 3D Models. Eurographics Workshop
on 3D Object Retrieval, 2018.

* E. Moscoso Thompson, S. Biasotti, A. Giachetti, et al., Shrec 2020: Retrieval of digital
surfaces with similar geometric reliefs. Computers & Graphics, 2020.

* A. Giachetti, S. Biasotti, E. Moscoso Thompson, et al., SHREC 2020 Track: River Gravel
Characterization. Eurographics Workshop on 3D Object Retrieval, 2020.

105

Part 111

Pattern Recognition

106

Chapter 6

The surface pattern recognition problem

As anticipated in the Introduction of this thesis, the continuation of patterns (decorations either
painted or incised, etc.) along the external face of an archaeological fragment is a crucial aspect
of the restoration process. When these fragments are stored in different locations or under sep-
arate administrations, a physical restoration is almost impossible. Therefore, it is necessary to
develop automatic methods that support the digital restoration of fragmented artefacts, making
the process faster and more accurate. To reliably accomplish this task, methods must be based
on quantitative analysis rather than on visual observation.

In algorithmic terms, this translates in the need of methods and algorithms for feature and pattern
recognition on the surface of digital models. Algorithmically, this means to be able to identify if
and where a given geometric pattern (represented as a query patch fully characterized by a single
pattern) is located over the surface of a 3D model. This is further highlighted by the track of
the SHape REtrieval Contest of 2018 [BMTB™18] on pattern recognition over 3D models that
proposed this exact scenario. The initial response to the contest shows that this is a very lively
problem, as 11 groups positively reacted to the contest call. Despite this, at the results delivering
deadline no one had a complete output to show (only a membership matrix was submitted, with
quite poor performances). However, this contribution exemplifies what the geometric pattern
recognition task is, together with its challenges including the problems related to the kind of data
used (meshes). In this introductory chapter to the pattern recognition problem, all the aspects as
described in [BMTB™ 18] are listed.

6.1 The dataset

The 3D models considered in this benchmark come from fragments of archaeological artifacts
adopted as use cases in the EU H2020 project GRAVITATE [UUTCIC™]]. The choice of a real

107

archaeological case study makes the contest particularly challenging; indeed, the 3D models are
laser scan acquisitions of fragments of statues that are degraded and partially abraded,

* Noise and data acquisition: being the patterns considered in this contest defined by small
geometric variations on the surface, the presence of noise can significantly alter the na-
ture of the pattern. In general, it is really hard to remove noise from a mesh without also
affecting the geometric variations that define a pattern. A possible solution could be the
definition of noise invariant descriptors, a task which is almost impossible without know-
ing the nature of the noise and the pattern. Similarly, data acquisition conditions (the
resolution of instruments, various sources of imprecision) or incompleteness (presence of
occlusions, misalignments, surface specularity) challenge the efficiency of the descriptions
and increase the difficulty of the pattern recognition task. Therefore, the understanding and
modeling of all the sources of uncertainty and incompleteness is the starting point to im-
prove the existing description methods, the results they produce and their quality.

* Data size: some of the models in the dataset are modeled at high definition (more than
6 million vertices), thus dealing with them is computationally demanding. The reason
for providing the participants with the highest resolution available as they are stored in
the STARC dataset [Ins] was twofold: first, to limit the approximation error due to the
algorithm used for the data simplification; second: to provide the best quality of the data
currently available. However, the computational complexity is a bottleneck aspect of most
methods and calls for the definition of approaches able to take advantage from parallel
architectures.

* Need of a training set: the track participants agree that an initial training set on which
to set the parameters could significantly help. However, in the Cultural Heritage domain,
artifacts are often unique and the creation of training sets can be very difficult or limited
to specific models. While now this dataset can be used as ground truth for feature testing,
it would be almost mandatory to have bigger datasets with a sufficiently high variety of
pattern embeddings.

The models are organized into two sets: the Query set (QS) and the Model set (MS).

* (S: it contains 8 triangle meshes representing a single pattern. All the patches are surfaces
with one boundary, almost flat from a global point of view. The triangulations representing
the patches have no fixed number of vertices. These patches were tailored from fragments
of the dataset set. Overall, there are 6 possible patterns. The pattern classes are: eyebrows,
oblique fringe, fringe, long incisions, spirals, stamped circlets. In particular, there are two
different patches for the stamped circlets and oblique fringe classes. Figure illustrates
the definition of the patches in QS.

108

Q1 (v.r. = 83950)[Q5 (v.r. = 20250)Q5 (v.r. = 147810)Q4 (v.r. = 204740)

CR EB OF FR
Qs (v.r. = 118000)Q¢ (v.r. = 31640)Q7 (v.r. = 124650)Q7 (v.r. = 180800)

OF SP CR LI

Figure 6.1: Summary table for QD. v.r stands for vertex resolution.

e MS: it contains 30 triangle meshes, representing 30 different archaeological fragments.
Of these, 25 models are characterized by at least one geometric pattern, while the oth-
ers have no patterns on them. From a geometrical point of view, all the models in MS
represent a single, closed surface. All triangle meshes are watertight and do not contain
self intersections or degenerate triangles. All triangle meshes are provided at the highest
resolution available and there is no fixed number of vertices, also called vertex resolution
(reported in Figure [6.2). The number of vertices of the meshes in MS ranges from 150356
to 6800671. Besides full resolution models, simplified versions with 50K and 100K ver-
tices of the models in MS were available; these simplified meshes were generated with the
tool . All the models in MS are reported in Figure [6.2] with detailed information
on which pattern is chiseled on each one of them (if any).

6.2 Geometric pattern recognition

Recognizing geometric patterns over surfaces is more complex than simply matching two sur-
faces. The straightforward extension to 3D models of the techniques adopted for image object
detection is not possible because 3D models have peculiar characteristics that require ad-hoc
techniques. For instance, the use of meshes instead of grids prevent the adoption of methods that

109

Pattern inventory: 4 eyebrows (EB), 5 oblique fringe (OF), 3 fringe (FR),
5 long incisions (L1), 6 spirals (SP), 7 stamped circlets (CR)

1 (v.r. =410k) 2 (v.r. = 1.75M)| 3 (v.r. = 1.4M) |4 (v.r. = 4.3M) | 5 (v.r. = 446k)
LI - OF OF
6 (v.r. =414k) | 7 (v.r. = 385k) | 8 (v.r. = 303k) | 9 (v.r. = 492k) |10 (v.r. = 946k)

CR FR CR SCEB
11 (v.r. = 152k)(12 (v.r. = 2.3M)|13 (v.r. = 536k)| 14 (v.r. = 1M) | 15 (v.r. = 2M)

b

CR

e

LI

16 (v.r. =5M) 17 (v.r. = 491 K)18 (v.r. = 1.4M)[19 (v.r. = 897k)|20 (v.r. = 172k)
LICR EB LI - CR SP
21 (v.r. = 1.3M)22 (v.r. = 1.6 M)|23 (v.r. = 150k)24 (v.r. = 6.8 M) 25 (v.r. = 500k)

- SP EB LI CR EB
26 (v.r. = 622k)|27 (v.r. = T71k)R28 (v.r. = 1.5M) 29 (v.r. = 1M) 30 (v.r. = 2.4M)

SP

LI

OF

&

Figure 6.2: Summary table for MD. v.r stands for vertex resolution (approximated).

take advantage of the regular, grid structure of the images. The following is a list of issues that
deal with geometric pattern recognition.

110

* Type of representation: while for images the grid structure is unique, predictable and reg-
ular, this is no longer true for boundary representations of 3D objects, like mesh tessella-
tions, point clouds, and so on. Moreover, two representations of the same object are not
unique and can be really different from each other (number of vertices, vertex distribution,
etc.). Also, model acquisitions can be affected by noise and/or errors. Not having an ideal,
exact reference template both for patterns and models increases the difficulty of the task.

* Pattern definition and size: the concept of pattern is quite vague and is necessary to dis-
tinguish patterns from local features. Patterns contain a repeated configuration of some
surface property over the surface while a feature is a local change on the surfaces without
a repetition rule. With reference to the model of a statue head like that in Figure [6.2(12),
the stamped circles on the helmet delimit a region with a geometric pattern, while the eyes,
the mouth, the ears, etc., represent features chiseled on the model. This definition of pat-
tern, despite being intuitive, is not formal. In particular, the size of a pattern is a crucial
point to be identified because it cannot be easily generalized to every model and type of
pattern and it is necessary to distinguish what is shape and what is decoration. Methods in
the literature for local feature characterization that tackle the problem of considering lo-
cal regions instead of a point wise characterization (e.g. [SPS16]) strongly depend on the
size of the area considered. Moreover, the same model could present patterns of different
sizes. This means that the pattern size cannot be uniquely defined and needs to be tuned
according to the type of query given in input, calling for adaptive approaches.

* Local-global nature of the characterization: Similarly, while it is common to think that the
characterization of the object belongs to the local or global description, this task seems to
fall in both fields, without belonging to either of those entirely. Most methods that attempt
to perform such a task extend or specialize techniques initially born for local or global
description. This new point of view, which is really hard to grasp, is still unexplored and
could be the key to define effective pattern recognition techniques

» Surface embedding: the same pattern can be chiseled on surfaces with different manifold
embeddings, for instance a helmet and a cuirass. Differently from images that can be con-
sidered flat everywhere, surfaces may present a very general bending in the space. This fact
also implies that planar projections may introduce significant distortions of the geometric
pattern over the surface. Unless the problem clearly states that only a limited number of
configurations is admissible, it is not possible to specialize the pattern recognition prob-
lem as a surface fitting or registration problem. In general, an effective description of the
pattern must be able to distinguish between the variation of the surface decorations from
the overall variation of the surface they lay in.

111

6.3 Open challenges

Although only one, partial solution was submitted, several solutions to the surface pattern recog-
nition problem were considered, ranging from statistical, multi-scale characterization [MGB™ 12]
to divide-and-conquer techniques aimed at isolating the sub-regions with a uniform pattern and
then applying retrieval techniques to the single components.

Noise, data incompleteness, variability of the patterns size/scale, variation of the surface em-
bedding, necessity of training, computational complexity are all crucial aspects to be considered
when dealing with geometric pattern recognition.

In this contest various open issues came to light and are listed below. For each issue, we briefly
mention the solutions we have adopted in the next chapters.

1. Noise. Typical ways to address noised data include: i) local, patch fitting methods with
parametric surfaces and ii) mesh denoising strategies (e.g., [Tau95bl, [HPO4]]) prior to de-
scriptor extraction, even if these methods are unable to differentiate between geometric
features and noise. One possible solution may be an iterative denoising scheme (e.g.,
[AsLMFI18]) that should automatically estimate noise level and geometric feature sub-
space size (statistical characteristics) or data-driven approaches for mesh denoising (e.g.,
[WLTI'16]) that, however, are limited to cases in which all data exhibit similar type of noise.
In the method proposed in Chapter [7] we face this issue by considering the local shape de-
scriptor of the mpLBP, whose robustness to noise has been discussed in Chapter @ In
Chapter [§] we deal with this issue by pre-processing and augmenting the data used as the
training set.

2. Data incompleteness. Building local geometric pattern descriptors that are robust to miss-
ing data is challenging. Approaches following the principles of texture inpainting, for
instance extracting the shape description on the basis of the surface normal distributions,
could be the basis for potential solutions for this problem. In our approaches, we propose
methods that do not require to consider the models in their entirety: they focus instead on
patches derived from the model that can be considered independently.

3. Multi-scale characterization. Extending single point characterization approaches to a re-
gional level is not straightforward. Volumetric or multi-ring characterizations of the model
are worth to be considered [MPS™04, [GMGP03]]. To extend point-wise descriptors at a
more global level, a top-down analysis procedure could be an appropriate strategy. High-
level primitives could be computed from local descriptors so that the retrieval problem is
more simple and intuitive. For instance, this approach has been used for symmetry de-
tection using lines [ASC11]] and one can imagine comparing models and queries based
on such a line feature. In the methods proposed in Chapter [/| and Chapter (8], we locally

112

analyze the surface with a neighbor of a radius comparable to the size of the patterns of in-
terest. Moreover, we focus on approaches able to ignore the underlying surface curvature,
even subtracting the underlying ground.

. Reducing the problem to image pattern recognition. A possible solution is to adopt a
local parametrization/projection of the pattern on a flat surface and evaluate the texture
descriptors over that projection. This strategy should provide a method not depending on
the quality of point cloud/meshes and the possibility of exploiting the wide amount of
texture analysis methods in the literature. Apart from the computational complexity and
the possible pattern distortion introduced with this procedure, that might be high depending
on the parametrization choice and the density of the patch sampling, the biggest issue of
the method is related to the metric used to compare the patch descriptors. In Chapter
we propose a local description of the surface that converts a vertex neighborhood into an
image.

. Definition of proper training sets. A texture descriptor is typically a vector with a huge
dimensionality and in order to derive a way to localize patterns in a model it is necessary
to be able to characterize the pattern versus the other potential ”background” patterns that
can be found in the models of interest. This cannot be done using just positive examples,
but requires also the negative ones. However, 3D data have a lot of information that can
be extracted, for example, by taking different local views of the models. In Chapter [§] we
build a large dataset by taking multiple images from a single sample of the model, tackling
this issue with a multi-class approach.

. Learning. In image processing, recognition tasks, e.g. finding and classifying objects in-
side images, are usually accomplished working on large databases of annotated images
[EEVGT™135] with localization and labeling of objects from which algorithms can learn
characterizations of both objects and background. The solution in this case can rely on
convolutional neural networks, with methods not directly exploitable in mesh process-
ing, even if there are recent works applying CNN-like approaches to the mesh domain
[MBBV15, BBL™17]. For instance, deep learning techniques have recently given remark-
able results in shape segmentation and classification [QYSGI17]. Although this contest
does not contain a large dataset, it could be interesting to see how deep neural networks
can be trained on these only 8 queries, still made of hundreds of thousands of vertices.
In Chapter [/|and Chapter 8| we tested the ability of our proposed method to characterize
the local information of the models with respect to these 8 queries. This is deepened in
the respective Chapter, however the results suggest that, for such a challenging task, the
queries size may be too small (i.e.: the complexity of the pattern requires larger and more
varied query patches).

113

Conclusions

In this Chapter we detailed the main challenges of dealing with the problem of pattern recog-
nition. This list contains the obstacles found by 11 groups of research that faced this problem

during a SHREC track.

Related publications

* S. Biasotti, E. Moscoso Thompson et al., SHREC’ 18 track: Recognition of geometric pat-
terns over 3D models. In Eurographics Workshop on 3D Object Retrieval, 2018.

114

Chapter 7

Patch Characterization via Energy
Optimization and Local Similarity

This chapter proposes a novel approach to the pattern recognition problem, based on energy opti-
mization and samples of the surface in peculiar points selected according to their local geometry.
Then, a punctual descriptor is computed on such points. The set of these descriptors is used as
the basis for a energy minimization method called graph-cut, that balances the need of having
similar descriptors in the same class and the requirement of having continuous segments on the
surfaces. The graph-cut results naturally induce a clustering of the query points (based on the
label computed by the graph-cut), which induces a segmentation of the surface vertices (labeling
each vertices with that of the closest query point). Indeed, the goal is to segment the surface in
patches characterized by none or one pattern. Each segment then is described using a pattern
retrieval method, which helps identifying and locating a pattern on a surface. Moreover, to adapt
our analysis on the patterns of interest, we assume the existence of a sphere of radius r that is
large enough to include a significant portion of the patterns themselves. By ‘include’, we mean
that the part of the surface with that detail can be enclosed in a sphere of radius r centered in a
the query point placed on the pattern. For example, if the pattern is made by small circlets, the
radius must be large enough to include the whole circle, while, if the pattern is made by a more
complex detail, the sphere must enclose most of it.

We call this method PATCH driven similarity via graph-CUT (PATCH-CUT for short) and it
works in 4 steps (shown in Figure [7.T)).

Sections[7.2]to[7.5]detail these steps, while Section [7.6|showcases examples of the application of
the method on the model set described in Chapter [6| Before entering the complete explanation
of the PATCH-CUT, in Section|[/.1|we briefly overview the graph-cut method.

115

Query points
sampling

Signal extraction :
£ Query points

(refinement of Fsamples labeling via Surfacg
Poisson-disk neighborhood Graph-Cut segmentation
discretization) P

sampling)

Figure 7.1: Pipeline of the PATCH-CUT method.

7.1 Preliminaries on the Graph-cut definition and its applica-
tion to 3D models

Intuitively, the graph-cut is an efficient graph-based technique aimed at segmenting a graph in 2
or more parts, keeping a ‘smooth segmentation’. More formally, let us have a graph with a set of
nodes and arcs, some observed data attached to each node and a finite set of labels L based on
the totality of the nodes data. The goal is to find a labeling f that assigns a label f,, € L to each
node so that f results both piecewise smooth and consistent with the observed data.

Initially the graph-cut was developed for images and eventually it has been used to tackle prob-
lems like image segmentation, object co-segmentation, and other problems that can be formu-
lated in terms of energy minimization [YMI2]. In this scenario, the graph is the one in which
the nodes are the pixels of the image and two nodes are connected if they are in their respective
8-neighborhoods. The graph-cut is formalized in [BVZ01, IKZ04, BKO4]; in the following we
recap the main aspects of this tool. We slightly change the notation with respect to the cited
works for an easier understanding of the use we do of this method in our work.

The minimization problem at the core of the graph-cut is 1}11151 E(f), where E(f) is defined as
S

follows:

E(f)=> dclp, f,) + > sc(fp fo). (7.1)

peP p,qEN

with the following notation.

P is the set nodes to be labeled.

F is the set of all the possible labeling setups of the nodes f for the nodes in P.

dc is called the data cost and it is lower the better p fits the label f,,.

sc is called the smoothness cost and it is the term in charge of keeping f smooth. In other
words, it penalizes two neighbors labels f, and f, if they are too different.

N is the set of interacting pairs of nodes. Typically, in images, this set consists of adjacent
pixels, but it can be arbitrary.

116

sc has three constraints (where «, 3 and ~y are labels in L):

1. sc(a,f) =0 <= = p,orsc(a,) #0 < a # 3,
2. sc(a, B) = sc(f,a) <0,

3. sc(a, B) < sc(a,y) + sc(v, B).

There are mainly two algorithms that are used to solve this problem. If these conditions are
verified, sc is a metric and it is possible to use the so-called alpha-expansion algorithm. The
main idea behind the alpha-expansion algorithm is to successively segment the nodes dividing
them in those labeled with a given label and those that are not. At each iteration, the label
changes. Its main advantage is that it is possible to guarantee that the local minimum is within a
known factor.

However, the triangular inequality is not always verified. In this scenario, the alpha-beta swap
algorithm is used. The main idea is to iteratively segment the nodes labeled a given label o with
respect to those of another label 5. The two given labels change after each iteration, scouting all
the possible combinations. This algorithm is detailed in [BVZO01].

It is worth mentioning that it is possible to add a weight to the arcs that connects two nodes. This
weight influences sc, which lead the second term to be re-written as follows:

Z sc(fp, f1)35(p,), (7.2)

p,gEN

where ss(p, q) correspond to the weight shared by the nodes p and q. The set of these weights,
called sparse smoothness serves a second purpose, other than influencing sc. Indeed, the struc-
ture of the graph can be encoded in this last component, since by setting ss(p, q) = 0 (for two
fixed p and q) the smoothness cost estimation does not count the label differences between that
of p and q. In a way, we removed the link p — ¢ from the V.

This is relevant when extending the graph-cut from images to other data in which the proximity
of the nodes is not trivial. Indeed, by setting /N equal to the set of nodes, one can dictate the
connections between nodes just by setting ss equal to 0 for unconnected nodes (and vice-versa).
In our use-case, since we are using the graph-cut on points in the 3D Euclidean space, we use
this trick to efficiently define the points neighborhood.

Finally, it is worth mentioning that there are already contributions towards the extension of graph-
cut to 3D data, mainly aimed at segmentation, reconstruction and generation. For example,
in [LSZU135] the graph-cut is extended to triangulations and used to segment the models. Data-
cost is based on the ratio between geodesic distance and euclidean space of the nodes, while
smooth cost is defined by the neighborhood information of faces.

117

7.2 Query point sampling

We sample the surface with points that we characterize based on their neighborhood. It is possible
to identify the set samples as the set the whole set of vertices. However, given the resolution of
the mesh, this option leads to an unnecessarily high computational cost. Thus, we prefer to
start from a simplified set of samples, using the Poisson-disk sampling [CCS12]. Briefly, this
sampling technique produces a random and evenly distributed set of samples over a 3D mesh.

The goal of this step is to sample a number of points on the surface that will represent it locally.
This is done in two phases. First, a Poisson-disk sampling method is applied to the vertices of the
model. Such a technique creates a set of random samples uniformly distributed on the surface.
However, we look for samples that fell in pits of the local geometry (i.e., the patterns). Thus,
for each sampled point, we consider its vertex neighbors and we slightly shift the position of the
sampled point toward the vertex neighbor with the lowest height.

In more details, let us consider the set ' of vertices of a mesh or a point cloud. The Poisson-
disk sampling algorithm is used to sample a set Q' = [g;, ..., g, | of n, points. For each ¢;, we
consider its neighborhood N(g}) in V, made by points whose Euclidean distance from ¢; is at
most r,. We then look for the best plane of approximation A of the points in N(g;) and we rotate
the neighborhood so that the normal vector of A\ corresponds to [0 O 1] and its direction agrees
with that of the normals of the g;. We then replace ¢ with the point ¢> € N(g;) whose value of
the third component is minimum. If the minimum is not unique, we randomly choose one of the
points corresponding to the minimum. Once we have iterated this process on all points, we have
the new set Q. Note that if a point alternates 2 (or more) fixed positions in these iterations, all
these recurrent positions are considered as samples and the point is no longer shifted during the
iteration process. This process repeats until all the points are fixed (i.e., when Q! = Q'™!). We
track the point evolution and stop to shift the points when all the possible positions (i.e.: all the
points of the model) have been visited, In the practice, to limit the computational cost, we prefer
to adopt a greedy stop strategy and we end the shifting algorithm if a fixed maximum number of
iterations ¢ is reached. We call the points in the final set Q' the query points. For brevity, we use
the following notation: Q' = @ = [q1, ..., ¢»,]. Duplicate points are removed. Notice that this
means that, usually, the final number of query points in () is lower than the number of elements

of Q.

The parameters that characterize the selection of the query points are listed in the following:

* n,: the number of samples is based on the area of the surface we are working on. For our
tests on archaelogical fragments, we use 500 points per cm?. Other values are possible and
small variations of n, do not significantly affect the results.

* 1,4 the radius of the neighborhood of a point q is set as the half the radius r, so that the
maximum shift is correlated to the level detail we are considering.

118

i A
. : o ok TR L e TR v '-l-hl:u":_ul;:"'-' "

Figure 7.2: The neighborhood of a query point before and after the flattening based on the quadric
approximation of the surface. Both representations point of view is perpendicular to the normal
of \ . Left: the neighborhood of points (in blue) and the estimated quadric. Right: the resulting
flattened neighborhood.

¢ t: the maximum number of shift iterations is set to 10 in all our tests. We observed that
usually these are enough to set the samples in their final position.

7.3 Signals extraction

A punctual descriptor similar to that introduced in chapter @] is computed for each sample in Q)
to encode the local geometric variation around a sample point. The parameters n, and multP
are fixed on the basis of the type of the patterns of interest. We use the height-field value as the
surface property. In particular, the height map is computed as follows:

1. the neighbor of the a query point ¢; of radius r is computed and aligned to the plane A\ = zy
plane aligning to it the best fitting plan of the neighbor of ¢;. Let us call Ny(g;) this set of
points.

2. Then, we estimate the quadric that best fits N, (g;).

3. we remove the bending of the underlying surface, in order give more importance to the
geometric variation of the pattern. This is obtained by subtracting to the z-coordinates of
the points in N, (¢;) the z-coordinates of their projection on the fitting quadric. We call this
new set of points NV} (g;). The idea behind this step is visualized in Figure[7.2]

The punctual descriptor is computed on N} (g;), using the z-coordinate values of the points as the
surface property. We call the computed punctual descriptors signals s; € Sy, where S); in the
space of the signals (equal to R2=i %) of the model M. Finally values of each sectors s;(j) of a
signal s; are standardized using the following formula (with a little abuse of notation):

o (i) = si(j) — median(s;)

where median(s;) is the median and o (s;) is the standard deviation of the values of the signal.
This standardization is commonly adopted to match features with different units and scales.

119

.
'
=
-

Figure 7.3: Left: an example of a point neighborhood. Right: the signals obtained from the patch
to the left.

Since patterns of interest may be of different scales, this standardization helps in having a more
complete description of the mesh.

An example of a signal is shown in Figure

During the next steps of the PATCH-CUT method, we need to assess similarity between two
signals. Despite being sampled by the same model, signals extracted from similar patches are
not necessarily oriented in the same way (e.g.: a flat square surface with a pattern of straight lines,
horizontally oriented in the left part of the model and vertically oriented in the right part). Thus,
a direct comparison using distances such as the L? are not optimal for assessing the similarity
between signals. The best matching for two signals can be found by computing all the possible
rotations of a patch until the patches are properly aligned. This is very demanding in terms
of computational cost and we describe how we compare two signals without checking all the
possible rotations of the respective patches.

Signal comparison Let us assume to have two signals s and q. First, among the rings of both
s and q, we consider a ring close to the middle of the radii of s;. Let us call these vectors mj
and m, respectively. If we keep m, fixed, we can find the best rotation of m; (by rotating
it each time by the angle implied by the arc of the sector) that fits m,. Matches between the
rotated vectors are done using the L? norm. For example, if our punctual descriptor has 7 rings
and multP = 4, we consider the 4th ring for both q and s. Since in this specific case m, and
m, have both 20 sectors, we compute the norm of the difference between m, and 20 different
rotations of § = 27 /20 of the signal m,. The rotation of m, that best fits m, defines a rotation

120

for N,(q) that better fits the signal s to C'. To refine this rotation we do the same comparison
with the bigger rings, but we allow a rotation change restricted to one sector of the medium ring.
In our example, we consider the 5th ring and we check if, by rotating N,(q) by at most ¢ (both
clockwise and counterclockwise), there is a better matching in the 5th ring. This is done for all
the remaining rings (i.e., 5, 6 and 7). Smaller rings are ignored in this comparison mainly because
usually they have a very low number of sectors thus they could negatively bias the orientation
process or, more simply, add noise to the matching process. In the remainder of this chapter, we
call this kind of comparison Best Fitting Comparison (BFC).

7.4 Graph-cut setup

Till now, we have a set of signals sampled in peculiar positions of the surface (query points).
Our goal is to give a label to the query points based on the type of the geometric variations on
the neighbor on which they lie. For this step, we do not mind that two labels point to the same
pattern, since the similarity analysis in the next steps will join them back into an unique label.
Still, we want to avoid one label characterizing more than one pattern at the same time.

To balance similarities in the space of the signals and the proximity of the query points in the
space of the model (the Euclidean 3D space in which the vertices/points of the model are), we
propose the use of the graph-cut, as implemented in [BVZ01, KZ04, BK04]. The MatLab im-
plementation we used for all our tests is available at https://github.com/shaibagon/
GCMex.

Label initialization

A fixed number of labels L;, i = 1,...,n; is defined. It is worth highlighting that the labels are
not related to semantic concepts, as they just characterize the eventual segments of the surface.
We scout the distribution of the data both in the space of the signals S and in the space of the
query points R3. In particular, we first select n; signals on the basis of the far-test distance
criterion (computing the distances in the space S). The set SC' of n; signals selected by this
process may be actually different signals or similar signals oriented in different ways. To avoid
duplicate cores as much as possible, we proceed to align all the signals with respect to those
in SC, via BFC. The best fitting for each signal s (i.e.: the best matching with the lowest L?
norm value) defines a rotation (based on the BFC result) that is applied to the patch relative to s.
Finally, the signal is recomputed. This signal re-alignment is repeated a fixed number of times
and experimentally shows a good selection of signals for the set SC' in just a limited amount
of iterations. This process is speeded up by a preventive similarity estimation of the signals in
SC': if the comparison via BFC of two (or more) of these signals is under a certain threshold
thrsc, then only one among the signals marked as similar (chosen randomly) is kept for the

121

https://github.com/shaibagon/GCMex
https://github.com/shaibagon/GCMex

re-orientation of the signals.

Our goal is to use the signals in the final version of SC' to define a set of core signals (cores
for short) that implicitly define the identity of each label. For example, if the first signal of SC
represents a set of lines, that is the identity of ;. However, it is naive to use a single signal as
representative for all possible embeddings a pattern may be subjected to.

We refined the cores by computing a k-mean (K = n,;) in S initialized with the signal in SC.
The new cores are defined as the centroids computed with the k-mean combined with a subset of
the signals in their neighborhood. Remember that each centroid has a signal (and thus a query
point) of reference. Then, we compute the first decile Rg of the values of the distances between
each signals and the first centile Rgs of the distance between all the query points (in R3). For
each centroid Centrod;, we consider its Rg-neighborhood. The signals in the neighborhood
correspond to a set of query points in R3. Such a point can be the representative of points that
are clustered in a single piece or spread on the model. Through the dbscan algorithm [EKSX96],
we identify the different clusters. In particular, clusters must have at least two points and their
points can be at most Rgs far apart. Finally, for the definition of the cores, we consider only
those signals 8%, 8%, ... which reference query points are in the cluster closer to the query point
of reference of the C'entrod;. The cores C; are defined as the mean of the signals §i .

The cores C; are the base on which the data cost is computed. The value of n; is one of the
parameters of the method: it was empirically set to 20 for all our tests. This setting is not
restrictive: results similar to those obtained in our tests can be achieved by slightly changing n;.

Data Cost

The data cost is obtained by comparing cores and signals via BFC. Since we want the final label
of each query point not to be 0-label, we add a fake core related to the 0-label, which cost is
set much higher than the maximum cost computed for the other actual cores. Practically, we
use 10 times the maximum cost computed for the actual cores. With this, after the graph-cut
computation, all the points are labeled according to one of the n; cores.

Smoothness cost

We use the smoothness cost formulation as in equation We initialize sc(-,-) = 1 for all the
labels, as usual in the graph-cut implementations. The sparse smoothness cost is set to take into
count the distance between the nodes (i.e.: the query points) and the similarity of the signals
of reference. Moreover, we use ss to define the strength of the connection between the nodes,
setting it to O if the respective points ¢; and ¢; are far at most 22 from each other. The weight

122

shared by these two points is equal to:

55((]1‘7%') = e(_‘lsé;:j”)e<_H?;ZH>7 (7.4)

where o, is standard deviation of all the possible values of ||s; — s;|| for each existing arc ij in
the graph of the query points. 0., is defined accordingly. By our experience, both components
in equation [/.4{are influenced by the type of geometric variations that affect a neighbor.

Other parameters

We use the alpha-beta swap algorithm, as it is the one that better fits our purposes. The balance
between smoothness cost and data cost is experimentally fixed to A=0.015. The parameters for
the punctual signals depends on the models we are working on. For our tests, we set r = 0.7cm,
n, = 7 and mult P = 4. The threshold thrgc is determined experimentally and we fix it to 10.

7.5 Surface segmentation

By applying the graph-cut with the proposed setup, we obtain a numeric label for each query
point, with each label associated to a core. The set of query points can then be grouped in 7,
sets of points. Ideally, each set contains all the query points that locally share the same type
of geometric variations. In practice, there may be multiple sets of points that correspond to the
same geometric variation pattern. For instance, if a model is characterized by a given pattern in
two separate areas, the respective query points may be divided in two sets (after the application
of the graph-cut). For a more optimized labeling of the query points,

We use the mpLBP descriptor to compare the neighborhood of the query points of each set of
points. These descriptors are used to join any couple of labels that define sets of query points
that lie on patches that locally share the same geometric appearance. In particular, for each set
of points, we consider the points of the base model that are far at most r from at least one query
point of the selected set. We use the Euclidean distance for the neighborhood estimation. It is
possible to replace it with the geodesic distance but with little to no significant changes, since r
is usually not big enough with respect to the overall size of the model to make a difference. The
settings of the mpL.BP are the same as those used to compute the punctual descriptor in Section

7.3l

The final labeling of the points is defined as follows. First, the smallest set of points are removed,
since the mpLBP descriptor computed on a small area is less trustworthy. This is done by setting
a minimum number of points for each potential segment. For our tests, each set has to count
at least 1% of the total amount of query points (with a minimum of 5 points). Then, using the

123

Figure 7.4: The results of each step of the label transferring process. Different labels are repre-
sented with different colors. Left: the PATCH-CUT query point labeling. Right: the labeling of
the vertices of the mesh. Note that there is no relation between the colors of the query points and
those of the patches.

Bhattacharya distance, we evaluate the distance between the mpLBP pattern descriptors. Two
segments are considered similar if the distance between two descriptors is lower than a threshold.
Such a threshold is experimentally set to the 7th percentile of all the distance values computed
for each couple of descriptors. If two segments are similar, then the relative query point sets are
joined.

At the end of this process, segments (and query points) with the same label represent patches
that have approximately the same local geometric appearance and therefore, a geometric pattern
is expected to have the same label everywhere on the surface. By extending the labeling to the
neighborhood of each query point, we can obtain a rough segmentation of the models pattern-
based.

7.6 Examples

We evaluated the PATCH-CUT method on the Model set described in Chapter[6] First we analyze
the local characterization of each query point with respect to the pattern(s) represented on the

124

Figure 7.5: Output of the PATCH-CUT method on two models of the Model set (front view on
the left and back view on the right). Each query point has a different color based on its labeling.
There is no relation between the color of the query points and the color that highlights a pattern.

surface. To better visualize the results of the PATCH-CUT, we transfer the labeling from the
query points to the vertices of the models. Isolated query points, i.e,, the points whose label
differ from all its neighbors, are discarded. Then, we label each vertex of the mesh with the label
as of the closest query point. In Figure [7.4] we show the mesh labeling obtained with this label
transferring process.

A subset of the results is shown in Figures[7.5] [7.6][7.7] [7.8]and [7.9] The query points have
different colors to distinguish the query points labeled with the same label. For simplicity, we
refer to a label with the color that we use to represent it. For example, the ‘pink’ query points

125

Figure 7.6: Outcome of the PATCH-CUT method on two models of the Model set (front view on
the left and back view on the right). Each query point has a different color based on its labeling.
There is no relation between the color of the query points and the color that highlight a pattern.

are those whose label is represented in pink. Moreover, the patterns of interest on each model
are highlighted with colors other than gray. There is no relation between the color of the query
points and the color that highlights a pattern.

With reference to the example in Figure[7.5](top row), we are interested in the circlet pattern that
is on the head of the model. Notice how the colorization of that area is a single color (peach-
pink) and that the same color is not present in other areas of the model (nor in front nor in the
back). This means that the characterization defined by the PATCH-CUT groups together this
part of the model because it shares the same surface relief (e.g.: the circlets) and also that such a

126

Figure 7.7: Outcome of the PATCH-CUT method on two models of the Model set (front view on
the left and back view on the right). Each query point has a different color based on its labeling.
There is no relation between the color of the query points and the color that highlight a pattern.

relief is not repeated anywhere else. A similar observation can be done for the second example
of Figure[7.5|bottom row), in which the pattern of interest is in correspondence of the hairs of the
head (represented with a spiral-like pattern).Again, the color yellow spans on the area covered
by that pattern.

When a pattern is repeated on a narrow patch, like the beard in Figure[7.7(top row), the labeling
can be less precise: see how the beard, represented by straight line, is mostly characterized by
the purple label and, in correspondence of the thinnest parts, by the blue label, which mostly
characterize the flat parts. Moreover, depending on the example, we observed one dominant

127

Figure 7.8: Outcome of the PATCH-CUT method on two models of the Model set (front view on
the left and back view on the right). Each query point has a different color based on its labeling.
There is no relation between the color of the query points and the color that highlight a pattern.

label, for instance the back on the model in Figure [7.6(bottom row), or multiple labels (like in
Figure[7.6[top row)). The same goes for the flat areas of the model. However, we rarely observed
completely wrong labeling of the query points (and thus of the vertices of the models), aside from
very specific cases (see later).

Our second test deals with pattern similarity estimation across multiple models. We evaluate the
dissimilarity among all the segments extracted in the Model set. In our experiments, we use the
mpLBP descriptor to measure the dissimilarity between two labels (i.e., segments). The simi-
larity threshold in this test is the same used in Section [7.5] for the similarity estimation among

128

Figure 7.9: Outcome of the PATCH-CUT method on two models of the Model set (front view on
the left and back view on the right). Each query point has a different color based on its labeling.
There is no relation between the color of the query points and the color that highlight a pattern.

patches on the same model via mpLBP descriptor. Since these are early tests, we estimate our
results using the query points visualization. Figure [7.10]shows an example for some of the seg-
ments extracted with the PATCH-CUT methods. We show an example of cross-correspondence
among models for the circles patterns. The experiment shows the results of the search when a
segment that lies on the head of the model in the left is used as a query (segments highlighted in
red in the models in the middle and right).

One limitation of this method is that its performances are strongly influenced by the core defini-
tion. Figure [7.TT|left) shows an example of the circle patterns (hightlighted in green) not being

129

Figure 7.10: An example of cross-model pattern recognition, starting from a set of query points
(red points) that lie on a pattern, the head of the model in left. The retrieved patches on the other
models are shown to the middle and right.

properly characterized since no core is found on the surface characterized by that pattern. This
is not surprisingly because this model is very large and complex, with many outliers. The query
points representation of the results allow us to observe that not many query points falls on the
pattern area, which makes the respective core even harder to find. When selecting the first 20 core
representatives with the farthest sampling in the space of the signal, the signals corresponding to
the circlets are not ranked in the top 20. This fact is easily verified considering, for instance, 30
cores. The outcome of the PATCH-CUT method with 30 cores in shown in Figure[7.11|right), in
this case a large part of the circlets is recognized as belonging to a much more distinct segment
(‘orange’ query points). Another interesting fact is that the beard is split into two labels. We
indeed observed that the beard pattern is not uniform, as some of its lines are wider in some
areas and tighter in others, partially justifying the presence of more than one label on the beard.
However, the exact ‘line of cut’ between the ‘red’ and ‘lilac’ query points does not represent
faithfully these areas. An ad-hoc smoothness cost that takes more into count the signal similarity
might help to better separate the segments.

If a pattern is just lightly chiseled on the surface, the graph-cut may not be able to properly
balance signal similarity and label ‘smoothness’. Figure[7.12] shows an example of this issue.

130

Figure 7.11: An example of non proper labeling of the surface. Left: the final result of the
PATCH-CUT method using 20 cores. Right: the final result of the PATCH-CUT method using
30 cores.

Conclusions

In this Chapter we presented the PATCH-CUT method which, starting from a mesh with none,
one or more than one patterns, aims at segmenting the models in patches characterized by at most
one pattern. The segmentation is done via local analysis of the neighborhoods of a set of samples
on the surface. The graph-cut algorithm is used to balance between similarity and smoothness of
the boundaries of the segments. While there is still room for improvement, the current state of
the method is enough to correctly identify patterns on the surface of the model and to partially
address cross-model pattern recognition, thanks to the combination of PATCH-CUT with pattern
retrieval methods.

131

Figure 7.12: An example of a model with a lightly chiseled pattern on the surface. The graph-cut
does not segment the pattern (highlighted in green) properly with respect to the flat surface (in

gray).

132

Chapter 8

Learning-based approaches

Artificial intelligence has a long development history, that alternates success and setback mostly
related to the advancement in the calculators ability in dealing with larger and larger data and
their ability to make more operations faster (which usually came together with technology ad-
vancements). In the very beginning, Warren Sturgis McCulloch and Walter Pitts [MP43]] intro-
duced the concept of Artificial Neural Networks in 1943. The first significant evolution in the
field was in 1958 thanks to the introduction of the concept of the perceptron [Ros58]: a binary
net with classification purposes built with an input and an output layer. This model of neural
network was not largely used, as the perceptron is not able to model simple operations like the
XOR [MP17]. Moreover, until the adoption of the back-propagation algorithm and multilayer
net designs, there was neither the algorithm nor the necessary amount of data for a proper train-
ing. On a slightly different note, in 1967 Cover and Hart lay the foundation for a basic pattern
recognition (intended in the more broad meaning of the word) with their Nearest Neighbor Al-
gorithm [CH67]]. Around the beginning of the *80s, there was a significant separation between
the final goals of Machine Learning (ML) and the rest of the Artificial Intelligence (Al). Rather
than working on the realization of general Al, machine learning researchers focused on solving
practical problems, focusing on neural networks (abandoned, at those times, by Al researchers)
using tools available in probability theory and statistic literature. With the growth in research
and technology (starting from the *90s) ML flourished more and more and, in particular, the
ImageNet success [DDS™09] marks a pivotal point in the machine learning history, boosting im-
mensely the interest in the branch of machine learning called Deep Learning and, in particular,
on the neural networks.

Currently, ML methods ease the classification process of large amounts of data with very good
performances. This rich research field is divided mainly in three branches: supervised learning,
reinforcement learning and unsupervised learning. Briefly, supervised learning includes the use
of a set of examples provided with a ground truth that can be used to evaluate the goodness
of the classification based on the differences between the method output and the ground truth

133

itself. Reinforcement learning is designed for problems that require decision making: actions are
enforced or penalized based on the outcome of the latter. Finally, unsupervised learning is used
when a ground truth is not available and the research of patterns in the given data is up to the
method itself.

There are multiple challenges in applying learning approaches (in all the three machine learning
branches mentioned) to the use case of this manuscript. First and foremost, 3D models contain
a huge amount of raw data: each problem may interest different aspects of that, which lead to
different pre-processing or completely different setups for the learning method itself. Moreover,
especially in the archaeological environment, datasets of 3D models usually are not big enough.
Moreover, the elements of interest (i.e.: patterns) are not repeated sufficiently to decently train a
learning method. Additionally, the number of data sets containing textures is limited by the effort
required to produce high resolution models with detailed textures, as well as their availability, as
some of these pieces are unique.

Our research for a learning method able to face the pattern recognition problem culminated in two
different attempts. The first is the study of the potential of a sparse representation (unsupervised)
learning method that aims at finding a sparse decomposition of a set of signals, called dictionary
learning. In other words, to find a set of signals (called afoms), that can be linearly combined to
obtain the original signal set. The fact that dictionary learning does not require a huge amount of
labeled data makes it appealing for our problem.

Secondly, given the advent of convolutional neural networks (CNNs), we present a possible
approach that characterizes the region around a vertex in a robust way with respect to a pattern
and classifies it appropriately. The neighborhood of each vertex is characterized by a surface
property (e.g.: curvature) captured in an image. The classification with CNNs is made through
transfer learning starting from the ResNet-50 architecture, whose model is fine-tuned for the
problem. The classification can be transferred back to the model, obtaining a rough segmentation
of the models based on the pattern(s) that characterize them.

In this thesis we report the pros and cons of our applications, presenting the difficulties in apply-
ing learning methods to our use-case.

8.1 Signal aggregation based on dictionary learning

Let us consider a set of signals X = [xi,...,X;,], X; € R™. The dictionary learning can be
formulated as the following minimization problem:

n

: 1 2
pectin > 5l = Dells + M(ew), @8.1)

1=

134

where A = |a;, ...,] carries the decomposition coefficients of the signals x, ..., X,, ¥ is
the sparsity-inducing regularization function and C is typically chose as the following set:

C={DeR™P:Vj |ldj|l, <1} 8.2)

D is usually called a dictionary. In our use case, v (i.e.: sparsity) is driven by a parameter k.
In other words, give a set of signals X and given a set of parameters p (size of D) and sparsity
k, by solving the minimization problem in Equation we obtain a set of p signals (d; € R™,
called atoms) that can approximate the signals x; with ~ Dc;. Notice that, due to 1) and the
parameter £, the vector o; has only £ non zero entries, thus x; is approximated using only £
atoms. Of course, to make the most out of the method, p should be much lower than n. Finally,
to our knowledge, keeping the ratio k ~ £ leads to better results.

The goal is to apply sparse decomposition of the dictionary leaning to the signals extracted from
a 3D model and to study the components obtained from the learned dictionary (D and A in
particular), to scout the surface more quickly searching patterns of the surface. For example,
since patterns are repeated details on the surface and being the atom shape strongly influenced
by repeated signals, we conjectured that the atoms alone could lead the research in this direction.
The pipeline of this method is shown in Figure[8.1]

Finally, we distinguish two approaches: one in which £ = 1 and another in which £ > 1. Of
course, it is almost redundant to talk about dictionary learning if £ = 1. Still, it is interesting to
discuss the results obtained with this particular setup of the dictionary computation.

To compute a dictionary, we used an implementation of the K-SVD algorithm [RZEOS|]. The
MatLab implementation we used is freely available at http://www.cs.technion.ac.
il/~ronrubin/software.htmll

8.1.1 Surface sampling and signal extraction

As in previous chapters, we want to avoid computing a signal for all the points of the surface,
due to the high resolution of the meshes we usually work with. Similarly, we also have to be sure
that the signals on the areas of interest are repeated multiple times. This is especially important
when working with the dictionary learning, seeing its behaviour with repeated signals. Indeed,
intuitively, the more a signal is repeated, the more it is probable that an atom is going to assume
its shape.

We sample query points and punctual signals as in the PATCH-CUT method, (¢; € @ and s; € S
respectively). Then, inspired by the work done in [DVCI18], we sort the signals based on the
results on a dictionary computed on them. More precisely, this is an iterative process based on
how well the signals fitted the atoms computed in the dictionary. At each iteration, a dictionary
is computed on the signals. Then, each signal is compared to each atom. The comparison is
done by rotating the signals with respect to the atom until it best fits the atom (based on the L>

135

http://www.cs.technion.ac.il/~ronrubin/software.html
http://www.cs.technion.ac.il/~ronrubin/software.html

Clusterization
of the query
points based
on the atoms

Training of
the dictionary
(sparsity = 1)

Query points
sampling
(refinement of
the Poisson-disk
sampling)

Computation
of the signals

Computation
- S Class compu-
Training of of similarity .

.. tation based
the dictionary measurements on erou
(sparsity > 1) C, and group EToup

. connections
definition

Figure 8.1: Pipeline of the Dictionary Learning based method proposed for pattern characteriza-
tion and recognition. This method has two possible versions, sparsity 1 and sparsity greater than
1, which both start in the same way.

norm). Then, the rotation that fits best across all the atoms is kept. Once this is done for all the
atoms, the next iteration starts, a new dictionary is computed and the cycle repeats. In our tests,
we observed that after a given number of iterations the signals stabilize their orientation toward
a low number of ‘default’ positions. In our tests, the number of iterations is set to 10.

8.1.2 The case of sparsity equal to 1

Our study started from the idea that we can distinguish patterns on surfaces just by evaluating
the differences between the atoms of a dictionary trained on the signals of the query points on
a given model. Indeed, atoms should be highly influenced by the signals of query points on the
patterns most present on the surface (in an ideal case, one atom per pattern). By backtracking
which atom approximates which signal, it is possible (in theory) to segment the surface in the
areas characterized by a single atom, obtaining a surface segmentation. Such a segmentation
could be used as a basis for a retrieval method or, in case of very good atoms, directly as a

136

Figure 8.2: Top: the labeling of the query points of two models. Bottom: the atoms of the
models above. Notice how the atoms resembles the patterns for both the first model (with 4
different patterns) and the second one (with one pattern).

pattern recognition solution (since different parts of the model with similar pattern should have
similar atoms).

In more details, we set £ = 1 and p to a fixed value. A dictionary is computed on the signals
extracted from a given model, obtaining p atoms. Since £ = 1, each atom should represent
one of the signals the most repeats in the overall signal set. Indeed, the atoms are selected by
their reconstruction error, thus they alone (multiplied by a constant value) should represent at
best a specific class of signals. We identify these classes with the patterns on the surface. We
then labeled the query points based on the atoms they are describing in the dictionary. Finally,
we ‘accept’ a labeling only after checking that the signal is actually well reconstructed by the
atoms, based on the reconstruction error between the original signal and its approximation. This
method was tested on a synthetic model (with four patterns) and the scan of a statue (with one
pattern), respectively shown in Figure [8.2f Top). The surface colors are based on the atoms that
characterize that Figure 8.2 Bottom) shows that atoms actually take the shape of the signals we
are interested in and that the labeling of the query points is driven by the pattern in most of the
surface of the model. The size of the two computed dictionaries, 9 for the first models and 4 for
the second one, are different since the number of patterns on the surfaces is different from model
to model.

However, despite the promises, this approach became less and less efficient when more com-
plex models came into play. Indeed, models like those in the GRAVITATE models are far less
homogeneous in terms of signals (and query point distribution) which demand a more precise

137

Figure 8.3: A subset of the atoms of a dictionary of size 12 and sparsity 3 computed on the model
in Figure [8.2(Bottom). Notice how the first atom can be obtained with a linear combination of
other atoms.

reconstruction of the signals that cannot be obtained by setting £ = 1.

8.1.3 The case of sparsity greater than 1

The idea behind this path is similar to the previous one, but in this scenario the reconstruction of
the signals (Da;) are more precise and should reduce the approximation errors one can obtain
for k = 1. However, the characterization based on multiple atoms is much more complicated.
Mainly, already with £ = 2, atoms alone may be misleading in many ways. Let us assume that
an atom represents a circle, while another one represents a line and, finally, let us have a signal
approximated by a combination of both. A practical example of this issue is shown in Figure[8.3]
in which a subset of the atoms extracted from a dictionary of size 12 and sparsity 3 computed on
the model in Figure 8.2 Bottom) is represented. Notice how the first atom (from left to right) can
be seen as the combination of other atoms. The atoms alone bring contradictory information on
the table, which makes the once trivial segmentation much harder. Also, keep in mind that the
set of atoms can be seen as a set of generators of S. Since they do not form (in the mathematical
meaning of the word), we cannot assume that each atom is unique. Thus, multiple atoms can
represent the same feature in slightly different ways, leading to a redundant segmentation.

In this case, other components of the computed dictionary must be kept more in consideration,
such as the coefficients «;. For this research path, we looked for a way of including the informa-
tion of multiple results of the dictionary learning method (reconstructions, reconstruction errors,
coefficients and signals themselves) all at the same time. To better understand the approach, we
formalize more the concept of reconstruction in a subset of atoms of a given dictionary. Let us
assume that D is a dictionary computed on a set of signals S, with sparsity k. This means that
each § has a set of atoms {&1, e ak} that linearly approximates S. Of course, nothing forbids us
from using that set of atoms to approximate a completely different signal, let it be S. While in
general this approach does not lead to a good approximation of the s, it is reasonable assuming
that if the signals are similar, then also the approximation of s should be at least decent enough
to be recognizable. Since, in the following, we are going to use this concept frequently, we add
the following notation. We use [a],, to indicate the reconstruction of the signal a in the space
of the atoms of the signal b. Since we always work with one dictionary at the time, we do not

138

Figure 8.4: An example of the four distances used to compute a group. Left: each curve rep-
resents the sorted values of each distance. The thresholds thr§ are represented by the red lines.
Right: the point ¢ (in light-blue) and its group (in yellow) based on the distances computed.

indicate it in the notation, to make it more readable.

In our approach, first we compute a dictionary D on the signals with a fixed set of parameters p
and k. Then, for each signal § with respect to all the other signals s;, we computed the following
distances:

o O5(s;

) = [I[8ls — [sils]l2
3(s1)

)

)

|[si — [sils
||coeff([8]s) — coeff([s;]s)

2

(si
o C8(s

2

W

18 = sill2

where coeff([A] 5) are the coefficients given to the atoms shaping A in the space of the atoms of
B. These distances induce four different sortings for the signals, from the one with the lowest
distance value to the higher. Intuitively, we can say that if a signal s; stays in the first position in
all four sorts, then it is probably similar to S. Since there is no trivial definition for a threshold
value that assess similarity based on the proposed distance, we define a set of thresholds thr® in
the following automatic way. For each distance C® we can define a discredited curve £ of the
sorted values obtained computing the distance evaluations C$(s;). The goal is to approximate £
with a polynomial function and setting the threshold based on the first flex of the curve. Exper-
imental tests showed that the family of the polynomial of degree 5 are good for approximating
curves like £ (defined by the distances Cf). Moreover, we went for a more restrictive similarity
criteria than the position of the first flex: indeed, we used % of the distance between zero and the
x-coordinate of the first flex. Figure|8.4/shows an example of these measures and threshold for a
point on top of the head of this model and the respective group.

We call this set of similar points a group. We then compute the group of each point (so every
time the set of curves changes) and we see them as the nodes of a graph. If a signal is shared by

139

Figure 8.5: The results on a GRAVITATE model with the dictionary learning with sparsity greater
than 1 (Left), compared to those obtained with the PATCH-CUT method (Right).

2 groups, we connect them with an arc. Finally, we assume that the connected components of the
graph are composed of similar points and, given the nature of the signals, should correspond to
areas characterized by the same patterns. Figure [8.5]shows an example of the result obtained by
using this pipeline, compared with the results obtained with those obtained in Chapter[7} Notice
that, with this method, not all the points are labeled.

8.2 Multi-view RESNETS50: a description based on CNN

Briefly, an artificial neural network is typically made by an input layer, an output layer and a set
of hidden layers. Each layer is made by neurons (or interconnected nodes). Each connection
has a weight that changes the behaviour of the network. The whole ‘learning paradigm’ is how
these weights are set (or how they change) based on the data we feed to the neural network. In
this section we focus on convolutional neural networks (or CNN for short), which are a branch
of the supervised machine learning methods. In it a dataset of examples D = {x;,Xa,...}
(training data) is given. Examples of possible data are images, sounds, point clouds, etc.. For
any example, there is also a desired output, y;. The set of all the outputs is called ground truth.
It can be a set of labels discrete, which leads to a classification problem, or a continue label,

140

1 feature C2 feature
maps maps

51 feature
maps

52 feature
maps

Output

Full
Connection

Comvolutions

X

Subsampling

Comvalutions

Subsampling

Comvolutions

Figure 8.6: A typical CNN architecture with two feature stages. Image from [LKE10].

which leads to a regression problem. During the training process, the net generates an output g;
for each x;, which is matched with ;. Weights are updated using the Stochastic gradient descent
so that the difference between g; and y; is lower and lower. The loss function quantifies the error
between these two entities.

In particular, a CNN does an hierarchic extraction of the features of the inputs. This is reflected
in the structure of the net which, with respect to the classic nets, presents layers with a three
dimensional structure. There are two main strengths in using this approach. First, a CNN takes
advantage of the 2D structure of the images (close pixels are highly correlated), so that neurons
in the same layer are connected by just a small region of the previous layer, avoiding unnecessary
connection as in the classic nets. Moreover, in a CNN each feature map is generated by the con-
volution of a kernel, scaled with the input size. This leads to a number of parameters drastically
lower than that of the classic nets. Second, CNN uses a so-called pooling layer. This allows for a
translation invariant network, which in turn allows the net to focus initially on the smaller details
and then on the bigger one. The totality of the objects in the training set can usually be found
in the deepest layers of the CNN. A CNN is composed by a number of the following layers:
convolutional layer, rectification layer, normalization layer and pooling layer. The structure of
a CNN is represented in Figure [8.6]

In this section we present our work on pattern recognition in which classification is driven by a
particular CNN, called Residual Network 50 (or RESNET50). The key difference with respect
to the other CNN:ss is that this net, instead of learning features, learns residuals. To put it simply,
on each layer it learns from subtracting a learned feature from an input of a given layer. There
are multiple versions of RESNET, mainly distinguished by the number of layers they have. As
an example, a visual representation of the RESNET34 is shown in Figure 8.7, We tested our
approach with the RESNETS50, which has 50 layers.

In the following, we detail our approach to the pattern recognition problem based on the classifi-

141

ATATARATATARATAATATARATA
S— LY AR PR L IR FIR e 10

e Tl

Figure 8.7: A visual representation of the RESNET34. The dotted shortcuts increase dimentions.
Image from [HZRS13].

‘Multi-view’
Even sampling rendering of Training of
on the model each sample RESNETS0 Images
(Possion-disk neighborhood T with the classification
sampling) (or 3D patches extracted images
to images)

Figure 8.8: Pipeline of the multi-view CNN based method proposed for pattern characterization
and recognition.

cation given by the RESNETS50 that we call multi-view RESNET50. The pipeline of this method
is represented in Figure [8.8] The goal of this method is to extract multiple views (from which
the term ‘multi-view’) of the point neighborhoods of a given set of vertices vy, .. ., v, of a given
triangulation M. By sampling more view from the same patch, we aim at the generalization of
its pattern by considering it from different angles and different views. These views are not just
a projection of the whole model with different rotations: only the neighborhood of each v; is
considered when the model is rendered and projected in the final image. These images are then
used to feed a RESNETS50 and the classification obtained by the net is used to locally identify
the patterns.

8.2.1 Local feature characterization

In this section we introduce the concept of a local feature of the 3D model, not to be confused
with the concept of feature extracted from a Convolutional Neural Network. The first is a care-
fully selected feature of the 3D model, the second is part of a feature map and is a feature of the
2D image that is extracted by a convolutional operation against one kernel at a given hidden layer
of the CNN. We can identify two situations in which it is required to extract local features: when
preparing the training set and when we want to sample and classify a mesh vertex neighbor. The
local feature extraction process is very similar in both cases and it starts as follows.

Let us have a model M (represented with a triangulation T = (V| F')) and a vertex v € V (see

142

(b)

(d (e)

Figure 8.9: (a): a model M, a vertex v € V (in red) and a visual representation of N (v) (the
bubble). (b): the triangulation 77 selected from 7. (c): the best fitting plane A with respect to
the vertices in 77. For a better visualization, only the vertices of the patch are shown. (d): the
change of coordinates effects on both 77 and A. (e): the final rendering of 77 (in this example,
the colors are based on the shape index estimation).

Figure [8.9(a)). The goal is to extract the feature on which this vertex lies (or it is close to).
Moreover, we define a radius 7, which is the radius of the neighbor we are interested in. More
details on how this radius is selected are at the bottom of this Section.

First, the kd-tree algorithm is used to compute the neighbor of the point v, defined as N (v) =
v € V|d(v,v) < r, where d is the Euclidean distance. A second triangulation 77 is selected from
T and its faces are those that have all their vertices also in N (v) (see Figure b)).

Moreover, we compute the best fitting plane A with respect to the vertices in 77 (see Fig-
ure c)). Then, T7 translated and rotated so that the center of the coordinates is v and the
normal of \ is (0, 0, 1) (see Figure[8.9(d)).

The triangulation now rendered: it is colorized based on the surface curvature, which is approxi-
mated using the Toolbox Graph MatLab toolbox [Pey]], using the jet colormap (see Figure[8.9(e)).
Lighting 1s turned off to avoid noises and/or uncertainty caused by shadows or highlights. Our
choice regarding the mean curvature and its estimation method for the characterization for pat-

143

Figure 8.10: The diagram of the coordinate system with the azimuth (red) and elevation (blue)
angles.

terns is discussed at the end of this section.

In the scenario in which we are sampling a new vertex neighbor, the final step of this process
consist in taking a picture of 77 render, placing a camera along the positive z — axis, pointed
toward the origin of the coordinate system, to that all the patch is contained in the field of view.
In different terms, we project the model onto the z = 0 plane, obtaining a 2D surface (i.e.: the
picture mentioned before).

If instead we are creating a training set, we want to sample 77 from different angles. To do so,
we rotate the model changing the azimuth and elevation angles of the viewpoint: see Figure [8.10]
to understand the angle placements. For each azimuth-elevation angle combination, the same
projection and rendering process is repeated.

Shape index and mean curvature are the two surface descriptors we selected for this approach.
The first is much more sensitive to small variations, while the other is better suited to find bigger
details of the surface, but still small enough to be patterns.

8.2.2 Training of the models

The training took place using a Jupyter Notebook and the popular deep learning library, Fast.ai
[HG20], based on PyTorch. The hardware used was a GPU node of the new high-performance
EOS cluster located within the University of Pavia. This node has a dual Intel Xeon Gold 6130
processor (16 cores, 32 threads each) with 128 GB RAM and 2 Nvidia V100 GPUs with 32 GB
of video RAM.

144

The training was performed starting from 3006x1534 high resolution images rendered by our
local feature extractor, properly ordered in labeled subdirectories. We chose to split the dataset
randomly into training and validation sets using a 70/30 split.

As previously mentioned, the model chosen for training is a pre-trained version of a ResNet-50
architecture. The APIs of the Fast.ai allows users to download the pre-trained architecture and
weights in a very simple and automatic way. Fast.ai also automatically modifies the architecture
so that the number of neurons in the output layer corresponds to the number of classes of the
current problem, initializing the new layer with random weights.

The training was performed using the progressive resizing technique, i.e. performing several
rounds of training using the images of the dataset at increasing resolutions to speed up the early
training phases, have immediate feedback on the potential of the approach, and to make the model
resistant to images at different resolutions (i.e. the model generalizes better over the problem).
The specific section in [FMNT19] explains very well the concept of progressive resizing. For our
particular problem, we have chosen the resolutions of 100 x 51 150 x 76, 300 x 153, 601 x 306,
900 x 460 and 1503 x 767 pixels (i.e. 1/30th, 1/20th, 1/10th, 1/5th, 3/10th and 1/2 of the original
3006 x 1534 pixels resolution). We found empirically that raising the resolution above 1/2 of the
original resolution provides no further improvement in the classification accuracy and has high
training costs.

When performing transfer learning from a pre-trained network, each training round at a given
image resolution is usually divided into two phases, a = convolutional layers are frozen and b =
all layers unfrozen, each made by one or more epochs. For each epoch, all the training set is fed
into the network, one batch at a time, with each image in the batch being altered by a random
number of data augmentation transformations of different intensity or magnitude. Given that the
last layer of the network is new and initialized with random weights, in phase a, the weights of
all the layers of the neural network except those of the new output layer are frozen and therefore
are not trained (they are used only in the forward pass of features extraction). During phase a
a larger learning rate (LR) can also be used and for these reasons this phase is much quicker to
converge than phase b, because backpropagation is applied only to the last, untrained layer and
the gradient descent algorithm is allowed to converge faster. In phase b, performed with a lower
learning rate, typically of one or two orders of magnitude less, all layers, even the convolutional
ones, are trained to improve the network globally. However, for our problem, we found that there
was no significant improvement in unfreezing the convolutional layers of the ResNet architecture,
so we performed only the training of the last layer with fewer epochs and with larger learning
rates.

The data augmentation transformations that we chose to apply to the images were: crop, flip
left/right, symmetric warp, rotate, zoom, brightness, contrast and jitter (noise obtained by pixel
shuffle among adjacent pixels). Examples of some of these augmentations are shown in Fig-
ure The learning rate used was 0.01 for all the rounds except for the last one at 1503 x 767
pixels resolution. The high amount of VRAM of the GPU we used allowed us to keep a high

145

(a) Tessels (b) Circlets

Figure 8.11: (a): Tessels, augmented with jitter noise (b): Circlets, warped.

batch size for all the phases of the training. We started with a batch size of 256 images and we
ended with bs=12 at the last round with images at 1503 x 767 pixels.

As the neural network model optimizer, we chose Ranger as it combines two of the best state-of-
the-art optimizers, RAdam [LJH™19] (Rectified Adam) and Lookahead [ZLHB19]], in a single
optimizer. Ranger corrects some inefficiencies of Adam [KB14], such as the need for an initial
warm-up phase, and adds new features regarding the exploration of the loss landscape, keeping
two sets of weights, one updated faster and one updated more slowly, and interpolating between
them to improve the convergence speed of the gradient descent algorithm. We also used the
Fast.ai callback hooks to automatically save the model if the accuracy on the validation set
improved with respect to the previous epoch and to stop the training if the accuracy was above a
predefined threshold, in this case 0.999 (or 99.9%) accuracy.

Once all the training rounds were completed, the model with the best accuracy was selected for
the testing phase.

8.2.3 Tests on the Model set

For our tests we used the models in the pattern recognition benchmark dataset [BMTB ™ 18]. With
respect to the initial task of the benchmark, we only focus on finding areas of the surface that
are characterized by different patterns (or no pattern). First, we took a set of samples on each
model, using the Poisson sampling algorithm. The number of samples 74:mpies 1 Obtained by
making a proportion between the size of r and the surface area of the model. In particular, we
want to obtain a set of patches able to cover the whole model. Thus, since a patch is roughly
the size of a disk (772), we set Nggmpres A(T)(7r*)~! (rounded to the closest integer value).
Since the geometry of the models may be complex, we usually slightly over sample the surface
(110% of the value nsqmpres), SO We are sure that we are able to cover the whole surface with the
selected patches. For this dataset, we set » = 2. We are able to determine for each patch which

146

Figure 8.12: Example of the areas that we classify as NoPattern. Left: one model of the pattern
recognition benchmark dataset [BMTB™18]. Center: smooth areas on the models (in red). Right:
back facet of the models (in blue). Both red and blue areas on the models are labeled as NoPattern
in the benchmark ground truth.

pattern it lies on, thanks to the benchmark ground truth. Moreover, with respect to the classes of
patterns of the benchmark, during the designing of this test we foresee the need of an additional
class resembling the patch with no pattern. In particular, we added the ”NoPattern” label to our
training set, which includes both areas without patterns (sort of ’locally smooth™ patches) and
those on the back facet of the model. With the latter we intend those parts of the models that are
not meant to be seen (like the inside of a vase) but that still appears in a complete digitalization
of an object. Figure 8.12]shows examples for both kinds of patches that we consider NoPattern.

Our first test is on a net trained on the models model set (see Chapter [f)). From each sampled
point, we extract a patch that is rendered in 252 different positions, varying the azimuth angle
from 0 to 27 and the elevation angle from —% to —% with steps of . With this test we want to
understand the capability of the training process to learn from the data. The accuracy obtained is
already above 0.99 on the first image size (100 x 51). The best accuracy (0.997393) is obtained
in the second round (150 x 76). In Figure [8.13(Left) we report the normalized confusion matrix
related to the accuracy of the training.

In our second experiment we tested the ability of the trained net to classify unseen data. To
do this, we removed some models from the training set. The rest of the models are used for
both training and validation tests. Again, the accuracy during the training is very solid (already
0.99846 on the second round (150 x 76)). The normalized confusion matrix related to the accu-
racy is shown in Figure [8.13(Middle).

The results on the unseen models are, unfortunately, less steady. The overall accuracy on them is
0.75, thus only % of the points are classified correctly. The confusion matrix for this classification
is shown in Figure [8.13(Right). Moreover, for a quick evaluation of the quality of the results,
we report the classification results obtained on some of the models not considered in the training

147

Mo,

Figure 8.13: The normalized confusion matrices related to the accuracies of different stages in
our tests. Left: the normalized confusion matrix of the accuracy of the training after the second
round of training of our first test. Center: the normalized confusion matrix of the accuracy of the
training after the second round of training of our second test. Right: the normalized confusion
matrices on the unseen data after the third round of training of our second test.

NoPattern
Stamped Circlets
Eyebrows
Fringe

Long Incisions
Oblique Fringe
Spirals

Figure 8.14: Visual representation of the classification obtained with net in our second test on
the unseen models.

set. In particular, we painted the models based on the classification results: each patch (i.e.:
each vertex in a patch) is painted with a color representing one of the 7 possible labels (fringe-1,
fringe-oblique-lines-2, long-incisions, small-bands, stamped-circles, spirals, NoPattern). Ver-
tices shared between two (or more) patches may be classified in two different ways, thus in that
scenario we blend the results by mixing the two (or more) respective colors. Since there are more
samples per patch, the classification of each one of them is not trivially defined. For example, the
best view for each patch is the one perpendicular to the best fitting plane. However, it is naive to
completely ignore the results obtained from multiple classification estimations of the same patch.
However, we attempted both strategies, with almost identical results. Thus, we show the results
for the classification obtained with the voting approach in Figure [8.14]

We notice that the different views of the same patch have almost always the same label. This
fact may be interpreted in two ways. On one hand, it could mean that training the net with this
multi-view approach helped in the identification of the pattern despite the different bendings. On

148

the other hand, it may mean that the information given by the multi-view approach is redundant
and just a single view is enough to properly train the network. Of course, it is very possible that
the truth may stay in between these two scenarios: indeed, the multi-view may actually help the
net to better learn the patterns, but 252 different views may be too redundant.

149

Conclusions

In this Chapter we present two of the learning approaches to the pattern recognition addressed
during my PhD research activity. One is based on dictionary learning, which is a well known
unsupervised learning method. The signals given to the dictionary are a local discretization of
the neighborhood of a set of points sampled on the surface, similar to the mpLBP description
of the model (see Chapter {). Early results are promising because the method shows how it
can be applied to pattern synthesis, however, for pattern recognition the method introduces a
machinery that is computationally more complex than PATCH-CUT while having results that
are comparable to those we can obtain with the PATCH-CUT method. The second proposed
approach is based on local views of the neighborhood of samples on a vertex. Each neighborhood
is observed from different point of views and an image is extracted from each view. The images
are used to build a training set for a RES-NET 50. The methods is therefore is supervised and, as
such, the experiments show a strong sensitivity to the extent and quality of the images used for
training.

150

Part IV

Future works and conclusions

151

Chapter 9

A search engine for 3D shape collections

Visual search engines are the natural tools for supporting comparative studies of object col-
lections and they are generally based on the combination of shape descriptors as signatures
synthesizing the geometric content of 3D models [BKS™05, TVOS], and of similarity mea-
sures for matching descriptors [SJ99, BCBB16]. In the last fifteen years, search engines have
being addressed with a large number of content-based techniques aimed at detecting global
shape similarity [SMKF04, (CRCT02] or part-based search and retrieval in 3D object collec-
tions [KLM™ 12, [LBZ"13]] or specific contexts, like product design [CGKO03} IJL."05]], paramet-
ric shape collections [SSBT17] and cultural heritage [BCESI5]]. As similarity is a cognitive
process, the user’s intent during the search should be included in the loop [SWST00]: meth-
ods for relevance feedback where introduced for 3D object search [LMTO0S, \GESF10], while the
first 3D search engine able to support user interaction appeared quite recently [Heal 1] under the
paradigm of the faceted meta-data.

The use of heterogeneous shape collections, like the Princeton Shape Benchmar and 3D Ware-
hous is acknowledged by [HSS™ 13, KFLCO13, /AKZM14, \GCL"15] and, at the moment, the
collection used in [GCL™15] is the largest one adopted for content-based exploration, with its
103738 3D models. These methods do not explicitly declare any particular assumptions on the
type of the 3D shapes but do not permit a multi-facet exploration by a user-driven combination
of different descriptors.

When reasoning about similarity in a collection of objects with heterogeneous properties, it is
useful to both use the combination of some multi-modal information (e.g., geometry and tex-
ture) and also to process part of the collection in an interactive manner, by grouping items, or
their parts, into meaningful clusters. This scenario is still quite far from the scenario depicted by
the current state-of-the-art: most methodologies for comparing, retrieving, or classifying objects

"http://shape.cs.princeton.edu/benchmark/
Zhttps://3dwarehouse.sketchup.com/

152

in repositories are based on a single analysis of the geometric 3D shape, possibly building on
specific invariants, such as the presence of axis of symmetry [KPL™10] or appendages [KCIT].
Even if several recent approaches for similarity assessment aim at identifying (dense or sparse)
correspondences among the model elements (e.g., [OBCS™12, KILM™ 12, ISKVS13]) or combin-
ing texture and geometry information (e.g., [BCFS15, BCA™ 16, [GG16])), they actually pursue
a shape matching at a global level rather than evaluating similarities based on the comparison
of specific features. With respect to these strategies, the approach presented in this chapter ad-
dresses similarity on the basis of a set of aspects that describe the models, following an approach
similar in spirit to the faceted meta-data proposed for images in [YSLHO3]]. This approach
has been pushed by a challenging scenario for visual search, archaeology, where traditional ap-
proaches fail and where trendy approaches based on learning are not really effective due to the
lack of large training sets and to the inherent complexity of capturing the search intent of users.

This chapter presents the design and experimental results of a search engine for 3D shape collec-
tions able to address queries and automatic search relaxation, mainly aimed at scouting archae-
ological datasets. This is a search framework able to adapt the navigation to the properties of
the objects, which may differ for different collections, and adapt also to the goals of the search
session, which may differ from session to session even if the user is the same. The search frame-
work defined is flexible with respect to the choice of descriptors, and also to the inclusion of
different similarity distances, depending on the properties one might be interested to capture.

9.1 Conceptual model

The proposed comparison framework acts as a query-by-example search engine that combines a
set of properties, following the ideas of faceted metadata for images [Heall, 'YSLLHO3||. Starting
from a model A (the query model) of a given collection of 3D models R, the list L of models in
R that are considered similar to A is retrieved. The search is based on the activation of a number
of properties (P, P,...) that the user selects before running the search. The design of the
search engine is compatible with prior classifications of the the types of the objects collection.
For instance, in case of archaeological datasets like the GRAVITATE use case the type of the
query object (sherd/non-sherd) determines what properties are considered valid search criteria
based on the nature of A (e.g.: if A is sherd-like, the filter related to properties that works on
non-sherd-like object are not activated).

Each property F; is interpreted as a filter (F;), which removes from L the models that are dis-
similar to A with respect to P;. If the user judges the filter results too restrictive, it is possible to
relax the filter severity incrementally adding more models to L and gradually enlarge the queue
of models shown in the query window. Note that the list L could be empty.

From a more technical point of view, the single filters are distance matrices among models, one
matrix for each property.

153

When the user selects one or more criteria to compare a query model against the dataset, each
criterion acts as a filter. The combination of more filters is done on the basis of the logic and
operator. In practice, the model A is similar to the model B with respect to the two properties
P, and P, if the two models A and B are similar with respect to both P, and P,. If L, is the
list of the query results for the property P, and L is the set of retrieved models for P, the set
L of the models that satisfy both P, and P, corresponds to the intersection of the two sets, i.e.
L = L, N Ly. With these settings, the combined distance is a metric if all the distances for the
single properties are metrics.

The query results that fulfill all the criteria are ranked according to a combined measure defined
as the product of all the distances that are smaller than a threshold ¢: this threshold acts as a
tuning parameter for the granularity of the search results, using the criteria described below.

A different threshold is automatically set for each shape signature, as follows. Given a distance
matrix D, the k — th row @), stores the distance of the £ — th model with respect to all the
other elements in the dataset. Given a threshold ¢, the set V;, of models such that Qy(j) < t are
considered valid query results for the model k with respect to the property stored in D.

The similarity between two models is defined as a score, represented in terms of a non-negative,
real value that translates the distance between two signatures in a number. Depending on the
shape signature adopted and the variety of the elements in a dataset, the image of the similar-
ity distance spans different intervals of values, unless the similarity distance is normalized into
interval [0, 1]. In this framework, it is preferable to avoid normalizing the similarity distances
and then combining the similarity scores. If a unique, global maximum is not known a priori,
the normalization would depend on the dataset, and the similarity distance could be biased by
the context. For this reason, the following is a description of the procedure to determine the
initial thresholds for dataset exploration, adaptively tuning them to the dataset variations. For
each matrix D, the threshold ¢ is automatically predetermined as: ¢t = averagey{ty}, where
tr = argmin{#{Vi} ~ 5% of the elements in the model collection}. the symbol # means the
set cardinality. Since ¢ is an average value, the size of L varies from model to model and the list
L could be empty.

By tuning the thresholds values, it is also possible to enlarge the search result set, offering more
flexibility and interaction to the user. A value dt is determined as the average of the dt; values
that increase the number of elements of V}, of approximately 3%. The value dt is selected as many
times the user decides to relax the threshold ¢. The thresholds values ¢ and dt¢ are automatically
determined for every property and dataset.

A schema of the components and behaviour of the search engine is shown in Figure [9.1] The
schema also sketches the layout of the graphical user interface, which has been fully developed
in the GRAVITATE project (Figure [9.1(Bottom)).

154

A query model is selected Filters are selected (with a relax option)

i Wil | I ﬂ i bl | :’ ﬂ
e e o S - T , [rp—— e L e Tl = PV FES TR o [P "
e e il = ety B e mmimiert s e = Sy o s, 8] s it o
| ™ L io L Lnay s | 1 | u-._ L L L b s |

Similarity matrices with respect to three descriptors
Rrrg it

Significant similarity scores (in this example ¢; = 0.3 and dt;, = 0.05)
1 2 3 4 5 6 7 B 9 10

Query results Relaxed query results
o s Ml | T 12& 1" i Wi | k& ?ﬁ
|V amasm, 8 S Coin w0 popmaai, Dl ol tasisin L e T TTECTR | [Pepp——
el R L Oomussi [mm porerns ‘ |Gremeeamst mimeriy Cle e Chi-ssss. 1) e mummersive
- e I | | s [—— 2 | wsenmmmmns|
- - v - - s - P

F X & B 4

Figure 9.1: An overview of the search engine behavior using three descriptors on a model of the
Naukratis collection and the effect of a further relax.

9.2 Similarity assets

We need to define a set of similarity criteria that can be identified with or translated into com-
putational tools. This can be done either resorting to state of the art descriptors methods, or by
implementing new ones if none can provide the behaviour sought. Since each filter is based on a
distance, the properties can be seen also as axes of a Euclidean space of dimension equal to the
number of filters. As driving guideline for associating a shape descriptor to a similarity axis, the

155

following rules are kept in great consideration:

* simplicity of the descriptor. If two or more descriptors are suitable for a task, the simplest
one is selected, in terms of output storage and matching complexity (e.g., real numbers or
feature vectors);

* scalability, depending on the target detail (e.g. a chiselled decoration), it is necessary
to compare high-resolution 3D models with millions of vertices. Therefore, it is worth
favouring the shape signatures that are able to deal with the larger meshes (in term of
vertices and faces);

* coherence, meaning that the shape signatures should rank the query results with respect to
a model as close as possible to the similarity types identified by the archaeologists.

Moreover, it can happen that a single descriptor is not enough to fully capture the complexity of
a similarity criterion or is able to capture it only partially; in these cases, either a combination of
descriptors or present multiple choices to the user is proposed.

In the description below, the term compatibility is used instead of similarity to discuss the map-
ping from criteria to descriptors, to emphasize that each similarity measure contributes to a rea-
soning rather than retrieving a crisp result. In other words, each criterion acts as a filter with
respect to a specific property and it is not meant to return the whole similarity assessment. To
give an example of this effect, when selecting a colorimetric property when the query model is
mainly red, the results are expected to include models with a predominance of the red texture,
independently of their shape. In the following, the implemented descriptors are defined.

1. Compatibility in terms of the overall size. The object size of the whole object is identified
with the volume occupied by the object, therefore the oriented minimal bounding box is
used as an approximation of such a volume. Two descriptors are used to map this criterion:
the diagonal of the minimal bounding box (MBB) and the vector of the length of the three
sorted edges of the MBB (MMB(edge)). The hull packing value (i.e., the ratio between
the minimum and maximum edge of the minimal bounding box) is considered as well, as
proposed in [CRCT02] but, in the experiments shown in this manuscript, the MMB (edge)
value seems to provide a higher discriminating capability. Figure [9.2] depicts the meaning
of the descriptors based on the minimal bounding box on a GRAVITATE fragment. The
distance between the descriptors is the L' distance, which works nicely as the descriptors
are scalar values or three-dimensional vectors.

2. Compatibility in terms of the thickness. The thickness of a model is computed as the shape
diameter function (SDF) [SSCOO08] that has been shown to provide a stable approximation
of the diameter of a 3D object with respect to a view cone centered on the object surface
and with the axis aligned to the surface normal. After computing the SDF function on

156

Figure 9.2: Left: the diagonal and Right: the three edges of the MMB.

4 1N

Figure 9.3: Left: Two fragments are colored according to the local SDF value, ranging from
white-yellow (low values) to red (high values). Right: the distribution of the SDF function; the
abscissa of the maximum value of the histogram corresponds to the thickness descriptor.

each point of the fragment surface, the thickness descriptor is defined as the average of
the most frequent value. Other possible choices for the thickness descriptor are possible.
For instance, the thickness around fragment profiles or fragment fractures [SA16, ASP17]
could be considered. However, these methods generally require a heavy pre-processing
step, often not completely automatic, either in terms of the detection of fragmentation ori-
entation or identification of the fracture creeks. With reference to Figure the thickness
descriptor corresponds to the bin that scores the maximum value of the histogram. The L*
distance is used to compute the distance between two thickness descriptors.

3. Compatibility in terms of the roughness. Roughness is the grain and finish of the frag-
ment surface. Often, this property is quantified by the deviations, in the surface normal
direction, of a real surface from its ideal form. It is often associated with local, shape
texture-like properties [GKM™02]. Among the possible descriptions, the mean curvature
and the shape index are two possible geometric properties for representing these local
surface variations [PT96, KvD92|]. The value of the minimum k&; and maximum £k, cur-
vatures at each vertex are computed adopting the implementation presented in [CSMO3].
The mean curvature K and the shape index ST are derived for each vertex, as K = @

and SI = %arctan (%) ko > ky, respectively. In the following experiments, it is
possible to see that the mean curvature better highlights the roughness of a model, thus it
is used as the descriptor for this property. The corresponding descriptor is defined as the
histogram of the distribution of the mean curvature, in an interval of values that holds for
the whole collection and is determined on the basis of the overall curvature variation over

the collection. The Earth Mover’s distance [RTGOO] is adopted as the distance between

157

Figure 9.4: Lest: The hairs of the statue are represented on the fragment by a regular relief
pattern. Right: the corresponding mean curvature distribution histogram.

two histograms.

4. Compatibility in terms of the color distribution. In the considered meshes, colorimetric
information is associated with the vertices in terms of a RGB value. However, it is well
known that the Euclidean distance in the RBG space does not correspond to the perceived
distance between two colors. The CIELAB color space was designed to be perceptually
uniform with respect to human color vision [AKKO00], meaning that the same amount of
numerical change in its values corresponds to about the same amount of visually perceived
change. Therefore, the Euclidean distance in this space is a good approximation of the
perceived color distance. Among the descriptors adopted in the literature to code the col-
orimetric information for objects, the concatenated histogram of the three color channels
(L, a and b) in the CIELab [Suz01, BCFS15] (see Figure[9.5) space are considered, for its
simplicity.

A 100-bins histogram is computed for each color channel, for all the models. Histograms
are clamped between the overall minimum bin-value and the overall maximum bin-value
that are not empty. The color descriptor is composed by the concatenation of the three
clamped histograms. Using the GRAVITATE use case as example the first 60 bins corre-
spond to the interval [20,80] for the variation of the L-channel, the next 35 bins correspond
to the interval [-15,20] of the a-channel and the last 65 bins correspond to the interval [-
15,50] of the b-channel. The color descriptor for each model of this collection is a 160-bins
histogram. The single CIELAB channels contain a specific colorimetric information: the
L channel represents the lightness, while the a and b channels respectively represents the
green—red component, with green in the negative direction and red in the positive direc-
tion and the blue—yellow component, with blue in the negative direction and yellow in
the positive direction. For this reason, the histogram of the single color channels are also
considered as three separated descriptors, for a total of four color descriptors. Being the
CIELab a non uniform space, the Earth Mover’s distance is used to compute similarities
between two color histograms [RTGOO] to compensate the problem of non-uniformity.

5. Compatibility in terms of the overall shape similarity: Due to the large variability of shapes
within the collections, the selection of a geometric signature yielding good results for all

158

Figure 9.5: A fragment and the corresponding concatenated color histogram with respect to the
L, a and b channels.

Figure 9.6: Left: The non-normalized D- signatures of two fragments; Right: the persistence
space with respect to the distance from the center of mass and the average, geodesic distance for
a vase model.

shapes is challenging. For instance, in these use cases, the collection is made of heads, feet,
legs, busts, vases, broken arms and hands, and these artifacts can have different scales (e.g.,
small and big statues) or can have cracks and missing parts. The quite limited number of
elements per class also prevents the use of learning techniques. A combined descriptor is
used, which mixes rough filters with scale invariant and non-rigid descriptions (called sim-
ply Shape descriptor). Namely, it is a combination of multiple global signatures, like com-
pactness and hull packing [CRCT02], the spherical harmonics indexes [KFRO3], a non-
normalized variation of the shape distribution signature with respect to random chords (this
signature codes the probability distribution of the distance between two random points on
a surface and is called D, in [OFCD02]) and the persistence spaces computed according to
the average geodesic distance and the distance from the main axis of an object [BCFG11]].

Figure[9.6(left) represents the non-normalized shape distribution D, [OFCDO02] for a head
and a foot model and Figure[9.6|right) shows the persistence space obtained with respect to
the distance from the center of mass and the average geodesic distance, evaluated according
to [BCEG11]. All the distances adopted in this setting are metrics in the descriptors space.

As a second global shape descriptor, the Spherical Harmonics indexes [KFRO3] alone is
considered, which is generally efficient for rigid matching and comparison of objects with
spherical, or at least cylindrical, symmetries [SSB™17].

It is worth noticing that the selections made for descriptors are not, and cannot be, guided by
knowledge about the performance of specific descriptors on specific classes. Rather, the selec-
tion is made on the prospects opened by their combination in a search engine: there might be

159

descriptors in the current literature that are better suited for a specific similarity task. However,
the goal is to investigate how a user can navigate a dataset based on a given set of computed
descriptors that capture different properties, like orthogonal axes in the similarity space.

Finally, we highlight how our research on pattern recognition fit into the experts’ requests: their
need of searching object based on local characterization, like patterns, is generally not satisfied
by the linear combination of the proposed assets and calls for more interactive and flexible tools.

9.3 User-driven dataset navigation

The considered collections are organized with respect to criteria that are different with respect to
the similarity criteria that the archaeologists have identified as suitable for their findings. Indeed,
these collections are organized through factors like the functionality of the models or the prove-
nance and it is really complex (or impossible) to define a single descriptor that is able to assess
such tricky classifications. Since the search results lack a rigid ground-truth, their correctness is
judged based on their visual appeal, minding also the similarity criteria considered in each query
search.

The outcome of some queries on different datasets is discussed in the following. Although the
quality of the query results is obviously dependent on the descriptor(s) selected, those examples
are enough to highlight how the combination of multiple properties can tailor the engine to the
users needs.

As an exception, the experts provided a limited ground-truth for 46 of the 72 fragments in the
Naukratis collection, identifying 8 groups of shards that are likely to belong to the same ob-
ject. This allows for a quantitative analysis of the combination of two descriptors against the
single ones, highlighting the advantages in using the search engine as a navigation tool instead
of considering the single descriptors.

The GRAVITATE case studies

The primary GRAVITATE [UUTCIC™] collection is composed by fragments of terracotta figu-
rative statues discovered in Salamis, on the island of Cyprus, dating back to the seventh - early
sixth century BC [KKE91]]. Most of these statues are fractured, while most shards are faded and
eroded. The project use-case has 241 digital models of Salamis statues fragments, acquired by
laser scans.

Another set of models come from the Naukratis collection at the British Museum [Mus17]. Itis a
collection of pottery vessels fragments from Naukratis, a Greek trading port on the Nile Delta, in
Egypt, dated from the VII century BC to the VII century AD. The collection available for these

160

Salamis dataset Naukratis dataset

weto

0w elle

Figure 9.7: Examples of fragments of Salamis terracotta figurines (right) and of Naukratis pot-
teries (left).

studies is made of 72 digital fragments, acquired by photogrammetric scans. Figure 9.7 shows
some examples of the fragments in the GRAVITATE use cases.

A preliminary distinction of the fragments in the Salamis collection is done. Two categories are
defined, one for fragments shaped like a classical sherd and one for those representing still a
volumetric component of the original object. This distinction was validated by archaeological
experts. For instance, with reference to Figure[9.7] (right), the heads, the figurines and the busts
are examples of volumetric fragments, while the decorated fragments (e.g. top-right and bottom-
right) or the fragments in Figure 0.7(Right) are examples of sherd-like fragments.

Figure [0.8(A-F) shows a set of query results for the GRAVITATE use cases. Rows [9.8(A-B)
present the same query model with two different query options: in (A) only the Color Distribution
filter is adopted, thus admitting models with different geometric shapes. The combination of
Color Distribution with Roughness is shown in[9.8(B) and provides a large set of fragments that
are intuitively more similar (in terms of red-like color distribution and surface smoothness) to
the query model. Row [9.§[(C) presents the combination of Color Distribution, Roughness and
Thickness at once. Again, the results are quite intuitive. The archaeologists classified the first
six fragments (the query models and the first five results) as potential elements of the same vase.
Nevertheless, also the other elements of the row [9.8(C) present quite homogeneous properties.
Similarly, the example in row [0.8(D) highlights how using only Color Distribution and relaxation
on the threshold it is possible to select all the fragments in the dataset that potentially belong to
the same group because they are made of the same material. One of the peculiar characteristics
of this group is that all its elements are made of fired clay, while the Shape, the Roughness and
the Thickness of these fragments is largely variable. Finally, rows [0.8(E-F) look at the different
capability of the global shape descriptors. The Shape property corresponds to a combination of

161

global descriptors that are able to deal with both volumetric and topological shape distribution,
thus mixing the head model with other heads but also hands. On the other hand, the Spherical
Harmonics is a scale, invariant, global representation where the overall shape of the object is
represented with the coefficients on the spherical harmonics computed with respect to the center
of mass: besides the heads in the dataset the query results are tricked by cylindrical objects, like
the last model in the result set.

The Hampson collection

The second collection of archaeological artifacts is provided by the Virtual Hampson Museum
E]in the form of textured, triangle meshes. The dataset comprises 442 models, 395 of them are
available for download, representing remains of Native Americans groups that were living in the
northwestern portion of the central Mississippi valley from about 1450 to 1650 AD and that are
referred to by archaeologists as the Nodena phase. An overview of this dataset is shown in Figure
0.10

Figures [9.8(G-J) report some query results for the Hampson collection. The example 9.8(H) is
based on the size of the model (described using the MBB(edges) descriptor) and shows us the
possibility to navigate the dataset considering only fragments of a specific overall size. In this
case, all the five models in the class are retrieved, without any false positive. The rows G,I)
combine other properties, such as Shape or Color Distribution, with the model size. The outcome
of these queries highlights that the combination of properties targets the query results to the query
models. Finally, the row [9.8(J) shows an example of query results when combining Shape with
Thickness when the query model is a bowl-like model.

Most of the examples on the Hampson collection highlight that a threshold relaxation is often
applied. Indeed, when acting with multiple filters it is possible that the queue of the query results
(i.e., the set of models satisfying all the properties selected) is empty. This is not surprising
because the collection is not complete in the sense that there are no exemples for all the possible
property combinations. Moreover the thresholds are automatically set roughly evaluating the
property variance on the whole collection and the query queue of some models can be very short.
To overcome this effect, the relax option is crucial, allowing the user to complete the query search
desired without being forced to ignore one of the similarity criteria.

Y CB Benchmark

This benchmark contains a set of 71 3D models generated from visual data that are commonly
involved for human-robot interaction. These models are available at http://ycb-benchmarks.s3-

3VHM, http://hampson.cast.uark.edu

162

GRAVITATE: Color Distribution

dé @ mS 4 A o

GRAVITATE: Color Distribution + Roughness, Relax 1

FEE XX X B W'

GRAVITATE: Color Distribution + Roughness + Thickness, Relax 2|

GRAVITATE: Colorimetric Distribution, Relax 1

he " vva
wsoPR-e
“ GRAVITATE: Shape

0 6 4 & =m

GRAVITATE: Spherical Harmonics

, ' \. A & "'“ ..-y:"".——
[' - .-"'. " E ‘..-L"‘ ¥, o
= . 4 Doy &"‘13' £ 3 P L

h g

F

Hampson: S. Harmonics + MBB(edges) Hampson: MBB(edges), 2 relaxes

| &ES® . srrv4

Hampson: MBB(edges) + Color Distribution, 3 relaxes

S&HIOD

Hampson: Shape + Thickness, 2 relaxes

e A A 4 A A A

Figure 9.8: Examples of query search on models of the GRAVITATE use case and Hampson
collection. The first model in each cell is the query model.

website-us-east-1.amazonaws.com/. The dataset contains everyday objects whose common trait
is the fact they can be grasped with a robot, see Figure[9.11] Data was acquired with the scanning

163

YCB: Color distribution + A chn + B chn + L chn, 2 relaxes

COHOAND T O

YCB: Color distribution

[A KB X W,

YCB: Spherical Harmonics
! u . W
00O DOO D

YCB: Spherical Harmonics

CebLEQGET IS

YCB: Spherical Harmonics + Thickness

AN KX REK X

A

D,

YCB: Shape
2= | 4 ~e~
I3
YCB: MBB(edge) YCB: Color distribution + Shape

N LXK

Figure 9.9: Examples of query search on models of the YCB dataset. The first model in each cell
is the query model.

rig used to collect the BigBIRD dataset. Details on the dataset can be found in
\CSB*17]. Aiming at a generalization of the criteria identified for archaeological context, the
model properties are revisited in order to identify the search axes in the conceptual dimensions of
the similarity space that could be useful in generic contexts. This is not meant to argue, obviously,
that these are the only and the most relevant ones. The axes are overall size, roughness, thickness,
color and overall shape.

164

\ AR R A R Aed X

Pooovooe®®
SeoovreoWwOeo?

covL®oew

Figure 9.10: Examples of fragments from the VHM dataset.

These criteria are tested over the YCB collection that presents a large variety of colors, shapes
(spherical-like, elongated, kitchen utensils, boxes with sharp edges, cans, etc.). The examples in
Figure[9.9(A-B) shows that the Color Distribution property is far more effective in a dataset with
such a larger variety of colors than the GRAVITATE use case and the Hampson dataset, which
are populated of artifacts that are mostly brown (terracotta) with colors ranging from yellow to
red, at most. Figure [0.9(C-E) instead shows searches done using the Spherical Harmonics as
global shape signature. The results are satisfactory, as the closest models have similar global
shape to that of the query model. The addition of the Thickness to the query search [0.9(E)
highlights how this property keeps models with a shape distribution similar to the query cup
model. Similarly, Figure [9.9(F) provides an example of query results when the combined shape
signature is considered. Still, some false positives pop up in the results, but this is due to the
nature of the descriptors and the fact that the false positives are actually very similar to the
query models in terms of elongated shape distribution. Finally, the examples in [9.9(G-H) show
examples of queries under overall size and the combination of color and overall shape for some
utensil-like models.

Discussions and quantitative evaluation

The aim of this search engine is to provide a tool for the navigation of 3D model collections where
multiple similarity axes can be identified. Depending on the user needs and tasks, the similarity
notion can be different and vary in time; for instance, a professional user could be interested
in details like manufacturing aspects and specific decorations, while a more generic user could
search for all statues with black stripes. The targeted data collections generally are not fully

165

AoedT\04€0) (Ow iy
SPLYATE LY L kPET
& 0@, 200 QCNQ)T
¥ OV9L DS 720.0 ¢ -
O - RQROIGETIOV (0O 6

Figure 9.11: Overview of the YCB dataset.

classified and a well specified ground-truth is not available. Therefore, a generic, meticulous
analysis of the performance of the shape descriptors combinations proposed by the search engine
against the single methods is impossible.

As a possible case study, the search engine is tested over the groups of fragments in the Naukratis
collection that are likely to belong to the same object. The intuition behind this test is that
fragments that belong to the same object share the same colorimetric distribution and, if they are
contiguous, they have compatible thickness. Therefore, the ability to group each fragment with
the other elements of the object it belongs to is analyzed for the single shape descriptors (color
distribution and thickness) and their combination. Each model is used as a query, in turn, against
the whole Naukratis collection. As performance measures, the percentage of true positives and
the number of false positives that appear in each query result are used. The main intuition is that
the similarity combination adopted in this search engine diminishes the number of false positives
because the query results of the combinations much satisfy multiple criteria at the same time.

In practice, 46 fragments of the Naukratis dataset are considered and grouped in 8 different
classes (a sample model per class is reported in Figure [9.12)). Notice, that the classes are num-
bered according to the archaeological catalogue; thus, there is no continuity in the class labels.
In summary, for every fragment, the query results are evaluated in the following runs: Search I
(filter: Color Distribution), Search 2 (filter: Thickness), Search 3 (filter: Combination of Color
Distribution and Thickness). In all the runs, the relax filter is set to two.

Figure[9.13|overviews the performance of the three filters Search I, Search 2 and Search 3. In the
ideal case, the combined query (Search 3) is expected to hold the same true positive percentage
as in Search 1 and 2 but with a smaller number of false positive results. Each element of the
diagrams corresponds to a model and the height of the columns measures the performance of the

166

Class 6 Class 7 Class 8

' Class 25 Class 26

Class 13 Class 18 Class 22 e

Figure 9.12: The list of classes used for a quantitative evaluation on the Naukratis dataset.

search engine when that model is adopted as the query. Models that belong to the same class
have the same color. In the diagrams on the left, for each model, the percentage of the elements
of the same class of the query model correctly retrieved (true positives) is reported. The value 1
means that all the elements of the class are shown in the list of the query results, 0.5 means that
on a half of the elements are correctly retrieved when that fragment is adopted as the query. In
the diagrams on the right, the number of false positives that are present in each query is reported.
Theoretically, this number could equal the dataset size less the elements of that query group. It
is possible to observe that some of the classes (the first, third, fifth, sixth and seventh classes)
for Search I and 2 have comparable percentages of true positives and numbers of false positives.
For Search 3, while the percentage of true positives is slightly lower overall, the number of
false positives is far away lower than in the other searches. Overall, these results show how the
combination proposed in this search engine works and highlight that it can manage queries based
on multiple descriptors diminishing the number of false positives in the query results.

167

Search 1: Color Distribution, 2 Relaxes
Percentage of True Positive Number of False Positive
ad Tl | I
- i
Search 2: Thickness, 2 Relaxes

Percentage of True Positive Number of False Positive

Bl |
Search 3: Color Distribution and Thickness, 2 Relaxes

Percentage of True Positive Number of False Positive
Bl
2 =

Figure 9.13: Qualitative test on the Naukratis collection. Each column represent the a query
search based on a Naukratis model that has been labelled by the experts.

Conclusions

In this Chapter we presented the architecture of our query-based search engine. For each dataset,
a set of similarity criteria are selected and converted into quantifiable similarity measures. These
assets are then combined based on the user request. We showed that such search engine can
work in multiple domains. At the time of the publication of the search engine [BMTS18]], pattern
similarity was not included in the search criteria. With the techniques developed in this thesis,
and in particular the contribution in the Chapter [/, we foresee the use of techniques such as
PATCH-CUT to add pattern similarity to the search engine.

168

Related publications

* S. Biasotti, E. Moscoso Thompson, M. Spagnuolo, Experimental Similarity Assessment
for a Collection of Fragmented Artifacts. Eurographics Workshop on 3D Object Retrieval,
2018.

 S. Biasotti, E. Moscoso Thompson, M. Spagnuolo, Context-adaptive navigation of 3D
model collections. Computers & Graphics, 2019.

169

Chapter 10

Concluding remarks

In this manuscript we faced the characterization and recognition of patterns on the surface of
digital 3D models. Our studies on pattern description consolidated in two methods (edgeLBP
and mpLBP) able to successfully deal with the pattern retrieval problem. Both the edgeLBP and
the mpLBP achieve state of the art performances on several benchmarks and are able to deal
with other datasets just by tuning three key parameters, without changing any step of the core
pipeline. Moreover, we showed that there is not an unique parameter setup that leads to good
results: indeed slight variations of the parameters do not significantly jeopardize the results. Both
edgeLBP and mpLBP descriptors are robust to noise and different mesh/point cloud resolutions.

These pattern characterization results act as a basis towards a more general pattern characteriza-
tion on models with more complex pattern(s) distribution(s). The PATCH-CUT method proposes
a general approach to the local characterization of surfaces based on chiseled geometric patterns.
To our knowledge, this is the first solution to the pattern recognition problem able to deal with
a generic surface. The results obtained so far are promising and allows for an efficient pattern
recognition across multiple models.

The whole work is also supported by a significant benchmarking activity that we carried on
during these years. Each benchmark starts as a contest and, for each one of them, we created
a dataset (great efforts went in both the dataset creation and in its ground-truth definition) and
coordinated different teams of researchers. Three benchmarks on pattern retrieval, in particu-
lar, serves as the “litmus test” for the respective trends regarding this problem. Each time, we
proposed a different kind of pattern or contest to be addressed (colorimetric patterns, geometric
patterns, real river-bed scans). Rather than being a failure due to the lack of methods able to solve
the pattern recognition contest, it became a starting point for our work and lays the foundations
for further research on the topic of pattern recognition. Two other benchmarks address some of
the challenges we encountered during the setup of our research and, to our knowledge, consol-
idated into contributions that at the current state of the art are unique. For instance, curvature

170

estimation benchmarks usually consider, as test cases, models with known curvature, limiting
the judgment of the goodness of the methods performance when they are applied to object scans.

As future research perspectives, we foresee several improvements. As a technical solution, we
think that all methods for geometric pattern analysis could benefit from a light pre-process
of the models the most damaged or barely noticeable reliefs from a detail enhancement algo-
rithm [BDC18]]. However, its use must be carefully pondered because on one hand it emphasizes
the model decorations but on the other hand it also emphasizes the model imperfections.

Regarding the pattern recognition methods presented in this thesis, we observe that the char-
acterization of patterns using the dictionary learning method leads to an inefficient pipeline (in
terms of the complexity of the pipeline and time with respect to the PATCH-CUT method) but
it is still able to achieve satisfying recognition results and contains in its description a wealth of
information that would be useful for further researches on pattern reconstruction or synthesis.
Indeed, further developments could exploit the synthetic description provided by the dictionary
learning to virtually create models decorated on the basis of a given template pattern.

Similarly, the multi-view RESNET50 method can greatly benefit from a more in-depth analysis
of the training process possibly considering the creation of synthetic simulations of a model abra-
sion and, more generally, a model degradation. Besides technical improvements of the PATCH-
CUT method like a more precise core definition, which is the main cause of the partial failures on
the trickier models, one of the major advantages of the method PATCH-CUT is its applicability
to domains where only a few pieces (full artifacts or fragments) are available, such as in the case
of Cultural Heritage, and therefore does not require data for training. This opens up interesting
perspectives, and although so far validated mainly on the use-cases of the GRAVITATE project,
it promises to be easily extended to other archaeological collections, e.g. of Egyptian or Roman
origin.

The application of our findings will add a new facet to those available for the exploration of
collections of 3D models. We proposed a search engine that, from a query model and a set of
constraints (on global and local characteristics of the objects), gives back a list of models in
the dataset that are similar to the query model on the basis of the constraints selected. In this
context, an application of the PATCH-CUT method on the query model will allow the user to
select one of the final labels obtained (i.e.: a pattern on the model) and to compare its descriptor
to those computed on the other models. A simulation of the difference between a run with or
without the “pattern-based facet” is shown in Figure Moreover, our results may fit into
already established annotation systems for Cultural Heritage artifacts [CVHS20], adding crucial
information that supports the cross characterization of models based on the decorations that can
be classified as patterns (as intended in this work). Eventually, a validation of both an enhanced
search engine and an enhanced CHAP notation, can greatly benefit from a validation with true
field experts, such as the archaeologists involved in the GRAVITATE project.

Other applications of our methods are possible also outside the CH field. The benchmark on

171

Query model search results with constraint on overall color tones

2 apfP={9an
vromflaéne G
Linfac~-7 0Kk
SilmmPn@LF

search results with constraints on color and colorimetric patterns

b N%aafl JgAverm
e mPaamiue
Broofle¢vEen

Figure 10.1: An example of a query search in the GRAVITATE dataset with two different sets
of constraints. Top: the query model (left) and the results of the search based on the general
color distribution on the whole model (right). Bottom: the same search adding the constraint the
models retrieved must contain the same colorimetric pattern of the query model.

river beds and previous contributions show that a number of naturalistic problems
may benefit from a general pattern recognition method. Even the biological research field can
take advantage of the pattern characterization. For instance, the way bio-molecules interact with
each other (docking) are influenced by factors of chemical and geometric nature. While the
precise geometric configurations that permit the docking between two bio-molecules are hard to

172

classify, recent works pose the docking problem as a pattern recognition one and address it with
learning-based methods based on curvature and scalar chemical physical properties [GSM™20]].

173

Bibliography

[AD17]

[ADBA09]

[AF06]

[AKKOO]

[AKZM14]

[APMI5]

[ASCI11]

Hiteshwar Kumar Azad and Akshay Deepak. Query expansion techniques for
information retrieval: a survey. Inf. Process. Manag., 56:1698-1735, 2017.

Vedrana Andersen, Mathieu Desbrun, J. Andreas Be&rentzen, and Henrik Aanzs.
Height and tilt geometric texture. In George Bebis, Richard Boyle, Bahram Parvin,
Darko Koracin, Yoshinori Kuno, Junxian Wang, Jun-Xuan Wang, Junxian Wang,
Renato Pajarola, Peter Lindstrom, André Hinkenjann, Miguel L. Encarnagio,
Claudio T. Silva, and Daniel Coming, editors, Advances in Visual Computing,
pages 656667, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

Marco Attene and Bianca Falcidieno. Remesh: An interactive environment to edit
and repair triangle meshes. In Proc. SMI’06, page 41. IEEE Computer Society,
2006.

Elif Albuz, Erturk D. Kocalar, and Ashfaq A. Khokhar. Quantized cielab* space
and encoded spatial structure for scalable indexing of large color image archives.
In Acoustics, Speech, and Signal Processing, ICASSP ’00, volume 6, pages 1995—
1998, 2000.

Melinos Averkiou, Vladimir G. Kim, Youyi Zheng, and N. Mitra. Shapesynth: Pa-
rameterizing model collections for coupled shape exploration and synthesis. Com-
puter Graphics Forum, 33, 2014.

Anthousis Andreadis, Georgios Papaioannou, and Pavlos Mavridis. Generalized
digital reassembly using geometric registration. In 2015 Digital Heritage, vol-
ume 2, pages 549-556, 2015.

Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. The wave kernel sig-
nature: A quantum mechanical approach to shape analysis. In 2011 IEEE In-
ternational Conference on Computer Vision Workshops (ICCV Workshops), pages
1626-1633, Nov 2011.

174

[AsLMF18]

[ASP17]

[BBL*17]

[BCA*14]

[BCAT16]

[BCBB16]

[BCFG11]

[BCEFS15]

[BCGS13]

[BDC18]

Gerasimos Arvanitis, Aris s. Lalos, Konstantinos Moustakas, and Nikos Fako-
takis. Feature preserving mesh denoising based on graph spectral processing.
IEEE Transactions on Visualization and Computer Graphics, PP(99):1-1, 2018.

Luca Di Angelo, Paolo Di Stefano, and Caterina Pane. Automatic dimensional
characterisation of pottery. Journal of Cultural Heritage, 26:118 — 128, 2017.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. Geometric deep learning: Going beyond Euclidean data. /[EEE Signal
Processing Magazine, 34(4):18—42, 2017.

Silvia Biasotti, Andrea Cerri, Mostafa Abdelrahman, Masaki Aono, A. Ben
Hamza, Magdly El-Melegy, Aaly Farag, Valeria Garro, Aandrea Giachetti,
Daniela Giorgi, Afzal Godil, Chen-Feng Li, Yong-Jin Liu, Hero Martono, Chika
Sanada, Atsushi Tatsuma, Santiago Velasco Forero, and Cx Xu. Retrieval and
Classification on Textured 3D Models. In Benjamin Bustos, Hedi Tabia, Jean-
Philippe Vandeborre, and Remco Veltkamp, editors, Eurographics Workshop on
3D Object Retrieval. The Eurographics Association, 2014.

Silvia Biasotti, Andrea Cerri, Masaki Aono, A. Ben Hamza, Valeria Garro, Andrea
Giachetti, Daniela Giorgi, Afzal Godil, Cheng-Feng Li, Chika Sanada, Michela
Spagnuolo, Atsushi Tatsuma, and Santiago Velasco Forero. Retrieval and classi-
fication methods for textured 3D models: a comparative study. The Visual Com-
puter, 32(2):217-241, 2016.

Silvia Biasotti, Andrea Cerri, Alexander Bronstein, and Michael Bronstein. Re-
cent trends, applications, and perspectives in 3D shape similarity assessment.
Computer Graphics Forum, 35(6):87-119, 2016.

Silvia Biasotti, Andrea Cerri, Patrizio Frosini, and Damiela Giorgi. A new algo-
rithm for computing the 2-dimensional matching distance between size functions.
Pattern Recogn. Lett., 32(14):1735-1746, 2011.

Silvia Biasotti, Andrea Cerri, Bianca Falcidieno, and Michela Spagnuolo. 3D
artifacts similarity based on the concurrent evaluation of heterogeneous properties.
J. Comput. Cult. Herit., 8(4):19:1-19:19, August 2015.

Silvia Biasotti, Andrea Cerri, Daniela Giorgi, and Michela Spagnuolo. Phog: Pho-
tometric and geometric functions for textured shape retrieval. Computer Graphics
Forum, 32(5):1383-1392, 2013.

Yohann Béarzi, Julie Digne, and Raphaélle Chaine. Wavejets: A local frequency
framework for shape details amplification. Computer Graphics Forum, Proc. Eu-
rographics 2018, 2018.

175

[BJNL14]

[BKO4]

[BKST05]

[BMM*15]

[BMTA"17]

[BMTB*18]

[BMTS18]

[BreO1]
[BUSO09]

Sheryl Brahnam, Lakhmi Jain, Loris Nanni, and Alessandra Lumini. Local binary
patterns: New variants and applications. Studies in Computational Intelligence,
506, 09 2014.

Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. /[EEE Trans. Pattern
Anal. Mach. Intell., 26(9):1124-1137, September 2004.

Benjamin Bustos, Daniel A. Keim, D. Saupe, Tobias Schreck, and Dejan V.
Vrani¢. Feature-based similarity search in 3D object databases. ACM Comput.
Surv., 37(4):345-387, 2005.

Davide Boscaini, Jonathan Masci, Simone Melzi, Michael Bronstein, Umberto
Castellani, and Pierre Vandergheynst. Learning class-specific descriptors for
deformable shapes using localized spectral convolutional networks. Computer
Graphics Forum, 34(5):13-23, 2015.

Silvia Biasotti, Elia Moscoso Thompson, Masaki Aono, Ben Hamza, Benjamin
Bustos, Shuilong Dong, Bowen Du, Amin Fehri, Haisheng Li, Frederico Lim-
berger, Majid Masoumi, Mahsa Rezaei, Ivan Sipiran, Li Sun, Atsushi Tatsuma,
Santiago Velasco Forero, Richard Wilson, Yan Wu, Junjie Zhang, Tianyu Zhao,
Francesco Fornasa, and Aandrea Giachetti. SHREC’17: Retrieval of Surfaces with
Similar Relief Patterns. In I. Pratikakis, F. Dupont, and M. Ovsjanikov, editors,
Eurographics Workshop on 3D Object Retrieval. The Eurographics Association,
2017.

Silvia Biasotti, Elia Moscoso Thompson, Loic Barthe, Stefano Berretti, Andrea
Giachetti, Thibault Lejemble, Nicolas Mellado, Konstantinos Moustakas, Iason
Manolas, Dimitrios Dimou, Claudio Tortorici, Santiago Velasco Forero, Naoufel
Werghi, Martina Polig, Giusi Sorrentino, and Sorin Hermon. Recognition of Geo-
metric Patterns Over 3D Models. In Alex Telea, Theoharis Theoharis, and Remco
Veltkamp, editors, Eurographics Workshop on 3D Object Retrieval. The Euro-
graphics Association, 2018.

Silvia Biasotti, Elia Moscoso Thompson, and Michela Spagnuolo. Experimental
Similarity Assessment for a Collection of Fragmented Artifacts. In Alex Telea,
Theoharis Theoharis, and Remco Veltkamp, editors, Eurographics Workshop on
3D Object Retrieval, pages 103—110. The Eurographics Association, 2018.

Leo Breiman. Random forests. Mach. Learn., 45(1):5-32, October 2001.

Christian Beecks, Merih Seran Uysal, and Thomas Seidl. Signature quadratic form
distances for content-based similarity. In Proceedings of the 17th ACM Interna-

176

[BVZ01]

[BYRN99]

[BZMO7]

[CBA113]

[CCB16]

[CCCT08]

[CCS12]

[CGKO3]

[CH67]

[CHLOS]

tional Conference on Multimedia, MM °09, page 697-700, New York, NY, USA,
2009. Association for Computing Machinery.

Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimiza-
tion via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1222-12309,
November 2001.

Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Re-
trieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

Anna Bosch, Andrew Zisserman, and X. Mufoz. Image classification using ran-
dom forests and ferns. 2007 IEEE 11th International Conference on Computer
Vision, pages 1-8, 2007.

Andrea Cerri, Silvia Biasotti, Mostafa Abdelrahman, Jesus Angulo, K. Berger,
Louis Chevallier, Magdy El-Melegy, Aly Farag, F. Lefebvre, Andrea Gia-
chetti, Hassane Guermoud, Yong-Jin Liu, Santiago Velasco Forero, Jean-Ronan
Vigouroux, Cx Xu, and Jun Zhang. SHREC’13 Track: Retrieval on Textured 3D
Models. In 3DOR’13, EG 3DOR’13, pages 73-80, Girona, Spain, 2013. Euro-
graphics Association.

Alessio Cislaghi, Enrico Antonio Chiaradia, and Gian Battista Bischetti. A com-
parison between different methods for determining grain distribution in coarse
channel beds. International Journal of Sediment Research, 31(2):97-109, 2016.

Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio
Ganovelli, and Guido Ranzuglia. MeshLab: an Open-Source Mesh Processing
Tool. In Vittorio Scarano, Rosario De Chiara, and Ugo Erra, editors, EGIT 08,
pages 129—-136. The Eurographics Association, 2008.

Massimiliano Corsini, Paolo Cignoni, and Roberto Scopigno. Efficient and flexi-
ble sampling with blue noise properties of triangular meshes. IEEE Transactions
on Visualization and Computer Graphics, 18(6):914-924, 2012.

Antonio Cardone, Satyandra K. Gupta, and Mukul Karnik. A survey of shape
similarity assessment algorithms for product design and manufacturing applica-
tions. Journal of Computing and Information Science in Engineering, 3:109 —
118, 2003/06/00/ 2003.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. [IEEE
Transactions on Information Theory, 13(1):21-27, 1967.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric dis-
criminatively, with application to face verification. In Proceedings of the 2005

177

[ChuO1]

[CPO3]

[CRCT02]

[CSBT17]

[CSMO03]

[CSMO6]

[CSSB10]

[CVHS20]

[CWST15]

[DDO09]

IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05) - Volume 1 - Volume 01, CVPR 05, page 539-546, USA, 2005. IEEE
Computer Society.

Moo K. Chung. Statistical morphometry in computional neuroanatomy. Master’s
thesis, McGill University, Montreal, 2001.

Frederic Cazals and Marc Pouget. Estimating differential quantities using polyno-
mial fitting of osculating jets. In Proc. of SGP’03, pages 177-187. Eurographics
Association, 2003.

Jhonathan Corney, Heather Rea, Doug Clark, John Pritchard, Michael Breaks, and
Roddy Macleod. Coarse filters for shape matching. IEEE Comput. Graph. Appl.,
22(3):65-74, May 2002.

Berk Calli, Arjun Singh, James Bruce, Aaron Walsman, Kurt Konolige, Sid-
dhartha Srinivasa, Pieter Abbeel, and Aaron M Dollar. Yale-CMU-Berkeley
dataset for robotic manipulation research. Int. J. Rob. Res., 36(3):261-268, March
2017.

David Cohen-Steiner and Jean-Marie Morvan. Restricted Delaunay triangulations
and normal cycle. In Proc. of the 9" Ann. Symp. on Computational Geometry,
SCG ’03, pages 312-321, New York, NY, USA, 2003. ACM.

David Cohen-Steiner and Jean-Marie Morvan. Second fundamental measure of
geometric sets and local approximation of curvatures. J. Differential Geom.,
74(3):363-394, 11 2006.

Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. Large scale online
learning of image similarity through ranking. Journal of Machine Learning Re-
search, 11(36):1109-1135, 2010.

Chiara Eva Catalano, Valentina Vassallo, Sorin Hermon, and Michela Spagn-
uolo. Representing quantitative documentation of 3d cultural heritage artefacts
with CIDOC crmdig. Int. J. Digit. Libr., 21(4):359-373, 2020.

Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel,
and Aaron M. Dollar. Benchmarking in manipulation research: Using the Yale-
CMU-Berkeley object and model set. [IEEE Robotics Automation Magazine,
22(3):36-52, Sept 2015.

Michel Marie Deza and Elena Deza. Encyclopedia of Distances. Springer Berlin
Heidelberg, 2009.

178

[DDS*09]

[DFG99]

[DTC*17]

[DVCI8]

[DWO05]

[EEVG™*15]

[EGHP*02]

[EKSX96]

[FBF77]

[FHOS]

[FMN19]

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248-255, 2009.

Qiang Du, Vance Faber, and Max Gunzburger. Centroidal voronoi tessellations:
Applications and algorithms. SIAM Rev., 41(4):637-676, December 1999.

Teddy Debroutelle, Sylvie Treuillet, Aladine Chetouani, Matthieu Exbrayat, Li-
onel Martin, and Sebastien Jesset. Automatic classification of ceramic sherds with
relief motifs. Journal of Electronic Imaging, 26(2):1 — 14, 2017.

Julie Digne, S. Valette, and Raphaélle Chaine. Sparse geometric representation
through local shape probing. IEEE Transactions on Visualization and Computer
Graphics, 24:2238-2250, 2018.

Chen-shi Dong and Guo-zhao Wang. Curvatures estimation on triangular mesh.
J. of Zhejiang University-SCIENCE A, 6(1):128-136, 2005.

Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. 1. Williams,
John Winn, and Andrew Zisserman. The pascal visual object classes challenge:

A retrospective. International Journal of Computer Vision, 111(1):98-136, Jan
2015.

Efrat, Guibas, Sariel Har-Peled, Mitchell, and Murali. New similarity measures
between polylines with applications to morphing and polygon sweeping. Discrete
& Computational Geometry, 28(4):535-569, Nov 2002.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Pro-

ceedings of the Second International Conference on Knowledge Discovery and
Data Mining, KDD’96, page 226-231. AAAI Press, 1996.

Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm
for finding best matches in logarithmic expected time. ACM Trans. Math. Softw.,
3(3):209-226, September 1977.

Michael S. Floater and Kai Hormann. Surface parameterization: a tutorial and sur-
vey. In Neil A. Dodgson, Michael S. Floater, and Malcolm A. Sabin, editors, Ad-
vances in Multiresolution for Geometric Modelling, pages 157-186, Berlin, Hei-
delberg, 2005. Springer Berlin Heidelberg.

Linjing Fang, Fred Monroe, Sammy Weiser Novak, Lyndsey Kirk, Cara R. Schi-
avon, Seungyoon B. Yu, Tong Zhang, Melissa Wu, Kyle Kastner, Yoshiyuki Kub-
ota, Zhao Zhang, Gulcin Pekkurnaz, John Mendenhall, Kristen Harris, Jeremy

179

[GBMT*20]

[GBPO7]

[GCL*15]

[GCO06]

[GFF*15]

[GFSF10]

[GGO6]

[GGO7]

[GG16]

[GGGO8]

Howard, and Uri Manor. Deep learning-based point-scanning super-resolution
imaging. bioRxiv, 2019.

Andrea Giachetti, Silvia Biasotti, Elia Moscoso Thompson, Luigi Fraccarollo,
Quang Nguyen, Hai-Dang Nguyen, Minh-Triet Tran, Gerasimos Arvanitis, loan-
nis Romanelis, Vlasis Fotis, Konstantinos Moustakas, Claudio Tortorici, Naoufel
Werghi, and Stefano Berretti. SHREC 2020 Track: River Gravel Characterization.
In Tobias Schreck, Theoharis Theoharis, Ioannis Pratikakis, Michela Spagnuolo,
and Remco C. Veltkamp, editors, Eurographics Workshop on 3D Object Retrieval.
The Eurographics Association, 2020.

Daniela Giorgi, Silvia Biasotti, and Laura Paraboschi. Watertight models track.
Research Report 09, IMATI, Genova, 2007.

Lin Gao, Yan-Pei Cao, Yu-Kun Lai, Hao-Zhi Huang, Leif Kobbelt, and Shi-Min
Hu. Active exploration of large 3d model repositories. [EEE Transactions on
Visualization and Computer Graphics, 99(PrePrints):1, 2015.

Ran Gal and Daniel Cohen-Or. Salient geometric features for partial shape match-
ing and similarity. ACM Transactions on Graphics (TOG), 25(1):130-150, 2006.

Andrea Giachetti, Francesco Farina, Francesco Fornasa, Atsushi Tatsuma, Chika
Sanada, Masaki Aono, Silvia Biasotti, Andrea Cerri, and Sungbin Choi. Retrieval
of Non-rigid (textured) Shapes Using Low Quality 3D Models. In I. Pratikakis,
M. Spagnuolo, T. Theoharis, L. Van Gool, and R. Veltkamp, editors, 3DOR’15.
The Eurographics Association, 2015.

Daniela Giorgi, Patrizio Frosini, Michela Spagnuolo, and Bianca Falcidieno. 3D
relevance feedback via multilevel relevance judgements. The Visual Computer,
26(10):1321-1338, 2010.

Timothy Gatzke and Cindy M. Grimm. Estimating curvature on triangular meshes.
International Journal of Shape Modeling, 12(1):1-28, 2006.

Gaél Guennebaud and Markus Gross. Algebraic point set surfaces. ACM Trans.
Graph., 26(3), July 2007.

Valeria Garro and Andrea Giachetti. Scale space graph representation and kernel
matching for non rigid and textured 3D shape retrieval. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 38(6):1258-1271, 2016.

Gaél Guennebaud, Marcel Germann, and Markus Gross. Dynamic sampling and
rendering of algebraic point set surfaces. CG Forum, 27(2):653-662, 2008.

180

[GI04]

[Gial8]

[GKM'02]

[GMGPO5]

[GSM120]

[HCDC17]

[Heall]

[HG20]

[HLP*19]

[HPO4]

[HSS*13]

[HT10]

Jack Goldfeather and Victoria Interrante. A novel cubic-order algorithm for ap-
proximating principal direction vectors. ACM Trans. Graph., 23(1):45-63, Jan-
uary 2004.

Andrea Giachetti. Effective characterization of relief patterns. Computer Graphics
Forum, 37(5):83-92, 2018.

Elamir S. Gadelmawla, Monir M. Koura, Talal M.A. Maksoud, Ibrahiem M.
Elewa, and Hassan H. Soliman. Roughness parameters. Journal of Materials
Processing Technology, 123(1):133 — 145, 2002.

Natasha Gelfand, Niloy J. Mitra, Leonidas J. Guibas, and Helmut Pottmann. Ro-
bust global registration. In Symposium on Geometry Processing, pages 197-206,
2005.

Pablo Gainza, Freyr Sverrisson, Federico Monti, Emanuele Rodola, Davide
Boscaini, Michael Bronstein, and Bruno Correia. Deciphering interaction finger-
prints from protein molecular surfaces using geometric deep learning. NATURE
METHODS, 17:184—+, 2020.

Azzouz Hamdi-Cherif, Julie Digne, and Raphaélle Chaine. Super-resolution of
point set surfaces using local similarities. Computer Graphics Forum, 37, 06 2017.

Marti A. Hearst. Natural search user interfaces. Commun. ACM, 54(11):60-67,
November 2011.

Jeremy Howard and Sylvain Gugger. Fastai: A layered api for deep learning.
Information, 11(2):108, Feb 2020.

Gao Huang, Zhuang Liu, Geoff Pleiss, Laurens Van Der Maaten, and Kilian Wein-
berger. Convolutional networks with dense connectivity. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2019.

Klaus Hildebrandt and Konrad Polthier. Anisotropic Filtering of Non-Linear Sur-
face Features. Computer Graphics Forum, 2004.

Shi-Sheng Huang, Ariel Shamir, Chao-Hui Shen, Hao Zhang, Alla Sheffer, Shi-
Min Hu, and Daniel Cohen-Or. Qualitative organization of collections of shapes
via quartet analysis. ACM Trans. Graph., 32(4):71:1-71:10, July 2013.

Gur Harary and Ayellet Tal. 3d euler spirals for 3d curve completion. In Proceed-
ings of the Twenty-Sixth Annual Symposium on Computational Geometry, SOCG
10, page 393-402, New York, NY, USA, 2010. Association for Computing Ma-
chinery.

181

[HT11]

[HZRS15]

[UL*05]

[Ins]
[IT11]

[KB14]

[KBCO06]

[KC11]

[KFLCO13]

[KFRO3]

[KKF91]

[KLM*12]

Gur Harary and A. Tal. The natural 3d spiral. Computer Graphics Forum, 30,
2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

Natraj Iyer, Subramaniam Jayanti, Kuiyang Lou, Yagnanarayanan Kalyanaraman,
and Karthik Ramani. Three-dimensional shape searching: state-of-the-art review
and future trends. Computer-Aided Design, 37(5):509 — 530, 2005. Geometric
Modeling and Processing 2004.

The Cyprus Institute. STARC repository. http://public.cyi.ac.cy/starcRepo/.

Arik Itskovich and Ayellet Tal. Surface partial matching and application to archae-
ology. Computers & Graphics, 35(2):334 — 341, 2011.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2014.

Manesh Kokare, Prabir K. Biswas, and Biswa Nath Chatterji. Rotation-invariant
texture image retrieval using rotated complex wavelet filters. IEEE Trans. on Sys-
tems, Man, and Cybernetics, Part B (Cybernetics), 36(6):1273—1282, Dec 2006.

Anestis Koutsoudis and Christodoulos Chamzas. 3D pottery shape matching using
depth map images. Journal of Cultural Heritage, 12(2):128 — 133, 2011.

Yanir Kleiman, Noa Fish, Joel Lanir, and Daniel Cohen-Or. Dynamic maps
for exploring and browsing shapes. In Proceedings of the Eleventh Eurograph-
ics/ACMSIGGRAPH Symposium on Geometry Processing, SGP 13, pages 187—
196. Eurographics Association, 2013.

Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz. Rotation in-
variant spherical harmonic representation of 3D shape descriptors. In EG/ACM
SIGGRAPH Symposium on Geometry Processing, pages 156—164. Eurographics
Association, 2003.

Vassos Karageorghis, Jacqueline Karageorghis, and A.G. Leventis Foundation.
The coroplastic art of ancient Cyprus. Nicosia : A.G. Leventis Foundation, 1991.
At head of title: A.G. Leventis Foundation.

Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Stephen DiVerdi, and Thomas
Funkhouser. Exploring collections of 3D models using fuzzy correspondences.
ACM Trans. Graph., 31(4):54:1-54:11, July 2012.

182

[KPL*10]

[KSNSO07]

[KvD92]

[KZ04]

[LBSO7]

[LBZ*13]

[LHGMOS]

[LJH"19]

[LKF10]

[LMTOS5]

[Low04]

[LSZU15]

Anestis Koutsoudis, George Pavlidis, Vassiliki Liami, Despoina Tsiafakis, and
Christodoulos Chamzas. 3d pottery content-based retrieval based on pose normal-
isation and segmentation. Journal of Cultural Heritage, 11(3):329 — 338, 2010.

Evangelos Kalogerakis, Patricio Simari, Derek Nowrouzezahrai, and Karan Singh.
Robust statistical estimation of curvature on discretized surfaces. In Proc of SGP
'07, pages 13-22. EG Association, 2007.

Jan J Koenderink and Andrea J van Doorn. Surface shape and curvature scales.
IVC, 10(8):557-564, 1992.

Vladimir Kolmogorov and Ramin Zabin. What energy functions can be minimized
via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(2):147-159, 2004.

Torsten Langer, Alexander Belyaev, and Hans-Peter Seidel. Exact and interpo-
latory quadratures for curvature tensor estimation. Comput. Aided Geom. Des.,
24(8-9):443-463, November 2007.

Zhen-Bao Liu, Shu-Hui Bu, Kun Zhou, Shu-Ming Gao, Jun-Wei Han, and Jun Wu.
A survey on partial retrieval of 3D shapes. J. Comput. Sci. Technol., 28(5):836—
851, 2013.

Yu-Kun. Lai, Shi-Min Hu, David Xianfeng Gu, and Ralph Robert Martin. Geo-
metric texture synthesis and transfer via geometry images. In Proceedings of the
2005 ACM Symposium on Solid and Physical Modeling, SPM °05, page 15-26,
New York, NY, USA, 2005. Association for Computing Machinery.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jian-
feng Gao, and Jiawei Han. On the variance of the adaptive learning rate and
beyond, 2019.

Yann LeCun, Koray Kavukcuoglu, and Clement Farabet. Convolutional networks
and applications in vision. In Proceedings of 2010 IEEE International Symposium
on Circuits and Systems, pages 253-256, 2010.

George Leifman, Ron Meir, and Ayellet Tal. Semantic-oriented 3D shape retrieval
using relevance feedback. The Visual Computer, 21(8-10):865-875, 2005.

David Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60:91—, 11 2004.

Lei Liu, Yun Sheng, Guixu Zhang, and Hassan Ugail. Graph cut based mesh
segmentation using feature points and geodesic distance. In 2015 International
Conference on Cyberworlds (CW), pages 115-120, 2015.

183

[MBBV15]

[MBG+20]

[MDSBO03]

[MF97]

[MGB*12]

[MP43]

[MP17]

[MPS*04]

[MPS17]

Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst.
Geodesic convolutional neural networks on riemannian manifolds. In 2015 IEEE
International Conference on Computer Vision Workshop (ICCVW), pages 832—
840, 2015.

Elia Moscoso Thompson, Silvia Biasotti, Andrea Giachetti, Claudio Tortorici,
Naoufel Werghi, Ahmad Shaker Obeid, Stefano Berretti, Hoang-Phuc Nguyen-
Dinh, Minh-Quan Le, Hai-Dang Nguyen, Minh-Triet Tran, Leonardo Gigli, San-
tiago Velasco Forero, Beatriz Marcotegui, Ivan Sipiran, Benjamin Bustos, [oannis
Romanelis, Vlassis Fotis, Gerasimos Arvanitis, Konstantinos Moustakas, Ekpo
Otu, Reyer Zwiggelaar, David Hunter, Yonghuai Liu, Yoko Arteaga, and Ra-
mamoorthy Luxman. Shrec 2020: Retrieval of digital surfaces with similar ge-
ometric reliefs. Computers & Graphics, 91:199 — 218, 2020.

Mark Meyer, Mathieu Desbrun, Peter Schroder, and Alan H. Barr. Discrete
differential-geometry operators for triangulated 2-manifolds. In Hans-Christian
Hege and Konrad Polthier, editors, Visualization and Mathematics 111, pages 35—
57, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

Andrea Marion and Luigi Fraccarollo. New conversion model for areal sam-
pling of fluvial sediments. Journal of Hydraulic Engineering, 123(12):1148-1151,
1997.

Nicolas Mellado, Gaél Guennebaud, Pascal Barla, Patrick Reuter, and Christophe
Schlick. Growing least squares for the analysis of manifolds in scale-space. Com-
puter Graphics Forum, 31(5):1691-1701, 2012.

Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115-133, Dec
1943.

Marvin Minsky and Seymour A. Papert. Perceptrons: An Introduction to Compu-
tational Geometry. The MIT Press, 2017.

Michela Mortara, Giuseppe Patané, Michela Spagnuolo, Bianca Falcidieno, and
Jarek Rossignac. Blowing bubbles for multi-scale analysis and decomposition
oftriangle meshes. Algorithmica, 38(1):227-248, Jan 2004.

Michela Mortara, Corrado Pizzi, and Michela Spagnuolo. Streamlining the Prepa-
ration of Scanned 3D Artifacts to Support Digital Analysis and Processing: the
GRAVITATE Case Study. In Tobias Schreck, Tim Weyrich, Robert Sablatnig,
and Benjamin Stular, editors, Eurographics Workshop on Graphics and Cultural
Heritage. The Eurographics Association, 2017.

184

[MSRO7]

[MTAM*19]

[MTB18]

[MTB19]

[MTBS+18]

[MTW+18]

[Mus17]
[Nib85]

[OBCS*12]

[OFCDO02]

[OPH96]

Evgeni Magid, Octavian Soldea, and Ehud Rivlin. A comparison of Gaussian
and mean curvature estimation methods on triangular meshes of range image data.
CVIU, 107(3):139 - 159, 2007.

Elia Moscoso Thompson, Gerasimos Arvanitis, Konstantinos Moustakas, Nhi
Hoang-Xuan, E Ro Nguyen, Minh-Triet Tran, Thibault Lejemble, Loic Barthe,
Nicolas Mellado, Chiara Romanengo, Silvia Biasotti, and Bianca Falcidieno.
SHREC’19 track: Feature Curve Extraction on Triangle Meshes. In 12th EG
Workshop 3D Object Retrieval 2019, pages 1 — 8, Génes, Italy, May 2019.

Elia Moscoso Thompson and Silvia Biasotti. Edge-based lbp description of sur-
faces with colorimetric patterns. In Proceedings of the 11th Eurographics Work-
shop on 3D Object Retrieval, 3DOR 18, page 1-8, Goslar, DEU, 2018. Euro-
graphics Association.

Elia Moscoso Thompson and Silvia Biasotti. Retrieving color patterns on surface
meshes using edgelbp descriptors. Computers & Graphics, 79:46 — 57, 2019.

Elia Moscoso Thompson, Silvia Biasotti, Giusi Sorrentino, Martina Polig, and
Sorin Hermon. Towards an Automatic 3D Patterns Classification: the GRAVI-
TATE Use Case. In Robert Sablatnig and Michael Wimmer, editors, Eurograph-
ics Workshop on Graphics and Cultural Heritage. The Eurographics Association,
2018.

Elia Moscoso Thompson, Claudio Tortorici, Naoufel Werghi, Stefano Berretti,
Santiago Velasco Forero, and Silvia Biasotti. Retrieval of Gray Patterns Depicted
on 3D Models. In Alex Telea, Theoharis Theoharis, and Remco Veltkamp, editors,
Eurographics Workshop on 3D Object Retrieval. The Eurographics Association,
2018.

British Museum. British Museum - Naukratis: An introduction, 2017.

Wayne Niblack. An Introduction to Digital Image Processing. Strandberg Pub-
lishing Company, DNK, 1985.

Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and
Leonidas Guibas. Functional maps: A flexible representation of maps between
shapes. ACM Trans. Graph., 31(4):30:1-30:11, July 2012.

Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin. Shape
distributions. ACM Trans. Graph., 21(4):807-832, October 2002.

Timo Ojala, Matti Pietikdinen, and David Harwood. A comparative study of tex-
ture measures with classification based on featured distributions. Pattern Recog-
nition, 29(1):51-59, 1996.

185

[OPMO2]

[OVSP13]

[Pey]

[PSM10]

[PTO6]

[PV18]

[PZC13]

[QYSG17]

[RBBO09]

[RDO6]

[Rij79]

Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns. IEEE T. Pattern
Anal. Mach. Intell., 24(7):971-987, 2002.

Ahlem Othmani, Lew FC Lew Yan Voon, Christophe Stolz, and Alexandre Pi-
boule. Single tree species classification from terrestrial laser scanning data for
forest inventory. Pattern Recognition Letters, 34(16):2144-2150, 2013.

Gabriel Peyre. Toolbox graph - A toolbox to process graph and triangulated
meshes. http://www.ceremade.dauphine.fr/ peyre/ matlab/graph/content.html.

Florent Perronnin, Jorge Sdnchez, and Thomas Mensink. Improving the fisher
kernel for large-scale image classification. In Proceedings of the 11th European
Conference on Computer Vision: Part IV, ECCV’10, page 143-156, Berlin, Hei-
delberg, 2010. Springer-Verlag.

Flip Phillips and James Todd. Perception of local three-dimensional shape. Jour-

nal of experimental psychology. Human perception and performance, 22 4:930-
44, 1996.

M. Prantl and L. VaSa. Estimation of differential quantities using hermite rbf
interpolation. The Visual Computer, 34(12):1645-1659, Dec 2018.

Giuliano Pasqualotto, Pietro Zanuttigh, and Guido M. Cortelazzo. Combin-
ing color and shape descriptors for 3D model retrieval. Signal Process-Image,
28(6):608 — 623, 2013.

Charles Ruizhongtai Qi, Li Y1, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in Neural
Information Processing Systems, pages 5105-5114, 2017.

Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature his-
tograms (fpfh) for 3D registration. In Proceedings of the 2009 IEEE International
Conference on Robotics and Automation, ICRA’09, pages 1848-1853, Piscataway,
NJ, USA, 2009. IEEE Press.

Edward Rosten and Tom Drummond. Machine learning for high-speed corner

detection. In Proceedings of the 9th European Conference on Computer Vision
- Volume Part I, ECCV’06, page 430-443, Berlin, Heidelberg, 2006. Springer-
Verlag.

C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton,
MA, USA, 2nd edition, 1979.

186

[Rob20]

[Ros58]

[RTGOO]

[Rus04]

[RZEO8]

[SA16]

[Shi95]
[SJ99]

[SKVS13]

[SMKF04]

[SPS16]

[SSBT17]

Rob Tuytel. Texture Haven. https://texturehaven.com/, 2020. Ac-
cessed: 2020-04-23.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65 6:386—408, 1958.

Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The Earth Mover’s Dis-

tance as a metric for image retrieval. International Journal of Computer Vision,
40(2):99-121, Nov 2000.

Szymon Rusinkiewicz. Estimating curvatures and their derivatives on triangle
meshes. In Proceedings. 2nd International Symposium on 3D Data Processing,
Visualization and Transmission, 2004. 3DPVT 2004., pages 486—493, Sept 2004.

Ron Rubinstein, Michael Zibulevsky, and Michael Elad. Efficient implementation
of the k-svd algorithm using batch orthogonal matching pursuit. CS Technion, 40,
01 2008.

M. Stamatopoulos and C. Anagnostopoulos. The thickness profile method: A new
digital 3D approach for reassembling unpainted archaeological ceramic pottery. In
IMEKO International Conference on Methodology for Archaeology and Cultural
Heritage, 2016.

Eugene V Shikin. Handbook and atlas of curves. CRC, 1995.

Simone Santini and Ramesh Jain. Similarity measures. IEEE Trans. Pattern Anal.
Mach. Intell., 21(9):871-883, September 1999.

Dirk Smeets, Johannes Keustermans, Dirk Vandermeulen, and Paul Suetens.
meshSIFT: Local surface features for 3D face recognition under expression varia-
tions and partial data. Computer Vision and Image Understanding, 117(2):158 —
169, 2013.

Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser. The
princeton shape benchmark. In Shape modeling applications, 2004. Proceedings,
pages 167-178. IEEE, 2004.

Michalis A. Savelonas, Ioannis Pratikakis, and Konstantinos Sfikas. Fisher en-
coding of differential fast point feature histograms for partial 3D object retrieval.
Pattern Recognition, 55:114 — 124, 2016.

Adriana Schulz, Ariel Shamir, Ilya Baran, David I. W. Levin, Pitchaya Sitthi-
Amorn, and Wojciech Matusik. Retrieval on parametric shape collections. ACM
Trans. Graph., 36(4), January 2017.

187

https://texturehaven.com/

[SSCOO08]

[Suz01]

[SWST00]

[SZ14]

[SZ19]

[Tau95a]

[Tau95b]

[TBF18]

[TCL*13]

[THI15]

[TL19]

[TSDSI11]

Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. Consistent mesh partitioning
and skeletonisation using the shape diameter function. Vis. Comput., 24(4):249—
259, 2008.

Motofumi T. Suzuki. A Web-based retrieval system for 3D polygonal models.
In IFSA World Congress and 20th NAFIPS International Conference. Joint 9th,
volume 4, pages 2271-2276, 2001.

Arnold W. M. Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, and
Ramesh Jain. Content-based image retrieval at the end of the early years. /IEEE
Trans. Pattern Anal. Mach. Intell., 22(12):1349-1380, December 2000.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014.

M. Seidl and M. Zeppelzauer. Towards distinction of rock art pecking styles with
a hybrid 2d/3d approach. In 2019 International Conference on Content-Based
Multimedia Indexing (CBMI), pages 1-4, 2019.

Gabriel Taubin. Estimating the tensor of curvature of a surface from a polyhedral

approximation. In Proceedings of IEEE International Conference on Computer
Vision, pages 902-907, June 1995.

Gabriel Taubin. A signal processing approach to fair surface design. In Pro-
ceedings of the 22Nd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’95, pages 351-358, New York, NY, USA, 1995. ACM.

Maria-Laura Torrente, Silvia Biasotti, and Bianca Falcidieno. Recognition of fea-
ture curves on 3D shapes using an algebraic approach to hough transforms. Pattern
Recognition, 73:111 — 130, 2018.

G.K.L. Tam, Zhi-Quan Cheng, Yu-Kun Lai, F.C. Langbein, Yonghuai Liu, D. Mar-
shall, R.R. Martin, Xian-Fang Sun, and P.L. Rosin. Registration of 3D point
clouds and meshes: A survey from rigid to nonrigid. IEEE T. Vis. Comput. Gr.,
19(7):1199-1217, 2013.

Abdel Aziz Taha and Allan Hanbury. Metrics for evaluating 3D medical image
segmentation: analysis, selection, and tool. In BMC Medical Imaging, 2015.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convo-
lutional neural networks. CoRR, abs/1905.11946, 2019.

Federico Tombari, Samuele Salti, and Luigi Di Stefano. A combined texture-shape
descriptor for enhanced 3D feature matching. In Image Processing (ICIP), 2011
IEEE International Conference on, pages 809-812, 2011.

188

[TV04]

[TVO8]

[TWB15]

[TWB19a]

[TWB19b]

[UUTCIC']

[VRST06]

[VVP'16]

[WAVK*12]

[WBB15]

J. W. H. Tangelder and R. C. Veltkamp. A survey of content based 3d shape

retrieval methods. In Proceedings Shape Modeling Applications, 2004., pages
145-156, 2004.

Johan W. H. Tangelder and Remco C. Veltkamp. A survey of content based 3D
shape retrieval methods. Multimedia Tools Appl., 39(3):441-471, 2008.

C. Tortorici, N. Werghi, and S. Berretti. Boosting 3D LBP-based face recognition
by fusing shape and texture descriptors on the mesh. In 2015 IEEE International
Conference on Image Processing (ICIP), pages 2670-2674, Sept 2015.

Claudio Tortorici, Naoufel Werghi, and Stefano Berretti. Defining mesh-lbp vari-
ants for 3d relief patterns classification. In Liming Chen, Boulbaba Ben Amor, and
Faouzi Ghorbel, editors, Representations, Analysis and Recognition of Shape and
Motion from Imaging Data, pages 151-166, Cham, 2019. Springer International
Publishing.

Claudio Tortorici, Naoufel Werghi, and Stefano Berretti. Extending Ibp and
convolution-like operations on the mesh. In 2019 IEEE International Conference
on Image Processing (ICIP), pages 4479-4483, 2019.

IT Innovation Centre (UK), British Museum (UK), Consiglio Nazionale delle
Ricerche Institute of Applied Mathematics The Cyprus Institute (Cyprus), Infor-
mation Technologies (Italy), University of Amsterdam (Netherland), Technion —
Israel Institute of Technology (Israel), and University of Haifa (Israel). GRAVI-
TATE: Discovering relationships between artefacts using 3D and semantic data.
EU H2020 REFLECTIVE project.

R. Veltkamp, R. Ruijsenaars, M. Spagnuolo, R. V. Zwol, and F. T. Haar.
Shrec2006: 3d shape retrieval contest. Technical report, Department of Infor-
mation and Computing Sciences, Utrecht University, 2006.

Libor Vasa, Petr Vanécek, Martin Prantl, Véra Skorkovska, Petr Martinek, and
Ivana Kolingerova. Mesh Statistics for Robust Curvature Estimation. CG Forum,
35(5):271-280, 2016.

Yunhai Wang, Shmulik Asafi, Oliver van Kaick, Hao Zhang, Daniel Cohen-Or,
and Baoquan Chen. Active co-analysis of a set of shapes. ACM Trans. Graph.,
31(6):165:1-165:10, November 2012.

Naoufel Werghi, Stefano Berretti, and Alberto Del Bimbo. The mesh-LBP: A
framework for extracting local binary patterns from discrete manifolds. /EEE
Trans. Image Processing, 24(1):220-235, 2015.

189

[WCL*08]

[WLT16]

[Wol54]

[WPSO05]

[WSK*15]

[WTBB16]

[WTBdAB15]

[YM12]

[YSLHO3]

[YZC17]

[ZBHI12]

Changchang Wu, B. Clipp, Xiaowei Li, J.-M. Frahm, and M. Pollefeys. 3D model
matching with Viewpoint-Invariant Patches (VIP). In Computer Vision and Pattern
Recognition (CVPR), 2008 IEEE Conference on, pages 1-8, 2008.

Peng-Shuai Wang, Yang Liu, and Xin Tong. Mesh denoising via cascaded normal
regression. ACM Trans. Graph., 35(6):232:1-232:12, November 2016.

M Gordon Wolman. A method of sampling coarse river-bed material. EOS, Trans-
actions American Geophysical Union, 35(6):951-956, 1954.

Kilian Q. Weinberger, Ben Packer, and Lawrence Saul. Nonlinear dimensionality
reduction by semidefinite programming and kernel matrix factorization. In AIS-
TATS, 2005.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric
shapes. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1912—-1920, June 2015.

Naoufel Werghi, Claudio Tortorici, Stefano Berretti, and Alberto Del Bimbo.
Boosting 3D LBP-based face recognition by fusing shape and texture descriptors
on the mesh. IEEE Trans. Information Forensics and Security, 11(5):964-979,
2016.

Naoufel Werghi, Claudio Tortorici, Stefano Berretti, and Alberto del Bimbo. Local
binary patterns on triangular meshes: Concept and applications. Computer Vision
and Image Understanding, 139:161 — 177, 2015.

Faliu Yi and Inkyu Moon. Image segmentation: A survey of graph-cut methods.
In 2012 International Conference on Systems and Informatics (ICSAI2012), pages
1936-1941, 2012.

Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst. Faceted metadata
for image search and browsing. In SIGCHI Conference on Human Factors in
Computing Systems, CHI 03, pages 401-408, New York, NY, USA, 2003. ACM.

Jiaqi Yang, Qian Zhang, and Zhiguo Cao. The effect of spatial information char-
acterization on 3D local feature descriptors: A quantitative evaluation. Pattern
Recognition, 66(Supplement C):375 — 391, 2017.

Andrei Zaharescu, Edmond Boyer, and Radu Horaud. Keypoints and local de-
scriptors of scalar functions on 2D manifolds. Int. J. Comput. Vision, 100(1):78—
98, 2012.

190

[ZGYLI11]

[ZLHB19]

[ZPS+16]

Mao Zhihong, Cao Guo, Ma Yanzhao, and Kunwoo Lee. Curvature estimation for
meshes based on vertex normal triangles. Computer-Aided Design, 43(12):1561 —
1566, 2011.

Michael R. Zhang, James Lucas, Geoffrey Hinton, and Jimmy Ba. Lookahead
optimizer: k steps forward, 1 step back, 2019.

Matthias Zeppelzauer, Georg Poier, Markus Seidl, Christian Reinbacher, Samuel
Schulter, Christian Breiteneder, and Horst Bischof. Interactive 3D segmentation
of rock-art by enhanced depth maps and gradient preserving regularization. J.
Comput. Cult. Herit., 9(4):19:1-19:30, September 2016.

191

	Introduction
	I Preliminary concepts
	Chapter State of the art
	Pattern Retrieval
	Pattern Recognition

	Chapter Pattern-related surface properties
	Color properties on surfaces
	Geometric surface characterization
	Comparative analysis of curvature evaluation methods

	II Pattern Descriptors
	Chapter Edge Local Binary Pattern
	Method description
	The edgeLBP description
	Parameter settings
	Computational cost

	Experimental results

	Chapter Mean Point Local Binary Pattern
	Method description
	The mpLBP descriptor
	Parameter settings

	Experimental results
	Different choices of the ring sampling scheme
	Computational cost

	Chapter Benchmarking activities
	Performance measures for pattern retrieval methods
	Retrieval of gray patterns depicted on 3D models
	Dataset
	Results

	Feature Curve Extraction on Triangle Meshes
	Evaluation of feature curve characterization methods

	Retrieval of surface patches with similar geometric reliefs
	Dataset
	Results

	River gravel characterization
	Dataset
	Performances and results

	III Pattern Recognition
	Chapter The surface pattern recognition problem
	The dataset
	Geometric pattern recognition
	Open challenges

	Chapter Patch Characterization via Energy Optimization and Local Similarity
	Preliminaries on the Graph-cut definition and its application to 3D models
	Query point sampling
	Signals extraction
	Graph-cut setup
	Surface segmentation
	Examples

	Chapter Learning-based approaches
	Signal aggregation based on dictionary learning
	Surface sampling and signal extraction
	The case of sparsity equal to 1
	The case of sparsity greater than 1

	Multi-view RESNET50: a description based on CNN
	Local feature characterization
	Training of the models
	Tests on the Model set

	IV Future works and conclusions
	Chapter A search engine for 3D shape collections
	Conceptual model
	Similarity assets
	User-driven dataset navigation

	Chapter Concluding remarks
	Bibliography

