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Abstract

Recursive definitions of predicates are usually interpreted either inductively or coinductively. Recently, a
more powerful approach has been proposed, called flexible coinduction, to express a variety of intermediate
interpretations, necessary in some cases to get the correct meaning. We provide a detailed formal account
of an extension of logic programming supporting flexible coinduction. Syntactically, programs are enriched
by coclauses, clauses with a special meaning used to tune the interpretation of predicates. As usual, the
declarative semantics can be expressed as a fixed point which, however, is not necessarily the least, nor the
greatest one, but is determined by the coclauses. Correspondingly, the operational semantics is a combina-
tion of standard SLD resolution and coSLD resolution. We prove that the operational semantics is sound
and complete with respect to declarative semantics restricted to finite comodels.

KEYWORDS: coinduction, operational semantics, declarative semantics, soundness, completeness

1 Introduction

Standard inductive and coinductive semantics of logic programs sometimes are not enough to
properly define predicates on possibly infinite terms (Simon et al. 2007; Ancona 2013).

Consider the logic program in Fig. 1, defining some predicates on lists of numbers represented
with the standard Prolog syntax. For simplicity, we consider built-in numbers, as in Prolog.

In standard logic programming, terms are inductively defined, that is, are finite, and predicates
are inductively defined as well. In the example program, only finite lists are considered, such as,
e.g., [1|[2|[]]], and the three predicates are correctly defined on such lists.

Coinductive logic programming (coLP) (Simon 2006) extends standard logic programming
with the ability of reasoning about infinite objects and their properties. Terms are coinductively
defined, that is, can be infinite, and predicates are coinductively defined as well. In the example,

all pos([ ]) ←
all pos([N|L]) ← N > 0, all pos(L).
member(X , [X | ]) ←
member(X , [Y |L]) ← X 6= Y, member(X ,L).
maxElem([N],N) ←
maxElem([N|L],M) ← maxElem(L,M1), M is max(N,M1).

Fig. 1. An example of logic program: all pos(l) succeeds iff l contains only positive numbers,
member(x, l) succeeds iff x is in l, maxElem(l,x) succeeds iff x is the greatest number in l.
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also infinite lists, such as [1|[2|[3|[4|...]]]], are considered, and the coinductive interpreta-
tion of all pos gives the expected meaning on such lists. However, this is not the case for the
other two predicates: for member the correct interpretation is still the inductive one, as in the
coinductive semantics member(x, l) always succeeds for an infinite list l. For instance, for L the
infinite list of 0’s, member(1,L) has an infinite proof tree where for each node we apply the sec-
ond clause. Therefore, these two predicates cannot coexist in the same program, as they require
two different interpretations.1

The predicate maxElem shows an even worse situation. The inductive semantics again does
not work on infinite lists, but also the coinductive one is not correct: maxElem(l,n) succeeds
whenever n is greater than all the elements of l. The expected meaning lies between the inductive
and the coinductive semantics, hence, to get it, we need something beyond standard semantics.

Recently, in the more general context of inference systems (Aczel 1977), flexible coinduction
has been proposed by Dagnino and Ancona et al. (2017; 2017b; 2019), a generalisation able to
express a variety of intermediate interpretations. As we recall in Section 2, clauses of a logic
program can be seen as meta-rules of an inference system where judgments are ground atoms.
Inference rules are ground instances of clauses, and a ground atom is valid if it has a finite proof
tree in the inductive interpretation, a possibly infinite proof tree in the coinductive one.

Guided by this abstract view, which provides solid foundations, we develop an extension of
logic programming supporting flexible coinduction.

Syntactically, programs are enriched by coclauses, which resemble clauses but have a spe-
cial meaning used to tune the interpretation of predicates. By adding coclauses, we can obtain a
declarative semantics intermediate between the inductive and the coinductive one. Standard (in-
ductive) and coinductive logic programming are subsumed by a particular choice of coclauses.
Correspondingly, operational semantics is a combination of standard SLD resolution (Lloyd
1987; Apt 1997) and coSLD resolution as introduced by Simon et al. (2006; 2006; 2007). More
precisely, as in coSLD resolution, it keeps trace of already considered goals, called coinductive
hypotheses.2 However, when a goal unifying with a coinductive hypothesis is found, rather than
being considered successful as in coSLD resolution, its standard SLD resolution is triggered in
the program where also coclauses are considered. Our main result is that such operational seman-
tics is sound and complete with respect to the declarative one restricted to regular proof trees.

An important additional result is that the operational semantics is not incidental, but, as the
declarative semantics, turns out to correspond to a precise notion on the inference system de-
noted by the logic program. Indeed, as detailed in a companion paper of Dagnino (2020), given
an inference system, we can always construct another one, with judgments enriched by circu-
lar hypotheses, which, interpreted inductively, is equivalent to the regular interpretation of the
original inference system. In other words, there is a canonical way to derive a (semi-)algorithm
to show that a judgment has a regular proof tree, and our operational semantics corresponds to
this algorithm. This more abstract view supports the reliability of the approach, and, indeed, the
proof of equivalence with declarative semantics can be nicely done in a modular way, that is, by
relying on a general result proved by Dagnino (2020).

After basic notions in Section 2, in Section 3 we introduce logic programs with coclauses and

1 To overcome this issue, co-logic programming (Simon et al. 2007) marks predicates as either inductive or coinductive.
The declarative semantics, however, becomes quite complex, because stratification is needed.

2 We prefer to mantain this terminology, inherited from coSLD resolution, even though not corresponding to the proof
theoretic sense.



3

their declarative semantics, and in Section 4 the operational semantics. We provide significant
examples in Section 5, the results in Section 6, related work and conclusive remarks in Section 7.

2 Logic programs as inference systems

We recall basic concepts about inference systems (Aczel 1977), and present (standard inductive
and coinductive) logic programming (Lloyd 1987; Apt 1997; Simon 2006; Simon et al. 2006;
Simon et al. 2007) as a particular instance of this general semantic framework.

Inference systems Assume a set U called universe whose elements j are called judgements. An

inference system I is a set of (inference) rules, which are pairs 〈Pr, c〉, also written
Pr
c

, with
Pr⊆U set of premises, and c ∈U conclusion. We assume inference systems to be finitary, that
is, rules have a finite set of premises. A proof tree (a.k.a. derivation) in I is a tree with nodes
(labelled) in U such that, for each j with set of children Pr, there is a rule 〈Pr, j〉 in I. A proof
tree for j is a proof tree with root j. The inference operator FI :℘(U )→℘(U ) is defined by:

FI(X) = {j ∈U | 〈Pr, j〉 ∈ I for some Pr ⊆ X}

A set X ⊆U is closed if FI(X)⊆ X , consistent if X ⊆ FI(X), a fixed point if X = FI(X).
An interpretation of an inference system I is a set of judgements, that is, a subset of the

universe U . The two standard interpretations, the inductive and the coinductive one, can be
defined in either model-theoretic or proof-theoretic terms (Leroy and Grall 2009).

• The inductive interpretation µJIK is the intersection of all closed sets, that is, the least
closed set or, equivalently, the set of judgements with a finite proof tree.

• The coinductive interpretation νJIK is the union of all consistent sets, that is, the greatest
consistent set, or, equivalently, the set of judgements with an arbitrary (finite or not) proof
tree.

By the fixed point theorem (Tarski 1955), both µJIK and νJIK are fixed points of FI, the least and
the greatest one, respectively. We will write I `µ j for j ∈ µJIK and I `ν j for j ∈ νJIK.

Logic programming Assume a first order signature 〈P, F , V 〉with P set of predicate symbols
p, F set of function symbols f , and V countably infinite set of variable symbols X (variables for
short). Each symbol comes with its arity, a natural number denoting the number of arguments.
Variables have arity 0. A function symbol with arity 0 is a constant.

Terms t, s, r are (possibly infinite) trees with nodes labeled by function or variable symbols,
where the number of children of a node is the symbol arity3. Atoms A, B, C are (possibly infinite)
trees with the root labeled by a predicate symbol and other nodes by function or variable symbols,
again accordingly with the arity. Terms and atoms are ground if they do not contain variables,
and finite (or syntactic) if they are finite trees. (Definite) clauses have shape A← B1, . . . ,Bn with
n≥ 0, A, B1, . . . , Bn finite atoms. A clause where n = 0 is called a fact. A (definite) logic program
P is a finite set of clauses.

Substitutions θ ,σ are partial maps from variables to terms with a finite domain. We write tθ
for the application of θ to a term t, call tθ an instance of t, and analogously for atoms, set of

3 For a more formal definition based on paths see, e.g., the work of Ancona and Dovier (2015).
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atoms, and clauses. A substitution θ is ground if, for all X ∈ dom(θ), θ(X) is ground, syntactic
if, for all X ∈ dom(θ), θ(X) is a finite (syntactic) term.

In order to see a logic program P as an inference system, we fix as universe the complete
Herbrand base HB∞, that is, the set of all (finite and infinite) ground atoms4. Then, P can be seen
as a set of meta-rules defining an inference system ‖P‖ on HB∞. That is, ‖P‖ is the set of ground
instances of clauses in P, where A← B1, . . . ,Bn is seen as an inference rule 〈{B1, . . . ,Bn}, A〉.
In this way, typical notions related to declarative semantics of logic programs turn out to be
instances of analogous notions for inference systems. Notably, the (one step) inference operator
associated to a program TP :℘(HB∞)→℘(HB∞), defined by:

TP(I) = {A ∈ HB∞ | (A← B1, . . . ,Bn) ∈ ‖P‖,{B1, . . . ,Bn} ⊆ I}

is exactly F‖P‖. An interpretation (a set I ⊆ HB∞) is a model of a program P if TP(I) ⊆ I, that
is, it is closed with respect to ‖P‖. Dually, an interpretation I is a comodel of a program P if
I ⊆ TP(I), that is, it is consistent with respect to ‖P‖. Then, the inductive declarative semantics
of P is the least model of P and the coinductive declarative semantics5 is the greatest comodel
of P. These two semantics coincide with the inductive and coinductive interpretations of ‖P‖,
hence we denote them by µJPK and νJPK, respectively.

3 Coclauses

We introduce logic programs with coclauses and define their declarative semantics. Consider
again the example in Fig. 1 where, as discussed in the Introduction, each predicate needed a
different kind of interpretation.

As shown in the previous section, the above logic program can be seen as an inference system.
In this context, flexible coinduction has been proposed (Dagnino 2017; Ancona et al. 2017b;
Dagnino 2019), a generalisation able to overcome these limitations. The key notion are corules,
special inference rules used to control the semantics of an inference system. More precisely, a
generalized inference system, or inference system with corules, is a pair of inference systems
〈I, Ico〉, where the elements of Ico are called corules. The interpretation of 〈I, Ico〉, denoted by
νflJI,IcoK, is constructed in two steps.

• first, we take the inductive interpretation of the union I∪Ico, that is, µJI∪IcoK,
• then, the union of all sets, consistent with respect to I, which are subsets of µJI∪IcoK,

that is, the largest consistent subset of µJI∪IcoK.

In proof-theoretic terms, νflJI,IcoK is the set of judgements with an arbitrary (finite or not) proof
tree in I, whose nodes all have a finite proof tree in I∪Ico. Essentially, by corules we filter out
some, undesired, infinite proof trees. Dagnino (2019) proved that νflJI,IcoK is a fixed point of FI.

To introduce flexible coinduction in logic programming, first we slightly extend the syntax by
introducing (definite) coclauses, written A⇐ B1, . . . ,Bn, where A, B1, . . . , Bn are finite atoms. A
coclause where n = 0 is called a cofact. Coclauses syntactically resemble clauses, but are used in a
special way, like corules for inference systems. More precisely, we have the following definition:

4 Traditionally (Lloyd 1987), the inductive declarative semantics is restricted to finite atoms. We define also the inductive
semantics on the complete Herbrand base in order to work in a uniform context.

5 Introduced (Simon 2006; Simon et al. 2006) to properly deal with predicates on infinite terms.
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Definition 3.1
A logic program with coclauses is a pair 〈P, Pco〉where P and Pco are sets of clauses. Its declara-
tive semantics, denoted by νflJP,PcoK, is the largest comodel of P which is a subset of µJP∪PcoK.

In other words, the declarative semantics of 〈P, Pco〉 is the coinductive semantics of P where,
however, clauses are instantiated only on elements of µJP∪PcoK. Note that this is the interpreta-
tion of the generalized inference system 〈‖P‖, ‖Pco‖〉.

Below is the version of the example in Fig. 1, equipped with coclauses.

all pos([ ]) ←
all pos([N|L]) ← N > 0, all pos(L).
all pos( ) ⇐
member(X , [X | ]) ←
member(X , [Y |L]) ← X 6= Y, member(X ,L).
maxElem([N],N) ←
maxElem([N|L],M) ← maxElem(L,M1), M is max(N,M1).

maxElem([N| ],N) ⇐

In this way, all the predicate definitions are correct w.r.t. the expected semantics:

• all pos has coinductive semantics, as the coclause allows any infinite proof trees.
• member has inductive semantics, as without coclauses no infinite proof tree is allowed.
• maxElem has an intermediate semantics, as the coclause allows only infinite proof trees

where nodes have shape maxElem(l,x) with x an element of l.

As the example shows, coclauses allow the programmer to mix inductive and coinductive predi-
cates, and to correctly define predicates which are neither inductive, nor purely coinductive. For
this reason we call this paradigm flexible coinductive logic programming. Note that, as shown for
inference systems with corules (Dagnino 2017; Ancona et al. 2017b; Dagnino 2019), inductive
and coinductive semantics are particular cases. Indeed, they can be recovered by special choices
of coclauses: the former is obtained when no coclause is specified, the latter when each atom in
HB∞ is an instance of the head of a cofact.

4 Big-step operational semantics

In this section we define an operational counterpart of the declarative semantics of logic programs
with coclauses introduced in the previous section.

As in standard coLP (Simon 2006; Simon et al. 2006; Simon et al. 2007), to represent possibly
infinite terms we use finite sets of equations between finite (syntactic) terms. For instance, the
equation LP [1,2|L] represents the infinite list [1,2,1,2,...].

Since the declarative semantics of logic programs with coclauses is a combination of inductive
and coinductive semantics, their operational semantics combines standard SLD resolution (Lloyd
1987; Apt 1997) and coSLD resolution (Simon 2006; Simon et al. 2006; Simon et al. 2007). It
is presented, rather than in the traditional small-step style, in big-step style, as introduced by
Ancona and Dovier (2015). This style turns out to be simpler since coinductive hypotheses (see
below) can be kept local. Moreover, it naturally leads to an interpreter, and makes it simpler to
prove its correctness with respect to declarative semantics (see the next section).
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(EMPTY) 〈P, Pco〉;S  〈ε;E〉 ⇒ E
(CO-HYP)

〈P∪Pco, /0〉; /0 
〈
A;E1∪EA,B

〉
⇒ E2

〈P, Pco〉;S  〈G1,G2;E2〉 ⇒ E3

〈P, Pco〉;S  〈G1,A,G2;E1〉 ⇒ E3

B ∈ S
E1 ` A = B
Pco 6= /0

(STEP)

〈P, Pco〉;S∪{A} 
〈
C1, . . . ,Cn;E1∪EA,B

〉
⇒ E2

〈P, Pco〉;S  〈G1,G2;E2〉 ⇒ E3

〈P, Pco〉;S  〈G1,A,G2;E1〉 ⇒ E3

θ fresh renaming
Bθ ← C1θ , . . . ,Cnθ ∈ P
E1 ` A = B

Fig. 2. Big-step operational semantics

We introduce some notations. First of all, in this section we assume atoms and terms to be
finite (syntactic). A goal is a pair 〈G;E〉, where G is a finite sequence of atoms. A goal is empty
if G is the empty sequence, denoted ε . An equation has shape sP t where s and t are terms, and
we denote by E a finite set of equations.

Intuitively, a goal can be seen as a query to the program and the operational semantics has
to compute answers (a.k.a. solutions) to such a query. More in detail, the operational semantics,
given a goal 〈G;E1〉, provides another set of equations E2, which represents answers to the goal.
For instance, given the previous program, for the goal 〈maxElem(L,M);{LP [1,2|L]}〉, the
operational semantics returns the set of equations {LP [1,2|L],MP 2}.

The judgment of the operational semantics has shape

〈P, Pco〉;S  〈G;E1〉 ⇒ E2

meaning that resolution of 〈G;E1〉, under the coinductive hypotheses S (Simon et al. 2006), suc-
ceeds in 〈P, Pco〉, producing a set of equations E2. Set Var(t) the set of variables in a term, and
analogously for atoms, set of atoms, and equations. We assume Var(S) ⊆ Var(E1), modelling
the intuition that S keeps track of already considered atoms. This condition holds for the initial
judgement, and is preserved by rules in Fig. 2, hence it is not restrictive. Resolution starts with
no coinductive hypotheses, that is, the top-level judgment has shape 〈P, Pco〉; /0 〈G;E1〉 ⇒ E2.

The operational semantics has two flavours:

• If there are no corules (Pco = /0), then the judgment models standard SLD resolution, hence
the set of coinductive hypotheses is not significant.

• Otherwise, the judgment models flexible coSLD resolution, which follows the same schema
of coSLD resolution, in the sense that it keeps track in S of the already considered atoms.
However, when an atom A in the current goal unifies with a coinductive hypothesis, rather
than just considering A successful as in coSLD resolution, standard SLD resolution of A is
triggered in the program P∪Pco, that is, also coclauses can be used.

The judgement is inductively defined by the rules in Fig. 2, which rely on some auxiliary
(standard) notions. A solution of an equation s P t is a unifier of t and s, that is, a substitution
θ such that sθ = tθ . A solution of a finite set of equations E is a solution of all the equations in
E and E is solvable if there exists a solution of E. Two atoms A and B are unifiable in a set of
equations E, written E ` A= B, if A= p(s1, . . . ,sn), B= p(t1, . . . , tn) and E∪{s1 P t1, . . . ,sn P tn}
is solvable, and we denote by EA,B the set {s1 P t1, . . . ,sn P tn}.

Rule (EMPTY) states that the resolution of an empty goal succeeds. In rule (STEP), an atom A to be
resolved is selected, and a clause of the program is chosen such that A unifies with the head of the
clause in the current set of equations. Then, resolution of the original goal succeeds if both the
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(S-2)

(S-2)

(C)

(S-2)

(S-3])
(MAX)

〈{1,2,3}, /0〉; /0〈mE([2|L],M3),M2=max(1,M3);eqL,M2PM〉⇒eqL,M2PM,eqs
〈{1,2,3}, /0〉; /0〈mE(L,M2);eqL,M2PM〉⇒eqL,M2PM,eqs

(MAX)

〈{1,2},3〉;mE(L,M)〈mE(L,M2),M1=max(2,M2);eqL〉⇒eqL,M2PM,eqs,M1P2
〈{1,2},3〉;mE(L,M)〈mE([2|L],M1),M=max(1,M1);eqL〉⇒eqL,M2PM,eqs,M1P2 (MAX)

〈{1,2},3〉; /0〈mE(L,M);eqL〉⇒eqL,M2PM,eqs,M1P2,MP2

Fig. 3. Example of resolution

body of the selected clause and the remaining atoms are resolved, enriching the set of equations
correspondingly. As customary, the selected clause is renamed using fresh variables, to avoid
variable clashes in the set of equations obtained after unification. Note that, in the resolution of
the body of the clause, the selected atom is added to the current set of coinductive hypotheses.
This is not relevant for standard SLD resolution (Pco = /0). However, if Pco 6= /0, this allows rule
(CO-HYP) to handle the case when an atom A that has to be resolved unifies with a coinductive
hypothesis in the current set of equations. In this case, standard SLD resolution of such atom
in the program P∪Pco is triggered, and resolution of the original goal succeeds if both such
standard SLD resolution of the selected atom and resolution of the remaining goal succeed.

In Fig. 3 we show an example of resolution. We use the shorter syntax =max, abbreviate by eqL
the equation L P [1,2|L], by eqs the equations M3P2,M2P2, by mE the predicate maxElem,
and by (S), (C) the rules (STEP) and (CO-HYP), respectively. When applying rule (STEP), we
also indicate the clause/coclause which has been used: we write 1,2,3 for the two clauses and the
coclause for the maxElem predicate (the first clause is never used in this example). Finally, to keep
the example readable and focus on key aspects, we make some simplifications: notably, (MAX)
stands for an omitted proof tree solving atoms of shape is max( , ); morever, equations
between lists are implicitly applied.

As final remark, note that flexible coSLD resolution nicely subsumes both SLD and coSLD.
The former, as already said, is obtained when the set of coclauses is empty, that is, the pro-
gram is inductive. The latter is obtained when, for all predicate p of arity n, we have a cofact
p(X1, . . . ,Xn).

5 Examples

In this section we discuss some more sophisticated examples.

∞-regular expressions: We define ∞-regular expressions on an alphabet Σ, a variant of the for-
malism defined by Löding and Tollkötter (2016) for denoting languages of finite and infinite
words, the latter also called ω-words, as follows:

r ::= /0 | ε | a | r1 · r2 | r1 + r2 | r? | rω

where a∈ Σ. The syntax of standard regular expressions is extended by rω , denoting the ω-power
of the language Ar denoted by r. That is, the set of words obtained by concatenating infinitely
many times words in Ar. In this way, we can denote also languages containing infinite words.

In Fig. 4 we define the predicate match, such that match(W,R) holds if the finite or infinite
word W , implemented as a list, belongs to the language denoted by R. For simplicity, we consider
words over the alphabet {0,1}.
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concat([ ],W,W ) ←
concat([B|W1],W2, [B|W3]) ← concat(W1,W2,W3).
concat(W1,W2,W1) ⇐
match([ ],eps) ←
match([0],0) ←
match([1],1) ←
match(W,cat(R1,R2)) ← match(W1,R1), match(W2,R2), concat(W1,W2,W ).
match(W, plus(R1,R2)) ← match(W,R1).
match(W, plus(R1,R2)) ← match(W,R2).
match(W,star(R)) ← match star(N,W,R).
match([ ],omega(R)) ← match([ ],R).
match([B|W ],omega(R)) ← match([B|W1],R), match(W2,omega(R)), concat(W1,W2,W ).
match(W,omega(R)) ⇐
match star(0, [ ],R) ←
match star(s(N),W,R) ← match(W1,R), match star(N,W2,R), concat(W1,W2,W ).

Fig. 4. A logic program for ∞-regular expression recognition.

Concatenation of words needs to be defined coinductively, to correctly work on infinite words
as well. Note that, when w1 is infinite, w1w2 is equal to w1.

On operators of regular expressions, match can be defined in the standard way (no coclauses).
In particular, the definition for expressions of shape r? follows the explicit definition of the ?-
closure of a language: given a language L, a word w belongs to L? iff it can be decomposed
as w1 . . .wn, for some n ≥ 0, where n = 0 means w is empty, and wi ∈ L, for all i ∈ 1..n. This
condition is checked by the auxiliary predicate match star.

To define when a word w matches rω we have two cases. If w is empty, then it is enough to
check that the empty word matches r, as expressed by the first clause, because concatenating
infinitely many times the empty word we get again the empty word. Otherwise, we have to de-
compose w as w1w2 where w1 is not empty and matches r and w2 matches rω as well, as formally
expressed by the second clause, To propertly handle infinite words, we need to concatenate in-
finitely many non-empty words, hence we need to apply the second clause infinitely many times.
The coclause allows all such infinite derivations.

An LTL fragment: In Fig. 5 we define the predicate sat s.t. sat(w,ϕ) succeeds iff the ω-word
w over the alphabet {0,1} satisfies the formula ϕ of the fragment of the Linear Temporal Logic
with the temporal operators until (U) and always (G) and the predicate zero and its negation6

one. Since sat([B|W ],always(Ph)) succeeds iff all infinite suffixes of [B|W ] satisfy formula Ph,
the coinductive interpretation has to be considered, hence a coclause is needed; for instance,
sat(W0,always(zero)), with W0 = [0|W0], succeeds because the atom sat(W0,always(zero)) in
the body of the clause for always unifies7 with the coinductive hypothesis sat(W0,always(zero))
(see rule (CO-HYP) in Figure 2) and the coclause allows it to succeed w.r.t. standard SLD resolution
(indeed, atom sat(W0,zero) succeeds, thanks to the first fact in the logic program).

Differently to always, the interpretation of until has to be inductive because until(ϕ1,ϕ2)

6 Predicates true and f alse could be easily defined as well.
7 Actually, in this case the atom to be resolved and the coinductive hypothesis are syntactically equal.
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sat exists(0,W,Ph) ← sat(W,Ph).
sat exists(s(N), [B|W ],Ph) ← sat exists(N,W,Ph).
sat all(0,W,Ph) ←
sat all(s(N), [B|W ],Ph) ← sat([B|W ],Ph), sat all(N,W,Ph).
sat([0|W ],zero) ←
sat([1|W ],one) ←
sat([B|W ],always(Ph)) ← sat([B|W ],Ph), sat(W,always(Ph)).
sat(W,always(Ph)) ⇐
sat([B|W ],until(Ph1,Ph2)) ← sat exists(N, [B|W ],Ph2), sat all(N, [B|W ],Ph1).

Fig. 5. A logic program for satisfaction of an LTL fragment: sat exists(N,W,Ph) succeeds iff
suffix at N of ω-word W satisfies Ph, sat all(N,W,Ph) succeeds iff all suffixes of word W at
index < N satisfy Ph, sat(W,Ph) succeeds iff ω-word W satisfies Ph.

succeeds iff ϕ2 is satisfied after a finite number of steps; for this reason, no coclause is given
for this operator; for instance, sat([1,1,0|W1],until(one,zero)) with W1 = [1|W1] succeeds w.r.t.
standard SLD resolution, while sat(W1,until(one,zero)), sat(W1,until(always(one),zero)), and
sat(W1,until(always(one),always(zero))) fail. The clause for sat([B|W ],until(Ph1,Ph2)) fol-
lows the standard definition of satisfaction for the U operator: there must exist a suffix of [B|W ]

at index N satisfying Ph2 (sat exists(N, [B|W ],Ph2)) s.t. all suffixes of [B|W ] at index less than
N satisfy Ph1 (sat all(N, [B|W ],Ph1)).

An interesting example concerns the goal sat([1,1|W0],until(one,always(zero))), where the
two temporal operators are mixed together: it succeeds as expected, thanks to the two clauses for
until and the fact that sat(W0,always(zero)) succeeds, as shown above.

Some of the issues faced in this example are also discussed by Gupta et al. (2011).

Big-step semantics modeling infinite behaviour and observations Defining a big-step operational
semantics modelling divergence is a difficult task, especially in presence of observations. Ancona
et al. (2018; 2020) show how corules can be successfully employed to tackle this problem, by pro-
viding big-step semantics able to model divergence for several variations of the lambda-calculus
and different kinds of observations. Following this approach, we present in Fig. 6 a similar exam-
ple, but simpler, to keep it shorter: a logic program with coclauses defining the big-step semantics
of a toy language to output possibly infinite sequences8 of integers. Expressions are regular terms
generated by the following grammar:

e ::= skip | out n | seq(e1,e2)

where skip is the idle expression, out n outputs n, and seq(e1,e2) is the sequential composition.
The semantic judgement has shape e⇒〈r, s〉, represented by the atom eval(e,r,s), where e is an
expression, r is either end or div, for converging or diverging computations, respectively, and s
is a possibly infinite sequence of integers. Clauses for concat are pretty standard; in this case
the definition is purely inductive (hence, no coclause is needed) since the left operand of con-
catenation is always a finite sequence. Clauses for eval are rather straightforward, but sequential
composition seq(e1,e2) deserves some comment: if the evaluation of e1 converges, then the com-

8 For simplicity we consider only integers, but in fact the definition below allows any term as output.
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concat([ ],S,S) ←
concat([N|S1],S2, [N|S3]) ← concat(S1,S2,S3).
eval(skip,end, [ ]) ←
eval(out(N),end, [N]) ←
eval(seq(E1,E2),R,S) ← eval(E1,end,S1), eval(E2,R,S2), concat(S1,S2,S).
eval(seq(E1,E2),div,S) ← eval(E1,div,S).
eval(E,div, [ ]) ⇐
eval(seq(E1,E2),div,S) ⇐ eval(E1,end, [N|S1]), concat([N|S1],S2,S).

Fig. 6. A logic program defining a big-step semantics with infinite behaviour and observations.

putation can continue with the evaluation of e2, otherwise the overall computation diverges and
e2 is not evaluated.

As opposite to the previous examples, here we do not need just cofacts, but also a coclause;
both the cofact and the coclause ensure that for infinite derivations only div can be derived.
Furthermore, the cofact handles diverging expressions which produce a finite output sequence,
as in eval(E,div, [ ]) or in eval(seq(out(1),E),div, [1]), with E = seq(skip,E) or E = seq(E,E),
while the coclause deals with diverging expressions with infinite outputs, as in eval(E,div,S)
with E = seq(out(1),E) and S = [1|S]. The body of the coclause ensures that the left operand of
sequential composition converges, thus ensuring a correct productive definition.

6 Soundness and completeness

After formally relating the two approaches, we state soundness of the operational semantics with
respect to the declarative one. Then, we show that completeness does not hold in general, and
define the regular version of the declarative semantics. Finally, we show that the operational
semantics is equivalent to this restricted declarative semantics.

Relation between operational and declarative semantics As in the standard case, the first step
is to bridge the gap between the two approaches: the former computing equations, the latter
defining truth of atoms. This can be achieved through the notions of answers to a goal.

Given a set of equations E, sol(E) is the set of the solutions of E, that is, the ground substitu-
tions unifying all the equations in E. Then, θ ∈ sol(E) is an answer to 〈G;E〉 if Var(G)⊆ dom(θ).

The judgment 〈P, Pco〉;S  〈G;E1〉 ⇒ E2 described in Section 4 computes a set of answers to
the input goal. Indeed, solutions of the output set of equations are solutions of the input set as
well, since the following proposition holds.

Proposition 6.1
1. If 〈P, Pco〉;S  〈G;E1〉 ⇒ E2 then E1 ⊆ E2 and Var(G)⊆ Var(E2).
2. If E1 ⊆ E2, then sol(E2)⊆ sol(E1).

Proof
(1) Straightforward induction on rules in Figure 2. (2) Trivial.

On the other hand, we can define which answers are correct in an interpretation:
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Definition 6.1
For I ⊆ HB∞, the set of answers to 〈G;E〉 correct in I is ans(G,E, I) = {θ ∈ sol(E) | Gθ ⊆ I}.

Hence, soundness of the operational semantics can be expressed as follows: all the answers
computed for a given goal are correct in the declarative semantics.

Theorem 6.1 (Soundness w.r.t. declarative semantics)
If 〈P, Pco〉; /0  〈G;E〉 ⇒ E′ holds, then sol(E′)⊆ ans(G,E,νflJP,PcoK).

Completeness issues The converse of this theorem, that is, all correct answers can be computed,
cannot hold in general, since, as shown by Ancona and Dovier (2015), coinductive declarative
semantics does not admit any complete procedure9, hence our model as well, since it generalizes
the coinductive one. To explain why completeness does not hold in our case, we can adapt the
following example from Ancona and Dovier (2015)10, where p is a predicate symbol of arity 1,
z and s are function symbols of arity 0 and 1 respectively.

p(X) ← p(s(X)).

p(X) ⇐

Let us define 0 = z, n+1 = s(n) and ω = s(s(. . .)). The declarative semantics is the set {p(x) |
x ∈ N∪{ω}}. In the operational semantics, instead, only p(ω) is considered true. Indeed, all
derivations have to apply the rule (CO-HYP), which imposes the equation X P s(X), whose unique
solution is ω . Therefore, the operational semantics is not complete.

Now the question is the following: can we characterize in a declarative way answers computed
by the big-step semantics? In the example, there is a difference between the atoms p(ω) and p(n),
with n∈N, because the former has a regular proof tree, namely, a tree with finitely many different
subtrees, while the latter has only with non-regular, thus infinite, proof trees.

Following this observation, we prove that the operational semantics is sound and complete
with respect to the restriction of the declarative semantics to atoms derivable by regular proof
trees. As we will see, this set can be defined in model-theoretic terms, by restricting to finite
comodels of the program. Dagnino (2020) defined this restriction for an arbitrary (generalized)
inference system. We report here relevant definitions and results.

Regular declarative semantics Let us write X ⊆fin Y if X is a finite subset of Y . The regular
interpretation of 〈I, Ico〉 is defined as

ρflJI,IcoK =
⋃
{X ⊆fin µJI∪IcoK | X ⊆ FI(X)}

This definition is like the one of νflJI,IcoK, except that we take the union11 only of those
consistent subsets of µJI∪IcoK which are finite.The set ρflJI,IcoK is a fixed point of FI and,
precisely, it is the rational fixed point (Adámek et al. 2006) of FI restricted to ℘(µJI∪IcoK),
hence we get ρflJI,IcoK⊆ νflJI,IcoK.

The proof-theoretic characterization relies on regular proof trees, which are proof trees with a

9 That is, establishing whether an atom belongs to the coinductive declarative semantics is neither decidable nor semi-
decidable, even when the Herbrand universe is restricted to the set of rational terms.

10 Example 10 at page 8.
11 Which could be an infinite set, hence it is not the same of the greatest finite consistent set.
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finite number of subtrees (Courcelle 1983). That is, as proved by Dagnino (2020), ρflJI,IcoK is
the set of judgments with a regular proof tree in I whose nodes all have a finite proof tree in I∪Ico.

As special case, we get regular semantics of logic programs with coclauses.

Definition 6.2
The regular declarative semantics of 〈P, Pco〉, denoted by ρflJP,PcoK, is the union of all finite
comodels included in µJP∪PcoK.

As above, ρflJP,PcoK⊆ νflJP,PcoK, hence ans(G,E,ρflJP,PcoK)⊆ ans(G,E,νflJP,PcoK).
We state now soundness and completeness of the operational semantics with respect to this

semantics. We write θ � σ iff dom(θ) ⊆ dom(σ) and, for all X ∈ dom(θ), θ(X) = σ(X). It is
easy to see that � is a partial order and, if θ � σ and Var(G)⊆ dom(θ), then Gθ = Gσ .

Theorem 6.2 (Soundness w.r.t. regular declarative semantics)
If 〈P, Pco〉; /0  〈G;E〉 ⇒ E′, and θ ∈ sol(E′), then θ ∈ ans(G,E,ρflJP,PcoK).

Theorem 6.3 (Completeness w.r.t. regular declarative semantics)
If θ ∈ ans(G,E,ρflJP,PcoK), then 〈P, Pco〉; /0 〈G;E〉⇒E′, and θ �σ for some E′ and σ ∈ sol(E′).

That is, any answer computed for a given goal is correct in the regular declarative semantics,
and any correct answer is included in a computed answer. Theorem 6.2 immediately entails
Theorem 6.1 as ans(G,E,ρflJP,PcoK)⊆ ans(G,E,νflJP,PcoK).

Proof technique In order to prove the equivalence of the two semantics, we rely on a property
which holds in general for the regular interpretation (Dagnino 2020): we can construct an equiv-
alent inductive characterization. That is, given a generalized inference system 〈I, Ico〉 on the
universe U , we can construct an inference system I	Ico with judgments of shape H . j, for
j ∈ U and H ⊆fin U , such that the inductive interpretation of I	Ico coincides with the regular
interpretation of 〈I, Ico〉. The set H, whose elements are called coinductive hypotheses , is used
to detect cycles in the proof.

In particular, for logic programs with coclauses, we get an inference system with judgments
of shape S.A, for S finite set of ground atoms, and A ground atom, defined as follows.

Definition 6.3
Given 〈P, Pco〉, the inference system P	Pco consists of the following (meta-)rules:

(HP)
S.A

A ∈ S and A ∈ µJP∪PcoK

(RULE)
S∪{A}.B1 . . . S∪{A}.Bn

S.A
(A← B1, . . . ,Bn) ∈ ‖P‖

The following proposition states the equivalence with the regular interpretation. The proof is
given by Dagnino (2020) in the general case of inference systems with corules.

Proposition 6.2
P	Pco `µ /0.A iff A ∈ ρflJP,PcoK.

Note that the definition of P	Pco `µ S . A has many analogies with that of the operational
semantics in Figure 2. The key difference is that the former handles ground, not necessarily
finite, atoms, the latter not necessarily ground finite atoms (we use the same metavariables A
and S for simplicity). In both cases already considered atoms are kept in an auxiliary set S. In
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the former, to derive an atom A ∈ S, the side condition requires A to belong to the inductive
intepretation of the program P∪Pco. In the latter, when an atom A unifies with one in S, standard
SLD resolution is triggered in the program P∪Pco.

To summarize, P	Pco `µ S.A can be seen as an abstract version, at the level of the underlying
inference system, of operational semantics. Hence, the proof of soundness and completeness
can be based on proving a precise correspondence between these two inference systems, both
interpreted inductively. This is very convenient since the proof can be driven in both directions
by induction on the defining rules.

The correspondence is formally stated in the following two lemmas.

Lemma 6.1 (Soundness w.r.t. inductive characterization of regular semantics)
For all S and 〈A1, . . . ,An;E〉,
if 〈P, Pco〉;S  〈A1, . . . ,An;E〉 ⇒ E′ then, for all θ ∈ sol(E′) and i ∈ 1..n, P	Pco `µ Sθ .Aiθ .

Lemma 6.2 (Completeness w.r.t. inductive characterization of regular semantics)
For all S, 〈A1, . . . ,An;E〉 and θ ∈ sol(E),
if P	Pco `µ Sθ .Aiθ , for all i ∈ 1..n, then 〈P,Pco〉;S〈A1, . . . ,An;E〉⇒E′ and θ�σ , for some E′

and σ ∈ sol(E′).

Soundness follows from Lemma 6.1 and Proposition 6.2, as detailed below.

Proof of Theorem 6.2
Let us assume 〈P, Pco〉; /0  〈G;E〉 ⇒ E′ with G = A1, . . . ,An, and consider θ ∈ sol(E′). By
Lemma 6.1, for all i ∈ 1..n, P	Pco `µ /0 .Aiθ holds, hence, by Proposition 6.2, we get Aiθ ∈
ρflJP,PcoK. Therefore, by Definition 6.2, we get θ ∈ ans(G,E,ρflJP,PcoK), as needed.

Analogously, completeness follows from Lemma 6.2 and Proposition 6.2, as detailed below.

Proof of Theorem 6.3
Let G=A1, . . . ,An and θ ∈ ans(G,E,ρflJP,PcoK). Then, for all i∈ 1..n, we have Aiθ ∈ ρflJP,PcoK
and, by Proposition 6.2, we get P	Pco `µ /0.Aiθ . Hence, the thesis follows by Lemma 6.2.

7 Related work and conclusion

We have provided a detailed formal account of an extension of logic programming where pro-
grams are enriched by coclauses, which can be used to tune the interpretation of predicates on
non-well-founded structures. More in detail, following the same pattern as for standard logic
programming, we have defined:

• A declarative semantics (the union of all finite comodels which are subsets of a certain set
of atoms determined by coclauses).

• An operational semantics (a combination of standard SLD resolution and coSLD resolu-
tion) shown to be sound and complete with respect to the declarative semantics.

As in the standard case, the latter provides a semi-algorithm. Indeed, concrete strategies (such as
breadth-first visit of the SLD tree) can be used to ensure that the operational derivation, if any,
is found. In this paper we do not deal with this part, however we expect it to be not too different
from the standard case.

It has been shown (Ancona and Dovier 2015) that, taking as declarative semantics the coin-
ductive semantics (largest comodel), there is not even a semi-algorithm to check that an atom
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belongs to that semantics. Hence, there is no hope to find a complete operational semantics. On
the other hand, our paper provides, for an extension of logic programming usable in pratice to
handle non-well-founded structures, fully-developed foundations and results which are exactly
the analogous of those for standard logic programming.

CoLP has been initially proposed by Simon et al. (2006; 2006; 2007) as a convenient sub-
paradigm of logic programming to model circularity; it was soon recognized the limitation of its
expressive power that does not allow mutually recursive inductive and coinductive predicates, or
predicates whose correct interpretation is neither the least, nor the greatest fixed point.

Moura et al. (2013; 2014) and Ancona (2013) have proposed implementations of coLP based
on refinements of the Simon’s original proposal with the main aim of making them more portable
and flexible. Ancona has extended coLP by introducing a finally clause, allowing the user to de-
fine the specific behavior of a predicate when solved by coinductive hypothesis. Moura’s imple-
mentation is embedded in a tabled Prolog related to the implementation of Logtalk, and is based
on a mechanism similar to finally clauses to specify customized behavior of predicates when
solved by coinductive hypothesis. While such mechanisms resemble coclauses, the correspond-
ing formalization is purely operational and lacks a declarative semantics and corresponding proof
principles for proving correctness of predicate definitions based on them.

Ancona and Dovier (2015) have proposed an operational semantics of coLP based on the big-
step approach, which is simpler than the operational semantics initially proposed by Simon et al.
and proved it to be sound. They have also formally shown that there is no complete procedure for
deciding whether a regular goal belongs to the coinductive declarative semantics, but provided
no completeness result restricted to regular derivations, neither mechanisms to extend coLP and
make it more flexible.

Ancona et al. (2017a) were the first proposing a principled extension of coLP based on the
notion of cofact, with both a declarative and operational semantics; the latter is expressed in big-
step style, following the approach of Ancona and Dovier, and is proved to be sound w.r.t. the
former. An implementation is provided through a SWI-Prolog meta-interpreter.

Our present work differs from the extension of coLP with cofacts mentioned above for the
following novel contributions:

• we consider the more general notion of coclause, which includes the notion of cofact, but
is a more expressive extension of coLP;

• we introduce the notion of regular declarative semantics and prove coSLD resolution ex-
tended with coclauses is sound and complete w.r.t. the regular declarative semantics;

• we show how generalized inference systems are closely related to logic programs with
coclauses and rely on this relationship to carry out proofs in a clean and principled way;

• we extend the implementation12 of the SWI-Prolog meta-interpreter to support coclauses.

While coSLD resolution and its proposed extensions are limited by the fact that cycles must
be detected in derivations to allow resolution to succeed, a stream of work based on the notion of
structural resolution (Komendantskaya et al. 2016; Komendantskaya et al. 2017) (S-resolution
for short) aims to make coinductive resolution more powerful, by allowing to lazily detect infinite
derivations which do not have cycles. In particular, recent results (Li 2017; Komendantskaya and

12 See https://github.com/davideancona/coLP-with-coclauses, where also examples of Sect. 5 are available.

https://github.com/davideancona/coLP-with-coclauses
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Li 2017; Basold et al. 2019) investigate how it is possible to integrate coLP cycle detection into S-
resolution, by proposing a comprehensive theory. Trying to integrate S-resolution with coclauses
is an interesting topic for future work aiming to make coLP even more flexible.

Another direction for further research consists in elaborating and extending the examples of
logic programs with coclauses provided in Section 5, to formally prove their correctness, and
experiment their effectiveness with the implemented meta-interpreter.
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