
A Big Step from Finite to Infinite Computations

Davide Anconaa, Francesco Dagninoa, Jurriaan Rotb, Elena Zuccaa

aDIBRIS, University of Genova, Italy
bRadboud University, The Netherlands

Abstract

We provide a construction that, given a big-step semantics describing finite computations and
their observations, extends it to include infinite computations as well. The basic idea is that the
finite behaviour uniquely determines the infinite behaviour once observations and their compo-
sition operators are fixed. Technically, the construction relies on the framework of inference
systems with corules. The effectiveness and scope of the approach are illustrated by several ex-
amples. The correctness is formally justified by proving that, starting from a big-step semantics
equivalent to a reference small-step semantics, such equivalence is preserved by the construction.

Keywords: operational semantics, infinite behaviour, coinduction

The known is finite, the unknown infinite
– Thomas Henry Huxley

1. Introduction

The behaviour of programs or software systems can be described by the final results of com-
putations, and/or their interactions with the context, also seen as observations. For instance, a
function call can terminate and return a value, as well as have output effects during its execution.

Here, we deal with semantic definitions covering both results and observations. Often, such
definitions are provided for finite computations only. Notably, in big-step style, infinite com-
putations are simply not modelled, hence diverging and stuck terms are not distinguished. This
becomes even more unsatisfactory if we have observations, since we would like to express that a
non terminating program has a significant infinite behaviour.

Recently, examples of big-step semantics modeling divergence have been provided [1, 2]
by means of generalized inference systems [3, 4], which allow corules to control coinduction.
Indeed, modeling infinite behaviour by a purely coinductive interpretation of big-step rules
would lead to spurious results [5] and undetermined observation, whereas, by adding appro-
priate corules, we can correctly get divergence (∞) as the only result, and a uniquely determined
observation. This approach has been adopted in [1, 2] to design big-step definitions including
infinite behaviour for lambda-calculus and a simple imperative Java-like language. However, in

Email addresses: davide.ancona@unige.it (Davide Ancona), francesco.dagnino@dibris.unige.it
(Francesco Dagnino), jrot@cs.ru.nl (Jurriaan Rot), elena.zucca@unige.it (Elena Zucca)

Preprint submitted to Science of Computer Programming April 30, 2020

such works the designer of the semantics is in charge of finding the appropriate corules, and this
is a non-trivial task.

In this paper, we show a construction that extends a given big-step semantics, modeling finite
computations, to include infinite behaviour as well, notably generating appropriate corules. The
construction consists of two steps:

1. Starting from a monoid O modeling finite observations (e.g., finite traces), we construct
an ω-monoid 〈O, O∞〉 also modeling infinite observations (e.g., infinite traces). The latter
structure is a variation of ω-semigroup [6], including a mixed product composing a finite
with a possibly infinite observation, and an infinite product mapping an infinite sequence
of finite observations into a single one (possibly infinite).

2. Starting from an inference system defining a big-step judgment c⇒〈r, o〉, with c config-
uration, r ∈ R result, and o ∈ O finite observation, we construct an inference system with
corules defining an extended big-step judgment c⇒ 〈r∞, o∞〉 with r∞ ∈ R∞ = R + {∞}

and o∞ ∈ O∞. The construction generates additional rules for propagating divergence,
and corules for introducing divergence in a controlled way, obtained as instances of two
patterns (co-unit) and (co-mul).

To show the effectiveness of our approach, we provide several instances of the framework,
with different kinds of (finite) observations. Depending on the nature of such observations, in-
stantiations of only (co-unit) or both should be added to obtain the intended infinite behaviour.

Finally, we consider the issue of formally justifying that the construction is correct. To this
end, we assume the original big-step semantics to be equivalent to (finite sequences of steps
in) a reference small-step semantics, and we show that, by applying the construction, we obtain
an extended big-step semantics which is still equivalent to the small-step semantics, where we
consider possibly infinite sequences of steps. As hypothesis, rather than just equivalence in the
finite case (which would be not enough), we assume a set of equivalence conditions between
individual big-step rules and the small-step relation.

This proof of equivalence holds for deterministic semantics; issues arising in the non-deterministic
case and a possible solution are sketched in the conclusion.
Outline Sect. 2 is a quick introduction to inference systems with corules. Sect. 3 informally
introduces our approach on a simple example. Sect. 4 describes the construction of ω-monoids,
and Sect. 5 the extension of big-step semantics. Sect. 6 treats several significant examples. Sect. 7
contains the proof of equivalence. Related work is summarized in Sect. 8, and conclusions drawn
in Sect. 9. The appendix gives more details on ω-monoids (Appendix A), proofs (Appendix B
and C), and small-step semantics of the examples (Appendix D).

2. Inference systems with corules

First we recall standard notions on inference systems [7, 5]. Assuming a universe U of

judgments, an inference system I is a set of (inference) rules, which are pairs
Pr
c

, with Pr ⊆ U
the set of premises, c ∈ U the consequence (a.k.a. conclusion). A rule with an empty set of
premises is an axiom. A proof tree (a.k.a. derivation) for a judgment j is a tree whose nodes
are (labeled with) judgments in U, j is the root, and there is a node c with children Pr only if

there is a rule
Pr
c

. The inductive and the coinductive interpretation of I, denoted Ind(I) and

2

CoInd(I), are the sets of judgments with respectively a finite1 and a possibly infinite proof tree.

Set-theoretically, let FI : ℘(U) → ℘(U), FI(S) = {c | Pr ⊆ S ,
Pr
c
∈ I}; call a set S closed if

FI(S) ⊆ S , and consistent if S ⊆ FI(S). Then Ind(I) is the smallest closed set, and CoInd(I) is
the largest consistent set.

We recall now the notion of inference system with corules [3, 4], which mixes induction and
coinduction in a specific way. For a set S ⊆ U, let I|S denote the inference system obtained
from I by keeping only rules with consequence in S .

Definition 2.1 (Inference system with corules). An inference system with corules, or generalized
inference system, is a pair 〈I, C〉 where I and C are inference systems, whose elements are
called rules and corules, respectively. The interpretation Gen(I,C) of such a pair is defined by
Gen(I,C) = CoInd(I|Ind(I∪C)).

Thus, the interpretation Gen(I,C) is basically coinductive, but restricted to a universe of
judgements which is inductively defined by the (potentially) larger system I ∪ C. In proof-
theoretic terms, Gen(I,C) is the set of judgments which have a possibly infinite proof tree in I
whose nodes all have a finite proof tree in I∪C, that is, the (standard) inference system consisting
of rules and corules. We will write 〈I, C〉` j when j is derivable in 〈I, C〉, that is, j ∈ Gen(I,C).

We illustrate these notions by a simple example. As usual, sets of rules are expressed by
meta-rules with side conditions, and analogously sets of corules are expressed by meta-corules
with side conditions. (Meta-)corules will be written with thicker lines, to be distinguished from
(meta-)rules. The following inference system defines the maximal element of a list of natural
numbers, where ε is the empty list, and x:u the list with head x and tail u.

max(x:ε, x)
max(u, y)

max(x:u, z)
z = max(x, y)

The inductive interpretation is defined only on finite lists, since for infinite lists an infinite proof
is needed. However, the coinductive interpretation fails to be a function. For instance, let L = 1 :
2 : 1 : 2 : 1 : 2 : Then any judgment max(L, x) with x ≥ 2 can be derived, as illustrated by
the following examples. . . .

max(L, 2)
max(2:L, 2)

max(1:2:L, 2)

. . .

max(L, 5)
max(2:L, 5)

max(1:2:L, 5)

By adding a corule (in this case a coaxiom), we add a constraint which forces the greatest element
to belong to the list, so that wrong results are “filtered out”:

max(x:ε, x)
max(u, y)

max(x:u, z)
z = max(x, y)

max(x:u, x)
Indeed, the judgment max(1:2:L, 2) has the infinite proof tree shown above, and each node has a
finite proof tree in the inference system extended by the corule:

. . .

max(L, 2)
max(2:L, 2)

max(1:2:L, 2)
max(2:L, 2)

max(1:2:L, 2)

1Under the common assumption that sets of premises are finite, otherwise we should say a well-founded tree, that
is, a tree with no infinite paths.

3

On the other hand, the judgment max(1:2:L, 5) has the infinite proof tree shown above, but has
no finite proof tree in the inference system extended by the corule. Indeed, since 5 does not
belong to the list, the corule can never be applied. Hence, this judgment cannot be derived in the
inference system with corules. We refer to [3, 1, 2, 4] for other examples.

Let 〈I, C〉 be a generalized inference system. The bounded coinduction principle, a general-
ization of the standard coinduction principle, can be used to prove completeness of 〈I, C〉 w.r.t.
a set S (for “specification”) of valid judgments.

Theorem 2.1 (Bounded coinduction). If the following two conditions hold:

1. S ⊆ Ind(I ∪ C), that is, each valid judgment has a finite proof tree in I ∪ C;
2. S ⊆ FI(S), that is, each valid judgment is the consequence of an inference rule in I where

all premises are in S,

then S ⊆ Gen(I,C).

3. Our approach

Notation for sequences. Given a set X, we denote by X?, Xω = {σ | N→ X}, and X∞ = X? ∪ Xω,
respectively, the sets of finite, infinite, and possibly infinite sequences of elements of X. We write x:u for
concatenation of x ∈ X with u ∈ X∞, u · v (or just u v) for concatenation of u ∈ X? with v ∈ X∞, and ε for
the empty sequence. Given a function f : X → Y , we obtain functions f ? : X? → Y? and f ω : Xω → Yω,
defined by elementwise application of f . For u ∈ X? and v ∈ X∞, we say that u is a prefix of v, denoted by
u / v, if u · z = v for some z ∈ X∞.

3.1. An example of semantics with observations
We illustrate our approach on a call-by-value λ-calculus with output. The top section of

e ::= v | x | e1 e2 | out e expression
u, v ::= i | λx.e result = value

o ::= v1 . . . vn finite observation

` ::= v | ε elementary observation
E[] ::= � | E[] e | (λx.e)E[] | outE[] evaluation context

(β)

(λx.e) v
ε
−→ e[x/v]

(out)
out v

v
−→ v

(ctx)
e

`
−→ e′

E[e]
`
−→ E[e′]

E[] , �

(val)
v⇒〈v, ε〉

(app)

e1⇒〈λx.e, o1〉

e2⇒〈v, o2〉

e[v/x]⇒〈u, o〉

e1 e2⇒〈u, o1 · o2 · o〉
(out)

e⇒〈v, o〉
out e⇒〈v, o · v〉

Figure 1: λ-calculus with output: syntax and finite semantics

Fig. 1 contains the syntax. We assume infinite sets of variables x and integer constants i. Results
are either integer constants or λ-abstractions. Beyond standard constructs, we add expressions
of shape out e, which output the result of the evaluation of e. Correspondingly, observations are
sequences of such outputs, and the semantics of an expression consists of both its final result and
the whole observation produced during the computation.

4

The mid section contains, as reference, the small-step semantics, defined by a labelled tran-

sition system e
`
−→ e′. Labels are observations produced on a single step, called elementary, that

is, either an output observation, or no observation, represented by the empty sequence ε. Rule
(ctx) is the usual contextual closure, and evaluation contexts define the standard call-by-value
left-to-right strategy.

The bottom section contains the same semantics in big-step style. As expected, the big-step
judgment e⇒ 〈v, o〉 directly computes the semantics (result and observation), whereas in the

small-step style such semantics is obtained from a finite sequence of steps e=e0
`1
−→ . . .

`n
−→ en=v

such that o=`1 · . . . · `n.

3.2. Extending observations

First of all we enrich results by a special element ∞ denoting divergence, and observations
by considering infinite output sequences:

v∞ ::= v | ∞ result or divergence
o∞ ::= o | v1 . . . vn . . . observation

The latter is an instance of a general construction, formally defined in Sect. 4. Briefly, assuming
that finite observations are a monoid 〈O, ∗, u〉, with ∗ (sequentially) combining two observations,
and the identity u, also called unit, modeling absence of observation, we construct an ω-monoid
〈O, O∞〉, where O∞ models possibily infinite observations, with a mixed product ∗∞ : O×O∞ →
O∞ combining a finite with a possibly infinite observation, and an infinite product p : Oω → O∞
mapping an infinite sequence of finite observations into a possibly infinite observation. For
details and a proper definition, see Section 4.

In the example, the monoid is 〈Val?, ·, ε〉, and the construction just adds infinite output se-
quences. Formally, we obtain the ω-monoid 〈Val?, Val∞〉, where the mixed product is the con-
catenation of a finite with a possibly infinite sequence, still denoted by ·, and the infinite product
returns the concatenation of an infinite number of finite sequences.

3.3. Extending big-step semantics

The judgment is modified into e⇒〈v∞, o∞〉 to include divergence and infinite observations.
Correspondingly, we extend the inference system, as formalized in Sect. 5. Here we informally
explain the extension using the example.
Divergence propagation We first present the easier part, which is how to add rules for divergence
propagation, shown in Fig. 2.

(div-app1)
e1⇒〈∞, o∞〉

e1 e2⇒〈∞, o∞〉
(div-app2)

e1⇒〈λx.e, o〉 e2⇒〈∞, o∞〉
e1 e2⇒〈∞, o · o∞〉

(div-app3)
e1⇒〈λx.e, o1〉 e2⇒〈v, o2〉 e[v/x]⇒〈∞, o∞〉

e1 e2⇒〈∞, o1 · o2 · o∞〉
(div-out)

e⇒〈∞, o∞〉
out e⇒〈∞, o∞〉

Figure 2: λ-calculus with output: adding divergence propagation

These rules are not arbitrary: they are constructed in a systematic manner starting from the
original (meta-)rules. That is, for each original meta-rule, we consider premises as ordered from

5

Infinite proof tree for any Ω ≡ ωω⇒〈v∞, o∞〉 in I

(app/div-app3)

(val)
ω⇒〈ω, ε〉

(val)
ω⇒〈ω, ε〉

(app/div-app3)

...

ωω ≡ (x x)[ω/x]⇒〈v∞, o∞〉

ωω⇒〈v∞, ε · ε · o∞ ≡ o∞ 〉

Finite proof tree for Ω ≡ ωω⇒〈∞, ε〉 in I ∪ C (co-empty)

Ω⇒〈∞, ε〉

Figure 3: Proof trees for Ω

(co-empty)

e⇒〈∞, ε〉
(co-out)

e⇒〈v, o〉

out e⇒〈∞, o · v · o∞〉

Figure 4: λ-calculus with output: adding corules

left to right.2 For each premise, say, the i-th, we add a meta-rule where the first i − 1 premises
are kept as they are (hence, the corresponding computations converge), whereas the i-th premise
requires the corresponding computation to diverge. In the conclusion, we get∞ as result and the
mixed product of the observations in the premises (in the given order) as observation; only the
last observation is possibly infinite.
Divergence introduction The rules in Fig. 2 ensure that divergent computations, if any, are
correctly propagated. To discuss how to correctly introduce divergent computations, consider,
for instance, the term Ω = ω ω, where ω = λx.x x. We should derive Ω⇒〈∞, ε〉, and only this
judgment, modeling that Ω diverges without producing any output. Similarly to the example max
in Sect. 2, no judgment can be derived for Ω in the inductive interpretation, and, in the coinductive
interpretation, an infinite proof tree exists for any judgment Ω⇒〈v∞, o∞〉, as shown3 in Fig. 3,
where (app/div-app3) means either (app), if v∞ is a value v, or (div-app3), if v∞ = ∞.

In summary, divergent terms have no result (are stuck) in the inductive interpretation, and a
fully non-deterministic result in the coinductive interpretation. Our approach is to add appropri-
ate corules, so that, as in the max example, we add constraints to filter out wrong judgments.

In the example, we add to the rules in Fig. 1 and Fig. 2 the corules shown in Fig. 4, which
again are obtained in a systematic manner. Notably, they are special cases of two patterns, named
(co-unit) and (co-mul), which handle two different cases of divergent computations. We explain the
role of these rules; they will be formally defined in Sect. 5 (Def. 5.3).

The (co-unit) pattern handles the case where the computation produces a finite4 observation o.
In this case, a purely coinductive approach obtains any v∞, and any observation of shape o ∗ o∞,
and the aim of the corule is to only allow v∞ = ∞ and o∞ = u. In the example, we use the
specific name (co-empty), since the unit is the empty sequence. In the Ω case, o = ε, and, with
(co-empty), we derive only the judgment Ω⇒ 〈∞, ε〉. Indeed, consider one of the proof trees in

2Assuming an order on premises is transparent with respect to the finite semantics, but relevant for the construction,
see Sect. 7.3 for a detailed discussion.

3Here and in the following examples we add to the proof tree some comments (with a grey background) showing an
equivalent expression, to help the reader.

4More precisely, finitely generated by elementary observations, as defined in Def. 4.3.

6

Infinite proof tree for Ω̂ ≡ ω̂ (out ω̂)⇒〈v∞, o∞〉 in I, enforcing o∞ = ω̂ · o∞

(app/div-app3)

(val)
ω̂⇒〈ω̂, ε〉

(out)

(val)
ω̂⇒〈ω̂, ε〉

out ω̂⇒〈ω̂, ω̂〉
(app/div-app3)

...

Ω̂ ≡ ω̂ (out ω̂) ≡ (x (out x))[ω̂/x]⇒〈v∞, o∞〉

ω̂ (out ω̂)⇒〈v∞, ε · ω̂ · o∞ ≡ ω̂ · o∞ 〉

Finite proof tree for Ω̂ ≡ ω̂ (out ω̂)⇒〈∞, ô∞〉 in I ∪ C, with ô∞ = ω̂ . . . ω̂ . . .

(div-app2)

(val)
ω̂⇒ (ω̂, ε)

(co-out)

(val)
ω̂⇒〈ω̂, ε〉

out ω̂⇒〈∞, ε · ω̂ · ô∞〉

ω̂ (out ω̂)⇒〈∞, ε · ε · ω̂ · ô∞ ≡ ô∞ 〉

Figure 5: Proof trees for Ω̂

Fig. 3, which have an infinite path. For each node of such an infinite path5 the corules should
allow a finite proof tree. If the path consists of infinite nodes Ω⇒〈v, o∞〉, for some v and o∞,
then the corules do not allow any finite proof tree for this judgment, since they all have∞ in the
conclusion. If it consists of infinite nodes Ω⇒〈∞, o∞〉, for some o∞, then it is easy to see that
only for Ω⇒〈∞, ε〉 there is a finite proof tree, shown in the bottom section of Fig. 3.

The (co-mul) pattern, instead, handles the case where the computation produces an infinite
observation, since infinitely many elementary non-unit observations are produced. In this case,
a purely coinductive approach obtains any v∞; on the other side, the observation is uniquely
determined by this infinite sequence. Consider, for instance, the term Ω̂ = ω̂ (out ω̂), with
ω̂ = λx.(x (out x)), for which the small-step semantics produces the output sequence consisting
of infinite occurrences of the value ω̂. In the top part of Fig. 5 we show the infinite proof trees
which can be constructed for Ω̂. Each of them forces the constraint o∞ = ω̂ · o∞, which is solved
only for ô∞ = ω̂ . . . ω̂ Hence, the aim of the corule is, on one hand, to force v∞ = ∞, and,
on the other hand, to allow a finite proof tree for any node in the infinite path. Since in this
infinite path there are infinite nodes producing an observation, it is enough to add a corule for
such nodes. In our running example, we use the specific name (co-out), since the only original
meta-rule producing a (non-unit) observation is (out). Exactly as in the Ω case, the corules do
not allow finite proof trees for judgments of shape Ω̂⇒〈v, o∞〉. On the other hand, they should
allow a finite proof tree for the judgment Ω̂⇒〈∞, ô∞〉, which can be obtained by corule (co-out),
as shown in the bottom section of Fig. 5.

We conclude by explaining how meta-corules are added in a systematic way.

• We always add a meta-coaxiom (co-unit) with conclusion e⇒〈∞, u〉.

• Assuming that in each meta-rule the observation in the conclusion is the product of the
observations o1, . . . , on in the premises, followed by an elementary observation o, we add,
for each meta-rule where o , u, a corresponding meta-corule with the same premises6

5For other nodes the condition is true since they have a finite proof tree using the rules.
6Here we simplify a little; in the construction in Sect. 5, we assume a distinguished last premise called continuation,

which is not kept in the corule.
7

and conclusion e⇒ 〈∞, o1 ∗ · · · ∗ on ∗ o ∗ o∞〉. In the example, only (out) has a non-unit
elementary observation, therefore (co-out) is the only added meta-corule.

A formal account of this general construction is given in Sect. 5.

4. From finite to infinite observations

In this section, we formally define ω-monoids. They are a variation of ω-semigroups used in
algebraic language theory [6]. Further, we introduce a completion construction from monoids to
ω-monoids.

Definition 4.1 (ω-monoid). An ω-monoid is a pair 〈M, N〉 of sets together with a function ∗ :
M × M → M, called finite product, a function ∗∞ : M × N → N called mixed product, a
function p : Mω → N called infinite product, and a constant u ∈ M called unit, satisfying the
following properties:

1. 〈M, ∗, u〉 is a monoid:
for all x, y, z ∈ M: (x ∗ y) ∗ z = x ∗ (y ∗ z) and x ∗ u = x = u ∗ x.

2. ∗∞ is a left action:
for all x, y ∈ M and α ∈ N: x ∗∞ (y ∗∞ α) = (x ∗ y) ∗∞ α and u ∗∞ α = α.

3. p respects the mixed product: for all x ∈ M and σ ∈ Mω, x ∗∞ p(σ) = p(x:σ).
4. p satisfies the infinite associative law7: for all σ, τ ∈ Mω, if σ<: τ, then p(σ)=p(τ).

A homomorphism from an ω-monoid 〈M, N〉 to an ω-monoid 〈M′, N′〉 is a pair of functions
f : M → M′ and g : N → N′ which preserve the unit and all three products in the expected way.

Example 4.1. We list a few basic examples of ω-monoids.

1. A main example is the pair 〈A?, A∞〉 of finite sequences and possibly infinite sequences
over an alphabet A. Finite and infinite product are given by concatenation. The mixed
product concatenates finite sequences (on the left) with arbitrary sequences (on the right).
There is no concatenation with infinite sequences on the left.

2. As a special case of (1), 〈N, +, 0〉 extends to the ω-monoid 〈N, N + {∞}〉.
3. The monoid 〈N, ∨, 0〉 (where n1 ∨ n2 is the join of n1 and n2 w.r.t. the standard order) also

extends to an ω-monoid 〈N, N + {∞}〉. Here, the infinite product computes the supremum
of values occuring in a sequence.

4. Let P(X) be the powerset of a set X, and Pf (X) the finite powerset, i.e., Pf (X) = {S ⊆ X |
S finite}. The monoid 〈Pf (X), ∪, ∅〉 extends to an ω-monoid, with the second component
given by the (full) powerset P(X).

Given a set A, recall that A? is a free monoid: if M is a monoid, then for every map f : A→ M
there is a unique monoid homomorphism f] : A? → M such that f](a) = f (a) for all a ∈ A. In
particular, starting from the identity idM : M → M, we get the map id]M : M? → M, which inter-
prets a sequence of elements as a unique element, by iterating the operation ∗ on the sequence.
We abbreviate id]M by itM (for “iterator”), dropping the subscript when clear from the context.
The following result, which follows by a slight adaptation of the proof for ω-semigroups [6],
characterises the free ω-monoid.

7The order <: ⊆ Mω × Mω is defined by: for σ = (xi)i∈N and τ = (yi)i∈N, σ<: τ iff there exists a strictly increasing
sequence (ki)i∈N with k0 = 0 such that xi = yki ∗ · · · ∗ yki+1−1.

8

Proposition 4.1 (Free ω-monoid). For every set A, ω-monoid 〈M, N〉 and map f : A→ M there
are unique maps f], f]∞ such that 〈 f], f]∞〉 is a homomorphism of ω-monoids from 〈A?, A∞〉 to
〈M, N〉.

Analogously to the monoid case, we abbreviate 〈 f], f]∞〉 by 〈it, it∞〉 when f = idM . We will use
this iterator in Sect. 7.1 to obtain a single observation from a sequence of elementary observa-
tions.

We define x �∗ y ⇔ ∃z ∈ M. x ∗ z = y. It is easy to check that this relation is reflexive and
transitive, hence it is a pre-order. Furthermore, all left multiplications (the functions y 7→ x ∗ y
for all x ∈ M) are monotone w.r.t. �∗. Finally, we denote by �∞ ⊆ M × N the relation defined
similarly by the mixed product, i.e., x �∞ α⇔ ∃β ∈ N. x ∗∞ β = α.

We present now a construction which, given a monoid 〈M, ∗, u〉, produces an ω-monoid
C∞(M) = 〈M, M∞〉 called the completion of M. The completion is order-theoretic, and follows
essentially from [8].

The construction takes existing limits into account, such that, when completing, e.g., the
powerset P(X) of a set X (cf. Example 4.1), one obtains no new elements (intuitively, all limits
already exist). To make this precise, we define a left continuous monoid as a monoid 〈M, ∗, u〉
such that �∗ is anti-symmetric (hence, a partial order) and, for each x ∈ M, the left multiplication
function mx : M → M defined by mx(y) = x ∗ y is (Scott) continuous w.r.t. �∗. More explicitly,
for each increasing sequence σ = (yi)i∈N admitting a least upper bound supσ, the least upper
bound sup(x ∗ σ) exists (where x ∗ σ = (x ∗ yi)i∈N), and x ∗ supσ = sup(x ∗ σ) A continuous
homomorphism is a monoid homomorphism f : M → N which is (Scott) continuous w.r.t. �∗.
Every (underlying) monoid listed in Example 4.1 is left continuous.

The completion construction described below turns a left continuous monoid M into an ω-
monoid C∞(M) = 〈M, M∞〉, where M∞ is presented as a quotient of the set Mω. We start by
defining a relation v on Mω. For σ ∈ Mω we denote by S(σ) the closure of the set {it(u) |
u / σ} w.r.t. least upper bounds of increasing sequences. Then, for all σ, τ ∈ Mω, we define
σ v τ⇔ ∀x ∈ S(σ). ∃y ∈ S(τ). x �∗ y. This relation is a pre-order. We denote by ≡ the induced
equivalence relation, that is, σ ≡ τ⇔ σ v τ ∧ τ v σ.

Definition 4.2 (Completion). The completion of a left continuous monoid 〈M, ∗, u〉 is the ω-
monoid C∞(M) = 〈M, M∞〉 where: M∞ = Mω/ ≡, the mixed product ∗∞ : M ×M∞ → M∞ is
given by x ∗∞ [τ]≡ = [x:τ]≡, and the infinite product p : Mω → M∞ is given by p(τ) = [τ]≡.

The fact that C∞(M) is indeed anω-monoid follows from A.1. In fact, the completion extends
to a functor, mapping a continuous homomorphism f between left continuous monoids to an ω-
monoid homomorphism 〈 f , f ω〉.

Example 4.2. The ω-monoid C∞(A?) is isomorphic to the (free) ω-monoid 〈A?, A∞〉. In fact,
the first three ω-monoids in Example 4.1 arise as completions of their underlying monoid. For
the fourth (Pf (X)) this is the case if X is countable.

For an ω-monoid, 〈M, N〉 consider the map ιM : M → N defined by ιM(x) = p(x:uω),
where uω is the infinite sequence of u’s. This map is not necessarily injective, but, if M is left
continuous, it is, hence, this is the case of the completion 〈M, M∞〉. In the sequel, we therefore
identify M with its image in M∞, leaving the inclusion ι implicit.

We conclude this section with the definition of a technical property of ω-monoids, stated
for the completion in particular, which will be used to guide the extension of big-step semantics
presented in Sect. 5. We note that the use of this property is quite subtle, and most of the extension

9

can be understood without it. Given G ⊆ M, and MG the submonoid of M generated by G, a
sequence σ = (xi)i∈N in G is trivial if it is eventually always the unit. An element α ∈ M∞ is a
limit product of σ if, for all k ∈ N, x0 ∗ · · · ∗ xk �∞ α. Note that, thanks to the properties of the
infinite product, p(σ)is a limit product of σ. Moreover, for α ∈ M∞, we define the set F (α) of
factors of α in MG:

F (α) = {x ∈ MG | ∃x′ ∈ MG. ∃σ ∈ Mω
G . α = x′ ∗ x ∗∞ p(σ)} .

We can now define the properties we need:

Definition 4.3. Let M be a monoid. For a subset G ⊆ M, we say G has unique limits in M∞
if each non-trivial sequence σ = (xi)i∈N in G has a unique limit product. Further, an element
α ∈ M∞ is called finitely generated by G if F (α) is non-empty and finite.

5. Extending big-step semantics

In this section, we formally define the construction which extends big-step semantics. We
start with a few basic definitions related to big-step semantics. Assume in the following:

• a set C of configurations c;

• a set R ⊆ C of results r;

• a left continuous monoid 〈O, ∗, u〉 of (finite) observations o.

In the example of Sect. 3, configurations are just language terms. In general, they could
include additional components, such as memory. We take an “operational” view of big-step
semantics, as in, e.g., [9], where results are special configurations, rather than separate semantic
entities. This allows a more direct comparison with small-step semantics in Sect. 7.

Definition 5.1. A judgement j is a triple denoted by c⇒〈r, o〉, where c ∈ C, r ∈ R and o ∈ O.
We set C(j) = c, R(j) = r and O(j) = o.

A rule ρ in big-step semantics has shape
j1 . . . jn jn+1

c⇒〈R(jn+1), O(j1) ∗ · · · ∗ O(jn) ∗ o ∗ O(jn+1)〉
where c ∈ C \ R, j1, . . . , jn are judgements called dependencies (with n ≥ 0), jn+1 is a judgement
called continuation and o ∈ O is the elementary observation.

A big-step semantics is a collection I of rules of the above form, together with a single axiom

r⇒〈r, u〉
for each result r ∈ R.

The notation for judgements is extended to rules by setting C(ρ) = c, R(ρ) = R(jn+1) and
O(ρ) = O(j1) ∗ · · · ∗ O(jn) ∗ o ∗ O(jn+1).

A rule ρ as above models that the evaluation of c consists of the following steps: first, for any
dependency ji, in the given order, the configuration C(ji) is evaluated, producing the observation
O(ji); then, the elementary observation o is emitted and the configuration C(jn+1) in the contin-
uation is evaluated; finally, the result of the continuation R(jn+1) is returned, and all the partial
observations are composed, following the evaluation order.8 The restriction that an observation is

8The term continuation, even though overloaded, is chosen to suggest that, after evaluating dependencies (subterms),
some actual computation takes place leading to a new term, from which the computation continues, as in a computational
step in the small-step style.

10

only emitted before the continuation is a simplification: emitting observations before evaluating
a dependency can be encoded by factorizing the semantics, by introducing an intermediate term,
as it should be done in small-step style as well.

Note that there are axioms only for results, which have no other rules. Hence, the only
derivable judgment for r is r⇒〈r, u〉, which we call a trivial judgment.

A big-step semantics as defined above forms an inference system, whose inductive interpre-
tation is the semantics of interest. However, these rules carry slightly more information than
standard inference rules. Notably, premises are a non-empty sequence, rather than a set, and the
last premise plays a special role. Such additional structure does not affect the semantic relation
defined by the rules, but is relevant to define the construction.

It will be useful in the technical development to denote a rule as in Definition 5.1 as above
more concisely as

rule(j1 . . . jn, jn+1, c, o) ,

referred to as the inline format of rules.
[Elena: moved here before the examples] The following assumption means that meta-variables for ob-

servations can be freely instantiated, that is, observations do not influence the evaluation process.

Assumption 1. Throughout this paper, we assume the following, for any big-step semantics I:
for all ρ=rule(j1 . . . jn, jn+1, c, o) in I, o1, . . . , on+1 ∈ O, there is ρ′=rule(j′1 . . . j

′
n, j
′
n+1, c, o) s.t., for

all i ∈ 1 . . . n + 1, j′i=C(ji)⇒〈R(ji), oi〉.

Example 5.1. The big-step semantics of lambda-calculus with output, in the inline format of
rules, is as follows.

(app) rule(e1⇒〈λx.e, o1〉 e2⇒〈v, o2〉, e[v/x]⇒〈u, o〉, e1 e2, ε)
(out) rule(e⇒〈v, o1〉, v⇒〈v, o2〉, out e, v)

We compare this to the original definition in Fig. 1. Axiom (val) is omitted since it is assumed
implicitly in Definition 5.1, and (app) is the original meta-rule in inline format (the third premise
is the continuation). In (out), the original meta-rule had no explicit continuation, hence it is
expressed in a slightly different way, with a dummy continuation v⇒〈v, o2〉. The two versions
are clearly equivalent since this judgment can only be derived for o2 = u.

Example 5.2. The semantics of an application e1 e2 in Fig. 1 formalizes a strategy which first
(1) evaluates e1, then (2) checks that the value of e1 is a λ-abstraction, finally (3) evaluates e2.
That is, left-to-right evaluation with early error detection. Other strategies can be obtained by
adjusting (small-step and) big-step rules. Notably, right-to-left evaluation (3)-(1)-(2), expressed
in small-step style by evaluation contexts E[] v and eE[], can be expressed by just swapping the
first two premises, that is:

(app-right) rule(e2⇒〈v, o2〉 e1⇒〈λx.e, o1〉, e[v/x]⇒〈u, o〉, e1 e2, ε)

Left-to-right evaluation with late error detection (1)-(3)-(2), expressed in small-step style by
evaluation contexts E[] e and vE[], can be expressed as follows:

(app-late) rule(e1⇒〈v1, o1〉 e2⇒〈v2, o2〉 v1⇒〈λx.e, o3〉, e[v2/x]⇒〈u, o〉, e1 e2, ε)

11

We now turn to the extension of a big-step semantics I, which consists in the addition of
rules for divergence propagation as well as corules to rule out spurious results, as shown in the
example in Section 3. It depends on properties of I and the observation monoid O which corules
are actually added—see the final construction in Definition 5.4. We start by describing the basic
rules for divergence propagation and the relevant corules.

Definition 5.2 (Rules for divergence propagation). The set of rules I∞ is obtained by extending
I as follows. For each ρ = rule(j1 . . . jn, jn+1, c, o), i∈1..n + 1, and o∞ ∈ O∞, we add a rule

j1 . . . ji−1 C(ji)⇒〈∞, o∞〉
c⇒〈∞, O(j1) ∗ · · · ∗ O(ji−1) ∗ o′ ∗∞ o∞〉

o′ =

o if i = n + 1
u otherwise

denoted by div(ρ, i, o∞) to highlight the relationship with the original rule ρ.

Intuitively, we consider the possibility that evaluation of C(ji) diverges for one of the premises
ji. In that case, the subsequent premises should be ignored and the configuration c in the conclu-
sion should diverge as well.

Definition 5.3 (Corules patterns). The set of corules CIu is defined as follows:

(co-unit)
c⇒〈∞, u〉

The set of corules CIm is defined as follows:

(co-mul)

j1 . . . jn

c⇒〈∞, O(j1) ∗ · · · ∗ O(jn) ∗ o ∗∞ o∞〉

o∞ ∈ O∞
rule(j1 . . . jn, j, c, o) ∈ I
o , u

We denote by co-mul(ρ, o∞) the corule in CIm constructed from ρ= rule(j1 . . . jn, j, c, o) with ob-
servation o∞. The set of corules CI is defined as the union CIu ∪ C

I
m.

Example 5.3. Due to the side condition o,u, for instance, for the λ-calculus with output, the
above definition associates no corule (co-mul) with (app), whereas for (out) we obtain rule (co-out), see
Fig. 4.

The properties of the semantics extension strongly depends on how the ω-monoid C∞(O) =

〈O, O∞〉 behaves w.r.t. the elementary observations EI [Davide: I would suggest using a notation more different

from evaluation contexts E[] [Elena: I tried an alternative]] produced in the semantics, defined by
EI = {o | there is a rule ρ=rule(j1, . . . , jn, jn+1, c, o)} .

Further, we define OI as the submonoid of O generated by EI. This submonoid contains all the
observations produced by finite computations, as stated in the following lemma.

Lemma 5.1. If 〈I, ∅〉`c⇒〈r, o〉, then o ∈ OI.

We are now ready to define the extension of big-step semantics, using the constructions in
Definitions 5.2 and 5.3.

Definition 5.4 (Extending big-step semantics). The extension of a big-step semantics I is the
inference system with corules 〈I∞, CI〉 if EI has unique limits, otherwise it is 〈I∞, CIu 〉.

In the above definition, if EI has unique limits, we take both corules patterns of Def. 5.3 and
the construction is correct, as will be formally shown in Sect. 7.4 (Theorem 7.1 and Theorem 7.5).
Indeed, given a computation which produces infinitely many elementary non-unit observations,

12

pattern (co-mul) allows any limit product of this sequence (Lemma 7.6), hence the uniqueness of
limits is needed to avoid spurious observations. The property of unique limits holds in many
significant examples, see the next section, notably for the common case where observations are
traces.

If this property does not hold, we can keep only pattern (co-unit) and, in this way, the con-
struction is correct for computations with observations which are finitely generated by EI (The-
orem 7.3 and Theorem 7.2), as defined above. This is satisfactory in many examples, see again
the next section.

We conclude with a basic but important property of semantics with corules. A set C of corules
is called conservative if all rules are of the form

Pr

c⇒〈∞, o∞〉
For instance, CIu , CIm, and CI are conservative sets of corules. By adding a conservative set of
corules to I∞ we do not affect finite computations, as formally stated below. The important
consequence is that, for converging judgments, we can reason by standard inductive techniques
(see, e.g., Lemma 7.2 and Lemma 7.5).

Theorem 5.1 (Conservativity). For each 〈I∞, C〉 with C conservative,
〈I∞, C〉`c⇒〈r, o〉 iff 〈I, ∅〉`c⇒〈r, o〉.

6. Examples of instantiation of the construction

In this section, we consider several examples, with different underlying monoids of finite
observations. The reference small-step semantics are reported in Appendix D. For all examples,
the original big-step semantics is equivalent to finite small-step computations.9 For simplicity,
we directly show the (possibly simplified) meta-rules obtained by the construction, using the
following convention: non-bold for original meta-rules, bold black for added meta-(co)rules,
bold gray for extended meta-rules (merging original and added meta-rules).
I/O events The first example, in Fig. 6, is a slight extension of the λ-calculus in Sect. 3: besides
out e, we add the construct in to read input values. Single observations are no longer just values,
but I/O events of shape either in v (value v has been read) or out v (value v has been output).
The monoid of finite observations is {in v, out v | v value}?, that is, the free monoid as in Sect. 3,
but on top of a different set of single observations, and the ω-monoid completion adds infinite
sequences of events.

The grammar also defines (divergence) propagation contexts D[] [2] with one hole at fixed
depth 1 to allow a more concise presentation of the meta-rules added for divergence propagation
(see comments to rule (div) below). Meta-rules (val), (out), and (in) are original meta-rules; (val) and
(out) are analogous to those in Fig. 1. However, here configurations have shape (e;σ) where σ is
an infinite sequence of values modeling the input stream. In meta-rule (in), a value is read from
such a stream, emitting the corresponding elementary observation.

Meta-rule (app) is the merge of two different meta-rules: the original one, analogous to (app)

in Fig. 1, and that added for divergence propagation from the third premise, analogous to (div-

app3) in Fig. 2. To this aim, the meta-variable w ranges over pairs of shape either 〈(v;σ), o〉,

9As can be proved by showing that the equivalence conditions of Sect. 7.3 hold.

13

e ::= v | x | e1 e2 | in | out e expression
u, v ::= i | λx.e value
θ ::= in v | out v I/O event
o ::= θ1 . . . θn finite observation

o∞ ::= o | θ1 . . . θn . . . observation
D[] ::= � e | out� (divergence) propagation context

(val)
(v;σ)⇒ 〈(v;σ), ε〉

(out)
(e;σ1)⇒ 〈(v;σ2), o〉

(out e;σ1)⇒ 〈(v;σ2), o · (out v)〉

(in)
(in; v:σ)⇒ 〈(v;σ), in v〉

(app)

(e1;σ1)⇒ 〈(λx.e;σ2), o1〉

(e2;σ2)⇒ 〈(v;σ3), o2〉
(e[x← v];σ3)⇒ w

(e1 e2;σ1)⇒ o1 · o2 · w

(div-app2)
(e1;σ1)⇒〈(λx.e;σ2), o〉 (e2;σ2)⇒〈∞, o∞〉

(e1 e2;σ1)⇒〈∞, o · o∞〉
(div)

(e;σ)⇒ 〈∞, o∞〉
(D[e];σ)⇒ 〈∞, o∞〉

(co-empty)
(e;σ)⇒ 〈∞, ε〉

(co-out)
(e;σ1)⇒ 〈(v;σ2), o〉

(out e;σ1)⇒ 〈∞, o · (out v) · o∞〉

(co-in)
(in; v:σ)⇒ 〈∞, (in v) · o∞〉

Figure 6: λ-calculus with I/O: meta-(co)rules generated by the construction

or 〈∞, o∞〉; accordingly, o′ · w denotes either 〈(v;σ), o′ · o〉 or 〈∞, o′ · o∞〉. Meta-rule (div-app2)

is analogous to that in Fig. 2, added for divergence propagation from the second premise of
(app). Thanks to propagation contexts, the remaining meta-rule (div) represents those added for
divergence propagation from the first premise of both (app) and (out), analogously to (div-app1) and
(div-out) in Fig. 2.

The meta-corules (co-empty) and (co-out) are analogous to those in Fig. 4, obtained as special
cases of (co-unit) and (co-mul) defined in Sect. 5, respectively, where the latter pattern is applied to
meta-rule (out). The meta-corule (co-in) is obtained by applying the pattern (co-mul) to meta-rule (in).

In this example, as in that of Sect. 3, by adding both the (co-unit) and the (co-mul) patterns,
as shown above, we get the expected semantics, that is, the same derived from the small-step
computations. Notably, completeness holds adding both patterns (Theorem 7.1), and soundness
holds since the monoid of finite observations has unique limits (Theorem 7.5).
I/O costs In the next example, the language is the same, but single observations are the (time)
costs associated with each I/O operation. This could be easily generalized to other constructs,
e.g., considering also the costs for function application; however, by considering I/O operations
only, we can show that our construction leads to exactly the same meta-rules as the previous
example, modulo the used monoid of finite observations.

This monoid is 〈R≥0, +, 0〉, that is, non-negative real numbers with addition; the only infinite
observation added by the completion is ∞, corresponding to diverging series, with the obvious
behavior w.r.t. the mixed product.

The meta-rules in Fig. 7 differ from those in Fig. 6 mainly for the employed ω-monoids,
and few other details. Namely, meta-variables c and c∞ range over R≥0 (finite observations) and
R≥0 + {∞} (possibly infinite observations), and the semantics is parametric in the two functions
cin : Val → R≥0 and cout : Val→ R≥0 assigning costs to in and out operations, respectively,

14

depending on the input/output value. The meta-corule corresponding to the pattern (co-unit) in
Sect. 5 has been named (co-zero). As in Fig. 6, we overload notation by adopting the same symbol
(+ in this case) for both finite and mixed product. In this case, the meta-variable w ranges over
pairs of shape either 〈(v;σ), c〉, or 〈∞, c∞〉; accordingly, c′ + w denotes either 〈(v;σ), c′ + c〉 or
〈∞, c′ + c∞〉.

(val)
(v;σ)⇒ 〈(v;σ), 0〉

(out)
(e;σ1)⇒ 〈(v;σ2), c〉

(out e;σ1)⇒ 〈(v;σ2), c + cout(v)〉

(in)
(in; v:σ)⇒ 〈(v;σ), cin(v)〉

(app)
(e1;σ1)⇒ 〈(λx.e;σ2), c1〉 (e2;σ2)⇒ 〈(v;σ3), c2〉 (e[x← v];σ3)⇒ w

(e1 e2;σ1)⇒ c1 + c2 + w

(div-app2)
(e1;σ1)⇒〈(λx.e;σ2), c〉 (e2;σ2)⇒〈∞, c∞〉

(e1 e2;σ1)⇒〈∞, c + c∞〉
(div)

(e;σ)⇒ 〈∞, c∞〉
(D[e];σ)⇒ 〈∞, c∞〉

(co-zero)
(e;σ)⇒ 〈∞, 0〉

(co-out)
(e;σ1)⇒ 〈(v;σ2), c〉

(out e;σ1)⇒ 〈∞, c + cout(v) + c∞〉

(co-in)
(in; v:σ)⇒ 〈∞, cin(v) + c∞〉

Figure 7: λ-calculus with I/O costs: meta-(co)rules generated by the construction

As in the previous example, by adding both the (co-unit) and (co-mul) patterns we get the expected
semantics. Completeness is again ensured by Theorem 7.1. Soundness (Theorem 7.5) holds
under the following assumption on the cost functions: 0 < inf{cin(v), cout(v) | v ∈ Val, 0 <
cin(v), cout(v)}; that is, non-zero costs for I/O operations cannot be arbitrarily close to zero.
This ensures that the set EI of elementary observations produced in the semantics has unique
limits. This is a reasonable assumption: it means that diverging programs performing infinite I/O
operations with non-zero costs cannot have a finite cost.
Executed branches We consider a λ-calculus with labelled conditional expressions and Boolean
values b, and a semantics useful to reason about branch coverage. The syntax is as follows.

e ::= v | x | e1 e2 | e ?a e1 : e2 expression
u, v ::= b | λx.e value
D[] ::= � e | � ?a e1 : e2 propagation context

We assume each conditional expression e ?a e1 : e2 in a program to be associated with a unique
label a ranging over a countably infinite set A of labels, so that a.true and a.false denote the
unique addresses inside the program of the then and else branches e1 and e2, respectively.

Here finite observations are the sets of the addresses of the branches executed by a program,
represented by the monoid 〈Pf ({a.true, a.false | a ∈ A}), ∪, ∅〉 (see point 4 in Example 4.1).
Again, in the meta-rules, the symbol ∪ denotes both the finite and the mixed product. The meta-
variable w ranges over pairs of shape either 〈v, A〉, or 〈∞, A∞〉, and, if w = 〈v∞, A∞〉, then A∪w
denotes 〈v∞, A ∪ A∞〉. Similarly to meta-rule (app), meta-rules (if-f) and (if-t) (name in gray bold)
are obtained by merging two different meta-rules: the original one for the finite semantics of
conditional expressions, and the meta-rule representing those added for divergence propagation
in the second premise.

For what concerns meta-corules, in this example we add only the (co-unit) pattern, because
adding (co-mul) would be unsound. Indeed, the completion produces the full powersetP({a.true, a.false |

15

(val)
v⇒ 〈v, ∅〉

(app)
e1 ⇒ 〈λx.e, A1〉 e2 ⇒ 〈v, A2〉 e[x← v]⇒ w

e1 e2 ⇒ A1 ∪ A2 ∪ w

(if-f)
e⇒ 〈false, A〉 e2 ⇒ w

e ?a e1 : e2 ⇒ A ∪ {a.false} ∪ w
(if-t)

e⇒ 〈true, A〉 e1 ⇒ w
e ?a e1 : e2 ⇒ A ∪ {a.true} ∪ w

(div-app2)
e1⇒〈λx.e, A〉 e2⇒〈∞, A∞〉

e1 e2⇒〈∞, A ∪ A∞〉
(div)

e⇒ 〈∞, A∞〉
D[e]⇒ 〈∞, A∞〉

(co-empty)
e⇒ 〈∞, ∅〉

Figure 8: λ-calculus with conditional: meta-(co)rules generated by the construction

a ∈ A})), and the set of elementary observations EI has no unique limits. However, since every
program has a finite set of branches, it is easy to see that (even infinite) small-step computa-
tions produce only observations which are finitely generated by EI, hence Theorem 7.2 gives
completeness of the big-step semantics. And, because we have only the (co-unit) pattern, by Theo-
rem 7.3 the big-step semantics is sound.
Maximum heap size In this last example we consider an imperative extension of the call-by-
value λ-calculus with heap references which can be explicitly deallocated. The syntax is as
follows.

e ::= v | x | e1 e2 | ref e |! e | e1 = e2 | free e expression
v ::= ι | λx.e value

D[] ::= � e | ref� |!� | free� | � = e propagation context
Values are either references ι or λ-abstractions. The syntax includes expressions of shape ref e
creating a new reference initialized with the value of e, ! e dereferencing the reference denoted
by e, e1 = e2 updating the reference denoted by e1 with the value of e2, and free e deallocating
the reference denoted by e.

In this case we are interested in observing the maximum size of the heap used by a pro-
gram: finite observations are the monoid 〈N, ∨, 0〉 (see point 3 in Example 4.1). This monoid
can be employed whenever observing the maximum number of used resources, independently
from the notion of resource (heap locations, files, locks, etc.). The completion is the ω-monoid
〈N, N + {∞}〉, whose infinite product computes the supremum of values in a given sequence.

As before, the same symbol ∨ denotes both the finite and the mixed product. The meta-
variable w ranges over pairs of shape either 〈(v;H), s〉, or 〈∞, s∞〉; accordingly, s′ ∨ w denotes
either 〈(v;H), s′ ∨ s〉 or 〈∞, s′ ∨ s∞〉.

Configurations have shape (e;H), where a heapH is a finite map from references to values.
Heap extension is denoted by H] {ι 7→ v} (where ι is not in the domain of H); |H| denotes the
cardinality of the domain of H , i.e., its size10. If the computation converges, then 〈(v;H), s〉
is returned (a value v, a heap H , and a maximum size s); if it diverges, then a pair 〈∞, s∞〉 is
returned.

As in the previous example, the set EI of the elementary observations produced in the seman-
tics has no unique limits. Hence, we keep only the meta-coaxiom (co-zero) corresponding to the
pattern (co-unit) to avoid unsoundness. The big-step semantics is sound by Theorem 7.3; however,
as opposed to the previous example, the infinitely generated observation11 ∞ is not obtained,

10With the simplifying assumption that the size does not depend on the values in the heap.
11Produced by diverging programs allocating infinite references, without deallocating them.

16

(val)
(v;H)⇒ 〈(v;H), 0〉

(ref)
(e;H1)⇒ 〈(v;H2), s〉

(ref e;H1)⇒ 〈(ι;H2] {ι 7→ v}), s ∨ (1 + |H2|)〉

(deref)
(e;H1)⇒ 〈(ι;H2), s〉

(! e;H1)⇒ 〈(v;H2), s ∨ |H2|〉
H2(ι) = v

(free)
(e;H1)⇒ 〈(ι;H2), s〉

(free e;H1)⇒ 〈(v;H3), s ∨ |H3|〉
H2 = H3] {ι 7→ v}

(upd)
(e1;H1)⇒ 〈(ι;H2), s1〉 (e2;H2)⇒ 〈(v;H3), s2〉

(e1 = e2;H1)⇒ 〈(v;H2] {ι 7→ v}), s1 ∨ s2 ∨ |H3|〉
H3 = H2] {ι 7→ v′}

(app)
(e1;H1)⇒ 〈(λx.e;H2), s1〉 (e2;H2)⇒ 〈(v;H3), s2〉 (e[x← v];H3)⇒ w

(e1 e2;H1)⇒ s1 ∨ s2 ∨ |H3| ∨ w

(div-upd)
(e1;H1)⇒ 〈(ι;H2), s〉 (e2;H2)⇒ 〈∞, s∞〉

(e1 = e2;H1)⇒ 〈∞, s ∨ s∞〉
(div)

(e;H)⇒ 〈∞, s∞〉
(D[e];H)⇒ 〈∞, s∞〉

(div-app2)
(e1;H1)⇒ 〈(λx.e;H2), s〉 (e2;H2)⇒ 〈∞, s∞〉

(e1 e2;H1)⇒〈∞, s ∨ s∞〉
(co-zero)

(e;H)⇒ 〈∞, 0〉

Figure 9: λ-calculus with references: meta-(co)rules generated by the construction

hence the semantics is not complete. However, by Theorem 7.2 the semantics is complete for
finitely generated observations; since the only infinitely generated observation is ∞, the only
case where the big-step semantics “gets stuck”, hence does not return any result, as opposite
to the small-step semantics, is for programs that would require an infinite heap to run. This is
acceptable, as such programs are always doomed to crash.

7. Preservation of equivalence

In this section we prove the correctness of the construction in Sect. 5. To formulate and prove
correctness, we assume a reference small-step semantics, where the definition of both finite and
infinite computations is straightforward. Correctness then means that, starting from a big-step
semantics equivalent to finite small-step computations, we get an extended big-step semantics
equivalent to possibly infinite small-step computations.

This main correctness result requires several assumptions on the big-step semantics. In par-
ticular, we assume that it is deterministic. Both determinism and equivalence with finite small-
step computations need to be expressed, rather than globally on the semantic relation, at the level
of individual rules, since such properties should be preserved by the construction, which handles
single rules.

We start by describing small-step semantics in our context.

7.1. Small-step semantics for (in)finite computations

A small-step semantics with observations is defined by a labelled transition system, that is, a
set of steps q

o
−→ q′, for q, q′ ∈ C, o ∈ O. Then:

• c 〈r, o〉 means that there is a finite computation from c to r, and o is the interpretation
as single observation of the finite sequence of the elementary observations of single steps.

17

Formally, let −→?⊆ C × O? × C be inductively defined by: c
ε
−→? c, and if c

o
−→ c′ and

c′
u
−→? c′′ then c

o:u
−−→? c′′. Then the relation ⊆ C × R × O is defined as follows:

c 〈r, o〉 ⇔ ∃u ∈ O?. c
u
−→? r ∧ it(u) = o

• c 〈∞, o∞〉 means that there is an infinite computation starting from c, and o is the inter-
pretation as single observation of the infinite sequence of the elementary observations of
single steps. Formally, let −→ω ⊆ C × Oω be coinductively defined12 by:

c′
σ
−→ω

c
o:σ
−−→ω

c
o
−→ c′

Then the relation ⊆ C × O∞ is defined as follows:

c 〈∞, o∞〉 ⇔ ∃σ ∈ Oω. c
σ
−→ω ∧ it∞(σ) = o∞

7.2. Determinism assumptions

Determinism is expressed at the level of single rules as follows:

Assumption 2. For each ρ, ρ′ such that c=C(ρ) = C(ρ′), the following holds:

1. ρ=rule(j1 . . . jn, jn+1, c, o) and ρ′=rule(j′1 . . . j
′
n, j
′
n+1, c, o

′)
2. for all k ∈ 1..n + 1, if, for all h < k, R(jh) = R(j′h), then C(jk) = C(j′k) and, if k = n + 1,

o = o′.

To show that the above assumption actually models determinism, let us consider the (meta-)rule
for application in a lambda-calculus where configurations are pairs e|µ with µ auxiliary structure,
e.g., memory, modified by some constructs, so that the evaluation order is relevant.

(app)
e1|µ⇒〈λx.e|µ1, o1〉 e2|µ1⇒〈v|µ2, o2〉 e[v/x]|µ2⇒〈u|µ′, o〉

e1 e2|µ⇒〈u|µ′, o1 · o2 · ε · o〉

Assumption 2.1 requires that all the rules with the same configuration in the consequence have
the same number n of dependencies (n = 2 in the example), and this clearly holds, since they are
all instances of (app). However, for a fixed e1 e2|µ in the consequence, there are infinitely many
rules which can be obtained by instantiating the meta-variables. Assumption 2.2 imposes the
following constraints, expressed in the meta-rule by using the same meta-variable:

• (k = 1) the configuration in the first premise is uniquely determined

• (k = 2) the configuration in the second premise is uniquely determined by the result of the
first premise

• (k = 3) the configuration in the third premise is uniquely determined by the results of
the first two premises. In (app) we assume ε as elementary observation, in general the
elementary observation as well could depend on the results of the first two premises.

Finally note that, accordingly with Assumption 1, configurations are not determined by previous
observations, as expressed in the meta-rule by the fact that meta-variables for observations are
freely instantiated.

12That is, the largest relation such that, if c
σ
−→ω, there are o, σ′ and c′ s.t. σ = o:σ′, c

o
−→ c′ and c′

σ
−→ω.

18

We present two lemmas, holding under Assumption 2, used in later proofs. The first states
that big-step semantics is actually deterministic. Note that, by conservativity (Theorem 5.1),
this ensures that any conservative set of corules preserves determinism for finite computations.
Another source of non-determinism could be an infinite computation conflicting with a finite
one, and the second lemma states that this is prevented as well.

Lemma 7.1. If 〈I, ∅〉`c⇒〈r, o〉 and 〈I, ∅〉`c⇒〈r′, o′〉, then r=r′ and o=o′.

Lemma 7.2. If 〈I∞, C〉 ` c⇒〈r, o〉 with C conservative, then there is no o∞ ∈ O∞ such that
〈I∞, C〉`c⇒〈∞, o∞〉.

We proceed with a third assumption on the big-step semantics: well-foundedness of the
predecessor relation. Its formulation relies on Assumption 2, and several auxiliary concepts that
we need to introduce first. These will also be used in the equivalence conditions of the following
section.

Definition 7.1. For ρ=rule(j1 . . . jn, jn+1, c, o), set f(ρ) the first index in 1..n such that C(ji) < R, if
any, otherwise f(ρ) = n + 1. We say ρ is

• computational if all dependencies are trivial (hence f(ρ) = n + 1);

• contextual if f(ρ) ≤ n, and for all k < f(ρ), jk is trivial;

• stuck, if, for some k < f(ρ), jk is not trivial.

In the third case, C(jk) ∈ R but jk is not of shape r ⇒ 〈r, u〉, hence the premise jk cannot
be derived, and the rule is not applicable. Note that an inline meta-rule, for instance (app) in the
above example, can have instantiations which are computational (if e1 and e2 have shape λx.e
and v, respectively), contextual (if either e1 or e2 are not values), or stuck (e.g., if e1 is an integer
constant i.)

Under Assumption 2, configurations can be classified analogously to rules. Notably, c is
stuck if all its rules are stuck, that is, C(ρ) = c implies ρ stuck; otherwise, c is reduced if all
its non-stuck rules ρ=rule(j1 . . . jn, jn+1, c, o) are computational (f(ρ)=n + 1), compound if they
are contextual (f(ρ)≤n). Intuitively, a configuration is reduced if there are no dependencies to be
evaluated, compound otherwise. In the above example, a configuration (λx.e) e′|µ where e′ is not
a value is compound.

We define the predecessor relation pr on configurations as follows: c′ is a predecessor of
c if there is a contextual rule ρ for c such that c′ = C(ji) where i = f(ρ). By Assumption 2,
for any compound c there is a unique predecessor c′, which we denote by pr(c). Intuitively,
c′ is the (sub)configuration which needs to be evaluated first. The predecessor relation allows
us to formulate the following assumption, which abstractly models that “program parts” of
configurations have an inductive structure.

Assumption 3. The relation pr on configurations is well-founded.

From now on, we assume I to satisfy Assumptions 1, 2 and 3.

7.3. Equivalence conditions

As anticipated, to prove that equivalence with small-step computations is preserved by the
construction, the equivalence in the finite case is not enough as hypothesis. To see this, consider

19

the small-step semantics of application in Fig. 1, where, for e1 e2 such that e1 reduces to an
integer constant, reduction gets immediately stuck, and the big-step semantics with late error
detection in Example 5.2:

(app-late) rule(e1⇒〈v1, o1〉 e2⇒〈v2, o2〉 v1⇒〈λx.e, o3〉, e[v2/x]⇒〈u, o〉, e1 e2, ε)

Considering only finite computations, such two semantics are equivalent: in particular, no result
can be derived for e1 e2 in the big-step semantics as well, since a judgment v⇒〈λx.e, o3〉 can only
be derived if v = λx.e. However, this no longer holds for infinite computations: if e1 evaluates
to an integer constant, and e2 diverges, then we get a stuck computation in small-step semantics,
whereas by applying the construction we get, among others, the big-step rule

(div-app-late2)
e1⇒〈v, o〉 e2⇒〈∞, o∞〉

e1 e2⇒〈∞, o · o∞〉

hence we get non-termination. Intuitively, in order equivalence to be preserved by the construc-
tion, individual big-step rules should “match” the small-step relation, whereas this is not the case
for rule (app-late). The following equivalence conditions formalize this required matching.

To express the conditions in a convenient way, we introduce an auxiliary relation on rules:

Definition 7.2. For rules ρ and ρ′, we write ρ
o
−→ ρ′ if

ρ = rule(j1 . . . ji . . . jn, j, c, o′) and i = f(ρ)
ρ′ = rule(j′1 . . . j

′
i ji+1 . . . jn, j, c′, o′) and, for all k < i, jk and j′k are trivial,

c
o
−→ c′, C(ji)

o
−→ C(j′i), O(ji) = o ∗ O(j′i) and R(ji) = R(j′i).

Note that ρ is a contextual rule. For instance, consider the following small-step transitions in
the lambda-calculus in Fig. 1:

(λx.x) out out 1
1
−→ (λx.x) out 1

1
−→ (λx.x) 1

ε
−→ 1

the first two are obtained by rule (ctx) from out 1
1
−→ 1, the last by rule (app). Correspondingly,

there are transitions ρ0
1
−→ ρ1

1
−→ ρ2 where

ρ0 = rule(λx.x⇒〈λx.x, ε〉 out out 1⇒〈1, 1 · 1〉, 1⇒〈1, ε〉, (λx.x) out out 1, ε)

ρ1 = rule(λx.x⇒〈λx.x, ε〉 out 1⇒〈1, 1〉, 1⇒〈1, ε〉, (λx.x) out 1, ε)

ρ2 = rule(λx.x⇒〈λx.x, ε〉 1⇒〈1, ε〉, 1⇒〈1, ε〉, (λx.x) 1, ε)

An important property of this relation is that, if ρ
o
−→ ρ′, then the number of dependencies still

to be evaluated cannot increase. More precisely: if C(j′i) is a result, as in the transition ρ1
1
−→ ρ2,

then f(ρ′) > f(ρ); if C(j′i) is not a result, as in the transition ρ0
1
−→ ρ1, then f(ρ′) = f(ρ). In the latter

case, ρ′ is still contextual, and pr(C(ρ′)) = C(j′i).
We can now formulate the equivalence conditions.

Condition 1 (Enough rules). If c
o
−→ c′, then there exists ρ = rule(j1 . . . jn, jn+1, c, o′) such that:

1. either ρ is computational, o′ = o, and C(jn+1) = c′

2. or ρ is contextual, and there exists ρ′ s.t. C(ρ′) = c′ and ρ
o
−→ ρ′.

20

This condition requires, for each small-step transition c
o
−→ c′, the existence of a correspond-

ing big-step rule. This requirement is essential for completeness.

For instance, for (λx.x) out out 1
1
−→ (λx.x) out 1, there is the contextual rule ρ0 and the

transition ρ0
1
−→ ρ1. For (λx.x) 1

ε
−→ 1, there is the computational rule ρ2 with continuation 1 and

elementary observation ε.

Condition 2 (Forward compatibility). For each non-stuck ρ=rule(j1 . . . jn, j, c, o):

1. if ρ is computational, then c
o
−→ C(j)

2. if ρ is contextual with i = f(ρ) ≤ n, ji=ci⇒〈ri, oi〉, then:

if ci
ô
−→ c′i and oi = ô ∗ o′i , then there exists ρ′=rule(j′1 . . . j

′
n, j
′, c′, o′) s.t. ρ

ô
−→ ρ′ and

j′i=c′i⇒〈ri, o′i〉.

This condition is in some way symmetric to the previous one: for each computational rule,
there must be a corresponding (computational) small-step transition; for each contextual rule ρ,
if the predecessor ci has a compatible13 small-step transition ô, then the rule ρ, hence in particular
the configuration C(ρ), has the same small-step transition.

For instance, for the non-stuck (contextual) rule ρ1, where out 1
1
−→ 1, there is the transition

ρ1
1
−→ ρ2. For the computational rule ρ2, there is the small-step transition (λx.x) 1

ε
−→ 1.

By iterating Condition (2), this requirement can be extended to the global semantics as fol-
lows:

for each rule(j1 . . . jn, jn+1, c, o), if, for all i ∈ 1..n + 1, C(ji) 〈R(ji), O(ji)〉, then
c 〈(R(jn+1), O(j1) ∗ · · · ∗ O(jn) ∗ o ∗ O(jn+1)〉.

Condition 3 (Backward compatibility). If c
o
−→ c′, then, for each non-stuck ρ′ = rule(j′1 . . . j

′
n, j
′
n+1, c

′, o′′),
there exists ρ = rule(j1 . . . jn, jn+1, c, o′) such that:

1. either ρ is computational, o′ = o, and jn+1=c′⇒〈R(ρ′), O(ρ′)〉
2. or ρ is contextual, and ρ

o
−→ ρ′.

This last condition requires the big-step rules to be “backward closed” w.r.t. the transition
relation.

For instance, for (λx.x) out 1
1
−→ (λx.x) 1, for the non-stuck rule ρ2 there is the contextual rule

ρ1 such that ρ1
1
−→ ρ2.

In the following we will assume all the above conditions to hold. The following lemmas state
that they actually model equivalence of big-step semantics with finite small-step computations.
In this case, proof techniques are pretty standard: for completeness we use arithmetic induction
on the length of the sequence of steps and a subject expansion lemma (Lemma 7.3), while for
soundness we use induction on big-step rules, which is applicable thanks to Theorem 5.1.

Lemma 7.3. If 〈I, ∅〉`c′⇒〈r, o′〉 and c
o
−→ c′, then 〈I, ∅〉`c⇒〈r, o ∗ o′〉.

Lemma 7.4 (Completeness for convergence). If c 〈r, o〉, then 〈I, ∅〉`c⇒〈r, o〉.

Lemma 7.5 (Soundness for convergence). If 〈I, ∅〉`c⇒〈r, o〉 then c 〈r, o〉.

13That is, its label “can be seen as first part” of the observation in the big-step judgment.
21

7.4. Preservation of equivalence for infinite computations
This section presents the formal results about the preservation of equivalence. As already

stated above, we assume a big-step semantics I satisfying Assumptions 1, 2 and 3, and we
assume compatibility with a small-step semantics through Conditions 1, 2 and 3 as formulated
in the previous subsection.

First we discuss how completeness for finite computations (Lemma 7.4) is extended to infinite
ones. The following theorem states completeness for CI, that is, the extension obtained by
both the (co-unit) and (co-mul) patterns. The result is stated only for infinite computations, since by
Theorem 5.1 we derive the same converging judgements as before, hence Lemma 7.4 is enough.

Theorem 7.1 (Completeness). If c 〈∞, o∞〉, then 〈I∞, CI〉`c⇒〈∞, o∞〉.

An additional completeness result characterizes infinite computations which can be derived
by restricting corules to the set CIu of those of shape (co-unit). Recall from Sect. 5 that EI is the
set of the elementary observations produced in I, OI the submonoid of O generated by EI, and
observations finitely generated (by EI) are those with a non-empty and finite set of factors in OI
(see Def. 4.3). Then, the completeness result for CIu can be stated as follows.

Theorem 7.2 (Completeness for CIu). If c 〈∞, o∞〉 and o∞ is finitely generated by EI, then
〈I∞, C

I
u 〉`c⇒〈∞, o∞〉.

Now we discuss how soundness for finite computations (Lemma 7.5) is extended to infinite
ones. Soundness is always preserved by restricting corules to the set CIu , and in such case, as
stated above, completeness can be kept as well if the produced observations are finitely generated,
see the third example of Sect. 6.

Theorem 7.3 (Soundness for CIu). If 〈I∞, CIu 〉`c⇒〈∞, o∞〉, then c 〈∞, o∞〉.

Let us now consider the pattern (co-mul). We formally motivate that, as shown by the examples
of Sect. 6, in this case soundness requires unique limits (see Def. 4.3).

Let C be a set of corules, and 〈I∞, C〉 ` c⇒〈∞, o∞〉 by an infinite proof tree t. We can
associate with t the infinite sequence σt of finite observations produced by the computation.
Formally, for each level i of t there is a rule div(ρi, ki, oi+1

∞) with ρi = rule(ji1 . . . j
i
ni
, ji, ci, o′i), and

we define σt = (oi)i∈N ∈ Oω as follows:

oi =

O(ji1) ∗ · · · ∗ O(jiki−1) ki ≤ ni

O(ji1) ∗ · · · ∗ O(jini
) ∗ o′i ki = ni + 1

Set o0
∞ = o∞, we get, for all i ∈ N, oi

∞ = oi ∗∞ oi+1
∞ and 〈I∞, C〉`ci⇒〈∞, oi

∞〉 by a proof tree ti
such that σt0 = σt and σti = oi:σti+1 . Moreover, o∞ is a limit product of σt, that is, for all n ∈ N,
o0 ∗ · · · ∗ on �∞ o∞. Actually we have the following result.

Lemma 7.6. If 〈I∞, CI〉`c⇒〈∞, o∞〉 holds by a derivation t, σt is non-trivial and o′∞ is a limit
product of σt, then 〈I∞, CI〉`c⇒〈∞, o′∞〉.

This lemma shows why adding the pattern (co-mul) could be not sound: for each derivation t
for a judgement c⇒ 〈∞, o∞〉, where σt is non-trivial, we can derive c⇒ 〈∞, o′∞〉 for all limit
products o′∞ of σt. Hence, an easy sufficient condition to ensure soundness is to require such
limit to be unique.

By Lemma 5.1, given an infinite derivation t in I∞, σt belongs to Oω
I

by definition. Then, for
soundness it is enough that OI (in fact, thanks to the next proposition, EI), has unique limits.

22

Proposition 7.4. OI has unique limits if and only if EI has unique limits.

Theorem 7.5 (Soundness). If 〈I∞, CI〉`c⇒〈∞, o∞〉 and EI has unique limits, then c 〈∞, o∞〉.

8. Related work

The notion of ω-monoid is a variation of the more standard ω-semigroups used in algebraic
language theory [6]. Algebraic structures with a similar aim are proposed more often in the con-
text of type systems, where the notion corresponding to observation is called effect. Such effect
systems are traditionally commutative, hence effects typically form a bounded join semilattice,
where the join is used to overapproximate different execution branches. This allows general for-
mulations to study common properties, see, e.g., [10]. More recently, sequential effect systems
have been proposed [11], which take into account evaluation order as in our case. However,
differently from our observations, effects in type systems do not need to be “infinite”, since they
model static approximations.

Concerning operational semantics modeling divergence, we follow a stream of work dating
back to [12], who proposed a stratified approach, investigated in [5] as well, with a separate
judgment for divergence, defined coinductively. In this way, however, rules are duplicated, and
there is no unique formal definition of the behaviour. An alternative possibility, also investigated
in [5], is to interpret coinductively the standard big-step rules (coevaluation). Unfortunately, as
discussed in Sect. 3, coevaluation is non-deterministic and, thus, may fail to correctly capture the
correct infinite behavior of a computation: a diverging term, such as Ω, evaluates to any value.

Pretty big-step semantics [13] handles the issue of duplication of rules by a unified judgment
with a unique set of rules, which can be interpreted either inductively or coinductively, getting
termination and divergence, respectively. To factorise rules, the approach requires the introduc-
tion of new specific syntactic forms representing intermediate computation steps, as in small-step
semantics. Poulsen and Mosses [14] subsequently present flag-based big-step semantics, which
further streamlines the approach by combining it with the M-SOS technique (modular structural
operational semantics), thereby reducing the number of rules and premises, avoiding the need
for intermediate forms.

Both approaches [13, 14] do not prevent spurious results in non-terminating computations,
as happens in coevaluation.

In [1] it has been firstly shown that with corules [3, 4] one can define a unified big-step judg-
ment with a unique set of rules avoiding spurious evaluations. This can be seen as constrained
coevaluation. Indeed, corules add constraints on the infinite derivations to filter out spurious
results, so that, for diverging terms, it is only possible to get ∞ as result. This is extended to
include observations as traces in [2]. In this case, the effect of spurious evaluations can be more
detrimental; indeed, when a divergent computation produces a finite observation o, coevalua-
tion returns any observation of shape o ∗ o∞, and, thus, fails to correctly specify the effects of
a non-terminating computation, as discussed on page 6. In comparison to [2], the present paper
provides a receipe for a fully systematic approach, and, furthermore, allows reasoning on a more
general notion of observation: at our knowledge, there is no other operational semantics frame-
work able to capture divergence in conjunction with a notion of observation not limited to traces,
as shown in Sect. 6.

Other proposals [15, 16, 17] are inspired by definitional interpreters [18], based on a step-
indexed approach (a.k.a.“fuel”-based semantics) where computations are approximated to some
finite amount of steps (typically with a counter); in this way divergence can be modeled by

23

induction. In [15] functional big-step semantics is investigated for proving by induction compiler
correctness. In [16] inductive proof strategies are explored for type soundness properties for the
polymorphic type systems F<:, and equivalence with small-step semantics. An inductive proof
of type soundness for the big-step semantics of a Java-like language is proposed in [17].

Conditional coinduction is employed in [19] to combine induction and coinduction in def-
initions of total parser combinators. In [20], inspired by [5], the coinductive partiality monad
allows the definition of big/small-step semantics for lambda-calculi and virtual machines as to-
tal, computable functions able to capture divergence.

Coinductive trace semantics in big-step style have been studied by Nakata and Uustalu [21,
22, 23]. Their investigation started with the semantics of an imperative While language with no
I/O [21] where traces are possibly infinite sequences of states; semantic rules are all coinductive
and define two mutually dependent judgments. Based on such a semantics, they define a Hoare
logic [22]; differently to our approach, weak bisimilarity between traces is required for proving
that programs exhibit equivalent observable behaviors. This is due to the fact that “silent effects”
(that is, non-observable internal steps) must be explicitly represented to guarantee guardedness
conditions which ensure productivity of co-recursive definitions. This problem is overcome with
corules in generalized inference systems.

The semantics has been subsequently extended with interactive I/O [23], by exploiting the
notion of resumption monad: a tree representing possible runs of a program to model its non-
deterministic behavior due to input values. Also in this case a big-step trace semantics is defined
with two mutually recursive coinductive judgments, and weak bisimilarity is needed; however,
the definition of the observational equivalence is more involved, since it requires nesting induc-
tive definitions in coinductive ones. A generalised notion of resumption has been introduced later
by Piróg and Gibbons and studied in a category-theoretic and coalgebraic context [24].

In [21, 22] equivalence of the big-step and small-step semantics is proved; expressions and
statements are distinct, and expressions cannot diverge. This is another significant difference
with the languages considered in this paper; the semantics of out e becomes simpler, since the
corresponding corule could be turned into a coaxiom.

The resumption monad of Nakata and Uustalu is inspired by the seminal work of Capretta
[25] on the delay monad, where coinductive types are exploited to model infinite computations
by means of a type constructor for partial elements, which allows the formal definition of con-
vergence and divergence and a type-theoretic representation of general recursive functions; this
type constructor is proved to constitute a strong monad, upon which subsequent related papers
elaborated [26, 27, 28] to define other monads for managing divergence. In particular, McBride
[27] has proposed a more general approach based on a free monad for which the delay monad
is an instantiation obtained through a monad morphism. All these proposals are based on the
step-indexed approach.

More recently, interaction trees (ITrees) [29] have been presented as a coinductive variant of
free monads with the main aim of defining the denotational semantics for effectful and possibly
nonterminating computations, to allow compositional reasoning for mutually recursive compo-
nents of an interactive system with fully mechanized proofs in Coq. Interaction trees are coinduc-
tively defined trees which directly support a more general fixpoint combinator which does need
a step-indexed approach, as happens for the general monad of McBride. A Tau constructor is
introduced to represent a silent step of computation, to express silently diverging computations
without violating Coq’s guardedness condition; as a consequence, generic definition of weak
bisimulation on ITrees is required to remove any finite number of Tau’s, similarly as happens in
the approach of Nakata and Uustalu.

24

9. Discussion and future work

The big-step style can be useful for abstracting details, directly deriving the implementation
of an interpreter, formally verifying compilers [5], cost semantics, and soundness and complete-
ness proofs for program logics [13]. However, modeling divergence is a non trivial problem,
even more when a non terminating program can have a significant behaviour through observa-
tions. Roughly, the main difficulty is that we do not describe the infinite behaviour “a posteriori”,
that is, given the whole infinite sequence of finite observations. Instead, we want to directly get
the possibly infinite observation produced by a diverging computation. In succinct words, we
want to deal directly with infinity.

The paper proposes a solution to this problem which uses inference systems with corules
[3, 4]. This solution has been first adopted in [1] for pure divergence, and then in [2] by adding
observations as traces. However, in these works the approach was only applied in certain exam-
ples and with observations, if any, limited to traces. In this paper, we go much further showing
that the approach can be applied uniformly to a wider class of big-step definitions once the spe-
cific nature of observations, not limited to traces, and their composition is determined.

The quest for the above described solution has led to two other contributions which are im-
portant in themselves. The first is the definition of an algebraic notion, ω-monoids, which nicely
models finite and infinite observations and provides the ingredients to express infinite behaviour
both in the small-step and big-step approach, through infinite product and finite/mixed product,
respectively. The second is an abstract notion of “what is a big-step semantics”, general enough
to capture typical examples. Having such an abstract notion, we are able to formally define the
extension on a generic instance, and even to formalize in a generic way equivalence conditions
between big-step rules and small-step relation which one typically uses in proofs of equivalence.

Given a big-step semantics obtained by our approach, as one of the examples in Sect. 6, it is
desirable to have a mechanized support to prove its properties, also including infinite behaviour.
A proof-of-concept is provided in [30], which shows how to implement in Agda examples of
inference systems with corules, the corresponding bounded coinduction principle, and proofs of
soundness/completeness with respect to a given specification.

A related issue is to check derivability of a judgment in an inference system with corules,
notably existence of an infinite proof tree. Restricting to regular trees, this can be done by
expressing the inference system as a Prolog program and applying co-SLD resolution [31, 32],
where an atom of the goal can be successfully resolved if it can be unified with one of the atoms,
called coinductive hypotheses, that have been already resolved. To deal with corules, co-SLD
resolution needs to be modified: an atom that unifies with a coinductive hypothesis triggers
standard SLD-resolution in the system extended with corules [33].

A typical drawback of standard big-step semantics is that stuck computations and divergence
are identified, hence it is not possible to reason on properties of non-terminating computations.
In the extended big-step semantics obtained by our approach, this becomes possible (see, e.g.,
the proof of soundness of a type system given in [1]). On the other hand, the property that
a single step preserves type makes only sense in small-step semantics. In big-step semantics,
the corresponding property is strong soundness [34], that is, computations cannot be stuck, and
furthermore, produce a result of the same type if they converge. A finer grained property of
big-step rules which more closely resembles small-step type preservation is local preservation,
introduced in [35] as one of three conditions which ensure (strong) soudness. Local preservation
requires, roughly, that well-typedness of the consequence implies well-typedness of the premises.

In the general context of inference systems with corules, it would be interesting to enhance
25

the associated proof method. More specifically, the notion of bounded coinduction is a combi-
nation of a standard coinductive proof method (establishing a suitable post-fixed) and a separate
inclusion in a domain determined by rules and corules. The coinductive part is amenable to
up-to techniques [36, 37], which may help to simplify proofs using bounded coinduction, and
parametric coinduction [38], which may be useful in formalisation in a proof assistant. We leave
a more thorough investigation of their use in the context of inference systems with corules for
future work.

We will also explore refined corule patterns able to achieve soundness for arbitraryω-monoids.
Moreover, we plan to improve the construction to support non-determinism. Indeed, whereas the
current extension also works for many realistic non-deterministic examples, there are subtle cases
where unsound judgments can be derived. Roughly, in case two judgments for the same config-
uration, say j1 and j2, have an infinite proof tree, to construct a finite proof tree using corules
for j1 we can use rules from the proof tree of j2. To avoid this, we plan to explicitly add in the
judgment the partially obtained observation.

A more general long-term goal is to investigate an abstract notion of “inference system with
metarules”, which would possibly make both the extension with corules and the general con-
struction in this paper smoother.

References

[1] D. Ancona, F. Dagnino, E. Zucca, Reasoning on divergent computations with coaxioms, PACMPL 1 (OOPSLA)
(2017) 81:1–81:26. doi:10.1145/3133905.

[2] D. Ancona, F. Dagnino, E. Zucca, Modeling infinite behaviour by corules, in: T. D. Millstein (Ed.), ECOOP’18 -
Object-Oriented Programming, Vol. 109 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, pp.
21:1–21:31. doi:10.4230/LIPIcs.ECOOP.2018.21.

[3] D. Ancona, F. Dagnino, E. Zucca, Generalizing inference systems by coaxioms, in: H. Yang (Ed.), ESOP 2017
- European Symposium on Programming, Vol. 10201 of Lecture Notes in Computer Science, Springer, 2017, pp.
29–55. doi:10.1007/978-3-662-54434-1_2.

[4] F. Dagnino, Coaxioms: flexible coinductive definitions by inference systems, Logical Methods in Computer Sci-
ence 15 (1). doi:10.23638/LMCS-15(1:26)2019.

[5] X. Leroy, H. Grall, Coinductive big-step operational semantics, Information and Computation 207 (2) (2009) 284–
304. doi:10.1016/j.ic.2007.12.004.

[6] D. Perrin, J. Pin, Infinite words - automata, semigroups, logic and games, Vol. 141 of Pure and applied mathematics
series, Elsevier Morgan Kaufmann, 2004.

[7] P. Aczel, An introduction to inductive definitions, in: J. Barwise (Ed.), Handbook of Mathematical logic, North
Holland, 1977, pp. 739–782. doi:10.1016/S0049-237X(08)71120-0.

[8] G. Markowsky, Chain-complete posets and directed sets with applications, Algebra universalis 6 (1) (1976) 53–68.
doi:10.1007/BF02485815.

[9] B. C. Pierce, Types and programming languages, The MIT Press, 2002.
[10] D. Marino, T. D. Millstein, A generic type-and-effect system, in: A. Kennedy, A. Ahmed (Eds.), TLDI’09: Types

in Languages Design and Implementation, ACM Press, 2009, pp. 39–50. doi:10.1145/1481861.1481868.
[11] R. Tate, The sequential semantics of producer effect systems, in: R. Giacobazzi, R. Cousot (Eds.), ACM Symp. on

Principles of Programming Languages 2013, ACM Press, 2013, pp. 15–26. doi:10.1145/2429069.2429074.
[12] P. Cousot, R. Cousot, Inductive definitions, semantics and abstract interpretations, in: R. Sethi (Ed.), ACM Symp.

on Principles of Programming Languages 1992, ACM Press, 1992, pp. 83–94. doi:10.1145/143165.143184.
[13] A. Charguéraud, Pretty-big-step semantics, in: M. Felleisen, P. Gardner (Eds.), ESOP 2013 - European Symposium

on Programming, Vol. 7792 of Lecture Notes in Computer Science, Springer, 2013, pp. 41–60. doi:10.1007/

978-3-642-37036-6_3.
[14] C. B. Poulsen, P. D. Mosses, Flag-based big-step semantics, Journal of Logical and Algebraic Methods in Program-

ming 88 (2017) 174–190. doi:10.1016/j.jlamp.2016.05.001.
[15] S. Owens, M. O. Myreen, R. Kumar, Y. K. Tan, Functional big-step semantics, in: P. Thiemann (Ed.), ESOP 2016

- European Symposium on Programming, Vol. 9632 of Lecture Notes in Computer Science, Springer, 2016, pp.
589–615. doi:10.1007/978-3-662-49498-1_23.

26

http://dx.doi.org/10.1145/3133905
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.21
http://dx.doi.org/10.1007/978-3-662-54434-1_2
http://dx.doi.org/10.23638/LMCS-15(1:26)2019
http://dx.doi.org/10.1016/j.ic.2007.12.004
http://dx.doi.org/10.1016/S0049-237X(08)71120-0
http://dx.doi.org/10.1007/BF02485815
http://dx.doi.org/10.1145/1481861.1481868
http://dx.doi.org/10.1145/2429069.2429074
http://dx.doi.org/10.1145/143165.143184
http://dx.doi.org/10.1007/978-3-642-37036-6_3
http://dx.doi.org/10.1007/978-3-642-37036-6_3
http://dx.doi.org/10.1016/j.jlamp.2016.05.001
http://dx.doi.org/10.1007/978-3-662-49498-1_23

[16] N. Amin, T. Rompf, Type soundness proofs with definitional interpreters, in: G. Castagna, A. D. Gordon (Eds.),
ACM Symp. on Principles of Programming Languages 2017, ACM Press, 2017, pp. 666–679. doi:10.1145/

3009837.
[17] D. Ancona, How to prove type soundness of Java-like languages without forgoing big-step semantics, in: D. J.

Pearce (Ed.), FTfJP’14 - Formal Techniques for Java-like Programs, ACM Press, 2014, pp. 1:1–1:6. doi:10.

1145/2635631.2635846.
[18] J. C. Reynolds, Definitional interpreters for higher-order programming languages, in: ACM ’72, Proceedings of

the ACM annual conference, Vol. 2, ACM Press, 1972, pp. 717–740. doi:10.1145/800194.805852.
[19] N. A. Danielsson, Total parser combinators, in: P. Hudak, S. Weirich (Eds.), Intl. Conf. on Functional Programming

2010, ACM Press, 2010, pp. 285–296. doi:10.1145/1863543.1863585.
[20] N. A. Danielsson, Operational semantics using the partiality monad, in: P. Thiemann, R. B. Findler (Eds.), Intl.

Conf. on Functional Programming 2012, ACM Press, 2012, pp. 127–138. doi:10.1145/2364527.2364546.
[21] K. Nakata, T. Uustalu, Trace-based coinductive operational semantics for while, in: S. Berghofer, T. Nipkow,

C. Urban, M. Wenzel (Eds.), Theorem Proving in Higher Order Logics - TPHOLs 2009, Vol. 5674 of Lecture
Notes in Computer Science, Springer, 2009, pp. 375–390. doi:10.1007/978-3-642-03359-9_26.

[22] K. Nakata, T. Uustalu, A Hoare logic for the coinductive trace-based big-step semantics of while, in: A. D. Gordon
(Ed.), ESOP 2010 - European Symposium on Programming, Vol. 6012 of Lecture Notes in Computer Science,
Springer, 2010, pp. 488–506. doi:10.1007/978-3-642-11957-6_26.

[23] K. Nakata, T. Uustalu, Resumptions, weak bisimilarity and big-step semantics for while with interactive I/O:
an exercise in mixed induction-coinduction, in: L. Aceto, P. Sobocinski (Eds.), SOS’10 - Structural Opera-
tional Semantics, Vol. 32 of Electronic Proceedings in Theoretical Computer Science, 2010, pp. 57–75. doi:

10.4204/EPTCS.32.5.
[24] M. Piróg, J. Gibbons, The coinductive resumption monad, in: MFPS 2014 - Mathematical Foundations of Pro-

gramming Semantics, 2014, pp. 273–288. doi:10.1016/j.entcs.2014.10.015.
[25] V. Capretta, General recursion via coinductive types, Logical Methods in Computer Science 1 (2). doi:10.2168/

LMCS-1(2:1)2005.
[26] A. Abel, J. Chapman, Normalization by evaluation in the delay monad: A case study for coinduction via copatterns

and sized types, in: P. Levy, N. Krishnaswami (Eds.), MSFP@ETAPS 2014 - Mathematically Structured Functional
Programming, Vol. 153 of Electronic Proceedings in Theoretical Computer Science, 2014, pp. 51–67. doi:10.

4204/EPTCS.153.4.
[27] C. McBride, Turing-completeness totally free, in: R. Hinze, J. Voigtländer (Eds.), MPC 2015 - Mathematics of

Program Construction, Vol. 9129 of Lecture Notes in Computer Science, Springer, 2015, pp. 257–275. doi:

10.1007/978-3-319-19797-5_13.
[28] J. Chapman, T. Uustalu, N. Veltri, Quotienting the delay monad by weak bisimilarity, Mathematical Structures in

Computer Science 29 (1) (2019) 67–92. doi:10.1017/S0960129517000184.
[29] L. Xia, Y. Zakowski, P. He, C. Hur, G. Malecha, B. C. Pierce, S. Zdancewic, Interaction trees: representing recursive

and impure programs in Coq, PACMPL 4 (ACM Symp. on Principles of Programming Languages 2020) (2020)
51:1–51:32. doi:10.1145/3371119.

[30] L. Ciccone, Flexible coinduction in Agda, Master Thesis in Computer Science, University of Genova (2019).
[31] L. Simon, A. Bansal, A. Mallya, G. Gupta, Co-logic programming: Extending logic programming with coin-

duction, in: L. Arge, C. Cachin, T. Jurdzinski, A. Tarlecki (Eds.), ICALP 2007 - Automata, Languages and
Programming, Vol. 4596 of Lecture Notes in Computer Science, Springer, 2007, pp. 472–483. doi:10.1007/

978-3-540-73420-8_42.
[32] D. Ancona, A. Dovier, A theoretical perspective of coinductive logic programming, Fundamenta Informaticae

140 (3-4) (2015) 221–246. doi:10.3233/FI-2015-1252.
[33] D. Ancona, F. Dagnino, E. Zucca, Extending coinductive logic programming with co-facts, Electronic Proceedings

in Theoretical Computer Science 258 (2017) 1–18. doi:10.4204/eptcs.258.1.
[34] A. K. Wright, M. Felleisen, A syntactic approach to type soundness, Information and Computation 115 (1) (1994)

38–94. doi:10.1006/inco.1994.1093.
[35] F. Dagnino, V. Bono, E. Zucca, M. Dezani-Ciancaglini, Soundness conditions for big-step semantics, in: ESOP

2020 - European Symposium on Programming, 2020, to appear.
[36] D. Pous, D. Sangiorgi, Enhancements of the bisimulation proof method, in: D. Sangiorgi, J. Rutten (Eds.), Ad-

vanced Topics in Bisimulation and Coinduction, Cambridge Tracts in Theoretical Computer Science, Cambridge
University Press, 2012, pp. 233–289. doi:10.1017/CBO9780511792588.007.

[37] D. Pous, Coinduction all the way up, in: M. Grohe, E. Koskinen, N. Shankar (Eds.), LICS 2016 - Logic in Computer
Science, ACM Press, 2016, pp. 307–316. doi:10.1145/2933575.2934564.

[38] C. Hur, G. Neis, D. Dreyer, V. Vafeiadis, The power of parameterization in coinductive proof, in: ACM Symp. on
Principles of Programming Languages 2013, ACM Press, 2013, pp. 193–206.

27

http://dx.doi.org/10.1145/3009837
http://dx.doi.org/10.1145/3009837
http://dx.doi.org/10.1145/2635631.2635846
http://dx.doi.org/10.1145/2635631.2635846
http://dx.doi.org/10.1145/800194.805852
http://dx.doi.org/10.1145/1863543.1863585
http://dx.doi.org/10.1145/2364527.2364546
http://dx.doi.org/10.1007/978-3-642-03359-9_26
http://dx.doi.org/10.1007/978-3-642-11957-6_26
http://dx.doi.org/10.4204/EPTCS.32.5
http://dx.doi.org/10.4204/EPTCS.32.5
http://dx.doi.org/10.1016/j.entcs.2014.10.015
http://dx.doi.org/10.2168/LMCS-1(2:1)2005
http://dx.doi.org/10.2168/LMCS-1(2:1)2005
http://dx.doi.org/10.4204/EPTCS.153.4
http://dx.doi.org/10.4204/EPTCS.153.4
http://dx.doi.org/10.1007/978-3-319-19797-5_13
http://dx.doi.org/10.1007/978-3-319-19797-5_13
http://dx.doi.org/10.1017/S0960129517000184
http://dx.doi.org/10.1145/3371119
http://dx.doi.org/10.1007/978-3-540-73420-8_42
http://dx.doi.org/10.1007/978-3-540-73420-8_42
http://dx.doi.org/10.3233/FI-2015-1252
http://dx.doi.org/10.4204/eptcs.258.1
http://dx.doi.org/10.1006/inco.1994.1093
http://dx.doi.org/10.1017/CBO9780511792588.007
http://dx.doi.org/10.1145/2933575.2934564

A. Details on the completion from monoids to ω-monoids

In this section, we provide details on the completion of a monoid, which was presented
(without proofs) in Sect. 4. We will present this completion as a functor C∞ : Monc → ω-Mon,
where Monc is the category of left continuous monoids and continuous homomorphisms, and
ω-Mon is the category of ω-monoids and ω-monoid homomorphisms. This functor, given a
left continuous monoid M, will produce an ω-monoid C∞(M) = 〈M, M∞〉, where the second
component M∞ is presented as a quotient of Mω by a suitable equivalence relation.

In proofs, it is sometimes useful to slightly reformulate S (σ), as follows:

S (σ) =

{it(u) | u / σ} ∪ {supu/σ(it(u))} if this supremum is defined
{it(u) | u / σ} otherwise

(A.1)

Indeed, the closure adds at most a single element.

Lemma A.1. The following hold for any left continuous monoid M:

1. for all z ∈ M and σ, τ ∈ Mω, if σ ≡ τ, then z:σ ≡ z:τ,
2. for all σ, τ ∈ Mω: if σ<: τ then σ ≡ τ,
3. for all z1, z2 ∈ M, z1:uω ≡ z2:uω iff z1 = z2,
4. for any continuous monoid homorphism f : M → M′ and σ, τ ∈ Mω: σ ≡ τ implies

f ω(σ) ≡ f ω(τ).

Proof.

1. We have to prove the two inequalities z:σ v z:τ and z:τ v z:σ; we prove only the first, as
the other is analogous.
Let x ∈ S (z : σ), then x = supi(it(ui)) for some increasing sequence (ui)i of prefixes
of z : σ, i.e., ui / z : σ for all i. Without loss of generality, assume that (ui)i does not
contain the empty word (since that’s the least element; and the case that the supremum
is the empty word is trivial) so each ui is of the form ui = z : u′i , with u′i / σ. Then
supi(it(u

′
i)) ∈ S (σ), so since σ v τ there is an increasing sequence (vi)i with each vi a

prefix of τ, and supi(it(u
′
i)) �∗ supi(it(vi)). So we get

x = sup(it(ui))
= sup(it(z : u′i))
= sup(z ∗ it(u′i))
= z ∗ sup(it(u′i))
�∗ z ∗ sup(it(vi))
= sup(it(z : vi))

and since sup(it(z : vi)) ∈ S (z : τ) we get z : σ v z : τ as needed.
2. Suppose σ<: τ, with σ = (xi)i∈N and τ = (yi)i∈N, i.e., there is a strictly increasing sequence

(ki)i∈N with k0 = 0 and xi = yki ∗ · · · ∗ yki+1−1. Towards a proof of σ v τ, let x ∈ S (σ). We
use the characterisation in (A.1) and proceed with a case distinction.
• If x = it(u) for some u / σ, then it is easy to see there is v / τ such that it(u) = it(v),

hence it(u) �∗ it(v), and since it(v) ∈ S (τ) this suffices.
• Otherwise, we have x = sup(it(ui)) where (ui)i∈N is such that ui is the prefix of length

i of σ. Then define the sequence (vi)i∈N of prefixes of τ by vi = τ(0) : τ(1) : . . . :
τ(ki − 1), so sup(it(vi)) ∈ S (τ). Then it(ui) = it(vi), so sup(it(ui)) = sup(it(vi)), and
sup(it(ui)) �∗ sup(it(vi)).

28

For τ v σ, we let x ∈ S (τ) and again use a case distinction.

• If x = it(u) for some u / τ, then there are v,w such that it(uv) = it(w), for some w / σ.
Thus it(w) ∈ S (σ), and it(u) �∗ it(u) ∗ it(v) = it(uv) = it(w).

• Otherwise x = sup(itui) for some increasing and infinite sequence (ui)i∈N. Without
loss of generality, we assume that the length of each ui equals ki. Let (vi)i∈N be such
that vi is the prefix of τ of length i. it(ui) = it(vi) for each i, and the proof concludes
as the second case above.

3. Suppose z1 : uω ≡ z2 : uω. We prove z1 �∗ z2 and z2 �∗ z1; this suffices, since �∗ is
anti-symmetric. To this end, consider the prefix z1 of z1 : uω. Since z1 : uω v z2 : uω

there is y ∈ S (τ) with it(z1) �∗ y. It is easy to see that either y = it(z2) or y = u,
since it maps every prefix of z2 : uω to either one of those. If y = it(z2), we are done,
as z1 = it(z1) �∗ it(z2) = z2. In the second case, i.e., if y = u, then z1 �∗ u, and by
anti-symmetry of �∗ we get z1 = u and, since u is the least element, we get z1 �∗ z2.
Analogously, from z2 : uω v z1 : uω we then get z2 �∗ z1, hence z2 = z1 by antisymmetry.

4. Suppose f : M → M′ is a continuous monoid homomorphism, σ, τ ∈ Mω, and σ v τ. We
need to prove f ω(σ) v f ω(τ). To this end, let x ∈ S (σ). Then x = sup(it(f ?(ui))) for some
increasing sequence ui of prefixes of σ. Since σ v τ, there exists sup(it(vi)) ∈ S (τ), with
(vi)i an increasing sequence of prefixes of τ, and sup(it(ui)) �∗ sup(it(vi)). Now, we obtain:

x = sup(it(f ?(ui)))
= sup(f (it(ui)))
= f (sup(it(ui)))
�∗ f (sup(it(vi)))
= sup(it(f ?(vi)))

The second step holds since f is a monoid homomorphism, the third since f is continuous.

We are now ready to prove that the completion is a functor C∞ : Monc → ω-Mon. The
main fact to show is that C∞(f) is well defined; compatibility with composition and identities is
immediate by definition.

Proposition A.1. The construction C∞(M) = 〈M, M∞〉 extends to a functor from the category of
left continuous monoids and continuous homomorphisms to the category of ω-monoids, given on
a continuous homomorphism f : M → M′ by C∞(f) = 〈 f , f ω〉 (the map f ω is well-defined on
M∞).

Proof. Given a monoid M, C∞(M) is anω-monoid by Lemma A.1. By Lemma A.1 (4) the pair of
functions C∞(f) is well-defined, that is, C∞(f) : C∞(M) → C∞(M′). We now check that C∞(f)
is a homomorphism of ω-monoids. By hypothesis the first component is a homomorphism of
monoids, hence we have only to check compatibility with mixed product and infinite product.
More precisely, we have to check the following equivalences: for all x ∈ M and τ ∈ Mω

f ω(x:τ) ≡ f (x): f ω(τ) f ω(pM(τ)) ≡ pM′ (f ω(τ))
The former trivially holds by definition of f ω (it is actually an equality), and the latter also
trivially holds since at this level pM is the identity, hence the equivalence can be rewritten as
f ω(τ) ≡ f ω(τ) that is true by reflexivity of ≡.

29

Then the fact that C∞ preserves composition and identities is straightforward, because com-
position is made pointwise and (−)ω is functorial, and we have C∞(idM) = 〈idM , idωM〉 = 〈idM , idMω〉 =

idC∞(M).

B. Proofs of main results

In this section we provide the technical development of completeness and soundness results
stated in Sect. 7.4.

B.1. Completeness

We start by proving the completeness result (Theorem 7.1) for CI. The proof uses a slight
variation of a proof principle from [1], reported below, which is an easy consequence of bounded
coinduction (Theorem 2.1).

Theorem B.1. Let P ⊆ C × O∞ be a predicate. If for each 〈c, o∞〉 ∈ P:

Boundedness 〈I∞ ∪ C, ∅〉`c⇒〈∞, o∞〉, and

Consistency c⇒ 〈∞, o∞〉 is the consequence of a rule where, for all premises of shape c′ ⇒
〈∞, o′∞〉, 〈c

′, o′∞〉 ∈ P, and, for all premises of shape c′⇒〈r, o〉, 〈I∞, C〉`c′⇒〈r, o〉,

then 〈c, o∞〉 ∈ P implies that 〈I∞, C〉`c⇒〈∞, o∞〉.

The proof is omitted since analogous to the one in [1]. We start by showing boundedness,
which needs two auxiliary lemmas.

We write j for a list of judgments j1 . . . jn. [Elena: moved here]

Lemma B.1. If 〈I∞ ∪ CI, ∅〉`c′⇒〈r∞, o∞〉 and c
o
−→ c′, then 〈I∞ ∪ CI, ∅〉`c⇒〈r∞, o ∗∞ o∞〉.

Proof. We proceed by induction on pr and we distinguish two cases.

1. If c is reduced then we distinguish two cases:

• if r∞ = ∞, then, by Condition 1, there exists a computational rule ρ=rule(j1 . . . jn, j, c, o)
such that C(j) = c′; hence, the thesis follows by rule div(ρ, f(ρ), o∞), whose first n
premises are j1, . . . , jn, which are trivial, and the last one is c′⇒ 〈∞, o∞〉, which is
derivable by hypothesis.

• If r∞ ∈ R, then the last applied rule ρ′ in the proof tree for c′ ⇒ 〈r∞, o∞〉 belongs
to I, hence, by Condition 3, there exists a computational rule ρ=rule(j, j, c, o) with
j=c′⇒〈r∞, o∞〉; hence we get the thesis since all judgements in j are trivial and j is
derivable by hypothesis.

2. If c is compound, then we have the following cases on the last applied rule in the proof
tree for c′⇒〈r∞, o∞〉:

• if the rule is (co-unit), then r∞ = ∞ and o∞ = u; by Condition 1 there is a contextual
rule ρ=rule(j1 . . . ji . . . jn, j, c, o′) where i = f(ρ), pr(c) = C(ji) = ci, and ci

o
−→ c′′.

Applying again (co-unit) we can derive c′′ ⇒ 〈∞, u〉, hence, by inductive hypothesis
ci⇒〈∞, o〉 is derivable, hence we get the thesis by rule div(ρ, i, o).

30

• In all other cases there is a rule ρ′ ∈ I associated with the last applied rule14 in the
proof tree for c′ ⇒ 〈r∞, o∞〉, hence, by Condition 3, there exists a contextual rule
ρ=rule(j1 . . . ji . . . jn, j, c, o′) where i = f(ρ) and ρ

o
−→ ρ′. Hence, we have C(ji) =

pr(c) = ci, ci
o
−→ c′′ = C(j′i) where j′i is a dependency of ρ′, O(ji) = o ∗ O(j′i), and

R(ji) = R(j′i). Therefore, since by hypothesis j′i is derivable, by inductive hypothesis
ji is derivable as well, hence we get the thesis by applying the rule associated with ρ
of the same type of the one associated with ρ′.

Lemma B.2. If c
o
−→ c′ and o , u, then 〈I∞ ∪ CI, ∅〉`c⇒〈∞, o ∗∞ o∞〉 for o∞ ∈ O∞.

Proof. We proceed by induction on pr. By Condition 1, there exists a rule ρ=rule(j, j, c, o′) and
we distinguish two cases:

1. if c is reduced, then ρ is computational, and, since o , u, co-mul(ρ, o∞) ∈ CI and this
gives us the thesis, since all judgements in j are trivial.

2. if c is compound, then ρ is contextual with j = j1 . . . jn, i = f(ρ), and C(ji) = pr(c)
o
−→ c′′;

therefore, by inductive hypothesis, we get 〈I∞ ∪ CI, ∅〉`pr(c)⇒〈∞, o ∗∞ o∞〉, hence we
get the thesis by rule div(ρ, i, o ∗∞ o∞).

Lemma B.3 (Boundedness). If c 〈∞, o∞〉, then 〈I∞ ∪ CI, ∅〉`c⇒〈∞, o∞〉.

Proof. By definition, c
σ
−→ω for some σ ∈ Oω such that it∞(σ) = o∞. We distinguish two cases:

• if σ = uω, then o∞ = u and the thesis follows from the coaxiom (co-unit)

• otherwise, there exists o , u and n ∈ N such that σ = un(o:σ′), hence o∞ = o ∗∞ o′∞,

with o′∞ = it∞(σ′), and c
un

−→? c′
o
−→ c′′. By Lemma B.2 we get that 〈I∞ ∪ CI, ∅〉 `

c′⇒〈∞, o ∗∞ o′∞〉 and by a transitive closure15 of Lemma B.1 we get 〈I∞ ∪ CI, ∅〉 `
c⇒〈∞, u ∗ o ∗∞ o′∞〉.

To prove consistency, we need that, in an infinite small-step reduction sequence, we always
reach a configuration c which is either reduced or compound with pr(c) diverging too.

Lemma B.4. Given sequences (ci)i∈N and (oi)i∈N such that, for all i ∈ N, ci
oi
−→ ci+1, then there

exists an n ∈ N such that, for each k < n, ck is compound and:

1. either cn is reduced
2. or cn is compound and, for all k ≥ n, pr(ck)

ok
−→ pr(ck+1).

14This rule can be either div(ρ′, i, o′∞), or co-mul(ρ′, o′∞), or ρ′ itself.
15More precisely by induction on n.

31

Proof. By Assumption 2, all non-stuck rules ρ for c0 have the same number of dependencies,
say d, and the same index f(ρ). Furthermore, since c0 is non-stuck, by Condition 1 there exists
at least one non-stuck ρ for it, hence, it is uniquely defined the number of dependencies we still
have to evaluate, that is d + 1 − f(ρ). Let us denote by `(c0) such number. We can rephrase the
statement as follows:

for all h ∈ N, for all (ci)i∈N and (oi)i∈N such that ci
oi
−→ ci+1 and `(c0) = h, there exists

n ∈ N such that cn satisfies either 1 or 2.

Therefore, we can proceed by complete arithmetic induction on `(c0).

Base If `(c0) = 0, then c0 is reduced by definition, hence point 1 trivially holds.

Induction Suppose that `(c0) > 0 and let us start with some observations. Since by hypothesis
for all i ∈ N we have ci

oi
−→ ci+1, for all i ∈ N, if ci is compound, then either pr(ci)

oi
−→ r or

ci+1 is compound and pr(ci)
oi
−→ pr(ci+1). Furthermore, if ci is compound, then pr(ci)

oi
−→ c′,

and `(ci+1) ≤ `(ci); more precisely, if c′ ∈ R, then `(ci+1) < `(ci), otherwise `(ci+1) = `(ci).

So we have two cases:

• if for all compound configurations ci, we have pr(ci)
oi
−→ pr(ci+1), then it is easy to

prove by induction on i that all configurations ci are compound and so `(ci) = `(ci+1)
and pr(ci)

oi
−→ pr(ci+1). Hence pr(c0) diverges as required in 2.

• Otherwise, let n be the first (least) index such that cn is compound and pr(cn)
on
−→ r.

Again, it is easy to check by induction on i, that for all i < n, ci is compound, hence
pr(ci)

oi
−→ pr(ci+1) and `(cn+1) < `(cn). Therefore, considering the sequences (ck)k>n

and (ok)k>n, by inductive hypothesis, there is an index m ≥ k > n satisfying one of
the two conditions, hence the thesis holds also for the original sequences, since cm

belongs also to it.

Lemma B.5. Given finite sequences (ρi)i≤m and (oi)i<m such that

• for all i < m, ρi
oi
−→ ρi+1,

• ρ0=rule(j1 . . . jn, jn+1, c, o) is non-stuck, and

• ρm=rule(j′1 . . . j
′
n, j
′
n+1, c

′, o′), with l = f(ρm),

then:

• for all k < l we have C(jk) 〈R(jk), O(jk)〉, and

• C(jl)
v
−→? C(j′l) and O(jl) = it(v) ∗ O(j′l).

Proof. We proceed by arithmetic induction on m.

Base If m = 0, then ρ0 = ρm, hence the thesis holds, since ρ0 is non-stuck, and so, by definition,
for all k < l, jk is trivial, that is, jk=rk⇒〈rk, u〉, and so the first part trivially holds, and the
second one holds as well, by taking v = ε, since jl = j′l .

32

Induction Let us assume the thesis for m and prove it for m + 1. By hypothesis ρ0
o0
−→ ρ1 and

by inductive hypothesis the thesis holds for ρ1. Let h = f(ρ0) and k = f(ρ1), then h ≤ k ≤ l.
Since ρ0

o0
−→ ρ1, ρ0 is contextual, hence all ji for i < h are trivial, hence satisfy point 1,

while all ji for h < i ≤ l are also premises of ρ1, hence satisfy the thesis by inductive
hypothesis. Therefore, we have only to prove the thesis for jh.

Let j be the h-th premise of ρ1, we know that C(jh)
o0
−→ C(j), R(jh) = R(j), and O(jh) =

o0 ∗ O(j). We distinguish two cases:

• if h < l, then by inductive hypothesis C(j) 〈R(j), O(j)〉 holds, hence we can derive
C(jh) 〈R(j), o0 ∗ O(j)〉, that is, C(jh) 〈R(jh), O(jh)〉.

• if h = k = l, then by inductive hypothesis C(j)
v
−→ C(j′l) for some finite sequence v,

hence the thesis follows, since C(jh)
o0
−→ C(j) and O(jh) = o0∗O(j) = o0∗id(v)∗O(j′l) =

it(o0:v) ∗ O(j′l).

We have now all the elements to prove completeness.

Proof of Theorem 7.1. We use Theorem B.1. Here the predicate P is the set {〈c, o∞〉 | c 〈∞, o∞〉}.
This set is bounded by Lemma B.3, hence we have only to check the second condition.

Let us consider 〈c, o∞〉 such that c 〈∞, o∞〉, hence, by definition, there are (ci)i∈N and
σ = (oi)i∈N such that c0 = c, ci

oi
−→ ci+1 and it∞(σ) = o∞. By Lemma B.4 there is an index

n ∈ N such that all ck for k < n are compound and either cn is reduced, or cn is compound and
pr(cn) diverges. In both cases, by Condition 1 there is a rule ρn with C(ρn) = cn and, by an
iteration of Condition 3, there is a sequence of rules (ρi)i≤n such that ρi

oi
−→ ρi+1 and C(ρi) = ci.

By Lemma B.5, if ρ0 = rule(j1 . . . jm, jm+1, c, o), l = f(ρn) and j is the l-th premise of ρn, then, for
all k < l, C(jk) 〈R(jk), O(jk)〉, C(jl)

v
−→? C(j), and O(jl) = it(v) ∗ O(j). Therefore, by Lemma 7.4

and Theorem 5.1 we get 〈I∞, CI〉` jk.
Now, let us consider ρ = div(ρ0, l, o′∞). We have two cases following Lemma B.4:

1. If cn is reduced, then l = m + 1, ρn is computational, and has shape rule(j, j, cn, on) by
Condition 1. Since reduction of rules does not change the continuation, jl=jm+1=j, hence
v = ε and so we set o′∞ = it∞(σn+1), where σn+1 = (oi)i≥n+1; hence, it is easy to prove by
coinduction that cn+1

σn+1
−−−→ω, and this implies cn+1 〈∞, o′∞〉, hence 〈cn+1, o′∞〉 ∈ P.

2. If cn is compound, then ρn is contextual, C(j) = pr(cn) and for all i ≥ n, pr(ci)
oi
−→ pr(ci+1),

hence pr(cn)
σn
−−→ω, where σn = (oi)i≥n. Hence, since C(jl)

v
−→? C(j), we get C(jl)

vσn
−−→ω, and

so, setting o′∞ = it∞(vσn), we get C(jl) 〈∞, o′∞〉. Therefore, 〈C(jl), o′∞〉 belongs to P.

In both cases ρ satisfies the requirements of Theorem B.1, hence this proves the thesis.

We now prove the completeness result for CIu (Theorem 7.2), stating that all infinite compu-
tations producing a finitely generated observation can be derived using only (co-unit).

To show this result, we first need some key properties of finitely generated observations
reported in the following lemma:

Lemma B.6. If σ ∈ Mω
G is a sequence such that z = p(σ) is finitely generated, then:

1. there exists a finite prefix v of σ such that z = p(vuω)
33

2. for all decomposition σ = vσ′, p(σ′) is finitely generated.

Proof.

1. Let σ = (oi)i∈N and ui = o0 . . . oi for all i ∈ N, then, since o∞ = p(σ) is finite, there is
n ∈ N such that, for all k ≥ n, it(un) = it(uk), otherwise we would have infinitely many
elements in F (o∞) that is absurd. Then, σ ≡ unuω, which trivially holds from what we
just observed, hence we have the thesis.

2. Let σ = vσ′ and note that F (σ′) is not empty since the head of σ′ belongs to it. Then,
consider o ∈ F (p(σ′)), by definition of factor we have p(σ′) = o′ ∗ o ∗∞ p(σ′′), hence
(it(v) ∗ o′) ∗ o ∗∞ p(σ′′) = p(σ), that is, o ∈ F (o∞). This proves that F (p(σ′)) ⊆ F (o∞),
hence F (p(σ′)) is finite, and this proves the thesis.

The next lemma shows that, thanks to the equivalence conditions, observations produced by
single steps in small-step semantics are themselves in EI.

Lemma B.7. If c
o
−→ c′ then o ∈ EI.

Proof. We proceed by well-founded induction on pr: if c is reduced, then by Condition 1 there is
a computational rule ρ=rule(j, j, c, o), hence o ∈ EI, and if c is compound, again by Condition 1,
pr(c)

o
−→ c′′, hence o ∈ EI holds by inductive hypothesis.

The proof of Theorem 7.2 is essentially the same as Theorem 7.1: we apply Theorem B.1,
where Lemma B.6 guarantees boundedness and consistency.

Proof of Theorem 7.2. The proof follows exactly that of Theorem 7.1, hence we have first to
prove boundedness. If c 〈∞, o∞〉, by definition there is σ = (oi)i∈N such that o∞ = p(σ). By
Lemma B.7, oi ∈ EI for all i ∈ N, hence, by Lemma B.6 (1) there exists v = o0 . . . on−1 such that
o∞ = p(vuω). By hypothesis c

v
−→? c′ and by (co-unit) we get 〈I∞ ∪ CIu , ∅〉 ` c′⇒〈∞, u〉; then, by

Lemma B.1, restricted to CIu , we get 〈I∞ ∪ CIu , ∅〉`c⇒〈∞, p(vuω)〉 as needed.
To prove consistency, we do exactly the same construction done in the proof of Theorem 7.1,

hence we get a rule div(ρ, i, o′∞), where the i-th premise hase shape c′⇒ 〈∞, o′∞〉, where o′∞ =

p(σ′) for some σ′ such that σ = vσ′. Hence we have only to prove that o′∞ is finitely generated,
but this holds thanks to Lemma B.6 (2), hence we get the thesis by Theorem B.1.

B.2. Soundness

We start by some results and notations which hold for any conservative set of corules, hence
in particular for both CI and CIu .

Lemma B.8 (Forward compatibility). If C is conservative, 〈I∞, C〉 ` c⇒〈∞, o∞〉 by a rule
div(ρ, i, o′′∞), with ρ = rule(j1 . . . jn, jn+1, c, o), then c

u
−→? c′ with u = u1 . . . ui−1 and it(uk) = O(jk)

for all k < i, 〈I∞, C〉`c′⇒〈∞, o′∞〉 and

1. if c′ is reduced, then c′
o
−→ C(jn+1) and o′∞ = o ∗∞ o′′∞ and 〈I∞, C〉`C(jn+1)⇒〈∞, o′′∞〉

2. if c′ is compound, then pr(c′)=C(ji), o′∞=o′′∞, and 〈I∞, C〉`pr(c′)⇒〈∞, o′′∞〉.

34

Proof. By construction for all k < i, jk is a convergent judgement of shape ck ⇒ 〈rk, ok〉 and
by hypothesis we have 〈I∞, C〉 ` jk; therefore, by Theorem 5.1 and Lemma 7.5 we get that
ck 〈rk, ok〉, that is, ck

uk
−→? rk for uk ∈ O? and it(uk) = ok. By iteratively applying Condition 2,

we get that c
u
−→? c′ with u = u1 · · · ui−1 and ρ

u
−→? ρ′16 with ρ′ = rule(j′1 . . . j

′
i−1ji . . . jn, jn+1, c′, o)

and j′k = rk⇒〈rk, u〉. Then by rule div(ρ′, i, o′′∞) we get that 〈I∞, C〉 ` c′⇒〈∞, o′∞〉 and distin-
guish the following cases:

1. If c′ is reduced, then ρ′ is computational and, by Condition 2, we get that c′
o
−→ C(jn+1) =

c′′, hence i = f(ρ′) = n + 1, o′∞ = o ∗∞ o′′∞ and c′′ ⇒ 〈∞, o′′∞〉 is derivable since it is a
premise of div(ρ′, i, o′′∞).

2. If c′ is compound, then ρ′ is contextual, i = f(ρ′), pr(c′) = C(ji), o′∞ = o′′∞ and pr(c′)⇒
〈∞, o′′∞〉 is derivable since it is a premise of div(ρ′, i, o′′∞).

We now show that, if 〈I∞, C〉 ` c⇒〈∞, o∞〉, then there is an infinite reduction c
σ
−→ω in the

small-step semantics where σ is equivalent to σt (see the definition introduced for Lemma 7.6),
as stated in the following lemma.

Lemma B.9. If 〈I∞, C〉 ` c⇒〈∞, o∞〉 by an infinite derivation t, then c
σ
−→ω for some σ ∈ Oω

such that it∞(σ) = it∞(σt).

Proof. Let t be an infinite derivation for c⇒ 〈∞, o∞〉, and for each level i of the tree we have
a rule of shape div(ρi, ki, oi+1

∞) where ρi = rule(ji1 . . . j
i
ni
, ji, ci, o′i), and denote by ti the subtree

starting with such rule. We assume σt = (oi)i∈N, hence σti = oi:σti+1 .
Consider the sequence of configurations (ci)i∈N, hence 〈I∞, C〉 ` ci⇒〈∞, oi

∞〉 holds by the
derivation ti, then, by Lemma B.8, we get that ci

vi
−→? c′i where either ki ≤ ni and pr(c′i) = ci+1 or

c′i is reduced (hence ki = ni + 1) and c′i
o′i
−→ ci+1. Then, let us define

v′i =

vi ki ≤ ni

vio′i ki = ni + 1

then it(v′i) = oi by definition, hence, if σ is the flattening of the sequence (v′i)i∈N, we get that
p(σ) = p(σt) by the infinite associative law (see Def. 4.1). Finally, since σ and σt are both
infinite sequences, we have that it∞(σ) = p(σ) = p(σt) = it∞(σt) as needed.

Now we have to prove that c
σ
−→ω. First of all, note that it is easy to check that there is a

strictly increasing sequence of natural numbers (hi)i∈N such that v′hi
is not empty and for all k s.t.

hi < k < hi+1 or k < h0 we have v′k = ε, because, otherwise, if for all i ≥ k we have v′i = ε,
we would also have c′i = ci, ki ≤ ni and pr(ci = ci+1), and this is not possible since (ci)i≥k is
an infinite descending chain in pr, which is well-founded. Then, we can decompose σ into a
sequence (σi)i∈N such that σ = σ0 and σi = v′hi

σi+1, since all other v′k are empty; furthermore,

for all i ∈ N, we know that chi

v′hi
−−→? c′′hi

such that, either c′′hi
= c′hi

and prdi (c′′hi
) = chi+1 , with

di = hi+1 − hi, or c′′hi
= chi+1 and prdi (c′′hi

) = chi+1 , with di = hi+1 − hi − 1.
We can inductively construct a sequence (c∗i)i∈N such that c∗0 = c0, prDi (c∗i) = chi , for Di =

h0 + d0 + . . . + di−1, and c∗i
v′hi
−−→? c∗i+1 as follows:

16Note that this is needed only if some uk is not empty, otherwise ρ = ρ′ and c = c′.
35

• c∗0 = c0, hence, D0 = h0 and, by construction, ch0 = prh0 (c0)

• since chi

v′i
−→? c′′hi

, prdi (c′′hi
) = chi+1 and prDi (c∗i) = chi , by iteratively applying Condition 2,

we get that c∗i
v′i
−→? c′′, with prDi (c′′) = c′′hi

. We set c∗i+1 = c′′ and note that prDi+1 (c∗i+1) =

prDi (prdi (c∗i+1)) = prDi (c′′hi
) = chi+1 .

Finally, we can prove by coinduction on the definition of −→ω that for all i ∈ N, c∗i
σi
−→ω, since

each prefix v′hi
is not empty by construction. Hence, as a particular case we get c

σ
−→ω, since

c0 = c and σ0 = σ.

Lemma B.10. If 〈I∞ ∪ CIu , ∅〉 ` c⇒〈r, o〉, 〈I∞ ∪ CIu , ∅〉 ` c⇒〈∞, o∞〉, then o∞ = o′ ∈ O and
o′ �∗ o.

Proof. The fact that o∞ = o′ ∈ O can be easily proved by induction on the (finite) derivation for
c′ ⇒ 〈∞, o∞〉 in I∞ ∪ CIu . Then we have only to show that o′ �∗ o, and this can be done by
induction on the (finite) derivation for c⇒〈r, o〉 in I∞ ∪ CIu .

Base If c = r, then o = u. Since the only rule with conclusion r⇒ 〈∞, o∞〉 is (co-unit), we get
o∞ = u and this proves the thesis since u �∗ u.

Induction If c < R, then it is derived by a rule ρ=rule(j1 . . . jn, jn+1, c, oρ). We have two cases:

• if c⇒〈∞, o∞〉 is derived by (co-unit), we get o∞ = u, hence u �∗ o, since u is the least
element in O.

• if c⇒〈∞, o∞〉 is derived by a rule div(ρ′, i, o′∞) with
ρ′=rule(j′1 . . . j

′
m, j
′
m+1, c, o

′
ρ), with m = n by Assumption 2, we can prove, by complete

arithmetic induction, using Assumption 2, that, for all k ∈ 1..i, C(jk) = C(j′k). There-
fore, by induction hypothesis, we get o′∞ = o′′ �∗ O(ji). Furthermore, by Lemma 7.1,
for all k ∈ 1..i − 1, we get R(jk) = R(j′k) and O(jk) = O(j′k) = ok, and, in addition, if
i = n + 1, by Assumption 2 we also have oρ = oρ′ .
Hence, if i ≤ n, then o∞ = o1 ∗ · · · ∗ oi−1 ∗∞ o′∞, thus, o′ = o1 ∗ · · · ∗ oi−1 ∗ o′′ �∗
o1 ∗ · · · ∗ oi−1 ∗O(ji) �∗ o; otherwise, i = n + 1, o∞ = o1 ∗ · · · ∗ on ∗ oρ ∗∞ o′∞, hence,
o′ = o1 ∗ · · · ∗ on ∗ oρ ∗ o′′ �∗ o1 ∗ · · · ∗ on ∗ oρ ∗ O(jn+1) = o.

We can now prove the soundness result for CIu (Theorem 7.3).

Proof of Theorem 7.3. In the proof, given a rule ρ=rule(j1 . . . jn, jn+1, c, o), we set C(ρ, i) = C(ji),
R(ρ, i) = R(ji) and O(ρ, i) = O(ji).

Let t be the infinite derivation of c⇒ 〈∞, o∞〉 in I∞, hence for each level i there is a rule
div(ρi, ki, oi+1

∞), and let σt = (oi)i∈N be the infinite sequence associated with t (see the definition
introduced for Lemma 7.6); hence o∞ = o0

∞ and oi
∞ = oi ∗∞ oi+1

∞ . By definition, the judgement
has also a finite derivation t′ in I∞∪CIu . In t′, at each level i, we have three possibilities: we have
applied a divergence propagation rule div(ρ′i , ki, o′∞

i+1), we have applied a divergence propagation
rule div(ρ′i , k

′
i , o
′
∞

i+1), or we have applied the coaxiom (co-unit).
Let h be the least level for which the first situation does not happen, then, for each level i < h,

we are in the first one. We can prove, by a double induction, using Lemma 7.1 and Assumption 2,
36

that, for all i < h and l ≤ ki, C(ρi) = C(ρ′i), C(ρi, l) = C(ρ′i , l) and, if l , ki, O(ρi, l) = O(ρ′i , l).
This implies o′∞

i = oi ∗∞ o′∞
i+1 and o∞ = o0 ∗∞ o′∞

1. Then we have two cases for level h:

• if we have applied the coaxiom, then either h = 0 and o∞ = u, or h > 0 and o∞h−1 = oh−1.
In both cases we get o∞=o0 · · · oh−1 ∗ o′h with o′h = u.

• if we have applied a divergence propagation rule div(ρ, k, o′∞) with k , kh, from what we
have just proved, we have C(ρh) = C(ρh−1, kh−1) = C(ρ′h−1, kh−1) = C(ρ). Thus, we can
prove, by complete arithmetic induction, using Lemma 7.1 and Assumption 2, that, for all
l ≤ k′ = min{k, kh}, C(ρh, l) = C(ρ, l) and, if l , k′, O(ρh, l) = O(ρ, l). Hence, we get
k = min{k, kh}, because, if k > kh, then C(ρh, kk)⇒〈R(ρh, kk), O(ρh, kh)〉 is derivable, but
also C(ρh, kh)⇒〈∞, o∞h+1〉 is derivable, and this is absurd by Lemma 7.2.

Set jl = C(ρh, l)⇒ 〈R(ρh, l), O(ρh, l)〉, for all l ≤ k. Then, since 〈I∞ ∪ CIu , ∅〉 ` jk and
〈I∞ ∪ C

I
u , ∅〉 `C(jk)⇒〈∞, o′∞〉, as C(jk) = C(ρ, k), by Lemma B.10, we get o′∞ = o′ with

o′ �∗ O(jk). Therefore, o∞h = o′h = O(j1)∗· · ·∗O(jk−1)∗o′ �∗ O(j1)∗· · ·∗O(jk−1)∗O(jk) �∗
oh, as k < kk, and this implies o∞ = o0 ∗ · · · ∗ oh−1 ∗ o′h �∗ o0 ∗ · · · ∗ oh.

Therefore, in all cases, we have o∞ = o0 ∗ · · · ∗ oh−1 ∗ o′h ∗∞ p(uω) = p(o0 . . . oh−1o′huω) with
o′h �∗ oh.

Now, by Lemma B.9 we have c
σ
−→ω and it∞(σ) = it∞(σt) for some σ ∈ Oω, that is, [σ]≡ =

[σt]≡. Therefore, in order to get the thesis, it is enough to show that σt ≡ vuω, where v =

o0 . . . oh−1o′h.
Set τ = vuω, hence it∞(τ) = o∞. Then, we get τ v σt, since it(v) = o0 ∗ · · · ∗ oh−1 ∗ o′h �∗

o0 ∗ · · · ∗ oh = it(v′), where v′ = o0 . . . oh / σt. On the other hand, recall that, by construction,
σt = (oi)i∈N and, for all n ∈ N, o∞ = o0 ∗ · · · ∗ on ∗∞ o∞n+1 = it∞(o0 . . . onσn+1) for some
σn+1 ∈ Oω. Hence, since it∞(τ) = it∞(o0 . . . onσn+1), we have τ ≡ o0 . . . onσn+1, for all n ∈ N.
Therefore, by definition of ≡, there is a prefix v′ / τ such that o0 ∗ · · · ∗ on �∗ it(v′) and, since
v′ / τ, it(v′) �∗ it(v). Hence, for all n ∈ N, o0 ∗ · · · ∗ on �∗ it(v), thus, the least upper bound of
(o0 ∗ · · · ∗ on)n∈N, if any, is below it(v), and this shows σt v τ. So, we have the thesis.

We now prove the two results concerning the set of corules CI.

Proof of Lemma 7.6. At each level i of t we have a rule div(ρi, ki, oi+1
∞), with C(ρi) = ci, c0 = c,

o0
∞ = o∞ and oi

∞ = oi ∗∞ oi+1
∞ . Since o′∞ is a limit of the series on σt we have that o′∞ =

o0∗· · · on∗∞o′∞
n+1 for all n ∈ N, hence each judgement of shape ci⇒〈∞, o′∞

i
〉 is the consequence

of the rule div(ρi, ki, oi+1
∞) and this shows that we can build an infinite derivation for each of them.

To build finite proofs in I∞ ∪ CI, it is enough to show a finite derivation for nodes at level
i where oi , u, since the sequence is non-trivial, hence for each oi = u there is k > i such that
ok , u. Suppose that ρi = rule(ji1 . . . j

i
ni
, ji, ci, o′i), then we have two cases:

• if ki = ni + 1 and for all k ≤ ni we have O(jik) = u, then o′i , u and so we get the proof by
co-mul(ρi, o′∞

i+1).

• Otherwise, let jik be the first premise such that O(jik) , u with k ≤ min{ki, ni}; we know
by hypothesis that 〈I∞, CI〉 ` jik, hence by Lemma 7.5 we have C(jik) 〈R(jik), O(jik)〉 and,

since O(jik) , u, then C(jik)
o
−→ c′ with O(jik) = o ∗ o′ and o , u. Therefore, by Lemma 7.5

and Condition 2 we get that ci
v
−→? c′i with v = uh and pr(c′i) = C(jik), then, again by

Condition 2, we get c′i
o
−→ c′′i , hence, since o′∞

i = o ∗∞ o′′∞, for some o′′∞, by Lemma B.2 we
37

get 〈I∞ ∪ CI, ∅〉`c′′i ⇒〈∞, o ∗∞ o′′∞〉, and by iterating Lemma B.1 we get 〈I∞ ∪ CI, ∅〉`
ci⇒〈∞, oi

∞〉 as needed.

Proof of Prop. 7.4. Since EI ⊆ OI, the implication ⇐ is trivial. To prove the other direction,
consider σ ∈ Oω

I
. We first show that there exists τ ∈ Eω

I
such that σ<: τ. Assume σ = (oi)i∈N,

then, by definition of OI, we have that oi = oi1 ∗ · · · ∗ oini with oi1, . . . , oini ∈ EI; hence if τ is the
sequence of all oiki in the correct order we get the thesis. Since O is left-continuous (in particular
�∗ is a partial order), we have that σ is trivial iff τ is trivial. Then, it is easy to check that o∞ is a
limit product of σ iff it is a limit product of τ, and this gives the thesis.

Proof of Theorem 7.5. Let t be the infinite derivation of c⇒〈∞, o∞〉 and σt = (oi)i∈N, then by
Lemma B.9 there is σ ∈ Oω such that c

σ
−→ω and it∞(σ) = it∞(σt). We have two cases:

• if σt is trivial, that is, for all k ≥ n, ok = u, for some n ∈ N, then 〈I∞, CIu 〉 ` c⇒〈∞, o∞〉,
since we can cut t at depth n using (co-unit), hence by Theorem 7.3 we get the thesis;

• if σt is non-trivial, then, since it∞(σt) and o∞ are both limits of the series on σt and EI has
unique limits, hence OI has unique limits as well, we have o∞ = it∞(σt) = it∞(σ), hence
c 〈∞, o∞〉 as needed.

C. Other proofs

Proof of Theorem 5.1. We prove that the following conditions are equivalent, where points 1 and
4 are those in the statement of the theorem:

1. 〈I∞, C〉`c⇒〈r∞, o∞〉 and r∞ ∈ R and o∞ ∈ O
2. 〈I∞ ∪ C, ∅〉`c⇒〈r∞, o∞〉 and r∞ ∈ R and o∞ ∈ O
3. 〈I∞, ∅〉`c⇒〈r∞, o∞〉
4. 〈I, ∅〉`c⇒〈r∞, o∞〉.

It is easy to check that r∞∈R implies o∞∈O, hence we do not care about o∞.
The implication 1 ⇒ 2 trivially holds by definition of derivability in an inference system

with corules.
Suppose now we have a finite proof tree t in I∞ ∪ C for the judgement c⇒〈r∞, o∞〉, then it

can be proved by induction on the depth of the tree that r∞ = ∞ if and only if we have applied
a corule in t. This is due to the fact that in I∞ all rules having a divergent judgement in the
conclusion have also a divergent judgement in the premises and viceversa. Therefore we get (?)
that r∞ ∈ R if and only if we do not use corules in t, if and only if t is a finite proof tree in I∞, if
and only if t is a finite proof tree in I, since without corules also rules for divergence propagation
are not applicable. This proves the equivalences 2⇔ 3⇔ 4.

Finally, if 〈I∞, ∅〉 ` c⇒〈r∞, o∞〉, then r∞ ∈ R by (?), and 〈I∞, C〉 ` c⇒〈r∞, o∞〉 since
derivability is preserved by the addition of corules.

Proof of Lemma 5.1. It follows by a straightforward induction on rules.

38

Proof of Lemma 7.1. The proof is by induction on the derivation of c⇒〈r, o〉, and denote by RH
the induction hypothesis.

Base We have c = r and o = u, hence r′ = r and o′ = u, as the only rule for results is the axiom.

Induction If c < R, then c⇒〈r, o〉 is derived by a rule ρ=rule(j1 . . . jn, jn+1, c, oρ) and c⇒〈r′, o′〉
is derived by a rule ρ′=rule(j′1 . . . j

′
m, j
′
m+1, c, oρ′), with m = n by Assumption 2. We prove,

by complete arithmetic induction, that, for all k ∈ 1..n + 1, jk = j′k. Let k ∈ 1..n + 1,
then, by induction hypothesis, we know that, for all h < k, jh = j′h, hence, in particular,
R(jh) = R(j′h). Thus, by Assumption 2, we get C(jk) = C(j′k). Then, by RH, we get
R(jk) = R(j′k) and O(jk) = O(j′k), that is, jk = j′k.

Therefore, we immediately get r = R(jn+1) = R(j′n+1) = r′. Furthermore, we know that
o = O(j1)∗ · · · ∗O(jn)∗oρ ∗O(jn+1) and o′ = O(j′1)∗ · · · ∗O(j′n)∗oρ′ ∗O(j′n+1), by hypothesis,
and we have just proved that, for all k ∈ 1..n + 1, O(jk) = O(j′k), hence, to conclude, it is
enough to show oρ = oρ′ , but this follows from Assumption 2, since we know that, for all
k ∈ 1..n, R(jk) = R(j′k).

Proof of Lemma 7.2. Thanks to Theorem 5.1, we proceed by induction on the derivation of c⇒
〈r, o〉.

Base If c = r, then it cannot diverge because there is no divergence propagation rule having a
result in the conclusion.

Induction If c < R, then c⇒〈r, o〉 is derived by a rule ρ=rule(j1 . . . jn, jn+1, c, o′). Assume now
that 〈I∞, C〉 ` c⇒〈∞, o∞〉 for some o∞ ∈ O∞, then we have applied a rule div(ρ′, i, o′∞)
where ρ′=rule(j′1 . . . j

′
m, j
′
m+1, c, o

′′) with m = n by Assumption 2. We prove, by complete
arithmetic induction, that, for all k ∈ 1..i, C(ji) = C(j′i). Let k ∈ 1..i, then, by induction
hypothesis, we have, for all h < k, C(jh) = C(j′h), and, by Lemma 7.1, we get R(jh) = R(j′h).
Thus, by Assumption 2, we get C(jk) = C(j′k).

In particular we have C(ji) = C(j′i) and, by hypothesis, we have 〈I∞, C〉`C(j′i)⇒〈∞, o′∞〉,
which is not possible by induction hypothesis, since 〈I∞, C〉` ji.

Proof of Lemma 7.3. It immediately follows from Lemma B.1 and Theorem 5.1.

Proof of Lemma 7.4. By induction on the number of steps, using Lemma 7.3.

Proof of Lemma 7.5. We reason by induction on rules.

Base Axioms have conclusion r⇒〈r, u〉, and r 〈r, u〉 trivially holds since r
ε
−→? r and it(ε) = u.

Induction Given a rule rule(j1 . . . jn, jn+1, c, o) we assume that for all i ∈ 1..n + 1 we have
C(ji) 〈R(ji), O(ji)〉, then the thesis follows from an iteration of Condition 2.

39

D. Small-step rules of the examples

In this section we report the axioms of the small-step relation of the examples in Sect. 6. The
definition of evaluation contexts is pretty standard, following the early detection of stuck terms
as explained in Sect. 3, hence we omit it, as well as the rule for contextual closure, since it is
again standard.

I/O events

((λx.e) v;σ)
ε
−→ (e[v/x];σ) (out v;σ)

out v
−−−−→ (v;σ) (in; v:σ)

in v
−−−→ (v;σ)

I/O costs

((λx.e) v;σ)
0
−→ (e[v/x];σ) (out v;σ)

cout(v)
−−−−−→ (v;σ) (in; v:σ)

cin(v)
−−−−→ (v;σ)

Executed branches

(λx.e) v
∅
−→ e[v/x] true ?a e1 : e2

{a.true}
−−−−−→ e1 false ?a e1 : e2

{a.false}
−−−−−→ e2

Heap size

((λx.e) v;H)
|H|
−−→ (e[v/x];H)

(ref v;H)
|H|+1
−−−−→ (ι;H] {ι 7→ v}) (free ι;H] {ι 7→ v})

|H|
−−→ (v;H)

(! ι;H] {ι 7→ v})
|H|+1
−−−−→ (v;H] {ι 7→ v}) (ι = v;H] {ι 7→ v′})

|H|+1
−−−−→ (v;H] {ι 7→ v})

40

	Introduction
	Inference systems with corules
	Our approach
	An example of semantics with observations
	Extending observations
	Extending big-step semantics

	From finite to infinite observations
	Extending big-step semantics
	Examples of instantiation of the construction
	Preservation of equivalence
	Small-step semantics for (in)finite computations
	Determinism assumptions
	Equivalence conditions
	Preservation of equivalence for infinite computations

	Related work
	Discussion and future work
	Details on the completion from monoids to -monoids
	Proofs of main results
	Completeness
	Soundness

	Other proofs
	Small-step rules of the examples

