A Big Step from Finite to Infinite Computations

Davide Ancona ${ }^{\text {a }}$, Francesco Dagnino ${ }^{\text {a }}$, Jurriaan Rot ${ }^{\text {b }}$, Elena Zucca ${ }^{\text {a }}$
${ }^{a}$ DIBRIS, University of Genova, Italy
${ }^{b}$ Radboud University, The Netherlands

Abstract

We provide a construction that, given a big-step semantics describing finite computations and their observations, extends it to include infinite computations as well. The basic idea is that the finite behaviour uniquely determines the infinite behaviour once observations and their composition operators are fixed. Technically, the construction relies on the framework of inference systems with corules. The effectiveness and scope of the approach are illustrated by several examples. The correctness is formally justified by proving that, starting from a big-step semantics equivalent to a reference small-step semantics, such equivalence is preserved by the construction.

Keywords: operational semantics, infinite behaviour, coinduction

The known is finite, the unknown infinite
- Thomas Henry Huxley

1. Introduction

The behaviour of programs or software systems can be described by the final results of computations, and/or their interactions with the context, also seen as observations. For instance, a function call can terminate and return a value, as well as have output effects during its execution.

Here, we deal with semantic definitions covering both results and observations. Often, such definitions are provided for finite computations only. Notably, in big-step style, infinite computations are simply not modelled, hence diverging and stuck terms are not distinguished. This becomes even more unsatisfactory if we have observations, since we would like to express that a non terminating program has a significant infinite behaviour.

Recently, examples of big-step semantics modeling divergence have been provided [1, 2] by means of generalized inference systems [3, 4], which allow corules to control coinduction. Indeed, modeling infinite behaviour by a purely coinductive interpretation of big-step rules would lead to spurious results [5] and undetermined observation, whereas, by adding appropriate corules, we can correctly get divergence (∞) as the only result, and a uniquely determined observation. This approach has been adopted in [1, 2] to design big-step definitions including infinite behaviour for lambda-calculus and a simple imperative Java-like language. However, in

[^0]such works the designer of the semantics is in charge of finding the appropriate corules, and this is a non-trivial task.

In this paper, we show a construction that extends a given big-step semantics, modeling finite computations, to include infinite behaviour as well, notably generating appropriate corules. The construction consists of two steps:

1. Starting from a monoid O modeling finite observations (e.g., finite traces), we construct an ω-monoid $\left\langle O, O_{\infty}\right\rangle$ also modeling infinite observations (e.g., infinite traces). The latter structure is a variation of ω-semigroup [6], including a mixed product composing a finite with a possibly infinite observation, and an infinite product mapping an infinite sequence of finite observations into a single one (possibly infinite).
2. Starting from an inference system defining a big-step judgment $c \Rightarrow\langle r, o\rangle$, with c configuration, $r \in R$ result, and $o \in O$ finite observation, we construct an inference system with corules defining an extended big-step judgment $c \Rightarrow\left\langle r_{\infty}, o_{\infty}\right\rangle$ with $r_{\infty} \in R_{\infty}=R+\{\infty\}$ and $o_{\infty} \in O_{\infty}$. The construction generates additional rules for propagating divergence, and corules for introducing divergence in a controlled way, obtained as instances of two patterns (co-unit) and (co-mul).

To show the effectiveness of our approach, we provide several instances of the framework, with different kinds of (finite) observations. Depending on the nature of such observations, instantiations of only (co-unाt) or both should be added to obtain the intended infinite behaviour.

Finally, we consider the issue of formally justifying that the construction is correct. To this end, we assume the original big-step semantics to be equivalent to (finite sequences of steps in) a reference small-step semantics, and we show that, by applying the construction, we obtain an extended big-step semantics which is still equivalent to the small-step semantics, where we consider possibly infinite sequences of steps. As hypothesis, rather than just equivalence in the finite case (which would be not enough), we assume a set of equivalence conditions between individual big-step rules and the small-step relation.

This proof of equivalence holds for deterministic semantics; issues arising in the non-deterministic case and a possible solution are sketched in the conclusion.
Outline Sect. 2 is a quick introduction to inference systems with corules. Sect. 3 informally introduces our approach on a simple example. Sect. 4 describes the construction of ω-monoids, and Sect. 5 the extension of big-step semantics. Sect. 6 treats several significant examples. Sect. 7 contains the proof of equivalence. Related work is summarized in Sect. 8 and conclusions drawn in Sect. 9 The appendix gives more details on ω-monoids (Appendix A, proofs (Appendix B and CD, and small-step semantics of the examples (Appendix D).

2. Inference systems with corules

First we recall standard notions on inference systems [7, 5]. Assuming a universe \mathcal{U} of judgments, an inference system \mathcal{I} is a set of (inference) rules, which are pairs $\frac{\operatorname{Pr}}{c}$, with $\operatorname{Pr} \subseteq \mathcal{U}$ the set of premises, $c \in \mathcal{U}$ the consequence (a.k.a. conclusion). A rule with an empty set of premises is an axiom. A proof tree (a.k.a. derivation) for a judgment j is a tree whose nodes are (labeled with) judgments in \mathcal{U}, j is the root, and there is a node c with children Pr only if there is a rule $\frac{P r}{c}$. The inductive and the coinductive interpretation of \mathcal{I}, denoted $\operatorname{Ind}(\mathcal{I})$ and
$\operatorname{CoInd}(\mathcal{I})$, are the sets of judgments with respectively a finite ${ }^{1}$ and a possibly infinite proof tree. Set-theoretically, let $F_{I}: \wp(\mathcal{U}) \rightarrow \wp(\mathcal{U}), F_{I}(S)=\left\{c \mid \operatorname{Pr} \subseteq S, \frac{\operatorname{Pr}}{c} \in \mathcal{I}\right\}$; call a set S closed if $F_{\mathcal{I}}(S) \subseteq S$, and consistent if $S \subseteq F_{\mathcal{I}}(S)$. Then $\operatorname{Ind}(\mathcal{I})$ is the smallest closed set, and $\operatorname{CoInd}(\mathcal{I})$ is the largest consistent set.

We recall now the notion of inference system with corules [3, 4], which mixes induction and coinduction in a specific way. For a set $S \subseteq \mathcal{U}$, let $\left.I\right|_{S}$ denote the inference system obtained from I by keeping only rules with consequence in S.

Definition 2.1 (Inference system with corules). An inference system with corules, or generalized inference system, is a pair $\langle\mathcal{I}, C\rangle$ where I and C are inference systems, whose elements are called rules and corules, respectively. The interpretation $\operatorname{Gen}(\mathcal{I}, C)$ of such a pair is defined by $\operatorname{Gen}(\mathcal{I}, C)=\operatorname{CoInd}\left(\left.I\right|_{\text {Ind }(I \cup C)}\right)$.

Thus, the interpretation $\operatorname{Gen}(\mathcal{I}, C)$ is basically coinductive, but restricted to a universe of judgements which is inductively defined by the (potentially) larger system $\mathcal{I} \cup C$. In prooftheoretic terms, $\operatorname{Gen}(\mathcal{I}, C)$ is the set of judgments which have a possibly infinite proof tree in I whose nodes all have a finite proof tree in $I \cup C$, that is, the (standard) inference system consisting of rules and corules. We will write $\langle I, C\rangle \vdash j$ when j is derivable in $\langle I, C\rangle$, that is, $j \in \operatorname{Gen}(I, C)$.

We illustrate these notions by a simple example. As usual, sets of rules are expressed by meta-rules with side conditions, and analogously sets of corules are expressed by meta-corules with side conditions. (Meta-)corules will be written with thicker lines, to be distinguished from (meta-)rules. The following inference system defines the maximal element of a list of natural numbers, where ϵ is the empty list, and $x: u$ the list with head x and tail u.

$$
\overline{\max (x: \epsilon, x)} \quad \frac{\max (u, y)}{\max (x: u, z)} z=\max (x, y)
$$

The inductive interpretation is defined only on finite lists, since for infinite lists an infinite proof is needed. However, the coinductive interpretation fails to be a function. For instance, let $L=1$: $2: 1: 2: 1: 2: \ldots$. Then any judgment $\max (L, x)$ with $x \geq 2$ can be derived, as illustrated by the following examples.

$$
\frac{\cdots}{\frac{\cdots a x(L, 2)}{\max (2: L, 2)}} \max (1: 2: L, 2) \quad \frac{\cdots}{\frac{\max (L, 5)}{\max (2: L, 5)}}
$$

By adding a corule (in this case a coaxiom), we add a constraint which forces the greatest element to belong to the list, so that wrong results are "filtered out":

$$
\overline{\max (x: \epsilon, x)} \quad \frac{\max (u, y)}{\max (x: u, z)} z=\max (x, y) \quad \overline{\max (x: u, x)}
$$

Indeed, the judgment $\max (1: 2: L, 2)$ has the infinite proof tree shown above, and each node has a finite proof tree in the inference system extended by the corule:

$$
\frac{\frac{\cdots}{\max (L, 2)}}{\max (2: L, 2)} \quad \overline{\max (1: 2: L, 2)} \quad \frac{}{\max (1: 2: L, 2)}
$$

[^1]On the other hand, the judgment $\max (1: 2: L, 5)$ has the infinite proof tree shown above, but has no finite proof tree in the inference system extended by the corule. Indeed, since 5 does not belong to the list, the corule can never be applied. Hence, this judgment cannot be derived in the inference system with corules. We refer to [3, 1, 2, 4] for other examples.

Let $\langle I, C\rangle$ be a generalized inference system. The bounded coinduction principle, a generalization of the standard coinduction principle, can be used to prove completeness of $\langle\mathcal{I}, C\rangle$ w.r.t. a set \mathcal{S} (for "specification") of valid judgments.

Theorem 2.1 (Bounded coinduction). If the following two conditions hold:

1. $\mathcal{S} \subseteq \operatorname{Ind}(\mathcal{I} \cup C)$, that is, each valid judgment has a finite proof tree in $\mathcal{I} \cup \mathcal{C}$;
2. $\mathcal{S} \subseteq F_{I}(\mathcal{S})$, that is, each valid judgment is the consequence of an inference rule in \mathcal{I} where all premises are in \mathcal{S},
then $\mathcal{S} \subseteq \operatorname{Gen}(\mathcal{I}, C)$.

3. Our approach

Notation for sequences. Given a set X, we denote by $X^{\star}, X^{\omega}=\{\sigma \mid \mathbb{N} \rightarrow X\}$, and $X^{\infty}=X^{\star} \cup X^{\omega}$, respectively, the sets of finite, infinite, and possibly infinite sequences of elements of X. We write $x: u$ for concatenation of $x \in X$ with $u \in X^{\infty}, u \cdot v$ (or just $u v$) for concatenation of $u \in X^{\star}$ with $v \in X^{\infty}$, and ε for the empty sequence. Given a function $f: X \rightarrow Y$, we obtain functions $f^{\star}: X^{\star} \rightarrow Y^{\star}$ and $f^{\omega}: X^{\omega} \rightarrow Y^{\omega}$, defined by elementwise application of f. For $u \in X^{\star}$ and $v \in X^{\infty}$, we say that u is a prefix of v, denoted by $u \triangleleft v$, if $u \cdot z=v$ for some $z \in X^{\infty}$.

3.1. An example of semantics with observations

We illustrate our approach on a call-by-value λ-calculus with output. The top section of

$$
\begin{array}{rlll}
e & ::= & v|x| e_{1} e_{2} \mid \text { out } e & \\
\text { expression } \\
u, v & ::= & i \mid \lambda x . e & \text { result = value } \\
o & ::=v_{1} \ldots v_{n} & & \text { finite observation }
\end{array}
$$

ℓ	$::=v \mid \varepsilon$	
$\mathcal{E}[]$	$::=\square\|\mathcal{E}[] e\|(\lambda x . e) \mathcal{E}[] \mid$ out $\mathcal{E}[]$	
evaluation context		

(B) $_{(\lambda x . e) ~}^{\text {v }} \xrightarrow{\varepsilon} e[x / v] \quad$ (our) $\overline{\text { out } v \xrightarrow{v} v} \quad$ (cTx) $\frac{e \xrightarrow{\ell} e^{\prime}}{\mathcal{E}[e] \xrightarrow{\ell} \mathcal{E}\left[e^{\prime}\right]} \mathcal{E}[] \neq \square$

$$
\begin{gathered}
e_{1} \Rightarrow\left\langle\lambda x . e, o_{1}\right\rangle \\
e_{2} \Rightarrow\left\langle v, o_{2}\right\rangle \\
(\mathrm{vaL}) \frac{e^{2}}{v \Rightarrow\langle v / x] \Rightarrow\langle u, o\rangle} \quad\left(\begin{array}{l}
\text { (APP) } \\
e_{1} e_{2} \Rightarrow\left\langle u, o_{1} \cdot o_{2} \cdot o\right\rangle
\end{array} \quad \text { (out) } \frac{e \Rightarrow\langle v, o\rangle}{\text { out } e \Rightarrow\langle v, o \cdot v\rangle}\right.
\end{gathered}
$$

Figure 1: λ-calculus with output: syntax and finite semantics
Fig. 1 contains the syntax. We assume infinite sets of variables x and integer constants i. Results are either integer constants or λ-abstractions. Beyond standard constructs, we add expressions of shape out e, which output the result of the evaluation of e. Correspondingly, observations are sequences of such outputs, and the semantics of an expression consists of both its final result and the whole observation produced during the computation.

The mid section contains, as reference, the small-step semantics, defined by a labelled transition system $e \xrightarrow{\ell} e^{\prime}$. Labels are observations produced on a single step, called elementary, that is, either an output observation, or no observation, represented by the empty sequence ε. Rule (стх) is the usual contextual closure, and evaluation contexts define the standard call-by-value left-to-right strategy.

The bottom section contains the same semantics in big-step style. As expected, the big-step judgment $e \Rightarrow\langle v, o\rangle$ directly computes the semantics (result and observation), whereas in the small-step style such semantics is obtained from a finite sequence of steps $e=e_{0} \xrightarrow{\ell_{1}} \ldots \xrightarrow{\ell_{n}} e_{n}=v$ such that $o=\ell_{1} \cdot \ldots \cdot \ell_{n}$.

3.2. Extending observations

First of all we enrich results by a special element ∞ denoting divergence, and observations by considering infinite output sequences:

$$
\begin{array}{lll}
v_{\infty} & ::=v \mid \infty & \text { result or divergence } \\
o_{\infty} & ::=o \mid v_{1} \ldots v_{n} \ldots & \text { observation }
\end{array}
$$

The latter is an instance of a general construction, formally defined in Sect. 4 . Briefly, assuming that finite observations are a monoid $\langle O, *, \mathrm{u}\rangle$, with $*$ (sequentially) combining two observations, and the identity u , also called unit, modeling absence of observation, we construct an ω-monoid $\left\langle O, O_{\infty}\right\rangle$, where O_{∞} models possibily infinite observations, with a mixed product $*_{\infty}: O \times O_{\infty} \rightarrow$ O_{∞} combining a finite with a possibly infinite observation, and an infinite product $\mathrm{p}: O^{\omega} \rightarrow O_{\infty}$ mapping an infinite sequence of finite observations into a possibly infinite observation. For details and a proper definition, see Section 4 .

In the example, the monoid is $\left\langle\operatorname{Val}^{\star}, \cdot, \varepsilon\right\rangle$, and the construction just adds infinite output sequences. Formally, we obtain the ω-monoid $\left\langle V a l^{\star}, V a l^{\infty}\right\rangle$, where the mixed product is the concatenation of a finite with a possibly infinite sequence, still denoted by \cdot, and the infinite product returns the concatenation of an infinite number of finite sequences.

3.3. Extending big-step semantics

The judgment is modified into $e \Rightarrow\left\langle v_{\infty}, o_{\infty}\right\rangle$ to include divergence and infinite observations. Correspondingly, we extend the inference system, as formalized in Sect. 5. Here we informally explain the extension using the example.
Divergence propagation We first present the easier part, which is how to add rules for divergence propagation, shown in Fig. 2 .

$$
\begin{aligned}
& \text { (Div-APP1) } \frac{e_{1} \Rightarrow\left\langle\infty, o_{\infty}\right\rangle}{e_{1} e_{2} \Rightarrow\left\langle\infty, o_{\infty}\right\rangle} \quad \text { (Div-APP2) } \frac{e_{1} \Rightarrow\langle\lambda x . e, o\rangle \quad e_{2} \Rightarrow\left\langle\infty, o_{\infty}\right\rangle}{e_{1} e_{2} \Rightarrow\left\langle\infty, o \cdot o_{\infty}\right\rangle} \\
& \text { (Div-APP3) } \frac{e_{1} \Rightarrow\left\langle\lambda x . e, o_{1}\right\rangle \quad e_{2} \Rightarrow\left\langle v, o_{2}\right\rangle \quad e[v / x] \Rightarrow\left\langle\infty, o_{\infty}\right\rangle}{e_{1} e_{2} \Rightarrow\left\langle\infty, o_{1} \cdot o_{2} \cdot o_{\infty}\right\rangle} \quad \text { (Div-out) } \frac{e \Rightarrow\left\langle\infty, o_{\infty}\right\rangle}{\text { out } e \Rightarrow\left\langle\infty, o_{\infty}\right\rangle}
\end{aligned}
$$

Figure 2: λ-calculus with output: adding divergence propagation
These rules are not arbitrary: they are constructed in a systematic manner starting from the original (meta-)rules. That is, for each original meta-rule, we consider premises as ordered from

Infinite proof tree for any $\Omega \equiv \omega \omega \Rightarrow\left\langle v_{\infty}, o_{\infty}\right\rangle$ in \mathcal{I}

Finite proof tree for $\Omega \equiv \omega \omega \Rightarrow\langle\infty, \varepsilon\rangle$ in $\mathcal{I} \cup C$

$$
\begin{aligned}
\text { (co-EMPTY) } \\
\Omega \Rightarrow\langle\infty, \varepsilon\rangle
\end{aligned}
$$

Figure 3: Proof trees for Ω

$$
\begin{aligned}
& \text { (co-EMPTY) } \\
& e \Rightarrow\langle\infty, \varepsilon\rangle
\end{aligned} \quad \text { (co-out) } \frac{e \Rightarrow\langle v, o\rangle}{\text { out } e \Rightarrow\left\langle\infty, o \cdot v \cdot o_{\infty}\right\rangle}
$$

Figure 4: λ-calculus with output: adding corules
left to right. ${ }^{2}$ For each premise, say, the i-th, we add a meta-rule where the first $i-1$ premises are kept as they are (hence, the corresponding computations converge), whereas the i-th premise requires the corresponding computation to diverge. In the conclusion, we get ∞ as result and the mixed product of the observations in the premises (in the given order) as observation; only the last observation is possibly infinite.
Divergence introduction The rules in Fig. 2 ensure that divergent computations, if any, are correctly propagated. To discuss how to correctly introduce divergent computations, consider, for instance, the term $\Omega=\omega \omega$, where $\omega=\lambda x . x$. We should derive $\Omega \Rightarrow\langle\infty, \varepsilon\rangle$, and only this judgment, modeling that Ω diverges without producing any output. Similarly to the example max in Sect. 2 , no judgment can be derived for Ω in the inductive interpretation, and, in the coinductive interpretation, an infinite proof tree exists for any judgment $\Omega \Rightarrow\left\langle v_{\infty}, o_{\infty}\right\rangle$, as shown ${ }^{3}$ in Fig. 3. where (APP/DVV-APP3) means either (APP), if v_{∞} is a value v, or (DIV-APP3), if $v_{\infty}=\infty$.

In summary, divergent terms have no result (are stuck) in the inductive interpretation, and a fully non-deterministic result in the coinductive interpretation. Our approach is to add appropriate corules, so that, as in the max example, we add constraints to filter out wrong judgments.

In the example, we add to the rules in Fig. 1 and Fig. 2 the corules shown in Fig. 4 , which again are obtained in a systematic manner. Notably, they are special cases of two patterns, named (со-шлाт) and (co-мul), which handle two different cases of divergent computations. We explain the role of these rules; they will be formally defined in Sect. 5 (Def. 5.3).

The (co-unit) pattern handles the case where the computation produces a finite ${ }^{4}$ observation o. In this case, a purely coinductive approach obtains any v_{∞}, and any observation of shape $o * o_{\infty}$, and the aim of the corule is to only allow $v_{\infty}=\infty$ and $o_{\infty}=\mathrm{u}$. In the example, we use the specific name (co-mмpty), since the unit is the empty sequence. In the Ω case, $o=\varepsilon$, and, with (co-enpty), we derive only the judgment $\Omega \Rightarrow\langle\infty, \varepsilon\rangle$. Indeed, consider one of the proof trees in

[^2]Infinite proof tree for $\hat{\Omega} \equiv \hat{\omega}($ out $\hat{\omega}) \Rightarrow\left\langle v_{\infty}, o_{\infty}\right\rangle$ in \mathcal{I}, enforcing $o_{\infty}=\hat{\omega} \cdot o_{\infty}$

Finite proof tree for $\hat{\Omega} \equiv \hat{\omega}($ out $\hat{\omega}) \Rightarrow\left\langle\infty, \widehat{o_{\infty}}\right\rangle$ in $\mathcal{I} \cup C$, with $\widehat{o_{\infty}}=\hat{\omega} \ldots \hat{\omega} \ldots$

Figure 5: Proof trees for $\hat{\Omega}$

Fig. 3. which have an infinite path. For each node of such an infinite path ${ }^{5}$ the corules should allow a finite proof tree. If the path consists of infinite nodes $\Omega \Rightarrow\left\langle v, o_{\infty}\right\rangle$, for some v and o_{∞}, then the corules do not allow any finite proof tree for this judgment, since they all have ∞ in the conclusion. If it consists of infinite nodes $\Omega \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$, for some o_{∞}, then it is easy to see that only for $\Omega \Rightarrow\langle\infty, \varepsilon\rangle$ there is a finite proof tree, shown in the bottom section of Fig. 3

The (co-mul) pattern, instead, handles the case where the computation produces an infinite observation, since infinitely many elementary non-unit observations are produced. In this case, a purely coinductive approach obtains any v_{∞}; on the other side, the observation is uniquely determined by this infinite sequence. Consider, for instance, the term $\hat{\Omega}=\hat{\omega}$ (out $\hat{\omega}$), with $\hat{\omega}=\lambda x$. (x (out x)), for which the small-step semantics produces the output sequence consisting of infinite occurrences of the value $\hat{\omega}$. In the top part of Fig. 5 we show the infinite proof trees which can be constructed for $\hat{\Omega}$. Each of them forces the constraint $o_{\infty}=\hat{\omega} \cdot o_{\infty}$, which is solved only for $\widehat{o_{\infty}}=\hat{\omega} \ldots \hat{\omega} \ldots$. Hence, the aim of the corule is, on one hand, to force $v_{\infty}=\infty$, and, on the other hand, to allow a finite proof tree for any node in the infinite path. Since in this infinite path there are infinite nodes producing an observation, it is enough to add a corule for such nodes. In our running example, we use the specific name (co-out), since the only original meta-rule producing a (non-unit) observation is (out). Exactly as in the Ω case, the corules do not allow finite proof trees for judgments of shape $\hat{\Omega} \Rightarrow\left\langle v, o_{\infty}\right\rangle$. On the other hand, they should allow a finite proof tree for the judgment $\hat{\Omega} \Rightarrow\left\langle\infty, \widehat{o_{\infty}}\right\rangle$, which can be obtained by corule (co-out), as shown in the bottom section of Fig. 5

We conclude by explaining how meta-corules are added in a systematic way.

- We always add a meta-coaxiom (co-uлाт) with conclusion $e \Rightarrow\langle\infty, \mathrm{u}\rangle$.
- Assuming that in each meta-rule the observation in the conclusion is the product of the observations o_{1}, \ldots, o_{n} in the premises, followed by an elementary observation o, we add, for each meta-rule where $o \neq \mathrm{u}$, a corresponding meta-corule with the same premises ${ }^{6}$

[^3]and conclusion $e \Rightarrow\left\langle\infty, o_{1} * \cdots * o_{n} * o * o_{\infty}\right\rangle$. In the example, only (ouт) has a non-unit elementary observation, therefore (co-out) is the only added meta-corule.

A formal account of this general construction is given in Sect. 5

4. From finite to infinite observations

In this section, we formally define ω-monoids. They are a variation of ω-semigroups used in algebraic language theory [6]. Further, we introduce a completion construction from monoids to ω-monoids.

Definition 4.1 (ω-monoid). An ω-monoid is a pair $\langle M, N\rangle$ of sets together with a function * : $M \times M \rightarrow M$, called finite product, a function $*_{\infty}: M \times N \rightarrow N$ called mixed product, a function $p: M^{\omega} \rightarrow N$ called infinite product, and a constant $u \in M$ called unit, satisfying the following properties:

1. $\langle M, *, u\rangle$ is a monoid:
for all $x, y, z \in M:(x * y) * z=x *(y * z)$ and $x * u=x=u * x$.
2. $*_{\infty}$ is a left action:
for all $x, y \in M$ and $\alpha \in N: x *_{\infty}\left(y *_{\infty} \alpha\right)=(x * y) *_{\infty} \alpha$ and $u *_{\infty} \alpha=\alpha$.
3. p respects the mixed product: for all $x \in M$ and $\sigma \in M^{\omega}, x *_{\infty} p(\sigma)=p(x: \sigma)$.
4. p satisfies the infinite associative law ${ }^{7}$: for all $\sigma, \tau \in M^{\omega}$, if $\sigma<$: τ, then $p(\sigma)=p(\tau)$.

A homomorphism from an ω-monoid $\langle M, N\rangle$ to an ω-monoid $\left\langle M^{\prime}, N^{\prime}\right\rangle$ is a pair of functions $f: M \rightarrow M^{\prime}$ and $g: N \rightarrow N^{\prime}$ which preserve the unit and all three products in the expected way.

Example 4.1. We list a few basic examples of ω-monoids.

1. A main example is the pair $\left\langle A^{\star}, A^{\infty}\right\rangle$ of finite sequences and possibly infinite sequences over an alphabet A. Finite and infinite product are given by concatenation. The mixed product concatenates finite sequences (on the left) with arbitrary sequences (on the right). There is no concatenation with infinite sequences on the left.
2. As a special case of $\mathbb{1} 1,\langle\mathbb{N},+, 0\rangle$ extends to the ω-monoid $\langle\mathbb{N}, \mathbb{N}+\{\infty\}\rangle$.
3. The monoid $\langle\mathbb{N}, \vee, 0\rangle$ (where $n_{1} \vee n_{2}$ is the join of n_{1} and n_{2} w.r.t. the standard order) also extends to an ω-monoid $\langle\mathbb{N}, \mathbb{N}+\{\infty\}\rangle$. Here, the infinite product computes the supremum of values occuring in a sequence.
4. Let $\mathcal{P}(X)$ be the powerset of a set X, and $\mathcal{P}_{f}(X)$ the finite powerset, i.e., $\mathcal{P}_{f}(X)=\{S \subseteq X \mid$ S finite $\}$. The monoid $\left\langle\mathcal{P}_{f}(X), \cup, \emptyset\right\rangle$ extends to an ω-monoid, with the second component given by the (full) powerset $\mathcal{P}(X)$.

Given a set A, recall that A^{\star} is a free monoid: if M is a monoid, then for every map $f: A \rightarrow M$ there is a unique monoid homomorphism $f^{\sharp}: A^{\star} \rightarrow M$ such that $f^{\sharp}(a)=f(a)$ for all $a \in A$. In particular, starting from the identity $\mathrm{id}_{M}: M \rightarrow M$, we get the map $\mathrm{id}_{M}^{\sharp}: M^{\star} \rightarrow M$, which interprets a sequence of elements as a unique element, by iterating the operation $*$ on the sequence. We abbreviate id_{M}^{\sharp} by it ${ }_{M}$ (for "iterator"), dropping the subscript when clear from the context. The following result, which follows by a slight adaptation of the proof for ω-semigroups [6], characterises the free ω-monoid.

[^4]Proposition 4.1 (Free ω-monoid). For every set A, ω-monoid $\langle M, N\rangle$ and map $f: A \rightarrow M$ there are unique maps f^{\sharp}, f_{∞}^{\sharp} such that $\left\langle f^{\sharp}, f_{\infty}^{\sharp}\right\rangle$ is a homomorphism of ω-monoids from $\left\langle A^{\star}, A^{\infty}\right\rangle$ to $\langle M, N\rangle$.
Analogously to the monoid case, we abbreviate $\left\langle f^{\sharp}, f_{\infty}^{\sharp}\right\rangle$ by $\left\langle\mathrm{it}\right.$, it $\left.{ }_{\infty}\right\rangle$ when $f=\mathrm{id}_{M}$. We will use this iterator in Sect. 7.1 to obtain a single observation from a sequence of elementary observations.

We define $x \leq_{*} y \Leftrightarrow \exists z \in M . x * z=y$. It is easy to check that this relation is reflexive and transitive, hence it is a pre-order. Furthermore, all left multiplications (the functions $y \mapsto x * y$ for all $x \in M$) are monotone w.r.t. \leq_{*}. Finally, we denote by $\leq_{\infty} \subseteq M \times N$ the relation defined similarly by the mixed product, i.e., $x \leq_{\infty} \alpha \Leftrightarrow \exists \beta \in N . x *_{\infty} \beta=\alpha$.

We present now a construction which, given a monoid $\langle M, *, \mathrm{u}\rangle$, produces an ω-monoid $C_{\infty}(M)=\left\langle M, M_{\infty}\right\rangle$ called the completion of M. The completion is order-theoretic, and follows essentially from [8].

The construction takes existing limits into account, such that, when completing, e.g., the powerset $\mathcal{P}(X)$ of a set X (cf. Example 4.1), one obtains no new elements (intuitively, all limits already exist). To make this precise, we define a left continuous monoid as a monoid $\langle M, *, \mathrm{u}\rangle$ such that \leq_{*} is anti-symmetric (hence, a partial order) and, for each $x \in M$, the left multiplication function $m_{x}: M \rightarrow M$ defined by $m_{x}(y)=x * y$ is (Scott) continuous w.r.t. \leq_{*}. More explicitly, for each increasing sequence $\sigma=\left(y_{i}\right)_{i \in \mathbb{N}}$ admitting a least upper bound $\sup \sigma$, the least upper bound $\sup (x * \sigma)$ exists (where $x * \sigma=\left(x * y_{i}\right)_{i \in \mathbb{N}}$), and $x * \sup \sigma=\sup (x * \sigma)$ A continuous homomorphism is a monoid homomorphism $f: M \rightarrow N$ which is (Scott) continuous w.r.t. \leq_{*}. Every (underlying) monoid listed in Example 4.1 is left continuous.

The completion construction described below turns a left continuous monoid M into an ω monoid $C_{\infty}(M)=\left\langle M, M_{\infty}\right\rangle$, where M_{∞} is presented as a quotient of the set M^{ω}. We start by defining a relation \sqsubseteq on M^{ω}. For $\sigma \in M^{\omega}$ we denote by $\mathrm{S}(\sigma)$ the closure of the set $\{\operatorname{it}(u) \mid$ $u \triangleleft \sigma\}$ w.r.t. least upper bounds of increasing sequences. Then, for all $\sigma, \tau \in M^{\omega}$, we define $\sigma \sqsubseteq \tau \Leftrightarrow \forall x \in \mathrm{~S}(\sigma) . \exists y \in \mathrm{~S}(\tau) . x \leq_{*} y$. This relation is a pre-order. We denote by \equiv the induced equivalence relation, that is, $\sigma \equiv \tau \Leftrightarrow \sigma \sqsubseteq \tau \wedge \tau \sqsubseteq \sigma$.
Definition 4.2 (Completion). The completion of a left continuous monoid $\langle M, *, u\rangle$ is the ω monoid $C_{\infty}(M)=\left\langle M, M_{\infty}\right\rangle$ where: $M_{\infty}=M^{\omega} / \equiv$, the mixed product $*_{\infty}: M \times M_{\infty} \rightarrow M_{\infty}$ is given by $x *_{\infty}[\tau]_{\equiv}=[x: \tau]_{\equiv}$, and the infinite product $p: M^{\omega} \rightarrow M_{\infty}$ is given by $p(\tau)=[\tau]_{\equiv}$.

The fact that $C_{\infty}(M)$ is indeed an ω-monoid follows from A.1. In fact, the completion extends to a functor, mapping a continuous homomorphism f between left continuous monoids to an ω monoid homomorphism $\left\langle f, f^{\omega}\right\rangle$.

Example 4.2. The ω-monoid $C_{\infty}\left(A^{\star}\right)$ is isomorphic to the (free) ω-monoid $\left\langle A^{\star}, A^{\infty}\right\rangle$. In fact, the first three ω-monoids in Example 4.1 arise as completions of their underlying monoid. For the fourth $\left(\mathcal{P}_{f}(X)\right)$ this is the case if X is countable.

For an ω-monoid, $\langle M, N\rangle$ consider the map $\iota_{M}: M \rightarrow N$ defined by $\iota_{M}(x)=\mathrm{p}\left(x: u^{\omega}\right)$, where u^{ω} is the infinite sequence of u's. This map is not necessarily injective, but, if M is left continuous, it is, hence, this is the case of the completion $\left\langle M, M_{\infty}\right\rangle$. In the sequel, we therefore identify M with its image in M_{∞}, leaving the inclusion ι implicit.

We conclude this section with the definition of a technical property of ω-monoids, stated for the completion in particular, which will be used to guide the extension of big-step semantics presented in Sect. [5. We note that the use of this property is quite subtle, and most of the extension
can be understood without it. Given $G \subseteq M$, and M_{G} the submonoid of M generated by G, a sequence $\sigma=\left(x_{i}\right)_{i \in \mathbb{N}}$ in G is trivial if it is eventually always the unit. An element $\alpha \in M_{\infty}$ is a limit product of σ if, for all $k \in \mathbb{N}, x_{0} * \cdots * x_{k} \leq_{\infty} \alpha$. Note that, thanks to the properties of the infinite product, $\mathrm{p}(\sigma)$ is a limit product of σ. Moreover, for $\alpha \in M_{\infty}$, we define the set $\mathcal{F}(\alpha)$ of factors of α in M_{G} :

$$
\mathcal{F}(\alpha)=\left\{x \in M_{G} \mid \exists x^{\prime} \in M_{G} . \exists \sigma \in M_{G}^{\omega} . \alpha=x^{\prime} * x *_{\infty} \mathrm{p}(\sigma)\right\} .
$$

We can now define the properties we need:
Definition 4.3. Let M be a monoid. For a subset $G \subseteq M$, we say G has unique limits in M_{∞} if each non-trivial sequence $\sigma=\left(x_{i}\right)_{i \in \mathbb{N}}$ in G has a unique limit product. Further, an element $\alpha \in M_{\infty}$ is called finitely generated by G if $\mathcal{F}(\alpha)$ is non-empty and finite.

5. Extending big-step semantics

In this section, we formally define the construction which extends big-step semantics. We start with a few basic definitions related to big-step semantics. Assume in the following:

- a set C of configurations c;
- a set $R \subseteq C$ of results r;
- a left continuous monoid $\langle O, *, \mathrm{u}\rangle$ of (finite) observations o.

In the example of Sect. 3, configurations are just language terms. In general, they could include additional components, such as memory. We take an "operational" view of big-step semantics, as in, e.g., [9], where results are special configurations, rather than separate semantic entities. This allows a more direct comparison with small-step semantics in Sect. 7

Definition 5.1. A judgement j is a triple denoted by $c \Rightarrow\langle r, o\rangle$, where $c \in C, r \in R$ and $o \in O$. We set $C(j)=c, R(j)=r$ and $O(j)=o$.

A rule ρ in big-step semantics has shape

$$
\frac{j_{1} \ldots j_{n} j_{n+1}}{c \Rightarrow\left\langle R\left(j_{n+1}\right), O\left(j_{1}\right) * \cdots * O\left(j_{n}\right) * o * O\left(j_{n+1}\right)\right\rangle}
$$

where $c \in C \backslash R, j_{1}, \ldots, j_{n}$ are judgements called dependencies (with $n \geq 0$), j_{n+1} is a judgement called continuation and $o \in O$ is the elementary observation.

A big-step semantics is a collection I of rules of the above form, together with a single axiom $\overline{r \Rightarrow\langle r, u\rangle}$ for each result $r \in R$.

The notation for judgements is extended to rules by setting $C(\rho)=c, R(\rho)=R\left(j_{n+1}\right)$ and $O(\rho)=O\left(j_{1}\right) * \cdots * O\left(j_{n}\right) * o * O\left(j_{n+1}\right)$.

A rule ρ as above models that the evaluation of c consists of the following steps: first, for any dependency j_{i}, in the given order, the configuration $C\left(j_{i}\right)$ is evaluated, producing the observation $O\left(j_{i}\right)$; then, the elementary observation o is emitted and the configuration $C\left(j_{n+1}\right)$ in the continuation is evaluated; finally, the result of the continuation $R\left(j_{n+1}\right)$ is returned, and all the partial observations are composed, following the evaluation order. ${ }^{8}$ The restriction that an observation is

[^5]only emitted before the continuation is a simplification: emitting observations before evaluating a dependency can be encoded by factorizing the semantics, by introducing an intermediate term, as it should be done in small-step style as well.

Note that there are axioms only for results, which have no other rules. Hence, the only derivable judgment for r is $r \Rightarrow\langle r, \mathrm{u}\rangle$, which we call a trivial judgment.

A big-step semantics as defined above forms an inference system, whose inductive interpretation is the semantics of interest. However, these rules carry slightly more information than standard inference rules. Notably, premises are a non-empty sequence, rather than a set, and the last premise plays a special role. Such additional structure does not affect the semantic relation defined by the rules, but is relevant to define the construction.

It will be useful in the technical development to denote a rule as in Definition 5.1 as above more concisely as

$$
\operatorname{rule}\left(j_{1} \ldots j_{n}, j_{n+1}, c, o\right)
$$

referred to as the inline format of rules.
[Elena: moved here before the examples] The following assumption means that meta-variables for observations can be freely instantiated, that is, observations do not influence the evaluation process.

Assumption 1. Throughout this paper, we assume the following, for any big-step semantics I : for all $\rho=\operatorname{rule}\left(j_{1} \ldots j_{n}, j_{n+1}, c, o\right)$ in $I, o_{1}, \ldots, o_{n+1} \in O$, there is $\rho^{\prime}=r u l e\left(j_{1}^{\prime} \ldots j_{n}^{\prime}, j_{n+1}^{\prime}, c, o\right)$ s.t., for all $i \in 1 \ldots n+1, j_{i}^{\prime}=C\left(j_{i}\right) \Rightarrow\left\langle R\left(j_{i}\right), o_{i}\right\rangle$.

Example 5.1. The big-step semantics of lambda-calculus with output, in the inline format of rules, is as follows.

```
(APP) \(\operatorname{rule}\left(e_{1} \Rightarrow\left\langle\lambda x . e, o_{1}\right\rangle e_{2} \Rightarrow\left\langle v, o_{2}\right\rangle, e[v / x] \Rightarrow\langle u, o\rangle, e_{1} e_{2}, \varepsilon\right)\)
(out) \(\operatorname{rule}\left(e \Rightarrow\left\langle v, o_{1}\right\rangle, v \Rightarrow\left\langle v, o_{2}\right\rangle\right.\), out \(\left.e, v\right)\)
```

We compare this to the original definition in Fig. 1 Axiom (vas) is omitted since it is assumed implicitly in Definition 5.1 and (APP) is the original meta-rule in inline format (the third premise is the continuation). In (out), the original meta-rule had no explicit continuation, hence it is expressed in a slightly different way, with a dummy continuation $v \Rightarrow\left\langle v, o_{2}\right\rangle$. The two versions are clearly equivalent since this judgment can only be derived for $o_{2}=u$.

Example 5.2. The semantics of an application $e_{1} e_{2}$ in Fig. 1 fformalizes a strategy which first (1) evaluates e_{1}, then (2) checks that the value of e_{1} is a λ-abstraction, finally (3) evaluates e_{2}. That is, left-to-right evaluation with early error detection. Other strategies can be obtained by adjusting (small-step and) big-step rules. Notably, right-to-left evaluation (3)-(1)-(2), expressed in small-step style by evaluation contexts \mathcal{E} [] v and e $\mathcal{E}[]$, can be expressed by just swapping the first two premises, that is:

$$
\text { (APP-RIGHT) } \quad \operatorname{rule}\left(e_{2} \Rightarrow\left\langle v, o_{2}\right\rangle e_{1} \Rightarrow\left\langle\lambda x . e, o_{1}\right\rangle, e[v / x] \Rightarrow\langle u, o\rangle, e_{1} e_{2}, \varepsilon\right)
$$

Left-to-right evaluation with late error detection (1)-(3)-(2), expressed in small-step style by evaluation contexts $\mathcal{E}[] e$ and $v \mathcal{E}[]$, can be expressed as follows:

$$
\text { (APP-LATE) } \operatorname{rule}\left(e_{1} \Rightarrow\left\langle v_{1}, o_{1}\right\rangle e_{2} \Rightarrow\left\langle v_{2}, o_{2}\right\rangle v_{1} \Rightarrow\left\langle\lambda x . e, o_{3}\right\rangle, e\left[v_{2} / x\right] \Rightarrow\langle u, o\rangle, e_{1} e_{2}, \varepsilon\right)
$$

We now turn to the extension of a big-step semantics \mathcal{I}, which consists in the addition of rules for divergence propagation as well as corules to rule out spurious results, as shown in the example in Section 3 It depends on properties of \mathcal{I} and the observation monoid O which corules are actually added-see the final construction in Definition 5.4 . We start by describing the basic rules for divergence propagation and the relevant corules.

Definition 5.2 (Rules for divergence propagation). The set of rules I_{∞} is obtained by extending I as follows. For each $\rho=\operatorname{rule}\left(j_{1} \ldots j_{n}, j_{n+1}, c, o\right), i \in 1 . . n+1$, and $o_{\infty} \in O_{\infty}$, we add a rule

$$
\frac{j_{1} \ldots j_{i-1} \quad C\left(j_{i}\right) \Rightarrow\left\langle\infty, o_{\infty}\right\rangle}{c \Rightarrow\left\langle\infty, O\left(j_{1}\right) * \cdots * O\left(j_{i-1}\right) * o^{\prime} *_{\infty} o_{\infty}\right\rangle} o^{\prime}= \begin{cases}o & \text { ifi } i=n+1 \\ u & \text { otherwise }\end{cases}
$$

denoted by $\operatorname{div}\left(\rho, i, o_{\infty}\right)$ to highlight the relationship with the original rule ρ.
Intuitively, we consider the possibility that evaluation of $C\left(j_{i}\right)$ diverges for one of the premises j_{i}. In that case, the subsequent premises should be ignored and the configuration c in the conclusion should diverge as well.

Definition 5.3 (Corules patterns). The set of corules \mathcal{C}_{u}^{I} is defined as follows:

$$
\text { (co-unit) } \overline{c \Rightarrow\langle\infty, u\rangle}
$$

The set of corules C_{m}^{I} is defined as follows:

$$
\left(\text { (co-MuL) } \frac{j_{1} \quad \cdots j_{n}}{c \Rightarrow\left\langle\infty, O\left(j_{1}\right) * \cdots * O\left(j_{n}\right) * o *_{\infty} o_{\infty}\right\rangle} \begin{array}{l}
o_{\infty} \in O_{\infty} \\
\text { rule }\left(j_{1} \ldots j_{n}, j, c, o\right) \in \mathcal{I} \\
o \neq u
\end{array}\right.
$$

We denote by co-mul $\left(\rho, o_{\infty}\right)$ the corule in C_{m}^{I} constructed from $\rho=$ rule $\left(j_{1} \ldots j_{n}, j, c, o\right)$ with observation o_{∞}. The set of corules C^{I} is defined as the union $C_{u}^{I} \cup C_{m}^{I}$.

Example 5.3. Due to the side condition $o \neq u$, for instance, for the λ-calculus with output, the above definition associates no corule (co-mul) with (app), whereas for (out) we obtain rule (co-out), see Fig. 4

The properties of the semantics extension strongly depends on how the ω-monoid $C_{\infty}(O)=$ $\left\langle O, O_{\infty}\right\rangle$ behaves w.r.t. the elementary observations E_{I} [Davide: I would suggest using a notation more different from evaluation contexts $\mathcal{E}_{[]}[$Elena: I tried an alternative]] produced in the semantics, defined by

$$
\mathrm{E}_{I}=\left\{o \mid \text { there is a rule } \rho=\operatorname{rule}\left(j_{1}, \ldots, j_{n}, j_{n+1}, c, o\right)\right\} .
$$

Further, we define O_{I} as the submonoid of O generated by E_{I}. This submonoid contains all the observations produced by finite computations, as stated in the following lemma.

Lemma 5.1. If $\langle I, \emptyset\rangle \vdash c \Rightarrow\langle r, o\rangle$, then $o \in O_{I}$.
We are now ready to define the extension of big-step semantics, using the constructions in Definitions 5.2 and 5.3

Definition 5.4 (Extending big-step semantics). The extension of a big-step semantics I is the inference system with corules $\left\langle I_{\infty}, C^{I}\right\rangle$ if E_{I} has unique limits, otherwise it is $\left\langle I_{\infty}, C_{u}^{I}\right\rangle$.

In the above definition, if E_{I} has unique limits, we take both corules patterns of Def. 5.3 and the construction is correct, as will be formally shown in Sect. 7.4 (Theorem 7.1 and Theorem 7.5). Indeed, given a computation which produces infinitely many elementary non-unit observations,
pattern (co-mul) allows any limit product of this sequence (Lemma 7.6), hence the uniqueness of limits is needed to avoid spurious observations. The property of unique limits holds in many significant examples, see the next section, notably for the common case where observations are traces.

If this property does not hold, we can keep only pattern (co-unit) and, in this way, the construction is correct for computations with observations which are finitely generated by $\mathrm{E}_{\mathcal{I}}$ (Theorem 7.3 and Theorem 7.2], as defined above. This is satisfactory in many examples, see again the next section.

We conclude with a basic but important property of semantics with corules. A set C of corules is called conservative if all rules are of the form

$$
\frac{P r}{c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle}
$$

For instance, $C_{\mathrm{u}}^{I}, C_{\mathrm{m}}^{I}$, and C^{I} are conservative sets of corules. By adding a conservative set of corules to I_{∞} we do not affect finite computations, as formally stated below. The important consequence is that, for converging judgments, we can reason by standard inductive techniques (see, e.g., Lemma 7.2 and Lemma 7.5).

Theorem 5.1 (Conservativity). For each $\left\langle I_{\infty}, C\right\rangle$ with C conservative, $\left\langle I_{\infty}, C\right\rangle \vdash c \Rightarrow\langle r, o\rangle$ iff $\langle\mathcal{I}, \emptyset\rangle \vdash c \Rightarrow\langle r, o\rangle$.

6. Examples of instantiation of the construction

In this section, we consider several examples, with different underlying monoids of finite observations. The reference small-step semantics are reported in Appendix D For all examples, the original big-step semantics is equivalent to finite small-step computations. ${ }^{9}$ For simplicity, we directly show the (possibly simplified) meta-rules obtained by the construction, using the following convention: non-bold for original meta-rules, bold black for added meta-(co)rules, bold gray for extended meta-rules (merging original and added meta-rules).
I/O events The first example, in Fig. 6, is a slight extension of the λ-calculus in Sect. 3 . besides out e, we add the construct in to read input values. Single observations are no longer just values, but I/O events of shape either in v (value v has been read) or out v (value v has been output). The monoid of finite observations is $\{\text { in } v \text {, out } v \mid v \text { value }\}^{\star}$, that is, the free monoid as in Sect. 3 , but on top of a different set of single observations, and the ω-monoid completion adds infinite sequences of events.

The grammar also defines (divergence) propagation contexts \mathcal{D} [] [2] with one hole at fixed depth 1 to allow a more concise presentation of the meta-rules added for divergence propagation (see comments to rule (div) below). Meta-rules (val), (out), and (iv) are original meta-rules; (val) and (оит) are analogous to those in Fig. 1 . However, here configurations have shape $(e ; \sigma)$ where σ is an infinite sequence of values modeling the input stream. In meta-rule (in), a value is read from such a stream, emitting the corresponding elementary observation.

Meta-rule (APP) is the merge of two different meta-rules: the original one, analogous to (APP) in Fig. 1. and that added for divergence propagation from the third premise, analogous to (dir${ }_{\text {app3 }}$ in Fig. 2. To this aim, the meta-variable w ranges over pairs of shape either $\langle(v ; \sigma), o\rangle$,

[^6]\[

$$
\begin{array}{rll}
e & ::=v|x| e_{1} e_{2} \mid \text { in } \mid \text { out } e & \text { expression } \\
u, v & ::=i \mid \lambda x . e & \text { value } \\
\theta & :=\text { in } v \mid \text { out } v & \text { I/O event } \\
o & ::=\theta_{1} \ldots \theta_{n} & \text { finite observation } \\
o_{\infty} & :=o \mid \theta_{1} \ldots \theta_{n} \ldots & \text { observation } \\
\mathcal{D}[] & :=\square e \mid \text { out } \square & \text { (divergence) propagation context }
\end{array}
$$
\]

```
\({ }^{\text {(vaL) }} \frac{(v ; \sigma) \Rightarrow\langle(v ; \sigma), \varepsilon\rangle}{(\text { (out })} \frac{\left(e ; \sigma_{1}\right) \Rightarrow\left\langle\left(v ; \sigma_{2}\right), o\right\rangle}{\left(\text { out } e ; \sigma_{1}\right) \Rightarrow\left\langle\left(v ; \sigma_{2}\right), o \cdot(\text { out } v)\right\rangle}\)
```



```
(Div-APP2) \(\frac{\left(e_{1} ; \sigma_{1}\right) \Rightarrow\left\langle\left(\lambda x . e ; \sigma_{2}\right), o\right\rangle \quad\left(e_{2} ; \sigma_{2}\right) \Rightarrow\left\langle\infty, o_{\infty}\right\rangle}{\left(e_{1} e_{2} ; \sigma_{1}\right) \Rightarrow\left\langle\infty, o \cdot o_{\infty}\right\rangle} \quad\) (div) \(\frac{(e ; \sigma) \Rightarrow\left\langle\infty, o_{\infty}\right\rangle}{(\mathcal{D}[e] ; \sigma) \Rightarrow\left\langle\infty, o_{\infty}\right\rangle}\)
    \(\left(e ; \sigma_{1}\right) \Rightarrow\left\langle\left(v ; \sigma_{2}\right), o\right\rangle\)
(co-EMPTY) \(\overline{(e ; \sigma) \Rightarrow\langle\infty, \varepsilon\rangle} \quad\) (co-out) \(\overline{\left(\text { out } e ; \sigma_{1}\right) \Rightarrow\left\langle\infty, o \cdot(\text { out } v) \cdot o_{\infty}\right\rangle}\)
(co-iv) \(\overline{(\text { in } \cdot v \cdot \sigma) \Rightarrow\left\langle\infty,(\operatorname{in} v) \cdot \rho_{\infty}\right\rangle}\)
```

Figure 6: λ-calculus with I/O: meta-(co)rules generated by the construction
or $\left\langle\infty, o_{\infty}\right\rangle$; accordingly, $o^{\prime} \cdot w$ denotes either $\left\langle(v ; \sigma), o^{\prime} \cdot o\right\rangle$ or $\left\langle\infty, o^{\prime} \cdot o_{\infty}\right\rangle$. Meta-rule (Div-APP2) is analogous to that in Fig. 2, added for divergence propagation from the second premise of (app). Thanks to propagation contexts, the remaining meta-rule (div) represents those added for divergence propagation from the first premise of both (APP) and (out), analogously to (div-Appl) and (dir-out) in Fig. 2

The meta-corules (co-емpty) and (co-out) are analogous to those in Fig. 4, obtained as special cases of (со-иліт) and (co-мul) defined in Sect. 5 . respectively, where the latter pattern is applied to meta-rule (out). The meta-corule (co-in) is obtained by applying the pattern (co-mut) to meta-rule (iv).

In this example, as in that of Sect. 3, by adding both the (co-unit) and the (co-mul) patterns, as shown above, we get the expected semantics, that is, the same derived from the small-step computations. Notably, completeness holds adding both patterns (Theorem 7.1), and soundness holds since the monoid of finite observations has unique limits (Theorem 7.5).
I/O costs In the next example, the language is the same, but single observations are the (time) costs associated with each I/O operation. This could be easily generalized to other constructs, e.g., considering also the costs for function application; however, by considering I/O operations only, we can show that our construction leads to exactly the same meta-rules as the previous example, modulo the used monoid of finite observations.

This monoid is $\left\langle\mathbb{R}_{\geq 0},+, 0\right\rangle$, that is, non-negative real numbers with addition; the only infinite observation added by the completion is ∞, corresponding to diverging series, with the obvious behavior w.r.t. the mixed product.

The meta-rules in Fig. 7 differ from those in Fig. 6 mainly for the employed ω-monoids, and few other details. Namely, meta-variables c and c_{∞} range over $\mathbb{R}_{\geq 0}$ (finite observations) and $\mathbb{R}_{\geq 0}+\{\infty\}$ (possibly infinite observations), and the semantics is parametric in the two functions $c_{\text {in }}:$ Val $\rightarrow \mathbb{R}_{\geq 0}$ and $c_{\text {out }}:$ Val $\rightarrow \mathbb{R}_{\geq 0}$ assigning costs to in and out operations, respectively,
depending on the input/output value. The meta-corule corresponding to the pattern (co-unit) in Sect. 5 has been named (co-zero). As in Fig. 6, we overload notation by adopting the same symbol (+ in this case) for both finite and mixed product. In this case, the meta-variable w ranges over pairs of shape either $\langle(v ; \sigma), c\rangle$, or $\left\langle\infty, c_{\infty}\right\rangle$; accordingly, $c^{\prime}+w$ denotes either $\left\langle(v ; \sigma), c^{\prime}+c\right\rangle$ or $\left\langle\infty, c^{\prime}+c_{\infty}\right\rangle$.

$$
\begin{aligned}
& { }^{(\mathrm{vaL})} \frac{(v ; \sigma) \Rightarrow\langle(v ; \sigma), 0\rangle}{(\text { out })} \frac{\left(e ; \sigma_{1}\right) \Rightarrow\left\langle\left(v ; \sigma_{2}\right), c\right\rangle}{\left(\text { out } e ; \sigma_{1}\right) \Rightarrow\left\langle\left(v ; \sigma_{2}\right), c+c_{\text {out }}(v)\right\rangle} \\
& { }^{(\text {(iv) })} \overline{(\text { in } ; v: \sigma) \Rightarrow\left\langle(v ; \sigma), c_{\text {in }}(v)\right\rangle} \\
& { }_{(\mathrm{APP})} \frac{\left(e_{1} ; \sigma_{1}\right) \Rightarrow\left\langle\left(\lambda x . e ; \sigma_{2}\right), c_{1}\right\rangle \quad\left(e_{2} ; \sigma_{2}\right) \Rightarrow\left\langle\left(v ; \sigma_{3}\right), c_{2}\right\rangle \quad\left(e[x \leftarrow v] ; \sigma_{3}\right) \Rightarrow w}{\left(e_{1} e_{2} ; \sigma_{1}\right) \Rightarrow c_{1}+c_{2}+w} \\
& \text { (Div-APP2) } \frac{\left(e_{1} ; \sigma_{1}\right) \Rightarrow\left\langle\left(\lambda x . e ; \sigma_{2}\right), c\right\rangle \quad\left(e_{2} ; \sigma_{2}\right) \Rightarrow\left\langle\infty, c_{\infty}\right\rangle}{\left(e_{1} e_{2} ; \sigma_{1}\right) \Rightarrow\left\langle\infty, c+c_{\infty}\right\rangle} \quad \text { (Div) } \frac{(e ; \sigma) \Rightarrow\left\langle\infty, c_{\infty}\right\rangle}{(\mathcal{D}[e] ; \sigma) \Rightarrow\left\langle\infty, c_{\infty}\right\rangle} \\
& \text { (co-zero) } \frac{\left(e ; \sigma_{1}\right) \Rightarrow\left\langle\left(v ; \sigma_{2}\right), c\right\rangle}{(e ; \sigma) \Rightarrow\langle\infty, 0\rangle} \quad \text { (co-out) } \frac{\left(\text { out } e ; \sigma_{1}\right) \Rightarrow\left\langle\infty, c+c_{\text {out }}(v)+c_{\infty}\right\rangle}{\text { (})} \\
& \text { (co-in) } \overline{(\text { in } ; v: \sigma) \Rightarrow\left\langle\infty, c_{\text {in }}(v)+c_{\infty}\right\rangle}
\end{aligned}
$$

Figure 7: λ-calculus with I/O costs: meta-(co)rules generated by the construction
As in the previous example, by adding both the (co-untr) and (co-mul) patterns we get the expected semantics. Completeness is again ensured by Theorem 7.1 Soundness (Theorem 7.5p holds under the following assumption on the cost functions: $0<\inf \left\{c_{\text {in }}(v), c_{\text {out }}(v) \mid v \in \operatorname{Val}, 0<\right.$ $\left.c_{\text {in }}(v), c_{\text {out }}(v)\right\}$; that is, non-zero costs for I/O operations cannot be arbitrarily close to zero. This ensures that the set E_{I} of elementary observations produced in the semantics has unique limits. This is a reasonable assumption: it means that diverging programs performing infinite I / O operations with non-zero costs cannot have a finite cost.
Executed branches We consider a λ-calculus with labelled conditional expressions and Boolean values b, and a semantics useful to reason about branch coverage. The syntax is as follows.

$$
\begin{array}{rll}
e & ::=v|x| e_{1} e_{2} \mid e ?_{a} e_{1}: e_{2} & \text { expression } \\
u, v::=b \mid \lambda x \cdot e & \text { value } \\
\mathcal{D}[]::=\square e \mid \square ?_{a} e_{1}: e_{2} & \text { propagation context }
\end{array}
$$

We assume each conditional expression $e ?_{a} e_{1}: e_{2}$ in a program to be associated with a unique label a ranging over a countably infinite set \mathcal{A} of labels, so that a.true and a.false denote the unique addresses inside the program of the then and else branches e_{1} and e_{2}, respectively.

Here finite observations are the sets of the addresses of the branches executed by a program, represented by the monoid $\left\langle\mathcal{P}_{f}(\{a\right.$. true, a.false $\left.\mid a \in \mathcal{A}\}), \cup, \emptyset\right\rangle$ (see point 4 in Example 4.1. Again, in the meta-rules, the symbol \cup denotes both the finite and the mixed product. The metavariable w ranges over pairs of shape either $\langle v, A\rangle$, or $\left\langle\infty, A_{\infty}\right\rangle$, and, if $w=\left\langle v_{\infty}, A_{\infty}\right\rangle$, then $A \cup w$ denotes $\left\langle v_{\infty}, A \cup A_{\infty}\right\rangle$. Similarly to meta-rule (APP), meta-rules ($\mathrm{F}-\mathrm{F}$) and (IF-T) $^{(n a m e ~ i n ~ g r a y ~ b o l d) ~}$ are obtained by merging two different meta-rules: the original one for the finite semantics of conditional expressions, and the meta-rule representing those added for divergence propagation in the second premise.

For what concerns meta-corules, in this example we add only the (co-untr) pattern, because adding (co-миL) would be unsound. Indeed, the completion produces the full powerset $\mathcal{P}(\{$ a.true, a.false \mid

$$
\begin{aligned}
& (\mathrm{vaL}) \frac{\mathrm{A}^{2}}{v \Rightarrow\langle v, \emptyset\rangle} \quad \frac{e_{1} \Rightarrow\left\langle\lambda x . e, A_{1}\right\rangle \quad e_{2} \Rightarrow\left\langle v, A_{2}\right\rangle \quad e[x \leftarrow v] \Rightarrow w}{e_{1} e_{2} \Rightarrow A_{1} \cup A_{2} \cup w} \\
& { }_{\text {(IF-F) }} \frac{e \Rightarrow\langle\text { false }, A\rangle \quad e_{2} \Rightarrow w}{e ?_{a} e_{1}: e_{2} \Rightarrow A \cup\{\text { a.false }\} \cup w} \quad \text { (IF-T) } \frac{e \Rightarrow\langle\text { true }, A\rangle \quad e_{1} \Rightarrow w}{e ?_{a} e_{1}: e_{2} \Rightarrow A \cup\{\text { a.true }\} \cup w} \\
& \text { (Div-APP2) } \frac{e_{1} \Rightarrow\langle\lambda x . e, A\rangle \quad e_{2} \Rightarrow\left\langle\infty, A_{\infty}\right\rangle}{e_{1} e_{2} \Rightarrow\left\langle\infty, A \cup A_{\infty}\right\rangle} \quad \text { (Div) } \frac{e \Rightarrow\left\langle\infty, A_{\infty}\right\rangle}{\mathcal{D}[e] \Rightarrow\left\langle\infty, A_{\infty}\right\rangle} \\
& \text { (CO-EMPTY) } \overline{e \Rightarrow\langle\infty, \emptyset\rangle}
\end{aligned}
$$

Figure 8: λ-calculus with conditional: meta-(co)rules generated by the construction
$a \in \mathcal{A}\})$), and the set of elementary observations E_{I} has no unique limits. However, since every program has a finite set of branches, it is easy to see that (even infinite) small-step computations produce only observations which are finitely generated by $\mathrm{E}_{\mathcal{I}}$, hence Theorem 7.2 gives completeness of the big-step semantics. And, because we have only the (co-untr) pattern, by Theorem 7.3 the big-step semantics is sound.
Maximum heap size In this last example we consider an imperative extension of the call-byvalue λ-calculus with heap references which can be explicitly deallocated. The syntax is as follows.

$$
\begin{array}{rll}
e & ::=v|x| e_{1} e_{2} \mid \text { ref } e|!e| e_{1}=e_{2} \mid \text { free } e & \text { expression } \\
v & ::=\iota \mid \lambda x . e & \text { value } \\
\mathcal{D}[] & ::=\square e \mid \text { ref } \square|!\square| \text { free } \square \mid \square=e & \text { propagation context }
\end{array}
$$

Values are either references ι or λ-abstractions. The syntax includes expressions of shape ref e creating a new reference initialized with the value of $e,!e$ dereferencing the reference denoted by $e, e_{1}=e_{2}$ updating the reference denoted by e_{1} with the value of e_{2}, and free e deallocating the reference denoted by e.

In this case we are interested in observing the maximum size of the heap used by a program: finite observations are the monoid $\langle\mathbb{N}, \vee, 0\rangle$ (see point 3 in Example 4.1). This monoid can be employed whenever observing the maximum number of used resources, independently from the notion of resource (heap locations, files, locks, etc.). The completion is the ω-monoid $\langle\mathbb{N}, \mathbb{N}+\{\infty\}\rangle$, whose infinite product computes the supremum of values in a given sequence.

As before, the same symbol \vee denotes both the finite and the mixed product. The metavariable w ranges over pairs of shape either $\langle(v ; \mathcal{H})$, $s\rangle$, or $\left\langle\infty, s_{\infty}\right\rangle$; accordingly, $s^{\prime} \vee w$ denotes either $\left\langle(v ; \mathcal{H}), s^{\prime} \vee s\right\rangle$ or $\left\langle\infty, s^{\prime} \vee s_{\infty}\right\rangle$.

Configurations have shape $(e ; \mathcal{H})$, where a heap \mathcal{H} is a finite map from references to values. Heap extension is denoted by $\mathcal{H} \uplus\{\iota \mapsto v\}$ (where ι is not in the domain of \mathcal{H}); $|\mathcal{H}|$ denotes the cardinality of the domain of \mathcal{H}, i.e., its size ${ }^{10}$. If the computation converges, then $\langle(v ; \mathcal{H}), s\rangle$ is returned (a value v, a heap \mathcal{H}, and a maximum size s); if it diverges, then a pair $\left\langle\infty, s_{\infty}\right\rangle$ is returned.

As in the previous example, the set E_{I} of the elementary observations produced in the semantics has no unique limits. Hence, we keep only the meta-coaxiom (co-zero) corresponding to the pattern (co-usit) to avoid unsoundness. The big-step semantics is sound by Theorem 7.3, however, as opposed to the previous example, the infinitely generated observation ${ }^{11} \infty$ is not obtained,

[^7]\[

$$
\begin{aligned}
& { }^{(\mathrm{VaL})} \frac{\left(e ; \mathcal{H}_{1}\right) \Rightarrow\left\langle\left(v ; \mathcal{H}_{2}\right), s\right\rangle}{(v ; \mathcal{H}) \Rightarrow\langle(v ; \mathcal{H}), 0\rangle} \quad{ }^{\text {(REF) }} \frac{\left(\text { ref } e ; \mathcal{H}_{1}\right) \Rightarrow\left\langle\left(\iota ; \mathcal{H}_{2} \uplus\{\iota \mapsto v\}\right), s \vee\left(1+\left|\mathcal{H}_{2}\right|\right)\right\rangle}{} \\
& { }_{\text {(DEREF) }}^{\left(!e ; \mathcal{H}_{1}\right) \Rightarrow\left\langle\left(v ; \mathcal{H}_{2}\right), s \vee\right| \mathcal{H}_{2}| \rangle} \mathcal{H}_{2}(\iota)=v \\
& { }^{\text {(FRRE) }} \frac{\left(e ; \mathcal{H}_{1}\right) \Rightarrow\left\langle\left(\iota ; \mathcal{H}_{2}\right), s\right\rangle}{\left(\text { free } e ; \mathcal{H}_{1}\right) \Rightarrow\left\langle\left(v ; \mathcal{H}_{3}\right), s \vee\right| \mathcal{H}_{3}| \rangle} \mathcal{H}_{2}=\mathcal{H}_{3} \uplus\{\iota \mapsto v\} \\
& \text { (UPD) } \frac{\left(e_{1} ; \mathcal{H}_{1}\right) \Rightarrow\left\langle\left(\iota ; \mathcal{H}_{2}\right), s_{1}\right\rangle \quad\left(e_{2} ; \mathcal{H}_{2}\right) \Rightarrow\left\langle\left(v ; \mathcal{H}_{3}\right), s_{2}\right\rangle}{\left(e_{1}=e_{2} ; \mathcal{H}_{1}\right) \Rightarrow\left\langle\left(v ; \mathcal{H}_{2} \uplus\{\iota \mapsto v\}\right), s_{1} \vee s_{2} \vee\right| \mathcal{H}_{3}| \rangle} \mathcal{H}_{3}=\mathcal{H}_{2} \uplus\left\{\iota \mapsto v^{\prime}\right\} \\
& { }_{(\text {APP) })} \frac{\left(e_{1} ; \mathcal{H}_{1}\right) \Rightarrow\left\langle\left(\lambda x . e ; \mathcal{H}_{2}\right), s_{1}\right\rangle \quad\left(e_{2} ; \mathcal{H}_{2}\right) \Rightarrow\left\langle\left(v ; \mathcal{H}_{3}\right), s_{2}\right\rangle \quad\left(e[x \leftarrow v] ; \mathcal{H}_{3}\right) \Rightarrow w}{\left(e_{1} e_{2} ; \mathcal{H}_{1}\right) \Rightarrow s_{1} \vee s_{2} \vee\left|\mathcal{H}_{3}\right| \vee w} \\
& \text { (Div-UPD) } \frac{\left(e_{1} ; \mathcal{H}_{1}\right) \Rightarrow\left\langle\left(l ; \mathcal{H}_{2}\right), s\right\rangle \quad\left(e_{2} ; \mathcal{H}_{2}\right) \Rightarrow\left\langle\infty, s_{\infty}\right\rangle}{\left(e_{1}=e_{2} ; \mathcal{H}_{1}\right) \Rightarrow\left\langle\infty, s \vee s_{\infty}\right\rangle} \quad \text { (Div) } \frac{(e ; \mathcal{H}) \Rightarrow\left\langle\infty, s_{\infty}\right\rangle}{(\mathcal{D}[e] ; \mathcal{H}) \Rightarrow\left\langle\infty, s_{\infty}\right\rangle} \\
& \text { (Div-APP2) }^{\left(e_{1} ; \mathcal{H}_{1}\right) \Rightarrow\left\langle\left(\lambda x . e ; \mathcal{H}_{2}\right), s\right\rangle \quad\left(e_{2} ; \mathcal{H}_{2}\right) \Rightarrow\left\langle\infty, s_{\infty}\right\rangle} \begin{array}{l}
\left(e_{1} e_{2} ; \mathcal{H}_{1}\right) \Rightarrow\left\langle\infty, s \vee s_{\infty}\right\rangle
\end{array} \quad \text { (co-zERO) } \overline{(e ; \mathcal{H}) \Rightarrow\langle\infty, 0\rangle}
\end{aligned}
$$
\]

Figure 9: λ-calculus with references: meta-(co)rules generated by the construction
hence the semantics is not complete. However, by Theorem 7.2 the semantics is complete for finitely generated observations; since the only infinitely generated observation is ∞, the only case where the big-step semantics "gets stuck", hence does not return any result, as opposite to the small-step semantics, is for programs that would require an infinite heap to run. This is acceptable, as such programs are always doomed to crash.

7. Preservation of equivalence

In this section we prove the correctness of the construction in Sect. 5 To formulate and prove correctness, we assume a reference small-step semantics, where the definition of both finite and infinite computations is straightforward. Correctness then means that, starting from a big-step semantics equivalent to finite small-step computations, we get an extended big-step semantics equivalent to possibly infinite small-step computations.

This main correctness result requires several assumptions on the big-step semantics. In particular, we assume that it is deterministic. Both determinism and equivalence with finite smallstep computations need to be expressed, rather than globally on the semantic relation, at the level of individual rules, since such properties should be preserved by the construction, which handles single rules.

We start by describing small-step semantics in our context.

7.1. Small-step semantics for (in)finite computations

A small-step semantics with observations is defined by a labelled transition system, that is, a set of steps $q \xrightarrow{o} q^{\prime}$, for $q, q^{\prime} \in C, o \in O$. Then:

- $c \rightsquigarrow\langle r, o\rangle$ means that there is a finite computation from c to r, and o is the interpretation as single observation of the finite sequence of the elementary observations of single steps.

Formally, let $\rightarrow^{\star} \subseteq C \times O^{\star} \times C$ be inductively defined by: $c \xrightarrow{\varepsilon}{ }^{\star} c$, and if $c \xrightarrow{o} c^{\prime}$ and $c^{\prime} \xrightarrow{{ }^{\star}} c^{\prime \prime}$ then $c \xrightarrow{o: u} c^{\prime \prime}$. Then the relation $\rightsquigarrow \subseteq C \times R \times O$ is defined as follows:

$$
c \rightsquigarrow\langle r, o\rangle \Leftrightarrow \exists u \in O^{\star} . c \xrightarrow{u}^{\star} r \wedge \operatorname{it}(u)=o
$$

- $c \rightsquigarrow\left\langle\infty, o_{\infty}\right\rangle$ means that there is an infinite computation starting from c, and o is the interpretation as single observation of the infinite sequence of the elementary observations of single steps. Formally, let $\rightarrow^{\omega} \subseteq C \times O^{\omega}$ be coinductively defined ${ }^{12}$ by:

$$
\frac{c^{\prime} \xrightarrow{\sigma} \omega}{c \xrightarrow{o: \sigma} \omega} c \xrightarrow{o} c^{\prime}
$$

Then the relation $\rightsquigarrow \subseteq C \times O_{\infty}$ is defined as follows:

7.2. Determinism assumptions

Determinism is expressed at the level of single rules as follows:
Assumption 2. For each ρ, ρ^{\prime} such that $c=C(\rho)=C\left(\rho^{\prime}\right)$, the following holds:

1. $\rho=\operatorname{rule}\left(j_{1} \ldots j_{n}, j_{n+1}, c, o\right)$ and $\rho^{\prime}=\operatorname{rule}\left(j_{1}^{\prime} \ldots j_{n}^{\prime}, j_{n+1}^{\prime}, c, o^{\prime}\right)$
2. for all $k \in 1 . . n+1$, if, for all $h<k, R\left(j_{h}\right)=R\left(j_{h}^{\prime}\right)$, then $C\left(j_{k}\right)=C\left(j_{k}^{\prime}\right)$ and, if $k=n+1$, $o=o^{\prime}$.

To show that the above assumption actually models determinism, let us consider the (meta-)rule for application in a lambda-calculus where configurations are pairs $e \mid \mu$ with μ auxiliary structure, e.g., memory, modified by some constructs, so that the evaluation order is relevant.

$$
{ }_{(\mathrm{APP})} \frac{e_{1}\left|\mu \Rightarrow\left\langle\lambda x . e \mid \mu_{1}, o_{1}\right\rangle e_{2}\right| \mu_{1} \Rightarrow\left\langle v \mid \mu_{2}, o_{2}\right\rangle e[v / x] \mid \mu_{2} \Rightarrow\left\langle u \mid \mu^{\prime}, o\right\rangle}{e_{1} e_{2} \mid \mu \Rightarrow\left\langle u \mid \mu^{\prime}, o_{1} \cdot o_{2} \cdot \varepsilon \cdot o\right\rangle}
$$

Assumption 21 requires that all the rules with the same configuration in the consequence have the same number n of dependencies ($n=2$ in the example), and this clearly holds, since they are all instances of (APP). However, for a fixed $e_{1} e_{2} \mid \mu$ in the consequence, there are infinitely many rules which can be obtained by instantiating the meta-variables. Assumption 222 imposes the following constraints, expressed in the meta-rule by using the same meta-variable:

- $(k=1)$ the configuration in the first premise is uniquely determined
- $(k=2)$ the configuration in the second premise is uniquely determined by the result of the first premise
- $(k=3)$ the configuration in the third premise is uniquely determined by the results of the first two premises. In (APP) we assume ε as elementary observation, in general the elementary observation as well could depend on the results of the first two premises.

Finally note that, accordingly with Assumption 1, configurations are not determined by previous observations, as expressed in the meta-rule by the fact that meta-variables for observations are freely instantiated.

[^8]We present two lemmas, holding under Assumption 2, used in later proofs. The first states that big-step semantics is actually deterministic. Note that, by conservativity (Theorem 5.1), this ensures that any conservative set of corules preserves determinism for finite computations. Another source of non-determinism could be an infinite computation conflicting with a finite one, and the second lemma states that this is prevented as well.

Lemma 7.1. If $\langle\mathcal{I}, \emptyset\rangle \vdash c \Rightarrow\langle r, o\rangle$ and $\langle\mathcal{I}, \emptyset\rangle \vdash c \Rightarrow\left\langle r^{\prime}, o^{\prime}\right\rangle$, then $r=r^{\prime}$ and $o=o^{\prime}$.
Lemma 7.2. If $\left\langle I_{\infty}, C\right\rangle \vdash c \Rightarrow\langle r, o\rangle$ with C conservative, then there is no $o_{\infty} \in O_{\infty}$ such that $\left\langle I_{\infty}, C\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$.

We proceed with a third assumption on the big-step semantics: well-foundedness of the predecessor relation. Its formulation relies on Assumption2, and several auxiliary concepts that we need to introduce first. These will also be used in the equivalence conditions of the following section.

Definition 7.1. For $\rho=\operatorname{rule}\left(j_{1} \ldots j_{n}, j_{n+1}, c, o\right)$, set $f(\rho)$ the first index in $1 . . n$ such that $C\left(j_{i}\right) \notin R$, if any, otherwise $f(\rho)=n+1$. We say ρ is

- computational if all dependencies are trivial (hence $f(\rho)=n+1$);
- contextual if $f(\rho) \leq n$, and for all $k<f(\rho), j_{k}$ is trivial;
- stuck, if, for some $k<f(\rho), j_{k}$ is not trivial.

In the third case, $C\left(j_{k}\right) \in R$ but j_{k} is not of shape $r \Rightarrow\langle r, \mathrm{u}\rangle$, hence the premise j_{k} cannot be derived, and the rule is not applicable. Note that an inline meta-rule, for instance (APP) in the above example, can have instantiations which are computational (if e_{1} and e_{2} have shape λ x.e and v, respectively), contextual (if either e_{1} or e_{2} are not values), or stuck (e.g., if e_{1} is an integer constant i.)

Under Assumption 2, configurations can be classified analogously to rules. Notably, c is stuck if all its rules are stuck, that is, $C(\rho)=c$ implies ρ stuck; otherwise, c is reduced if all its non-stuck rules $\rho=\operatorname{rule}\left(j_{1} \ldots j_{n}, j_{n+1}, c, o\right)$ are computational $(\mathrm{f}(\rho)=n+1)$, compound if they are contextual $(\mathrm{f}(\rho) \leq n)$. Intuitively, a configuration is reduced if there are no dependencies to be evaluated, compound otherwise. In the above example, a configuration ($\lambda x . e) e^{\prime} \mid \mu$ where e^{\prime} is not a value is compound.

We define the predecessor relation pr on configurations as follows: c^{\prime} is a predecessor of c if there is a contextual rule ρ for c such that $c^{\prime}=C\left(j_{i}\right)$ where $i=\mathrm{f}(\rho)$. By Assumption 2, for any compound c there is a unique predecessor c^{\prime}, which we denote by $\operatorname{pr}(c)$. Intuitively, c^{\prime} is the (sub)configuration which needs to be evaluated first. The predecessor relation allows us to formulate the following assumption, which abstractly models that "program parts" of configurations have an inductive structure.

Assumption 3. The relation pr on configurations is well-founded.
From now on, we assume I to satisfy Assumptions 1,2 and 3

7.3. Equivalence conditions

As anticipated, to prove that equivalence with small-step computations is preserved by the construction, the equivalence in the finite case is not enough as hypothesis. To see this, consider
the small-step semantics of application in Fig. 1. where, for $e_{1} e_{2}$ such that e_{1} reduces to an integer constant, reduction gets immediately stuck, and the big-step semantics with late error detection in Example 5.2 .

$$
\text { (APPLLATE) }^{\operatorname{rule}}\left(e_{1} \Rightarrow\left\langle v_{1}, o_{1}\right\rangle e_{2} \Rightarrow\left\langle v_{2}, o_{2}\right\rangle v_{1} \Rightarrow\left\langle\lambda x . e, o_{3}\right\rangle, e\left[v_{2} / x\right] \Rightarrow\langle u, o\rangle, e_{1} e_{2}, \varepsilon\right)
$$

Considering only finite computations, such two semantics are equivalent: in particular, no result can be derived for $e_{1} e_{2}$ in the big-step semantics as well, since a judgment $v \Rightarrow\left\langle\lambda x . e, o_{3}\right\rangle$ can only be derived if $v=\lambda$ x.e. However, this no longer holds for infinite computations: if e_{1} evaluates to an integer constant, and e_{2} diverges, then we get a stuck computation in small-step semantics, whereas by applying the construction we get, among others, the big-step rule

$$
\text { (DIV-APP-LATE2) } \frac{e_{1} \Rightarrow\langle v, o\rangle \quad e_{2} \Rightarrow\left\langle\infty, o_{\infty}\right\rangle}{e_{1} e_{2} \Rightarrow\left\langle\infty, o \cdot o_{\infty}\right\rangle}
$$

hence we get non-termination. Intuitively, in order equivalence to be preserved by the construction, individual big-step rules should "match" the small-step relation, whereas this is not the case for rule (app-lатв). The following equivalence conditions formalize this required matching.

To express the conditions in a convenient way, we introduce an auxiliary relation on rules:
Definition 7.2. For rules ρ and ρ^{\prime}, we write $\rho \xrightarrow{o} \rho^{\prime}$ if

$$
\begin{aligned}
& \rho=\operatorname{rule}\left(j_{1} \ldots j_{i} \ldots j_{n}, j, c, o^{\prime}\right) \text { and } i=f(\rho) \\
& \rho^{\prime}=\operatorname{rule}\left(j_{1}^{\prime} \ldots j_{i}^{\prime} j_{i+1} \ldots j_{n}, j, c^{\prime}, o^{\prime}\right) \text { and, for all } k<i, j_{k} \text { and } j_{k}^{\prime} \text { are trivial, } \\
& c \xrightarrow{o} c^{\prime}, C\left(j_{i}\right) \xrightarrow{o} C\left(j_{i}^{\prime}\right), O\left(j_{i}\right)=o * O\left(j_{i}^{\prime}\right) \text { and } R\left(j_{i}\right)=R\left(j_{i}^{\prime}\right) \text {. }
\end{aligned}
$$

Note that ρ is a contextual rule. For instance, consider the following small-step transitions in the lambda-calculus in Fig. 1.

$$
(\lambda x . x) \text { out out } 1 \xrightarrow{1}(\lambda x . x) \text { out } 1 \xrightarrow{1}(\lambda x . x) 1 \xrightarrow{\varepsilon} 1
$$

the first two are obtained by rule (crx) from out $1 \xrightarrow{1} 1$, the last by rule (APP). Correspondingly, there are transitions $\rho_{0} \xrightarrow{1} \rho_{1} \xrightarrow{1} \rho_{2}$ where

$$
\begin{aligned}
& \rho_{0}=\operatorname{rule}(\lambda x . x \Rightarrow\langle\lambda x . x, \varepsilon\rangle \text { out out } 1 \Rightarrow\langle 1,1 \cdot 1\rangle, 1 \Rightarrow\langle 1, \varepsilon\rangle,(\lambda x . x) \text { out out } 1, \varepsilon) \\
& \rho_{1}=\operatorname{rule}(\lambda x . x \Rightarrow\langle\lambda x . x, \varepsilon\rangle \text { out } 1 \Rightarrow\langle 1,1\rangle, 1 \Rightarrow\langle 1, \varepsilon\rangle,(\lambda x . x) \text { out } 1, \varepsilon) \\
& \rho_{2}=\operatorname{rule}(\lambda x . x \Rightarrow\langle\lambda x . x, \varepsilon\rangle 1 \Rightarrow\langle 1, \varepsilon\rangle, 1 \Rightarrow\langle 1, \varepsilon\rangle,(\lambda x . x) 1, \varepsilon)
\end{aligned}
$$

An important property of this relation is that, if $\rho \xrightarrow{o} \rho^{\prime}$, then the number of dependencies still to be evaluated cannot increase. More precisely: if $C\left(j_{i}^{\prime}\right)$ is a result, as in the transition $\rho_{1} \xrightarrow{1} \rho_{2}$, then $\mathrm{f}\left(\rho^{\prime}\right)>\mathrm{f}(\rho)$; if $C\left(j_{i}^{\prime}\right)$ is not a result, as in the transition $\rho_{0} \xrightarrow{1} \rho_{1}$, then $\mathrm{f}\left(\rho^{\prime}\right)=\mathrm{f}(\rho)$. In the latter case, ρ^{\prime} is still contextual, and $\operatorname{pr}\left(C\left(\rho^{\prime}\right)\right)=C\left(j_{i}^{\prime}\right)$.

We can now formulate the equivalence conditions.
Condition 1 (Enough rules). If $c \xrightarrow{o} c^{\prime}$, then there exists $\rho=\operatorname{rule}\left(j_{1} \ldots j_{n}, j_{n+1}, c, o^{\prime}\right)$ such that:

1. either ρ is computational, $o^{\prime}=o$, and $C\left(j_{n+1}\right)=c^{\prime}$
2. or ρ is contextual, and there exists ρ^{\prime} s.t. $C\left(\rho^{\prime}\right)=c^{\prime}$ and $\rho \xrightarrow{o} \rho^{\prime}$.

This condition requires, for each small-step transition $c \stackrel{o}{\rightarrow} c^{\prime}$, the existence of a corresponding big-step rule. This requirement is essential for completeness.

For instance, for $(\lambda x . x)$ out out $1 \xrightarrow{1}(\lambda x . x)$ out 1 , there is the contextual rule ρ_{0} and the transition $\rho_{0} \xrightarrow{1} \rho_{1}$. For $(\lambda x . x) 1 \xrightarrow{\varepsilon} 1$, there is the computational rule ρ_{2} with continuation 1 and elementary observation ε.

Condition 2 (Forward compatibility). For each non-stuck $\rho=\operatorname{rule}\left(j_{1} \ldots j_{n}, j, c, o\right)$:

1. if ρ is computational, then $c \xrightarrow{o} C(j)$
2. if ρ is contextual with $i=f(\rho) \leq n, j_{i}=c_{i} \Rightarrow\left\langle r_{i}, o_{i}\right\rangle$, then:
if $c_{i} \xrightarrow{\hat{o}} c_{i}^{\prime}$ and $o_{i}=\hat{o} * o_{i}^{\prime}$, then there exists $\rho^{\prime}=\operatorname{rule}\left(j_{1}^{\prime} \ldots j_{n}^{\prime}, j^{\prime}, c^{\prime}, o^{\prime}\right)$ s.t. $\rho \xrightarrow{\hat{o}} \rho^{\prime}$ and $j_{i}^{\prime}=c_{i}^{\prime} \Rightarrow\left\langle r_{i}, o_{i}^{\prime}\right\rangle$.

This condition is in some way symmetric to the previous one: for each computational rule, there must be a corresponding (computational) small-step transition; for each contextual rule ρ, if the predecessor c_{i} has a compatible ${ }^{13}$ small-step transition \hat{o}, then the rule ρ, hence in particular the configuration $C(\rho)$, has the same small-step transition.

For instance, for the non-stuck (contextual) rule ρ_{1}, where out $1 \xrightarrow{1} 1$, there is the transition $\rho_{1} \xrightarrow{1} \rho_{2}$. For the computational rule ρ_{2}, there is the small-step transition $(\lambda x . x) 1 \xrightarrow{\varepsilon} 1$.

By iterating Condition (2), this requirement can be extended to the global semantics as follows:
for each rule $\left(j_{1} \ldots j_{n}, j_{n+1}, c, o\right)$, if, for all $i \in 1 . . n+1, C\left(j_{i}\right) \rightsquigarrow\left\langle R\left(j_{i}\right), O\left(j_{i}\right)\right\rangle$, then $c \rightsquigarrow\left\langle\left(R\left(j_{n+1}\right), O\left(j_{1}\right) * \cdots * O\left(j_{n}\right) * o * O\left(j_{n+1}\right)\right\rangle\right.$.

Condition 3 (Backward compatibility). If $c \xrightarrow{o} c^{\prime}$, then, for each non-stuck $\rho^{\prime}=r u l e\left(j_{1}^{\prime} \ldots j_{n}^{\prime}, j_{n+1}^{\prime}, c^{\prime}, o^{\prime \prime}\right)$, there exists $\rho=\operatorname{rule}\left(j_{1} \ldots j_{n}, j_{n+1}, c, o^{\prime}\right)$ such that:

1. either ρ is computational, $o^{\prime}=o$, and $j_{n+1}=c^{\prime} \Rightarrow\left\langle R\left(\rho^{\prime}\right), O\left(\rho^{\prime}\right)\right\rangle$
2. or ρ is contextual, and $\rho \stackrel{o}{\rightarrow} \rho^{\prime}$.

This last condition requires the big-step rules to be "backward closed" w.r.t. the transition relation.

For instance, for $(\lambda x . x)$ out $1 \xrightarrow{1}(\lambda x . x) 1$, for the non-stuck rule ρ_{2} there is the contextual rule ρ_{1} such that $\rho_{1} \xrightarrow{1} \rho_{2}$.

In the following we will assume all the above conditions to hold. The following lemmas state that they actually model equivalence of big-step semantics with finite small-step computations. In this case, proof techniques are pretty standard: for completeness we use arithmetic induction on the length of the sequence of steps and a subject expansion lemma (Lemma 7.3), while for soundness we use induction on big-step rules, which is applicable thanks to Theorem 5.1 .
Lemma 7.3. If $\langle I, \emptyset\rangle \vdash c^{\prime} \Rightarrow\left\langle r, o^{\prime}\right\rangle$ and $c \xrightarrow{o} c^{\prime}$, then $\langle\mathcal{I}, \emptyset\rangle \vdash c \Rightarrow\left\langle r, o * o^{\prime}\right\rangle$.
Lemma 7.4 (Completeness for convergence). If $c \rightsquigarrow\langle r, o\rangle$, then $\langle\mathcal{I}, \emptyset\rangle \vdash c \Rightarrow\langle r, o\rangle$.
Lemma 7.5 (Soundness for convergence). If $\langle I, \emptyset\rangle \vdash c \Rightarrow\langle r, o\rangle$ then $c \rightsquigarrow\langle r, o\rangle$.

[^9]
7.4. Preservation of equivalence for infinite computations

This section presents the formal results about the preservation of equivalence. As already stated above, we assume a big-step semantics I satisfying Assumptions 1,2 and 3 and we assume compatibility with a small-step semantics through Conditions 1,2 and 3 as formulated in the previous subsection.

First we discuss how completeness for finite computations (Lemma7.4) is extended to infinite ones. The following theorem states completeness for C^{I}, that is, the extension obtained by both the (co-vnit) and (co-мul) patterns. The result is stated only for infinite computations, since by Theorem 5.1 we derive the same converging judgements as before, hence Lemma 7.4 is enough.
Theorem 7.1 (Completeness). If $c \rightsquigarrow\left\langle\infty, o_{\infty}\right\rangle$, then $\left\langle I_{\infty}, C^{I}\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$.
An additional completeness result characterizes infinite computations which can be derived by restricting corules to the set C_{u}^{I} of those of shape (co-unit). Recall from Sect. 5 that E_{I} is the set of the elementary observations produced in I, O_{I} the submonoid of O generated by E_{I}, and observations finitely generated (by E_{I}) are those with a non-empty and finite set of factors in O_{I} (see Def.4.3). Then, the completeness result for C_{u}^{I} can be stated as follows.

Theorem 7.2 (Completeness for $\mathcal{C}_{\mathrm{u}}^{\mathcal{I}}$). If $c \rightsquigarrow\left\langle\infty, o_{\infty}\right\rangle$ and o_{∞} is finitely generated by $E_{\mathcal{I}}$, then $\left\langle I_{\infty}, C_{u}^{I}\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$.

Now we discuss how soundness for finite computations (Lemma 7.5) is extended to infinite ones. Soundness is always preserved by restricting corules to the set $C_{\mathrm{u}}^{\mathcal{I}}$, and in such case, as stated above, completeness can be kept as well if the produced observations are finitely generated, see the third example of Sect. 6 .
Theorem 7.3 (Soundness for \mathcal{C}_{u}^{I}). If $\left\langle I_{\infty}, C_{u}^{I}\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$, then $c \rightsquigarrow\left\langle\infty, o_{\infty}\right\rangle$.
Let us now consider the pattern (со-мur). We formally motivate that, as shown by the examples of Sect. 66, in this case soundness requires unique limits (see Def. 4.3].

Let C be a set of corules, and $\left\langle I_{\infty}, C\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$ by an infinite proof tree t. We can associate with t the infinite sequence σ_{t} of finite observations produced by the computation. Formally, for each level i of t there is a rule $\operatorname{div}\left(\rho_{i}, k_{i}, o_{\infty}^{i+1}\right)$ with $\rho_{i}=\operatorname{rule}\left(j_{1}^{i} \ldots j_{n_{i}}^{i}, j^{i}, c_{i}, o_{i}^{\prime}\right)$, and we define $\sigma_{t}=\left(o_{i}\right)_{i \in \mathbb{N}} \in O^{\omega}$ as follows:

$$
o_{i}= \begin{cases}O\left(j_{1}^{i}\right) * \cdots * O\left(j_{k_{i}-1}^{i}\right) & k_{i} \leq n_{i} \\ O\left(j_{1}^{i}\right) * \cdots * O\left(j_{n_{i}}^{i}\right) * o_{i}^{\prime} & k_{i}=n_{i}+1\end{cases}
$$

Set $o_{\infty}^{0}=o_{\infty}$, we get, for all $i \in \mathbb{N}, o_{\infty}^{i}=o_{i} *_{\infty} o_{\infty}^{i+1}$ and $\left\langle I_{\infty}, C\right\rangle \vdash c_{i} \Rightarrow\left\langle\infty, o_{\infty}^{i}\right\rangle$ by a proof tree t_{i} such that $\sigma_{t_{0}}=\sigma_{t}$ and $\sigma_{t_{i}}=o_{i}: \sigma_{t_{i+1}}$. Moreover, o_{∞} is a limit product of σ_{t}, that is, for all $n \in \mathbb{N}$, $o_{0} * \cdots * o_{n} \leq_{\infty} o_{\infty}$. Actually we have the following result.
Lemma 7.6. If $\left\langle I_{\infty}, C^{I}\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$ holds by a derivation t, σ_{t} is non-trivial and o_{∞}^{\prime} is a limit product of σ_{t}, then $\left\langle I_{\infty}, C^{I}\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}^{\prime}\right\rangle$.

This lemma shows why adding the pattern (co-mul) could be not sound: for each derivation t for a judgement $c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$, where σ_{t} is non-trivial, we can derive $c \Rightarrow\left\langle\infty, o_{\infty}^{\prime}\right\rangle$ for all limit products o_{∞}^{\prime} of σ_{t}. Hence, an easy sufficient condition to ensure soundness is to require such limit to be unique.

By Lemma 5.1, given an infinite derivation t in I_{∞}, σ_{t} belongs to O_{I}^{ω} by definition. Then, for soundness it is enough that O_{I} (in fact, thanks to the next proposition, E_{I}), has unique limits.

Proposition 7.4. O_{I} has unique limits if and only if E_{I} has unique limits.
Theorem 7.5 (Soundness). If $\left\langle I_{\infty}, C^{I}\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$ and E_{I} has unique limits, then $c \rightsquigarrow\left\langle\infty, o_{\infty}\right\rangle$.

8. Related work

The notion of ω-monoid is a variation of the more standard ω-semigroups used in algebraic language theory [6]. Algebraic structures with a similar aim are proposed more often in the context of type systems, where the notion corresponding to observation is called effect. Such effect systems are traditionally commutative, hence effects typically form a bounded join semilattice, where the join is used to overapproximate different execution branches. This allows general formulations to study common properties, see, e.g., [10]. More recently, sequential effect systems have been proposed [11], which take into account evaluation order as in our case. However, differently from our observations, effects in type systems do not need to be "infinite", since they model static approximations.

Concerning operational semantics modeling divergence, we follow a stream of work dating back to [12], who proposed a stratified approach, investigated in [5] as well, with a separate judgment for divergence, defined coinductively. In this way, however, rules are duplicated, and there is no unique formal definition of the behaviour. An alternative possibility, also investigated in [5], is to interpret coinductively the standard big-step rules (coevaluation). Unfortunately, as discussed in Sect. 3 coevaluation is non-deterministic and, thus, may fail to correctly capture the correct infinite behavior of a computation: a diverging term, such as Ω, evaluates to any value.

Pretty big-step semantics [13] handles the issue of duplication of rules by a unified judgment with a unique set of rules, which can be interpreted either inductively or coinductively, getting termination and divergence, respectively. To factorise rules, the approach requires the introduction of new specific syntactic forms representing intermediate computation steps, as in small-step semantics. Poulsen and Mosses [14] subsequently present flag-based big-step semantics, which further streamlines the approach by combining it with the M-SOS technique (modular structural operational semantics), thereby reducing the number of rules and premises, avoiding the need for intermediate forms.

Both approaches [13, 14] do not prevent spurious results in non-terminating computations, as happens in coevaluation.

In [1] it has been firstly shown that with corules [3, 4] one can define a unified big-step judgment with a unique set of rules avoiding spurious evaluations. This can be seen as constrained coevaluation. Indeed, corules add constraints on the infinite derivations to filter out spurious results, so that, for diverging terms, it is only possible to get ∞ as result. This is extended to include observations as traces in [2]. In this case, the effect of spurious evaluations can be more detrimental; indeed, when a divergent computation produces a finite observation o, coevaluation returns any observation of shape $o * o_{\infty}$, and, thus, fails to correctly specify the effects of a non-terminating computation, as discussed on page 6. In comparison to [2], the present paper provides a receipe for a fully systematic approach, and, furthermore, allows reasoning on a more general notion of observation: at our knowledge, there is no other operational semantics framework able to capture divergence in conjunction with a notion of observation not limited to traces, as shown in Sect. 6

Other proposals [15, 16, 17] are inspired by definitional interpreters [18], based on a stepindexed approach (a.k.a."fuel"-based semantics) where computations are approximated to some finite amount of steps (typically with a counter); in this way divergence can be modeled by
induction. In [15] functional big-step semantics is investigated for proving by induction compiler correctness. In [16] inductive proof strategies are explored for type soundness properties for the polymorphic type systems $F_{<\text {: }}$, and equivalence with small-step semantics. An inductive proof of type soundness for the big-step semantics of a Java-like language is proposed in [17].

Conditional coinduction is employed in [19] to combine induction and coinduction in definitions of total parser combinators. In [20], inspired by [5], the coinductive partiality monad allows the definition of big/small-step semantics for lambda-calculi and virtual machines as total, computable functions able to capture divergence.

Coinductive trace semantics in big-step style have been studied by Nakata and Uustalu [21, 22, 23]. Their investigation started with the semantics of an imperative While language with no I / O [21] where traces are possibly infinite sequences of states; semantic rules are all coinductive and define two mutually dependent judgments. Based on such a semantics, they define a Hoare logic [22]; differently to our approach, weak bisimilarity between traces is required for proving that programs exhibit equivalent observable behaviors. This is due to the fact that "silent effects" (that is, non-observable internal steps) must be explicitly represented to guarantee guardedness conditions which ensure productivity of co-recursive definitions. This problem is overcome with corules in generalized inference systems.

The semantics has been subsequently extended with interactive I/O [23], by exploiting the notion of resumption monad: a tree representing possible runs of a program to model its nondeterministic behavior due to input values. Also in this case a big-step trace semantics is defined with two mutually recursive coinductive judgments, and weak bisimilarity is needed; however, the definition of the observational equivalence is more involved, since it requires nesting inductive definitions in coinductive ones. A generalised notion of resumption has been introduced later by Piróg and Gibbons and studied in a category-theoretic and coalgebraic context [24].

In [21, 22] equivalence of the big-step and small-step semantics is proved; expressions and statements are distinct, and expressions cannot diverge. This is another significant difference with the languages considered in this paper; the semantics of out e becomes simpler, since the corresponding corule could be turned into a coaxiom.

The resumption monad of Nakata and Uustalu is inspired by the seminal work of Capretta [25] on the delay monad, where coinductive types are exploited to model infinite computations by means of a type constructor for partial elements, which allows the formal definition of convergence and divergence and a type-theoretic representation of general recursive functions; this type constructor is proved to constitute a strong monad, upon which subsequent related papers elaborated [26, 27, 28] to define other monads for managing divergence. In particular, McBride [27] has proposed a more general approach based on a free monad for which the delay monad is an instantiation obtained through a monad morphism. All these proposals are based on the step-indexed approach.

More recently, interaction trees (ITrees) [29] have been presented as a coinductive variant of free monads with the main aim of defining the denotational semantics for effectful and possibly nonterminating computations, to allow compositional reasoning for mutually recursive components of an interactive system with fully mechanized proofs in Coq. Interaction trees are coinductively defined trees which directly support a more general fixpoint combinator which does need a step-indexed approach, as happens for the general monad of McBride. A Tau constructor is introduced to represent a silent step of computation, to express silently diverging computations without violating Coq's guardedness condition; as a consequence, generic definition of weak bisimulation on ITrees is required to remove any finite number of Tau's, similarly as happens in the approach of Nakata and Uustalu.

9. Discussion and future work

The big-step style can be useful for abstracting details, directly deriving the implementation of an interpreter, formally verifying compilers [5], cost semantics, and soundness and completeness proofs for program logics [13]. However, modeling divergence is a non trivial problem, even more when a non terminating program can have a significant behaviour through observations. Roughly, the main difficulty is that we do not describe the infinite behaviour "a posteriori", that is, given the whole infinite sequence of finite observations. Instead, we want to directly get the possibly infinite observation produced by a diverging computation. In succinct words, we want to deal directly with infinity.

The paper proposes a solution to this problem which uses inference systems with corules [3, 4]. This solution has been first adopted in [1] for pure divergence, and then in [2] by adding observations as traces. However, in these works the approach was only applied in certain examples and with observations, if any, limited to traces. In this paper, we go much further showing that the approach can be applied uniformly to a wider class of big-step definitions once the specific nature of observations, not limited to traces, and their composition is determined.

The quest for the above described solution has led to two other contributions which are important in themselves. The first is the definition of an algebraic notion, ω-monoids, which nicely models finite and infinite observations and provides the ingredients to express infinite behaviour both in the small-step and big-step approach, through infinite product and finite/mixed product, respectively. The second is an abstract notion of "what is a big-step semantics", general enough to capture typical examples. Having such an abstract notion, we are able to formally define the extension on a generic instance, and even to formalize in a generic way equivalence conditions between big-step rules and small-step relation which one typically uses in proofs of equivalence.

Given a big-step semantics obtained by our approach, as one of the examples in Sect. 6, it is desirable to have a mechanized support to prove its properties, also including infinite behaviour. A proof-of-concept is provided in [30], which shows how to implement in Agda examples of inference systems with corules, the corresponding bounded coinduction principle, and proofs of soundness/completeness with respect to a given specification.

A related issue is to check derivability of a judgment in an inference system with corules, notably existence of an infinite proof tree. Restricting to regular trees, this can be done by expressing the inference system as a Prolog program and applying co-SLD resolution [31, 32], where an atom of the goal can be successfully resolved if it can be unified with one of the atoms, called coinductive hypotheses, that have been already resolved. To deal with corules, co-SLD resolution needs to be modified: an atom that unifies with a coinductive hypothesis triggers standard SLD-resolution in the system extended with corules [33].

A typical drawback of standard big-step semantics is that stuck computations and divergence are identified, hence it is not possible to reason on properties of non-terminating computations. In the extended big-step semantics obtained by our approach, this becomes possible (see, e.g., the proof of soundness of a type system given in [1]). On the other hand, the property that a single step preserves type makes only sense in small-step semantics. In big-step semantics, the corresponding property is strong soundness [34], that is, computations cannot be stuck, and furthermore, produce a result of the same type if they converge. A finer grained property of big-step rules which more closely resembles small-step type preservation is local preservation, introduced in [35] as one of three conditions which ensure (strong) soudness. Local preservation requires, roughly, that well-typedness of the consequence implies well-typedness of the premises.

In the general context of inference systems with corules, it would be interesting to enhance
the associated proof method. More specifically, the notion of bounded coinduction is a combination of a standard coinductive proof method (establishing a suitable post-fixed) and a separate inclusion in a domain determined by rules and corules. The coinductive part is amenable to up-to techniques [36, 37], which may help to simplify proofs using bounded coinduction, and parametric coinduction [38], which may be useful in formalisation in a proof assistant. We leave a more thorough investigation of their use in the context of inference systems with corules for future work.

We will also explore refined corule patterns able to achieve soundness for arbitrary ω-monoids. Moreover, we plan to improve the construction to support non-determinism. Indeed, whereas the current extension also works for many realistic non-deterministic examples, there are subtle cases where unsound judgments can be derived. Roughly, in case two judgments for the same configuration, say j_{1} and j_{2}, have an infinite proof tree, to construct a finite proof tree using corules for j_{1} we can use rules from the proof tree of j_{2}. To avoid this, we plan to explicitly add in the judgment the partially obtained observation.

A more general long-term goal is to investigate an abstract notion of "inference system with metarules", which would possibly make both the extension with corules and the general construction in this paper smoother.

References

[1] D. Ancona, F. Dagnino, E. Zucca, Reasoning on divergent computations with coaxioms, PACMPL 1 (OOPSLA) (2017) 81:1-81:26. doi:10.1145/3133905
[2] D. Ancona, F. Dagnino, E. Zucca, Modeling infinite behaviour by corules, in: T. D. Millstein (Ed.), ECOOP'18 -Object-Oriented Programming, Vol. 109 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, pp. 21:1-21:31. doi:10.4230/LIPIcs.ECOOP.2018.21
[3] D. Ancona, F. Dagnino, E. Zucca, Generalizing inference systems by coaxioms, in: H. Yang (Ed.), ESOP 2017 - European Symposium on Programming, Vol. 10201 of Lecture Notes in Computer Science, Springer, 2017, pp. 29-55. doi:10.1007/978-3-662-54434-1_2
[4] F. Dagnino, Coaxioms: flexible coinductive definitions by inference systems, Logical Methods in Computer Science 15 (1). doi:10.23638/LMCS-15(1:26) 2019
[5] X. Leroy, H. Grall, Coinductive big-step operational semantics, Information and Computation 207 (2) (2009) 284304. doi:10.1016/j.ic.2007.12.004
[6] D. Perrin, J. Pin, Infinite words - automata, semigroups, logic and games, Vol. 141 of Pure and applied mathematics series, Elsevier Morgan Kaufmann, 2004.
[7] P. Aczel, An introduction to inductive definitions, in: J. Barwise (Ed.), Handbook of Mathematical logic, North Holland, 1977, pp. 739-782. doi:10.1016/S0049-237X (08)71120-0
[8] G. Markowsky, Chain-complete posets and directed sets with applications, Algebra universalis 6 (1) (1976) 53-68. doi:10.1007/BF02485815
[9] B. C. Pierce, Types and programming languages, The MIT Press, 2002.
[10] D. Marino, T. D. Millstein, A generic type-and-effect system, in: A. Kennedy, A. Ahmed (Eds.), TLDI’09: Types in Languages Design and Implementation, ACM Press, 2009, pp. 39-50. doi:10.1145/1481861.1481868
[11] R. Tate, The sequential semantics of producer effect systems, in: R. Giacobazzi, R. Cousot (Eds.), ACM Symp. on Principles of Programming Languages 2013, ACM Press, 2013, pp. 15-26. doi:10.1145/2429069.2429074
[12] P. Cousot, R. Cousot, Inductive definitions, semantics and abstract interpretations, in: R. Sethi (Ed.), ACM Symp. on Principles of Programming Languages 1992, ACM Press, 1992, pp. 83-94. doi:10.1145/143165.143184
[13] A. Charguéraud, Pretty-big-step semantics, in: M. Felleisen, P. Gardner (Eds.), ESOP 2013 - European Symposium on Programming, Vol. 7792 of Lecture Notes in Computer Science, Springer, 2013, pp. 41-60. doi:10.1007/ 978-3-642-37036-6_3
[14] C. B. Poulsen, P. D. Mosses, Flag-based big-step semantics, Journal of Logical and Algebraic Methods in Programming 88 (2017) 174-190. doi:10.1016/j.jlamp. 2016.05.001
[15] S. Owens, M. O. Myreen, R. Kumar, Y. K. Tan, Functional big-step semantics, in: P. Thiemann (Ed.), ESOP 2016 - European Symposium on Programming, Vol. 9632 of Lecture Notes in Computer Science, Springer, 2016, pp. 589-615. doi:10.1007/978-3-662-49498-1_23
[16] N. Amin, T. Rompf, Type soundness proofs with definitional interpreters, in: G. Castagna, A. D. Gordon (Eds.), ACM Symp. on Principles of Programming Languages 2017, ACM Press, 2017, pp. 666-679. doi:10.1145/ 3009837
[17] D. Ancona, How to prove type soundness of Java-like languages without forgoing big-step semantics, in: D. J. Pearce (Ed.), FTfJP'14 - Formal Techniques for Java-like Programs, ACM Press, 2014, pp. 1:1-1:6. doi:10. 1145/2635631.2635846
[18] J. C. Reynolds, Definitional interpreters for higher-order programming languages, in: ACM '72, Proceedings of the ACM annual conference, Vol. 2, ACM Press, 1972, pp. 717-740. doi:10.1145/800194.805852
[19] N. A. Danielsson, Total parser combinators, in: P. Hudak, S. Weirich (Eds.), Intl. Conf. on Functional Programming 2010, ACM Press, 2010, pp. 285-296. doi:10.1145/1863543.1863585
[20] N. A. Danielsson, Operational semantics using the partiality monad, in: P. Thiemann, R. B. Findler (Eds.), Intl. Conf. on Functional Programming 2012, ACM Press, 2012, pp. 127-138. doi:10.1145/2364527.2364546
[21] K. Nakata, T. Uustalu, Trace-based coinductive operational semantics for while, in: S. Berghofer, T. Nipkow, C. Urban, M. Wenzel (Eds.), Theorem Proving in Higher Order Logics - TPHOLs 2009, Vol. 5674 of Lecture Notes in Computer Science, Springer, 2009, pp. 375-390. doi:10.1007/978-3-642-03359-9_26
[22] K. Nakata, T. Uustalu, A Hoare logic for the coinductive trace-based big-step semantics of while, in: A. D. Gordon (Ed.), ESOP 2010 - European Symposium on Programming, Vol. 6012 of Lecture Notes in Computer Science, Springer, 2010, pp. 488-506. doi:10.1007/978-3-642-11957-6_26
[23] K. Nakata, T. Uustalu, Resumptions, weak bisimilarity and big-step semantics for while with interactive I/O: an exercise in mixed induction-coinduction, in: L. Aceto, P. Sobocinski (Eds.), SOS'10 - Structural Operational Semantics, Vol. 32 of Electronic Proceedings in Theoretical Computer Science, 2010, pp. 57-75. doi: 10.4204/EPTCS. 32.5
[24] M. Piróg, J. Gibbons, The coinductive resumption monad, in: MFPS 2014 - Mathematical Foundations of Programming Semantics, 2014, pp. 273-288. doi:10.1016/j.entcs.2014.10.015
[25] V. Capretta, General recursion via coinductive types, Logical Methods in Computer Science 1 (2). doi:10.2168/ LMCS-1 (2:1) 2005
[26] A. Abel, J. Chapman, Normalization by evaluation in the delay monad: A case study for coinduction via copatterns and sized types, in: P. Levy, N. Krishnaswami (Eds.), MSFP@ETAPS 2014 - Mathematically Structured Functional Programming, Vol. 153 of Electronic Proceedings in Theoretical Computer Science, 2014, pp. 51-67. doi:10. 4204/EPTCS. 153.4
[27] C. McBride, Turing-completeness totally free, in: R. Hinze, J. Voigtländer (Eds.), MPC 2015 - Mathematics of Program Construction, Vol. 9129 of Lecture Notes in Computer Science, Springer, 2015, pp. 257-275. doi: 10.1007/978-3-319-19797-5_13
[28] J. Chapman, T. Uustalu, N. Veltri, Quotienting the delay monad by weak bisimilarity, Mathematical Structures in Computer Science 29 (1) (2019) 67-92. doi:10.1017/S0960129517000184
[29] L. Xia, Y. Zakowski, P. He, C. Hur, G. Malecha, B. C. Pierce, S. Zdancewic, Interaction trees: representing recursive and impure programs in Coq, PACMPL 4 (ACM Symp. on Principles of Programming Languages 2020) (2020) 51:1-51:32. doi:10.1145/3371119
[30] L. Ciccone, Flexible coinduction in Agda, Master Thesis in Computer Science, University of Genova (2019).
[31] L. Simon, A. Bansal, A. Mallya, G. Gupta, Co-logic programming: Extending logic programming with coinduction, in: L. Arge, C. Cachin, T. Jurdzinski, A. Tarlecki (Eds.), ICALP 2007 - Automata, Languages and Programming, Vol. 4596 of Lecture Notes in Computer Science, Springer, 2007, pp. 472-483. doi:10.1007/ 978-3-540-73420-8_42
[32] D. Ancona, A. Dovier, A theoretical perspective of coinductive logic programming, Fundamenta Informaticae 140 (3-4) (2015) 221-246. doi:10.3233/FI-2015-1252
[33] D. Ancona, F. Dagnino, E. Zucca, Extending coinductive logic programming with co-facts, Electronic Proceedings in Theoretical Computer Science 258 (2017) 1-18. doi:10.4204/eptcs.258.1
[34] A. K. Wright, M. Felleisen, A syntactic approach to type soundness, Information and Computation 115 (1) (1994) 38-94. doi:10.1006/inco.1994.1093
[35] F. Dagnino, V. Bono, E. Zucca, M. Dezani-Ciancaglini, Soundness conditions for big-step semantics, in: ESOP 2020 - European Symposium on Programming, 2020, to appear.
[36] D. Pous, D. Sangiorgi, Enhancements of the bisimulation proof method, in: D. Sangiorgi, J. Rutten (Eds.), Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 2012, pp. 233-289. doi:10.1017/CB09780511792588.007
[37] D. Pous, Coinduction all the way up, in: M. Grohe, E. Koskinen, N. Shankar (Eds.), LICS 2016 - Logic in Computer Science, ACM Press, 2016, pp. 307-316. doi:10.1145/2933575.2934564
[38] C. Hur, G. Neis, D. Dreyer, V. Vafeiadis, The power of parameterization in coinductive proof, in: ACM Symp. on Principles of Programming Languages 2013, ACM Press, 2013, pp. 193-206.

A. Details on the completion from monoids to ω-monoids

In this section, we provide details on the completion of a monoid, which was presented (without proofs) in Sect. 4 We will present this completion as a functor $C_{\infty}: \mathrm{Mon}_{c} \rightarrow \omega$-Mon, where Mon_{c} is the category of left continuous monoids and continuous homomorphisms, and ω-Mon is the category of ω-monoids and ω-monoid homomorphisms. This functor, given a left continuous monoid M, will produce an ω-monoid $C_{\infty}(M)=\left\langle M, M_{\infty}\right\rangle$, where the second component M_{∞} is presented as a quotient of M^{ω} by a suitable equivalence relation.

In proofs, it is sometimes useful to slightly reformulate $S(\sigma)$, as follows:

$$
S(\sigma)= \begin{cases}\{\operatorname{it}(u) \mid u \triangleleft \sigma\} \cup\left\{\sup _{u \triangleleft \sigma}(\operatorname{it}(u))\right\} & \text { if this supremum is defined } \tag{A.1}\\ \{\operatorname{it}(u) \mid u \triangleleft \sigma\} & \text { otherwise }\end{cases}
$$

Indeed, the closure adds at most a single element.
Lemma A.1. The following hold for any left continuous monoid M:

1. for all $z \in M$ and $\sigma, \tau \in M^{\omega}$, if $\sigma \equiv \tau$, then $z: \sigma \equiv z: \tau$,
2. for all $\sigma, \tau \in M^{\omega}:$ if $\sigma<: \tau$ then $\sigma \equiv \tau$,
3. for all $z_{1}, z_{2} \in M, z_{1}: u^{\omega} \equiv z_{2}: u^{\omega}$ iff $z_{1}=z_{2}$,
4. for any continuous monoid homorphism $f: M \rightarrow M^{\prime}$ and $\sigma, \tau \in M^{\omega}: \sigma \equiv \tau$ implies $f^{\omega}(\sigma) \equiv f^{\omega}(\tau)$.
Proof.
5. We have to prove the two inequalities $z: \sigma \sqsubseteq z: \tau$ and $z: \tau \sqsubseteq z: \sigma$; we prove only the first, as the other is analogous.
Let $x \in S(z: \sigma)$, then $x=\sup _{i}\left(\operatorname{it}\left(u_{i}\right)\right)$ for some increasing sequence $\left(u_{i}\right)_{i}$ of prefixes of $z: \sigma$, i.e., $u_{i} \triangleleft z: \sigma$ for all i. Without loss of generality, assume that $\left(u_{i}\right)_{i}$ does not contain the empty word (since that's the least element; and the case that the supremum is the empty word is trivial) so each u_{i} is of the form $u_{i}=z: u_{i}^{\prime}$, with $u_{i}^{\prime} \triangleleft \sigma$. Then $\sup _{i}\left(\operatorname{it}\left(u_{i}^{\prime}\right)\right) \in S(\sigma)$, so since $\sigma \sqsubseteq \tau$ there is an increasing sequence $\left(v_{i}\right)_{i}$ with each v_{i} a prefix of τ, and $\sup _{i}\left(\operatorname{it}\left(u_{i}^{\prime}\right)\right) \leq_{*} \sup _{i}\left(\right.$ it $\left.\left(v_{i}\right)\right)$. So we get

$$
\begin{aligned}
x & =\sup \left(\operatorname{it}\left(u_{i}\right)\right) \\
& =\sup \left(\operatorname{it}\left(z: u_{i}^{\prime}\right)\right) \\
& =\sup \left(z * \operatorname{it}\left(u_{i}^{\prime}\right)\right) \\
& =z * \sup \left(\operatorname{it}\left(u_{i}^{\prime}\right)\right) \\
& \leq_{*} z * \sup \left(\operatorname{it}\left(v_{i}\right)\right) \\
& =\sup \left(\operatorname{it}\left(z: v_{i}\right)\right)
\end{aligned}
$$

and since $\sup \left(\operatorname{it}\left(z: v_{i}\right)\right) \in S(z: \tau)$ we get $z: \sigma \sqsubseteq z: \tau$ as needed.
2. Suppose $\sigma<: \tau$, with $\sigma=\left(x_{i}\right)_{i \in \mathbb{N}}$ and $\tau=\left(y_{i}\right)_{i \in \mathbb{N}}$, i.e., there is a strictly increasing sequence $\left(k_{i}\right)_{i \in \mathbb{N}}$ with $k_{0}=0$ and $x_{i}=y_{k_{i}} * \cdots * y_{k_{i+1}-1}$. Towards a proof of $\sigma \sqsubseteq \tau$, let $x \in S(\sigma)$. We use the characterisation in A.1) and proceed with a case distinction.

- If $x=\operatorname{it}(u)$ for some $u \triangleleft \sigma$, then it is easy to see there is $v \triangleleft \tau$ such that $\operatorname{it}(u)=\operatorname{it}(v)$, hence $\operatorname{it}(u) \leq_{*} \operatorname{it}(v)$, and since $\operatorname{it}(v) \in S(\tau)$ this suffices.
- Otherwise, we have $x=\sup \left(\operatorname{it}\left(u_{i}\right)\right)$ where $\left(u_{i}\right)_{i \in \mathbb{N}}$ is such that u_{i} is the prefix of length i of σ. Then define the sequence $\left(v_{i}\right)_{i \in \mathbb{N}}$ of prefixes of τ by $v_{i}=\tau(0): \tau(1): \ldots$: $\tau\left(k_{i}-1\right)$, so $\left.\sup \left(\mathrm{it}_{(} v_{i}\right)\right) \in S(\tau)$. Then $\operatorname{it}\left(u_{i}\right)=\operatorname{it}\left(v_{i}\right)$, so $\sup \left(\mathrm{it}\left(u_{i}\right)\right)=\sup \left(\mathrm{it}\left(v_{i}\right)\right)$, and $\sup \left(\operatorname{it}\left(u_{i}\right)\right) \leq_{*} \sup \left(\mathrm{it}\left(v_{i}\right)\right)$.

For $\tau \sqsubseteq \sigma$, we let $x \in S(\tau)$ and again use a case distinction.

- If $x=\operatorname{it}(u)$ for some $u \triangleleft \tau$, then there are v, w such that $\operatorname{it}(u v)=\operatorname{it}(w)$, for some $w \triangleleft \sigma$. Thus $\operatorname{it}(w) \in S(\sigma)$, and $\operatorname{it}(u) \leq_{*} \operatorname{it}(u) * \operatorname{it}(v)=\operatorname{it}(u v)=\operatorname{it}(w)$.
- Otherwise $x=\sup \left(\mathrm{it}_{u_{i}}\right)$ for some increasing and infinite sequence $\left(u_{i}\right)_{i \in \mathbb{N}}$. Without loss of generality, we assume that the length of each u_{i} equals k_{i}. Let $\left(v_{i}\right)_{i \in \mathbb{N}}$ be such that v_{i} is the prefix of τ of length i. $\operatorname{it}\left(u_{i}\right)=\operatorname{it}\left(v_{i}\right)$ for each i, and the proof concludes as the second case above.

3. Suppose $z_{1}: \mathbf{u}^{\omega} \equiv z_{2}: \mathbf{u}^{\omega}$. We prove $z_{1} \leq_{*} z_{2}$ and $z_{2} \leq_{*} z_{1}$; this suffices, since \leq_{*} is anti-symmetric. To this end, consider the prefix z_{1} of $z_{1}: \mathbf{u}^{\omega}$. Since $z_{1}: \mathbf{u}^{\omega} \sqsubseteq z_{2}: \mathbf{u}^{\omega}$ there is $y \in S(\tau)$ with $\operatorname{it}\left(z_{1}\right) \leq_{*} y$. It is easy to see that either $y=\operatorname{it}\left(z_{2}\right)$ or $y=u$, since it maps every prefix of $z_{2}: \mathrm{u}^{\omega}$ to either one of those. If $y=\operatorname{it}\left(z_{2}\right)$, we are done, as $z_{1}=\operatorname{it}\left(z_{1}\right) \leq_{*} \operatorname{it}\left(z_{2}\right)=z_{2}$. In the second case, i.e., if $y=\mathrm{u}$, then $z_{1} \leq_{*} \mathrm{u}$, and by anti-symmetry of \leq_{*} we get $z_{1}=\mathrm{u}$ and, since u is the least element, we get $z_{1} \leq_{*} z_{2}$. Analogously, from $z_{2}: \mathrm{u}^{\omega} \sqsubseteq z_{1}: \mathrm{u}^{\omega}$ we then get $z_{2} \leq_{*} z_{1}$, hence $z_{2}=z_{1}$ by antisymmetry.
4. Suppose $f: M \rightarrow M^{\prime}$ is a continuous monoid homomorphism, $\sigma, \tau \in M^{\omega}$, and $\sigma \sqsubseteq \tau$. We need to prove $f^{\omega}(\sigma) \sqsubseteq f^{\omega}(\tau)$. To this end, let $x \in S(\sigma)$. Then $x=\sup \left(\operatorname{it}\left(f^{\star}\left(u_{i}\right)\right)\right)$ for some increasing sequence u_{i} of prefixes of σ. Since $\sigma \sqsubseteq \tau$, there exists $\sup \left(\right.$ it $\left.\left(v_{i}\right)\right) \in S(\tau)$, with $\left(v_{i}\right)_{i}$ an increasing sequence of prefixes of τ, and $\sup \left(\operatorname{it}\left(u_{i}\right)\right) \leq_{*} \sup \left(\operatorname{it}\left(v_{i}\right)\right)$. Now, we obtain:

$$
\begin{aligned}
x & =\sup \left(\operatorname{it}\left(f^{\star}\left(u_{i}\right)\right)\right) \\
& =\sup \left(f\left(\operatorname{it}\left(u_{i}\right)\right)\right) \\
& =f\left(\sup \left(\operatorname{it}\left(u_{i}\right)\right)\right) \\
& \leq_{*} f\left(\sup \left(\operatorname{it}\left(v_{i}\right)\right)\right) \\
& =\sup \left(\operatorname{it}\left(f^{\star}\left(v_{i}\right)\right)\right)
\end{aligned}
$$

The second step holds since f is a monoid homomorphism, the third since f is continuous.

We are now ready to prove that the completion is a functor $C_{\infty}:$ Mon $_{c} \rightarrow \omega$-Mon. The main fact to show is that $C_{\infty}(f)$ is well defined; compatibility with composition and identities is immediate by definition.

Proposition A.1. The construction $C_{\infty}(M)=\left\langle M, M_{\infty}\right\rangle$ extends to a functor from the category of left continuous monoids and continuous homomorphisms to the category of ω-monoids, given on a continuous homomorphism $f: M \rightarrow M^{\prime}$ by $C_{\infty}(f)=\left\langle f, f^{\omega}\right\rangle$ (the map f^{ω} is well-defined on $\left.M_{\infty}\right)$.

Proof. Given a monoid $M, C_{\infty}(M)$ is an ω-monoid by Lemma A.1. By LemmaA.1(4) the pair of functions $C_{\infty}(f)$ is well-defined, that is, $C_{\infty}(f): C_{\infty}(M) \rightarrow C_{\infty}\left(M^{\prime}\right)$. We now check that $C_{\infty}(f)$ is a homomorphism of ω-monoids. By hypothesis the first component is a homomorphism of monoids, hence we have only to check compatibility with mixed product and infinite product. More precisely, we have to check the following equivalences: for all $x \in M$ and $\tau \in M^{\omega}$

$$
f^{\omega}(x: \tau) \equiv f(x): f^{\omega}(\tau) \quad f^{\omega}\left(\mathrm{p}_{M}(\tau)\right) \equiv \mathrm{p}_{M^{\prime}}\left(f^{\omega}(\tau)\right)
$$

The former trivially holds by definition of f^{ω} (it is actually an equality), and the latter also trivially holds since at this level p_{M} is the identity, hence the equivalence can be rewritten as $f^{\omega}(\tau) \equiv f^{\omega}(\tau)$ that is true by reflexivity of \equiv.

Then the fact that C_{∞} preserves composition and identities is straightforward, because composition is made pointwise and $(-)^{\omega}$ is functorial, and we have $C_{\infty}\left(\mathrm{id}_{M}\right)=\left\langle\mathrm{id}_{M}, \mathrm{id}_{M}^{\omega}\right\rangle=\left\langle\mathrm{id}_{M}, \mathrm{id}_{M^{\omega}}\right\rangle=$ $\operatorname{id}_{C_{\infty}(M)}$.

B. Proofs of main results

In this section we provide the technical development of completeness and soundness results stated in Sect. 7.4

B.1. Completeness

We start by proving the completeness result (Theorem7.1) for C^{I}. The proof uses a slight variation of a proof principle from [1], reported below, which is an easy consequence of bounded coinduction (Theorem 2.1].

Theorem B.1. Let $P \subseteq C \times O_{\infty}$ be a predicate. If for each $\left\langle c, o_{\infty}\right\rangle \in P$:
Boundedness $\left\langle I_{\infty} \cup C, \emptyset\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$, and
Consistency $c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$ is the consequence of a rule where, for all premises of shape $c^{\prime} \Rightarrow$ $\left\langle\infty, o_{\infty}^{\prime}\right\rangle,\left\langle c^{\prime}, o_{\infty}^{\prime}\right\rangle \in P$, and, for all premises of shape $c^{\prime} \Rightarrow\langle r, o\rangle,\left\langle I_{\infty}, C\right\rangle \vdash c^{\prime} \Rightarrow\langle r, o\rangle$,
then $\left\langle c, o_{\infty}\right\rangle \in P$ implies that $\left\langle I_{\infty}, C\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$.
The proof is omitted since analogous to the one in [1]. We start by showing boundedness, which needs two auxiliary lemmas.

We write \bar{j} for a list of judgments $j_{1} \ldots j_{n}$. [Elena: moved here]
Lemma B.1. If $\left\langle I_{\infty} \cup C^{\mathcal{I}}, \emptyset\right\rangle \vdash c^{\prime} \Rightarrow\left\langle r_{\infty}, o_{\infty}\right\rangle$ and $c \xrightarrow{o} c^{\prime}$, then $\left\langle I_{\infty} \cup C^{I}, \emptyset\right\rangle \vdash c \Rightarrow\left\langle r_{\infty}, o *_{\infty} o_{\infty}\right\rangle$.
Proof. We proceed by induction on pr and we distinguish two cases.

1. If c is reduced then we distinguish two cases:

- if $r_{\infty}=\infty$, then, by Condition 1 there exists a computational rule $\rho=\operatorname{rule}\left(j_{1} \ldots j_{n}, j, c, o\right)$ such that $C(j)=c^{\prime}$; hence, the thesis follows by $\operatorname{rule} \operatorname{div}\left(\rho, \mathrm{f}(\rho), o_{\infty}\right)$, whose first n premises are j_{1}, \ldots, j_{n}, which are trivial, and the last one is $c^{\prime} \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$, which is derivable by hypothesis.
- If $r_{\infty} \in R$, then the last applied rule ρ^{\prime} in the proof tree for $c^{\prime} \Rightarrow\left\langle r_{\infty}, o_{\infty}\right\rangle$ belongs to \mathcal{I}, hence, by Condition 3, there exists a computational rule $\rho=\operatorname{rule}(\bar{j}, j, c, o)$ with $j=c^{\prime} \Rightarrow\left\langle r_{\infty}, o_{\infty}\right\rangle$; hence we get the thesis since all judgements in \bar{j} are trivial and j is derivable by hypothesis.

2. If c is compound, then we have the following cases on the last applied rule in the proof tree for $c^{\prime} \Rightarrow\left\langle r_{\infty}, o_{\infty}\right\rangle$:

- if the rule is (co-unit), then $r_{\infty}=\infty$ and $o_{\infty}=\mathrm{u}$; by Condition 1 there is a contextual rule $\rho=\operatorname{rule}\left(j_{1} \ldots j_{i} \ldots j_{n}, j, c, o^{\prime}\right)$ where $i=\mathrm{f}(\rho), \operatorname{pr}(c)=C\left(j_{i}\right)=c_{i}$, and $c_{i} \xrightarrow{o} c^{\prime \prime}$. Applying again (co-UnIT) we can derive $c^{\prime \prime} \Rightarrow\langle\infty, \mathrm{u}\rangle$, hence, by inductive hypothesis $c_{i} \Rightarrow\langle\infty, o\rangle$ is derivable, hence we get the thesis by rule $\operatorname{div}(\rho, i, o)$.
- In all other cases there is a rule $\rho^{\prime} \in I$ associated with the last applied rule ${ }^{14}$ in the proof tree for $c^{\prime} \Rightarrow\left\langle r_{\infty}, o_{\infty}\right\rangle$, hence, by Condition 3 there exists a contextual rule $\rho=$ rule $\left(j_{1} \ldots j_{i} \ldots j_{n}, j, c, o^{\prime}\right)$ where $i=\mathrm{f}(\rho)$ and $\rho \xrightarrow{o} \rho^{\prime}$. Hence, we have $C\left(j_{i}\right)=$ $\operatorname{pr}(c)=c_{i}, c_{i} \xrightarrow{o} c^{\prime \prime}=C\left(j_{i}^{\prime}\right)$ where j_{i}^{\prime} is a dependency of $\rho^{\prime}, O\left(j_{i}\right)=o * O\left(j_{i}^{\prime}\right)$, and $R\left(j_{i}\right)=R\left(j_{i}^{\prime}\right)$. Therefore, since by hypothesis j_{i}^{\prime} is derivable, by inductive hypothesis j_{i} is derivable as well, hence we get the thesis by applying the rule associated with ρ of the same type of the one associated with ρ^{\prime}.

Lemma B.2. If $c \xrightarrow{o} c^{\prime}$ and $o \neq u$, then $\left\langle\mathcal{I}_{\infty} \cup C^{I}, \emptyset\right\rangle \vdash c \Rightarrow\left\langle\infty, o *_{\infty} o_{\infty}\right\rangle$ for $o_{\infty} \in O_{\infty}$.
Proof. We proceed by induction on pr. By Condition 1. there exists a rule $\rho=\operatorname{rule}\left(\bar{j}, j, c, o^{\prime}\right)$ and we distinguish two cases:

1. if c is reduced, then ρ is computational, and, since $o \neq \mathrm{u}, \operatorname{co}-\mathrm{mul}\left(\rho, o_{\infty}\right) \in C^{I}$ and this gives us the thesis, since all judgements in \bar{j} are trivial.
2. if c is compound, then ρ is contextual with $\bar{j}=j_{1} \ldots j_{n}, i=\mathrm{f}(\rho)$, and $C\left(j_{i}\right)=\operatorname{pr}(c) \xrightarrow{o} c^{\prime \prime}$; therefore, by inductive hypothesis, we get $\left\langle I_{\infty} \cup C^{I}, \emptyset\right\rangle \vdash \operatorname{pr}(c) \Rightarrow\left\langle\infty, o *_{\infty} o_{\infty}\right\rangle$, hence we get the thesis by rule $\operatorname{div}\left(\rho, i, o *_{\infty} o_{\infty}\right)$.

Lemma B. 3 (Boundedness). If $c \rightsquigarrow\left\langle\infty, o_{\infty}\right\rangle$, then $\left\langle I_{\infty} \cup C^{I}, \emptyset\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$.

- if $\sigma=\mathrm{u}^{\omega}$, then $o_{\infty}=\mathrm{u}$ and the thesis follows from the coaxiom (co-unit)
- otherwise, there exists $o \neq \mathrm{u}$ and $n \in \mathbb{N}$ such that $\sigma=\mathrm{u}^{n}\left(o: \sigma^{\prime}\right)$, hence $o_{\infty}=o *_{\infty} o_{\infty}^{\prime}$, with $o_{\infty}^{\prime}=\mathrm{it}_{\infty}\left(\sigma^{\prime}\right)$, and $c \xrightarrow{\mathrm{u}^{n}} c^{\prime} \xrightarrow{o} c^{\prime \prime}$. By Lemma B. 2 we get that $\left\langle I_{\infty} \cup C^{I}, \emptyset\right\rangle \vdash$ $c^{\prime} \Rightarrow\left\langle\infty, o *_{\infty} o_{\infty}^{\prime}\right\rangle$ and by a transitive closure ${ }^{15}$ of Lemma B.1 we get $\left\langle I_{\infty} \cup C^{I}, \emptyset\right\rangle \vdash$ $c \Rightarrow\left\langle\infty, \mathrm{u} * o *_{\infty} o_{\infty}^{\prime}\right\rangle$.

To prove consistency, we need that, in an infinite small-step reduction sequence, we always reach a configuration c which is either reduced or compound with $\operatorname{pr}(c)$ diverging too.

Lemma B.4. Given sequences $\left(c_{i}\right)_{i \in \mathbb{N}}$ and $\left(o_{i}\right)_{i \in \mathbb{N}}$ such that, for all $i \in \mathbb{N}, c_{i} \xrightarrow{o_{i}} c_{i+1}$, then there exists an $n \in \mathbb{N}$ such that, for each $k<n, c_{k}$ is compound and:

1. either c_{n} is reduced
2. or c_{n} is compound and, for all $k \geq n, \operatorname{pr}\left(c_{k}\right) \xrightarrow{o_{k}} \operatorname{pr}\left(c_{k+1}\right)$.
[^10]Proof. By Assumption 2, all non-stuck rules ρ for c_{0} have the same number of dependencies, say d, and the same index $\mathrm{f}(\rho)$. Furthermore, since c_{0} is non-stuck, by Condition 1 there exists at least one non-stuck ρ for it, hence, it is uniquely defined the number of dependencies we still have to evaluate, that is $d+1-\mathrm{f}(\rho)$. Let us denote by $\ell\left(c_{0}\right)$ such number. We can rephrase the statement as follows:
for all $h \in \mathbb{N}$, for all $\left(c_{i}\right)_{i \in \mathbb{N}}$ and $\left(o_{i}\right)_{i \in \mathbb{N}}$ such that $c_{i} \xrightarrow{o_{i}} c_{i+1}$ and $\ell\left(c_{0}\right)=h$, there exists $n \in \mathbb{N}$ such that c_{n} satisfies either 1 or 2.

Therefore, we can proceed by complete arithmetic induction on $\ell\left(c_{0}\right)$.
Base If $\ell\left(c_{0}\right)=0$, then c_{0} is reduced by definition, hence point 1 trivially holds.
Induction Suppose that $\ell\left(c_{0}\right)>0$ and let us start with some observations. Since by hypothesis for all $i \in \mathbb{N}$ we have $c_{i} \xrightarrow{o_{i}} c_{i+1}$, for all $i \in \mathbb{N}$, if c_{i} is compound, then either $\operatorname{pr}\left(c_{i}\right) \xrightarrow{o_{i}} r$ or c_{i+1} is compound and $\operatorname{pr}\left(c_{i}\right) \xrightarrow{o_{i}} \operatorname{pr}\left(c_{i+1}\right)$. Furthermore, if c_{i} is compound, then $\operatorname{pr}\left(c_{i}\right) \xrightarrow{o_{i}} c^{\prime}$, and $\ell\left(c_{i+1}\right) \leq \ell\left(c_{i}\right)$; more precisely, if $c^{\prime} \in R$, then $\ell\left(c_{i+1}\right)<\ell\left(c_{i}\right)$, otherwise $\ell\left(c_{i+1}\right)=\ell\left(c_{i}\right)$. So we have two cases:

- if for all compound configurations c_{i}, we have $\operatorname{pr}\left(c_{i}\right) \xrightarrow{o_{i}} \operatorname{pr}\left(c_{i+1}\right)$, then it is easy to prove by induction on i that all configurations c_{i} are compound and so $\ell\left(c_{i}\right)=\ell\left(c_{i+1}\right)$ and $\operatorname{pr}\left(c_{i}\right) \xrightarrow{o_{i}} \operatorname{pr}\left(c_{i+1}\right)$. Hence $\operatorname{pr}\left(c_{0}\right)$ diverges as required in 2.
- Otherwise, let n be the first (least) index such that c_{n} is compound and $\operatorname{pr}\left(c_{n}\right) \xrightarrow{o_{n}} r$. Again, it is easy to check by induction on i, that for all $i<n, c_{i}$ is compound, hence $\operatorname{pr}\left(c_{i}\right) \xrightarrow{o_{i}} \operatorname{pr}\left(c_{i+1}\right)$ and $\ell\left(c_{n+1}\right)<\ell\left(c_{n}\right)$. Therefore, considering the sequences $\left(c_{k}\right)_{k>n}$ and $\left(o_{k}\right)_{k>n}$, by inductive hypothesis, there is an index $m \geq k>n$ satisfying one of the two conditions, hence the thesis holds also for the original sequences, since c_{m} belongs also to it.

Lemma B.5. Given finite sequences $\left(\rho_{i}\right)_{i \leq m}$ and $\left(o_{i}\right)_{i<m}$ such that

- for all $i<m, \rho_{i} \xrightarrow{o_{i}} \rho_{i+1}$,
- $\rho_{0}=r u l e\left(j_{1} \ldots j_{n}, j_{n+1}, c, o\right)$ is non-stuck, and
- $\rho_{m}=\operatorname{rule}\left(j_{1}^{\prime} \ldots j_{n}^{\prime}, j_{n+1}^{\prime}, c^{\prime}, o^{\prime}\right)$, with $l=f\left(\rho_{m}\right)$,
then:
- for all $k<l$ we have $C\left(j_{k}\right) \rightsquigarrow\left\langle R\left(j_{k}\right), O\left(j_{k}\right)\right\rangle$, and
- $C\left(j_{l}\right) \xrightarrow{v}{ }^{\star} C\left(j_{l}^{\prime}\right)$ and $O\left(j_{l}\right)=i t(v) * O\left(j_{l}^{\prime}\right)$.

Proof. We proceed by arithmetic induction on m.
Base If $m=0$, then $\rho_{0}=\rho_{m}$, hence the thesis holds, since ρ_{0} is non-stuck, and so, by definition, for all $k<l, j_{k}$ is trivial, that is, $j_{k}=r_{k} \Rightarrow\left\langle r_{k}, \mathbf{u}\right\rangle$, and so the first part trivially holds, and the second one holds as well, by taking $v=\varepsilon$, since $j_{l}=j_{l}^{\prime}$.

Induction Let us assume the thesis for m and prove it for $m+1$. By hypothesis $\rho_{0} \xrightarrow{o_{0}} \rho_{1}$ and by inductive hypothesis the thesis holds for ρ_{1}. Let $h=\mathrm{f}\left(\rho_{0}\right)$ and $k=\mathrm{f}\left(\rho_{1}\right)$, then $h \leq k \leq l$. Since $\rho_{0} \xrightarrow{o_{0}} \rho_{1}, \rho_{0}$ is contextual, hence all j_{i} for $i<h$ are trivial, hence satisfy point 1 , while all j_{i} for $h<i \leq l$ are also premises of ρ_{1}, hence satisfy the thesis by inductive hypothesis. Therefore, we have only to prove the thesis for j_{h}.
Let j be the h-th premise of ρ_{1}, we know that $C\left(j_{h}\right) \xrightarrow{o_{0}} C(j), R\left(j_{h}\right)=R(j)$, and $O\left(j_{h}\right)=$ $o_{0} * O(j)$. We distinguish two cases:

- if $h<l$, then by inductive hypothesis $C(j) \rightsquigarrow\langle R(j), O(j)\rangle$ holds, hence we can derive $C\left(j_{h}\right) \rightsquigarrow\left\langle R(j), o_{0} * O(j)\right\rangle$, that is, $C\left(j_{h}\right) \rightsquigarrow\left\langle R\left(j_{h}\right), O\left(j_{h}\right)\right\rangle$.
- if $h=k=l$, then by inductive hypothesis $C(j) \xrightarrow{v} C\left(j_{l}^{\prime}\right)$ for some finite sequence v, hence the thesis follows, since $C\left(j_{h}\right) \xrightarrow{o_{0}} C(j)$ and $O\left(j_{h}\right)=o_{0} * O(j)=o_{0} * \operatorname{id}(v) * O\left(j_{l}^{\prime}\right)=$ $\operatorname{it}\left(o_{0}: v\right) * O\left(j_{l}^{\prime}\right)$.

We have now all the elements to prove completeness.
Proof of Theorem 7.1] We use Theorem B.1. Here the predicate P is the set $\left\{\left\langle c, o_{\infty}\right\rangle \mid c \rightsquigarrow\left\langle\infty, o_{\infty}\right\rangle\right\}$. This set is bounded by Lemma B.3. hence we have only to check the second condition.

Let us consider $\left\langle c, o_{\infty}\right\rangle$ such that $c \rightsquigarrow\left\langle\infty, o_{\infty}\right\rangle$, hence, by definition, there are $\left(c_{i}\right)_{i \in \mathbb{N}}$ and $\sigma=\left(o_{i}\right)_{i \in \mathbb{N}}$ such that $c_{0}=c, c_{i} \xrightarrow{o_{i}} c_{i+1}$ and $\mathrm{it}_{\infty}(\sigma)=o_{\infty}$. By Lemma B. 4 there is an index $n \in \mathbb{N}$ such that all c_{k} for $k<n$ are compound and either c_{n} is reduced, or c_{n} is compound and $\operatorname{pr}\left(c_{n}\right)$ diverges. In both cases, by Condition 1 there is a rule ρ_{n} with $C\left(\rho_{n}\right)=c_{n}$ and, by an iteration of Condition 3. there is a sequence of rules $\left(\rho_{i}\right)_{i \leq n}$ such that $\rho_{i} \xrightarrow{o_{i}} \rho_{i+1}$ and $C\left(\rho_{i}\right)=c_{i}$. By LemmaB.5, if $\rho_{0}=\operatorname{rule}\left(j_{1} \ldots j_{m}, j_{m+1}, c, o\right), l=\mathrm{f}\left(\rho_{n}\right)$ and j is the l-th premise of ρ_{n}, then, for all $k<l, C\left(j_{k}\right) \rightsquigarrow\left\langle R\left(j_{k}\right), O\left(j_{k}\right)\right\rangle, C\left(j_{l}\right) \xrightarrow{\nu}{ }^{\star} C(j)$, and $O\left(j_{l}\right)=\operatorname{it}(v) * O(j)$. Therefore, by Lemma 7.4 and Theorem 5.1 we get $\left\langle I_{\infty}, C^{\mathcal{I}}\right\rangle \vdash j_{k}$.

Now, let us consider $\rho=\operatorname{div}\left(\rho_{0}, l, o_{\infty}^{\prime}\right)$. We have two cases following Lemma B.4.

1. If c_{n} is reduced, then $l=m+1, \rho_{n}$ is computational, and has shape rule $\left(\bar{j}, j, c_{n}, o_{n}\right)$ by Condition 1 . Since reduction of rules does not change the continuation, $j_{l}=j_{m+1}=j$, hence $v=\varepsilon$ and so we set $o_{\infty}^{\prime}=\mathrm{it}_{\infty}\left(\sigma_{n+1}\right)$, where $\sigma_{n+1}=\left(o_{i}\right)_{i \geq n+1}$; hence, it is easy to prove by coinduction that $c_{n+1} \xrightarrow{\sigma_{n+1}}{ }^{\omega}$, and this implies $c_{n+1} \rightsquigarrow\left\langle\infty, o_{\infty}^{\prime}\right\rangle$, hence $\left\langle c_{n+1}, o_{\infty}^{\prime}\right\rangle \in P$.
2. If c_{n} is compound, then ρ_{n} is contextual, $C(j)=\operatorname{pr}\left(c_{n}\right)$ and for all $i \geq n, \operatorname{pr}\left(c_{i}\right) \xrightarrow{o_{i}} \operatorname{pr}\left(c_{i+1}\right)$, hence $\operatorname{pr}\left(c_{n}\right) \xrightarrow{\sigma_{n}}{ }^{\omega}$, where $\sigma_{n}=\left(o_{i}\right)_{i \geq n}$. Hence, since $C\left(j_{l}\right) \xrightarrow{v} \star C(j)$, we get $C\left(j_{l}\right) \xrightarrow{v \sigma_{n}}{ }^{\omega}$, and so, setting $o_{\infty}^{\prime}=\mathrm{it}_{\infty}\left(v \sigma_{n}\right)$, we get $C\left(j_{l}\right) \rightsquigarrow\left\langle\infty, o_{\infty}^{\prime}\right\rangle$. Therefore, $\left\langle C\left(j_{l}\right), o_{\infty}^{\prime}\right\rangle$ belongs to P.
In both cases ρ satisfies the requirements of Theorem B.1. hence this proves the thesis.
We now prove the completeness result for C_{u}^{I} (Theorem 7.2, stating that all infinite computations producing a finitely generated observation can be derived using only (co-vint).

To show this result, we first need some key properties of finitely generated observations reported in the following lemma:

Lemma B.6. If $\sigma \in M_{G}^{\omega}$ is a sequence such that $z=p(\sigma)$ is finitely generated, then:

1. there exists a finite prefix v of σ such that $z=p\left(v u^{\omega}\right)$
2. for all decomposition $\sigma=v \sigma^{\prime}, p\left(\sigma^{\prime}\right)$ is finitely generated.

Proof.

1. Let $\sigma=\left(o_{i}\right)_{i \in \mathbb{N}}$ and $u_{i}=o_{0} \ldots o_{i}$ for all $i \in \mathbb{N}$, then, since $o_{\infty}=\mathrm{p}(\sigma)$ is finite, there is $n \in \mathbb{N}$ such that, for all $k \geq n$, it $\left(u_{n}\right)=\operatorname{it}\left(u_{k}\right)$, otherwise we would have infinitely many elements in $\mathcal{F}\left(o_{\infty}\right)$ that is absurd. Then, $\sigma \equiv u_{n} u^{\omega}$, which trivially holds from what we just observed, hence we have the thesis.
2. Let $\sigma=v \sigma^{\prime}$ and note that $\mathcal{F}\left(\sigma^{\prime}\right)$ is not empty since the head of σ^{\prime} belongs to it. Then, consider $o \in \mathcal{F}\left(\mathrm{p}\left(\sigma^{\prime}\right)\right)$, by definition of factor we have $\mathrm{p}\left(\sigma^{\prime}\right)=o^{\prime} * o *_{\infty} \mathrm{p}\left(\sigma^{\prime \prime}\right)$, hence $\left(\operatorname{it}(v) * o^{\prime}\right) * o *_{\infty} \mathrm{p}\left(\sigma^{\prime \prime}\right)=\mathrm{p}(\sigma)$, that is, $o \in \mathcal{F}\left(o_{\infty}\right)$. This proves that $\mathcal{F}\left(\mathrm{p}\left(\sigma^{\prime}\right)\right) \subseteq \mathcal{F}\left(o_{\infty}\right)$, hence $\mathcal{F}\left(\mathrm{p}\left(\sigma^{\prime}\right)\right)$ is finite, and this proves the thesis.

The next lemma shows that, thanks to the equivalence conditions, observations produced by single steps in small-step semantics are themselves in E_{I}.

Lemma B.7. If $c \xrightarrow{o} c^{\prime}$ then $o \in E_{I}$.
Proof. We proceed by well-founded induction on pr: if c is reduced, then by Condition 1 there is a computational rule $\rho=\operatorname{rule}(\bar{j}, j, c, o)$, hence $o \in \mathrm{E}_{I}$, and if c is compound, again by Condition 1 , $\operatorname{pr}(c) \xrightarrow{o} c^{\prime \prime}$, hence $o \in \mathrm{E}_{I}$ holds by inductive hypothesis.

The proof of Theorem 7.2 is essentially the same as Theorem 7.1. we apply Theorem B.1, where Lemma B. 6 guarantees boundedness and consistency.

Proof of Theorem 7.2 The proof follows exactly that of Theorem 7.1, hence we have first to prove boundedness. If $c \rightsquigarrow\left\langle\infty, o_{\infty}\right\rangle$, by definition there is $\sigma=\left(o_{i}\right)_{i \in \mathbb{N}}$ such that $o_{\infty}=\mathrm{p}(\sigma)$. By LemmaB.7 $o_{i} \in \mathrm{E}_{I}$ for all $i \in \mathbb{N}$, hence, by LemmaB.6(1) there exists $v=o_{0} \ldots o_{n-1}$ such that
 Lemma B.1 restricted to C_{u}^{I}, we get $\left\langle I_{\infty} \cup C_{\mathrm{u}}^{I}, \emptyset\right\rangle \vdash c \Rightarrow\left\langle\infty, \mathrm{p}\left(\nu \mathrm{u}^{\omega}\right)\right\rangle$ as needed.

To prove consistency, we do exactly the same construction done in the proof of Theorem 7.1, hence we get a rule $\operatorname{div}\left(\rho, i, o_{\infty}^{\prime}\right)$, where the i-th premise hase shape $c^{\prime} \Rightarrow\left\langle\infty, o_{\infty}^{\prime}\right\rangle$, where $o_{\infty}^{\prime}=$ $\mathrm{p}\left(\sigma^{\prime}\right)$ for some σ^{\prime} such that $\sigma=v \sigma^{\prime}$. Hence we have only to prove that o_{∞}^{\prime} is finitely generated, but this holds thanks to LemmaB.6(2), hence we get the thesis by TheoremB.1.

B.2. Soundness

We start by some results and notations which hold for any conservative set of corules, hence in particular for both C^{I} and C_{u}^{I}.

Lemma B. 8 (Forward compatibility). If C is conservative, $\left\langle\mathcal{I}_{\infty}, C\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$ by a rule $\operatorname{div}\left(\rho, i, o_{\infty}^{\prime \prime}\right)$, with $\rho=\operatorname{rule}\left(j_{1} \ldots j_{n}, j_{n+1}, c, o\right)$, then $c \xrightarrow{u} c^{\prime}$ with $u=u_{1} \ldots u_{i-1}$ and $\operatorname{it}\left(u_{k}\right)=O\left(j_{k}\right)$ for all $k\left\langle i,\left\langle I_{\infty}, C\right\rangle \vdash c^{\prime} \Rightarrow\left\langle\infty, o_{\infty}^{\prime}\right\rangle\right.$ and

1. if c^{\prime} is reduced, then $c^{\prime} \xrightarrow{o} C\left(j_{n+1}\right)$ and $o_{\infty}^{\prime}=o *_{\infty} o_{\infty}^{\prime \prime}$ and $\left\langle I_{\infty}, C\right\rangle+C\left(j_{n+1}\right) \Rightarrow\left\langle\infty, o_{\infty}^{\prime \prime}\right\rangle$
2. if c^{\prime} is compound, then $\operatorname{pr}\left(c^{\prime}\right)=C\left(j_{i}\right), o_{\infty}^{\prime}=o_{\infty}^{\prime \prime}$, and $\left\langle I_{\infty}, C\right\rangle \vdash \operatorname{pr}\left(c^{\prime}\right) \Rightarrow\left\langle\infty, o_{\infty}^{\prime \prime}\right\rangle$.

Proof. By construction for all $k<i, j_{k}$ is a convergent judgement of shape $c_{k} \Rightarrow\left\langle r_{k}, o_{k}\right\rangle$ and by hypothesis we have $\left\langle I_{\infty}, C\right\rangle \vdash j_{k}$; therefore, by Theorem 5.1 and Lemma 7.5 we get that $c_{k} \rightsquigarrow\left\langle r_{k}, o_{k}\right\rangle$, that is, $c_{k} \xrightarrow{u_{k}} r_{k}$ for $u_{k} \in O^{\star}$ and $\operatorname{it}\left(u_{k}\right)=o_{k}$. By iteratively applying Condition 2, we get that $c \xrightarrow{u}{ }^{\star} c^{\prime}$ with $u=u_{1} \cdots u_{i-1}$ and $\rho \xrightarrow{u} \star \rho^{\prime 16}$ with $\rho^{\prime}=\operatorname{rule}\left(j_{1}^{\prime} \ldots j_{i-1}^{\prime} j_{i} \ldots j_{n}, j_{n+1}, c^{\prime}, o\right)$ and $j_{k}^{\prime}=r_{k} \Rightarrow\left\langle r_{k}, \mathrm{u}\right\rangle$. Then by rule $\operatorname{div}\left(\rho^{\prime}, i, o_{\infty}^{\prime \prime}\right)$ we get that $\left\langle I_{\infty}, C\right\rangle \vdash c^{\prime} \Rightarrow\left\langle\infty, o_{\infty}^{\prime}\right\rangle$ and distinguish the following cases:

1. If c^{\prime} is reduced, then ρ^{\prime} is computational and, by Condition 2. we get that $c^{\prime} \xrightarrow{o} C\left(j_{n+1}\right)=$ $c^{\prime \prime}$, hence $i=\mathrm{f}\left(\rho^{\prime}\right)=n+1, o_{\infty}^{\prime}=o *_{\infty} o_{\infty}^{\prime \prime}$ and $c^{\prime \prime} \Rightarrow\left\langle\infty, o_{\infty}^{\prime \prime}\right\rangle$ is derivable since it is a premise of $\operatorname{div}\left(\rho^{\prime}, i, o_{\infty}^{\prime \prime}\right)$.
2. If c^{\prime} is compound, then ρ^{\prime} is contextual, $i=\mathrm{f}\left(\rho^{\prime}\right), \operatorname{pr}\left(c^{\prime}\right)=C\left(j_{i}\right), o_{\infty}^{\prime}=o_{\infty}^{\prime \prime}$ and $\operatorname{pr}\left(c^{\prime}\right) \Rightarrow$ $\left\langle\infty, o_{\infty}^{\prime \prime}\right\rangle$ is derivable since it is a premise of $\operatorname{div}\left(\rho^{\prime}, i, o_{\infty}^{\prime \prime}\right)$.

We now show that, if $\left\langle I_{\infty}, C\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$, then there is an infinite reduction $c \xrightarrow{\sigma}{ }^{\omega}$ in the small-step semantics where σ is equivalent to σ_{t} (see the definition introduced for Lemma 7.6, as stated in the following lemma.

Lemma B.9. If $\left\langle I_{\infty}, C\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$ by an infinite derivation t, then $c{ }^{\sigma}{ }^{\omega}$ for some $\sigma \in O^{\omega}$ such that $i t_{\infty}(\sigma)=i t_{\infty}\left(\sigma_{t}\right)$.

Proof. Let t be an infinite derivation for $c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$, and for each level i of the tree we have a rule of shape $\operatorname{div}\left(\rho_{i}, k_{i}, o_{\infty}^{i+1}\right)$ where $\rho_{i}=\operatorname{rule}\left(j_{1}^{i} \ldots j_{n_{i}}^{i}, j^{i}, c_{i}, o_{i}^{\prime}\right)$, and denote by t_{i} the subtree starting with such rule. We assume $\sigma_{t}=\left(o_{i}\right)_{i \in \mathbb{N}}$, hence $\sigma_{t_{i}}=o_{i}: \sigma_{t_{i+1}}$.

Consider the sequence of configurations $\left(c_{i}\right)_{i \in \mathbb{N}}$, hence $\left\langle I_{\infty}, \stackrel{C}{C}\right\rangle+c_{i} \Rightarrow\left\langle\infty, o_{\infty}^{i}\right\rangle$ holds by the derivation t_{i}, then, by Lemma B.8. we get that $c_{i} \xrightarrow{v_{i}} c_{i}^{\prime}$ where either $k_{i} \leq n_{i}$ and $\operatorname{pr}\left(c_{i}^{\prime}\right)=c_{i+1}$ or c_{i}^{\prime} is reduced (hence $k_{i}=n_{i}+1$) and $c_{i}^{\prime} \xrightarrow{o_{i}^{\prime}} c_{i+1}$. Then, let us define

$$
v_{i}^{\prime}= \begin{cases}v_{i} & k_{i} \leq n_{i} \\ v_{i} o_{i}^{\prime} & k_{i}=n_{i}+1\end{cases}
$$

then $\operatorname{it}\left(v_{i}^{\prime}\right)=o_{i}$ by definition, hence, if σ is the flattening of the sequence $\left(v_{i}^{\prime}\right)_{i \in \mathbb{N}}$, we get that $\mathrm{p}(\sigma)=\mathrm{p}\left(\sigma_{t}\right)$ by the infinite associative law (see Def. 4.1). Finally, since σ and σ_{t} are both infinite sequences, we have that $\mathrm{it}_{\infty}(\sigma)=\mathrm{p}(\sigma)=\mathrm{p}\left(\sigma_{t}\right)=\mathrm{it}_{\infty}\left(\sigma_{t}\right)$ as needed.

Now we have to prove that $c{ }^{\sigma}{ }^{\omega}$. First of all, note that it is easy to check that there is a strictly increasing sequence of natural numbers $\left(h_{i}\right)_{i \in \mathbb{N}}$ such that $v_{h_{i}}^{\prime}$ is not empty and for all k s.t. $h_{i}<k<h_{i+1}$ or $k<h_{0}$ we have $v_{k}^{\prime}=\varepsilon$, because, otherwise, if for all $i \geq k$ we have $v_{i}^{\prime}=\varepsilon$, we would also have $c_{i}^{\prime}=c_{i}, k_{i} \leq n_{i}$ and $\operatorname{pr}\left(c_{i}=c_{i+1}\right)$, and this is not possible since $\left(c_{i}\right)_{i \geq k}$ is an infinite descending chain in pr, which is well-founded. Then, we can decompose σ into a sequence $\left(\sigma_{i}\right)_{i \in \mathbb{N}}$ such that $\sigma=\sigma_{0}$ and $\sigma_{i}=v_{h_{i}}^{\prime} \sigma_{i+1}$, since all other v_{k}^{\prime} are empty; furthermore, for all $i \in \mathbb{N}$, we know that $c_{h_{i}} \xrightarrow{v_{h_{i}}^{\prime}} \star c_{h_{i}}^{\prime \prime}$ such that, either $c_{h_{i}}^{\prime \prime}=c_{h_{i}}^{\prime}$ and $\operatorname{pr}^{d_{i}}\left(c_{h_{i}}^{\prime \prime}\right)=c_{h_{i+1}}$, with $d_{i}=h_{i+1}-h_{i}$, or $c_{h_{i}}^{\prime \prime}=c_{h_{i}+1}$ and $\operatorname{pr}^{d_{i}}\left(c_{h_{i}}^{\prime \prime}\right)=c_{h_{i+1}}$, with $d_{i}=h_{i+1}-h_{i}-1$.

We can inductively construct a sequence $\left(c_{i}^{*}\right)_{i \in \mathbb{N}}$ such that $c_{0}^{*}=c_{0}$, $\operatorname{pr}^{D_{i}}\left(c_{i}^{*}\right)=c_{h_{i}}$, for $D_{i}=$ $h_{0}+d_{0}+\ldots+d_{i-1}$, and $c_{i}^{*} \xrightarrow{{v_{h_{i}}^{\prime}}^{\star}} c_{i+1}^{*}$ as follows:

[^11]- $c_{0}^{*}=c_{0}$, hence, $D_{0}=h_{0}$ and, by construction, $c_{h_{0}}=\operatorname{pr}^{h_{0}}\left(c_{0}\right)$
- since $c_{h_{i}} \xrightarrow{v_{i}^{\prime}} \star c_{h_{i}}^{\prime \prime}, \operatorname{pr}^{d_{i}}\left(c_{h_{i}}^{\prime \prime}\right)=c_{h_{i+1}}$ and $\operatorname{pr}^{D_{i}}\left(c_{i}^{*}\right)=c_{h_{i}}$, by iteratively applying Condition 2 , we get that $c_{i}^{*} \xrightarrow{v_{i}^{\prime}} c^{\prime \prime}$, with $\operatorname{pr}^{D_{i}}\left(c^{\prime \prime}\right)=c_{h_{i}}^{\prime \prime}$. We set $c_{i+1}^{*}=c^{\prime \prime}$ and note that $\mathrm{pr}^{D_{i+1}}\left(c_{i+1}^{*}\right)=$ $\operatorname{pr}^{D_{i}}\left(\operatorname{pr}^{d_{i}}\left(c_{i+1}^{*}\right)\right)=\operatorname{pr}^{D_{i}}\left(c_{h_{i}}^{\prime \prime}\right)=c_{h_{i+1}}$.

Finally, we can prove by coinduction on the definition of \rightarrow^{ω} that for all $i \in \mathbb{N}, c_{i}^{*} \xrightarrow{\sigma_{i}}{ }^{\omega}$, since each prefix $v_{h_{i}}^{\prime}$ is not empty by construction. Hence, as a particular case we get $c \stackrel{\sigma}{\rightarrow}{ }^{\omega}$, since $c_{0}=c$ and $\sigma_{0}=\sigma$.
Lemma B.10. If $\left\langle I_{\infty} \cup C_{u}^{I}, \emptyset\right\rangle \vdash c \Rightarrow\langle r, o\rangle,\left\langle I_{\infty} \cup C_{u}^{I}, \emptyset\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$, then $o_{\infty}=o^{\prime} \in O$ and $o^{\prime} \leq_{*} o$.

Proof. The fact that $o_{\infty}=o^{\prime} \in O$ can be easily proved by induction on the (finite) derivation for $c^{\prime} \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$ in $I_{\infty} \cup C_{\mathrm{u}}^{I}$. Then we have only to show that $o^{\prime} \leq_{*} o$, and this can be done by induction on the (finite) derivation for $c \Rightarrow\langle r, o\rangle$ in $I_{\infty} \cup C_{\mathrm{u}}^{I}$.

Base If $c=r$, then $o=u$. Since the only rule with conclusion $r \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$ is (co-unnt), we get $o_{\infty}=\mathrm{u}$ and this proves the thesis since $\mathrm{u} \leq_{*} \mathrm{u}$.

Induction If $c \notin R$, then it is derived by a rule $\rho=\operatorname{rule}\left(j_{1} \ldots j_{n}, j_{n+1}, c, o_{\rho}\right)$. We have two cases:

- if $c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$ is derived by (co-untr), we get $o_{\infty}=\mathrm{u}$, hence $\mathrm{u} \leq_{*} o$, since u is the least element in O.
- if $c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$ is derived by a rule $\operatorname{div}\left(\rho^{\prime}, i, o_{\infty}^{\prime}\right)$ with $\rho^{\prime}=\operatorname{rule}\left(j_{1}^{\prime} \ldots j_{m}^{\prime}, j_{m+1}^{\prime}, c, o_{\rho}^{\prime}\right)$, with $m=n$ by Assumption 2 , we can prove, by complete arithmetic induction, using Assumption 2 , that, for all $k \in 1 . . i, C\left(j_{k}\right)=C\left(j_{k}^{\prime}\right)$. Therefore, by induction hypothesis, we get $o_{\infty}^{\prime}=o^{\prime \prime} \leq_{*} O\left(j_{i}\right)$. Furthermore, by Lemma 7.1. for all $k \in 1 . . i-1$, we get $R\left(j_{k}\right)=R\left(j_{k}^{\prime}\right)$ and $O\left(j_{k}\right)=O\left(j_{k}^{\prime}\right)=o_{k}$, and, in addition, if $i=n+1$, by Assumption 2 we also have $o_{\rho}=o_{\rho^{\prime}}$.
Hence, if $i \leq n$, then $o_{\infty}=o_{1} * \cdots * o_{i-1} *_{\infty} o_{\infty}^{\prime}$, thus, $o^{\prime}=o_{1} * \cdots * o_{i-1} * o^{\prime \prime} \leq_{*}$ $o_{1} * \cdots * o_{i-1} * O\left(j_{i}\right) \leq_{*} o$; otherwise, $i=n+1, o_{\infty}=o_{1} * \cdots * o_{n} * o_{\rho} * \infty o_{\infty}^{\prime}$, hence, $o^{\prime}=o_{1} * \cdots * o_{n} * o_{\rho} * o^{\prime \prime} \leq_{*} o_{1} * \cdots * o_{n} * o_{\rho} * O\left(j_{n+1}\right)=o$.

We can now prove the soundness result for C_{u}^{I} (Theorem 7.3.
Proof of Theorem 7.3 In the proof, given a rule $\rho=\operatorname{rule}\left(j_{1} \ldots j_{n}, j_{n+1}, c, o\right)$, we set $C(\rho, i)=C\left(j_{i}\right)$, $R(\rho, i)=R\left(j_{i}\right)$ and $O(\rho, i)=O\left(j_{i}\right)$.

Let t be the infinite derivation of $c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$ in I_{∞}, hence for each level i there is a rule $\operatorname{div}\left(\rho_{i}, k_{i}, o_{\infty}^{i+1}\right)$, and let $\sigma_{t}=\left(o_{i}\right)_{i \in \mathbb{N}}$ be the infinite sequence associated with t (see the definition introduced for Lemma 7.6; hence $o_{\infty}=o_{\infty}^{0}$ and $o_{\infty}^{i}=o_{i} *_{\infty} o_{\infty}^{i+1}$. By definition, the judgement has also a finite derivation t^{\prime} in $I_{\infty} \cup C_{\mathrm{u}}^{I}$. In t^{\prime}, at each level i, we have three possibilities: we have applied a divergence propagation rule $\operatorname{div}\left(\rho_{i}^{\prime}, k_{i}, o_{\infty}^{\prime}{ }^{i+1}\right)$, we have applied a divergence propagation rule $\operatorname{div}\left(\rho_{i}^{\prime}, k_{i}^{\prime}, o_{\infty}^{\prime}{ }^{i+1}\right.$), or we have applied the coaxiom (co-шлाт).

Let h be the least level for which the first situation does not happen, then, for each level $i<h$, we are in the first one. We can prove, by a double induction, using Lemma 7.1 and Assumption 2 ,
that, for all $i<h$ and $l \leq k_{i}, C\left(\rho_{i}\right)=C\left(\rho_{i}^{\prime}\right), C\left(\rho_{i}, l\right)=C\left(\rho_{i}^{\prime}, l\right)$ and, if $l \neq k_{i}, O\left(\rho_{i}, l\right)=O\left(\rho_{i}^{\prime}, l\right)$. This implies $o_{\infty}^{\prime}{ }^{i}=o_{i} *_{\infty} o_{\infty}^{\prime}{ }^{i+1}$ and $o_{\infty}=o_{0} *_{\infty} o_{\infty}^{\prime}{ }^{1}$. Then we have two cases for level h :

- if we have applied the coaxiom, then either $h=0$ and $o_{\infty}=\mathrm{u}$, or $h>0$ and $o_{\infty}{ }^{h-1}=o_{h-1}$. In both cases we get $o_{\infty}=o_{0} \cdots o_{h-1} * o_{h}^{\prime}$ with $o_{h}^{\prime}=\mathrm{u}$.
- if we have applied a divergence propagation $\operatorname{rule} \operatorname{div}\left(\rho, k, o_{\infty}^{\prime}\right)$ with $k \neq k_{h}$, from what we have just proved, we have $C\left(\rho_{h}\right)=C\left(\rho_{h-1}, k_{h-1}\right)=C\left(\rho_{h-1}^{\prime}, k_{h-1}\right)=C(\rho)$. Thus, we can prove, by complete arithmetic induction, using Lemma 7.1 and Assumption 2 , that, for all $l \leq k^{\prime}=\min \left\{k, k_{h}\right\}, C\left(\rho_{h}, l\right)=C(\rho, l)$ and, if $l \neq k^{\prime}, O\left(\rho_{h}, l\right)=O(\rho, l)$. Hence, we get $k=\min \left\{k, k_{h}\right\}$, because, if $k>k_{h}$, then $C\left(\rho_{h}, k_{k}\right) \Rightarrow\left\langle R\left(\rho_{h}, k_{k}\right), O\left(\rho_{h}, k_{h}\right)\right\rangle$ is derivable, but also $C\left(\rho_{h}, k_{h}\right) \Rightarrow\left\langle\infty, o_{\infty}{ }^{h+1}\right\rangle$ is derivable, and this is absurd by Lemma 7.2.
Set $j_{l}=C\left(\rho_{h}, l\right) \Rightarrow\left\langle R\left(\rho_{h}, l\right), O\left(\rho_{h}, l\right)\right\rangle$, for all $l \leq k$. Then, since $\left\langle I_{\infty} \cup \mathcal{C}_{\mathrm{u}}^{\mathcal{I}}, \emptyset\right\rangle \vdash j_{k}$ and $\left\langle I_{\infty} \cup \mathcal{C}_{\mathrm{u}}^{I}, \emptyset\right\rangle \vdash C\left(j_{k}\right) \Rightarrow\left\langle\infty, o_{\infty}^{\prime}\right\rangle$, as $C\left(j_{k}\right)=C(\rho, k)$, by Lemma B.10, we get $o_{\infty}^{\prime}=o^{\prime}$ with $o^{\prime} \leq_{*} O\left(j_{k}\right)$. Therefore, $o_{\infty}{ }^{h}=o_{h}^{\prime}=O\left(j_{1}\right) * \cdots * O\left(j_{k-1}\right) * o^{\prime} \leq_{*} O\left(j_{1}\right) * \cdots * O\left(j_{k-1}\right) * O\left(j_{k}\right) \leq_{*}$ o_{h}, as $k<k_{k}$, and this implies $o_{\infty}=o_{0} * \cdots * o_{h-1} * o_{h}^{\prime} \leq_{*} o_{0} * \cdots * o_{h}$.

Therefore, in all cases, we have $o_{\infty}=o_{0} * \cdots * o_{h-1} * o_{h}^{\prime} *_{\infty} \mathrm{p}\left(\mathrm{u}^{\omega}\right)=\mathrm{p}\left(o_{0} \ldots o_{h-1} o_{h}^{\prime} \mathrm{u}^{\omega}\right)$ with $o_{h}^{\prime} \leq_{*} o_{h}$.

Now, by Lemma B. 9 we have $c{ }^{\sigma}{ }^{\omega}$ and $\mathrm{it}_{\infty}(\sigma)=\mathrm{it}_{\infty}\left(\sigma_{t}\right)$ for some $\sigma \in O^{\omega}$, that is, $[\sigma]_{\equiv}=$ $\left[\sigma_{t}\right]_{\equiv}$. Therefore, in order to get the thesis, it is enough to show that $\sigma_{t} \equiv v \mathbf{u}^{\omega}$, where $v=$ $o_{0} \ldots o_{h-1} o_{h}^{\prime}$.

Set $\tau=v \mathrm{u}^{\omega}$, hence $\mathrm{it}_{\infty}(\tau)=o_{\infty}$. Then, we get $\tau \sqsubseteq \sigma_{t}$, since $\operatorname{it}(v)=o_{0} * \cdots * o_{h-1} * o_{h}^{\prime} \leq_{*}$ $o_{0} * \cdots * o_{h}=\operatorname{it}\left(v^{\prime}\right)$, where $v^{\prime}=o_{0} \ldots o_{h} \triangleleft \sigma_{t}$. On the other hand, recall that, by construction, $\sigma_{t}=\left(o_{i}\right)_{i \in \mathbb{N}}$ and, for all $n \in \mathbb{N}, o_{\infty}=o_{0} * \cdots * o_{n} *_{\infty} o_{\infty}{ }^{n+1}=\mathrm{it}_{\infty}\left(o_{0} \ldots o_{n} \sigma_{n+1}\right)$ for some $\sigma_{n+1} \in O^{\omega}$. Hence, since $\mathrm{it}_{\infty}(\tau)=\mathrm{it}_{\infty}\left(o_{0} \ldots o_{n} \sigma_{n+1}\right)$, we have $\tau \equiv o_{0} \ldots o_{n} \sigma_{n+1}$, for all $n \in \mathbb{N}$. Therefore, by definition of \equiv, there is a prefix $v^{\prime} \triangleleft \tau$ such that $o_{0} * \cdots * o_{n} \leq_{*}$ it $\left(v^{\prime}\right)$ and, since $v^{\prime} \triangleleft \tau, \operatorname{it}\left(v^{\prime}\right) \leq_{*} \operatorname{it}(v)$. Hence, for all $n \in \mathbb{N}, o_{0} * \cdots * o_{n} \leq_{*} \operatorname{it}(v)$, thus, the least upper bound of $\left(o_{0} * \cdots * o_{n}\right)_{n \in \mathbb{N}}$, if any, is below it (v), and this shows $\sigma_{t} \sqsubseteq \tau$. So, we have the thesis.

We now prove the two results concerning the set of corules C^{I}.
Proof of Lemma 7.6 At each level i of t we have a rule $\operatorname{div}\left(\rho_{i}, k_{i}, o_{\infty}^{i+1}\right)$, with $C\left(\rho_{i}\right)=c_{i}, c_{0}=c$, $o_{\infty}^{0}=o_{\infty}$ and $o_{\infty}^{i}=o_{i} *_{\infty} o_{\infty}^{i+1}$. Since o_{∞}^{\prime} is a limit of the series on σ_{t} we have that $o_{\infty}^{\prime}=$ $o_{0} * \cdots o_{n} *_{\infty} o_{\infty}^{\prime}{ }^{n+1}$ for all $n \in \mathbb{N}$, hence each judgement of shape $c_{i} \Rightarrow\left\langle\infty, o_{\infty}^{\prime}{ }^{i}\right\rangle$ is the consequence of the rule $\operatorname{div}\left(\rho_{i}, k_{i}, o_{\infty}^{i+1}\right)$ and this shows that we can build an infinite derivation for each of them.

To build finite proofs in $I_{\infty} \cup C^{I}$, it is enough to show a finite derivation for nodes at level i where $o_{i} \neq \mathrm{u}$, since the sequence is non-trivial, hence for each $o_{i}=\mathrm{u}$ there is $k>i$ such that $o_{k} \neq \mathrm{u}$. Suppose that $\rho_{i}=\operatorname{rule}\left(j_{1}^{i} \ldots j_{n_{i}}^{i}, j^{i}, c_{i}, o_{i}^{\prime}\right)$, then we have two cases:

- if $k_{i}=n_{i}+1$ and for all $k \leq n_{i}$ we have $O\left(j_{k}^{i}\right)=\mathrm{u}$, then $o_{i}^{\prime} \neq \mathrm{u}$ and so we get the proof by co-mul $\left(\rho_{i}, o_{\infty}^{\prime i+1}\right)$.
- Otherwise, let j_{k}^{i} be the first premise such that $O\left(j_{k}^{i}\right) \neq \mathrm{u}$ with $k \leq \min \left\{k_{i}, n_{i}\right\}$; we know by hypothesis that $\left\langle I_{\infty}, C^{I}\right\rangle \vdash j_{k}^{i}$, hence by Lemma 7.5 we have $C\left(j_{k}^{i}\right) \rightsquigarrow\left\langle R\left(j_{k}^{i}\right), O\left(j_{k}^{i}\right)\right\rangle$ and, since $O\left(j_{k}^{i}\right) \neq \mathrm{u}$, then $C\left(j_{k}^{i}\right) \xrightarrow{o} c^{\prime}$ with $O\left(j_{k}^{i}\right)=o * o^{\prime}$ and $o \neq \mathrm{u}$. Therefore, by Lemma 7.5 and Condition 2 we get that $c_{i} \xrightarrow{v} c_{i}^{\prime}$ with $v=\mathrm{u}^{h}$ and $\operatorname{pr}\left(c_{i}^{\prime}\right)=C\left(j_{k}^{i}\right)$, then, again by Condition 2. we get $c_{i}^{\prime} \xrightarrow{o} c_{i}^{\prime \prime}$, hence, since $o_{\infty}^{\prime}{ }^{i}=o *_{\infty} o_{\infty}^{\prime \prime}$, for some $o_{\infty}^{\prime \prime}$, by Lemma B.2 we
get $\left\langle I_{\infty} \cup C^{I}, \emptyset\right\rangle+c_{i}^{\prime \prime} \Rightarrow\left\langle\infty, o *_{\infty} o_{\infty}^{\prime \prime}\right\rangle$, and by iterating LemmaB.1 we get $\left\langle I_{\infty} \cup C^{I}, \emptyset\right\rangle \vdash$ $c_{i} \Rightarrow\left\langle\infty, o_{\infty}^{i}\right\rangle$ as needed.

Proof of Prop. 7.4 Since $\mathrm{E}_{I} \subseteq O_{I}$, the implication \Leftarrow is trivial. To prove the other direction, consider $\sigma \in O_{I}^{\omega}$. We first show that there exists $\tau \in \mathrm{E}_{I}^{\omega}$ such that $\sigma<: \tau$. Assume $\sigma=\left(o_{i}\right)_{i \in \mathbb{N}}$, then, by definition of O_{I}, we have that $o_{i}=o_{i 1} * \cdots * o_{i n_{i}}$ with $o_{i 1}, \ldots, o_{i n_{i}} \in \mathrm{E}_{I}$; hence if τ is the sequence of all $o_{i k_{i}}$ in the correct order we get the thesis. Since O is left-continuous (in particular \leq_{*} is a partial order), we have that σ is trivial iff τ is trivial. Then, it is easy to check that o_{∞} is a limit product of σ iff it is a limit product of τ, and this gives the thesis.

Proof of Theorem 7.5. Let t be the infinite derivation of $c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$ and $\sigma_{t}=\left(o_{i}\right)_{i \in \mathbb{N}}$, then by Lemma B. 9 there is $\sigma \in O^{\omega}$ such that $c \xrightarrow{\sigma}{ }^{\omega}$ and $\mathrm{it}_{\infty}(\sigma)=\mathrm{it}_{\infty}\left(\sigma_{t}\right)$. We have two cases:

- if σ_{t} is trivial, that is, for all $k \geq n, o_{k}=\mathrm{u}$, for some $n \in \mathbb{N}$, then $\left\langle I_{\infty}, C_{\mathrm{u}}^{I}\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$, since we can cut t at depth n using (co-unit), hence by Theorem7.3 we get the thesis;
- if σ_{t} is non-trivial, then, since $\mathrm{it}_{\infty}\left(\sigma_{t}\right)$ and o_{∞} are both limits of the series on σ_{t} and E_{I} has unique limits, hence O_{I} has unique limits as well, we have $o_{\infty}=\mathrm{it}_{\infty}\left(\sigma_{t}\right)=\mathrm{it}_{\infty}(\sigma)$, hence $c \rightsquigarrow\left\langle\infty, o_{\infty}\right\rangle$ as needed.

C. Other proofs

Proof of Theorem 5.1. We prove that the following conditions are equivalent, where points 1 and 4 are those in the statement of the theorem:

1. $\left\langle I_{\infty}, C\right\rangle \vdash c \Rightarrow\left\langle r_{\infty}, o_{\infty}\right\rangle$ and $r_{\infty} \in R$ and $o_{\infty} \in O$
2. $\left\langle I_{\infty} \cup C, \emptyset\right\rangle \vdash c \Rightarrow\left\langle r_{\infty}, o_{\infty}\right\rangle$ and $r_{\infty} \in R$ and $o_{\infty} \in O$
3. $\left\langle I_{\infty}, \emptyset\right\rangle+c \Rightarrow\left\langle r_{\infty}, o_{\infty}\right\rangle$
4. $\langle I, \emptyset\rangle \vdash c \Rightarrow\left\langle r_{\infty}, o_{\infty}\right\rangle$.

It is easy to check that $r_{\infty} \in R$ implies $o_{\infty} \in O$, hence we do not care about o_{∞}.
The implication $1 \Rightarrow 2$ trivially holds by definition of derivability in an inference system with corules.

Suppose now we have a finite proof tree t in $I_{\infty} \cup C$ for the judgement $c \Rightarrow\left\langle r_{\infty}, o_{\infty}\right\rangle$, then it can be proved by induction on the depth of the tree that $r_{\infty}=\infty$ if and only if we have applied a corule in t. This is due to the fact that in I_{∞} all rules having a divergent judgement in the conclusion have also a divergent judgement in the premises and viceversa. Therefore we get (\star) that $r_{\infty} \in R$ if and only if we do not use corules in t, if and only if t is a finite proof tree in I_{∞}, if and only if t is a finite proof tree in I, since without corules also rules for divergence propagation are not applicable. This proves the equivalences $2 \Leftrightarrow 3 \Leftrightarrow 4$.

Finally, if $\left\langle I_{\infty}, \emptyset\right\rangle \vdash c \Rightarrow\left\langle r_{\infty}, o_{\infty}\right\rangle$, then $r_{\infty} \in R$ by (\star), and $\left\langle I_{\infty}, C\right\rangle \vdash c \Rightarrow\left\langle r_{\infty}, o_{\infty}\right\rangle$ since derivability is preserved by the addition of corules.

Proof of Lemma 5.1. It follows by a straightforward induction on rules.

Proof of Lemma 7.1. The proof is by induction on the derivation of $c \Rightarrow\langle r, o\rangle$, and denote by $R H$ the induction hypothesis.

Base We have $c=r$ and $o=\mathrm{u}$, hence $r^{\prime}=r$ and $o^{\prime}=\mathrm{u}$, as the only rule for results is the axiom.
Induction If $c \notin R$, then $c \Rightarrow\langle r, o\rangle$ is derived by a rule $\rho=\operatorname{rule}\left(j_{1} \ldots j_{n}, j_{n+1}, c, o_{\rho}\right)$ and $c \Rightarrow\left\langle r^{\prime}, o^{\prime}\right\rangle$ is derived by a rule $\rho^{\prime}=\operatorname{rule}\left(j_{1}^{\prime} \ldots j_{m}^{\prime}, j_{m+1}^{\prime}, c, o_{\rho^{\prime}}\right)$, with $m=n$ by Assumption 2 We prove, by complete arithmetic induction, that, for all $k \in 1 . . n+1, j_{k}=j_{k}^{\prime}$. Let $k \in 1 . . n+1$, then, by induction hypothesis, we know that, for all $h<k, j_{h}=j_{h}^{\prime}$, hence, in particular, $R\left(j_{h}\right)=R\left(j_{h}^{\prime}\right)$. Thus, by Assumption 2 , we get $C\left(j_{k}\right)=C\left(j_{k}^{\prime}\right)$. Then, by $R H$, we get $R\left(j_{k}\right)=R\left(j_{k}^{\prime}\right)$ and $O\left(j_{k}\right)=O\left(j_{k}^{\prime}\right)$, that is, $j_{k}=j_{k}^{\prime}$.
Therefore, we immediately get $r=R\left(j_{n+1}\right)=R\left(j_{n+1}^{\prime}\right)=r^{\prime}$. Furthermore, we know that $o=O\left(j_{1}\right) * \cdots * O\left(j_{n}\right) * o_{\rho} * O\left(j_{n+1}\right)$ and $o^{\prime}=O\left(j_{1}^{\prime}\right) * \cdots * O\left(j_{n}^{\prime}\right) * o_{\rho^{\prime}} * O\left(j_{n+1}^{\prime}\right)$, by hypothesis, and we have just proved that, for all $k \in 1 . . n+1, O\left(j_{k}\right)=O\left(j_{k}^{\prime}\right)$, hence, to conclude, it is enough to show $o_{\rho}=o_{\rho^{\prime}}$, but this follows from Assumption 2 since we know that, for all $k \in 1 . . n, R\left(j_{k}\right)=R\left(j_{k}^{\prime}\right)$.

Proof of Lemma 7.2. Thanks to Theorem 5.1, we proceed by induction on the derivation of $c \Rightarrow$ $\langle r, o\rangle$.

Base If $c=r$, then it cannot diverge because there is no divergence propagation rule having a result in the conclusion.

Induction If $c \notin R$, then $c \Rightarrow\langle r, o\rangle$ is derived by a rule $\rho=\operatorname{rule}\left(j_{1} \ldots j_{n}, j_{n+1}, c, o^{\prime}\right)$. Assume now that $\left\langle I_{\infty}, C\right\rangle \vdash c \Rightarrow\left\langle\infty, o_{\infty}\right\rangle$ for some $o_{\infty} \in O_{\infty}$, then we have applied a rule $\operatorname{div}\left(\rho^{\prime}, i, o_{\infty}^{\prime}\right)$ where $\rho^{\prime}=\operatorname{rule}\left(j_{1}^{\prime} \ldots j_{m}^{\prime}, j_{m+1}^{\prime}, c, o^{\prime \prime}\right)$ with $m=n$ by Assumption 2 We prove, by complete arithmetic induction, that, for all $k \in 1 . . i, C\left(j_{i}\right)=C\left(j_{i}^{\prime}\right)$. Let $k \in 1 . . i$, then, by induction hypothesis, we have, for all $h<k, C\left(j_{h}\right)=C\left(j_{h}^{\prime}\right)$, and, by Lemma 7.1, we get $R\left(j_{h}\right)=R\left(j_{h}^{\prime}\right)$. Thus, by Assumption 2 , we get $C\left(j_{k}\right)=C\left(j_{k}^{\prime}\right)$.
In particular we have $C\left(j_{i}\right)=C\left(j_{i}^{\prime}\right)$ and, by hypothesis, we have $\left\langle I_{\infty}, C\right\rangle \vdash C\left(j_{i}^{\prime}\right) \Rightarrow\left\langle\infty, o_{\infty}^{\prime}\right\rangle$, which is not possible by induction hypothesis, since $\left\langle I_{\infty}, C\right\rangle \vdash j_{i}$.

Proof of Lemma 7.3. It immediately follows from LemmaB.1 and Theorem 5.1
Proof of Lemma 7.4 By induction on the number of steps, using Lemma 7.3
Proof of Lemma 7.5 We reason by induction on rules.
Base Axioms have conclusion $r \Rightarrow\langle r, \mathrm{u}\rangle$, and $r \rightsquigarrow\langle r, \mathrm{u}\rangle$ trivially holds since $r \xrightarrow{\varepsilon}{ }^{\star} r$ and $\operatorname{it}(\varepsilon)=\mathrm{u}$.
Induction Given a rule rule $\left(j_{1} \ldots j_{n}, j_{n+1}, c, o\right)$ we assume that for all $i \in 1 . . n+1$ we have $C\left(j_{i}\right) \rightsquigarrow\left\langle R\left(j_{i}\right), O\left(j_{i}\right)\right\rangle$, then the thesis follows from an iteration of Condition 2

D. Small-step rules of the examples

In this section we report the axioms of the small-step relation of the examples in Sect. 6 The definition of evaluation contexts is pretty standard, following the early detection of stuck terms as explained in Sect. 3, hence we omit it, as well as the rule for contextual closure, since it is again standard.

I/O events

$$
((\lambda x . e) v ; \sigma) \xrightarrow{\varepsilon}(e[v / x] ; \sigma) \quad(\text { out } v ; \sigma) \xrightarrow{\text { out } v}(v ; \sigma) \quad(\text { in } ; v: \sigma) \xrightarrow{\text { in } v}(v ; \sigma)
$$

I/O costs

$$
((\lambda x . e) v ; \sigma) \xrightarrow{0}(e[v / x] ; \sigma) \quad(\text { out } v ; \sigma) \xrightarrow{c_{\text {out }}(v)}(v ; \sigma) \quad(\text { in } ; v: \sigma) \xrightarrow{c_{\text {in }}(v)}(v ; \sigma)
$$

Executed branches

$$
(\lambda x . e) v \stackrel{\emptyset}{\rightarrow} e[v / x] \quad \text { true } ?_{a} e_{1}: e_{2} \xrightarrow{\{a . t r u e\}} e_{1} \quad \text { false } ?_{a} e_{1}: e_{2} \xrightarrow{\{a . f a l s e\}} e_{2}
$$

Heap size

$((\lambda x . e) v ; \mathcal{H}) \xrightarrow{|\mathcal{H}|}(e[v / x] ; \mathcal{H})$
$($ ref $v ; \mathcal{H}) \xrightarrow{|\mathcal{H}|+1}(\iota ; \mathcal{H} \uplus\{\iota \mapsto v\}) \quad($ free $\iota ; \mathcal{H} \uplus\{\iota \mapsto v\}) \xrightarrow{|\mathcal{H}|}(v ; \mathcal{H})$
$(!\iota ; \mathcal{H} \uplus\{\iota \mapsto v\}) \xrightarrow{|\mathcal{H}|+1}(v ; \mathcal{H} \uplus\{\iota \mapsto v\}) \quad\left(\iota=v ; \mathcal{H} \uplus\left\{\iota \mapsto v^{\prime}\right\}\right) \xrightarrow{|\mathcal{H}|+1}(v ; \mathcal{H} \uplus\{\iota \mapsto v\})$

[^0]: Email addresses: davide. ancona@unige.it (Davide Ancona), francesco.dagnino@dibris.unige.it (Francesco Dagnino), jrot@cs.ru.nl (Jurriaan Rot), elena.zucca@unige.it (Elena Zucca)

[^1]: ${ }^{1}$ Under the common assumption that sets of premises are finite, otherwise we should say a well-founded tree, that is, a tree with no infinite paths.

[^2]: ${ }^{2}$ Assuming an order on premises is transparent with respect to the finite semantics, but relevant for the construction, see Sect. 7.3 for a detailed discussion.
 ${ }^{3}$ Here and in the following examples we add to the proof tree some comments (with a grey background) showing an equivalent expression, to help the reader.
 ${ }^{4}$ More precisely, finitely generated by elementary observations, as defined in Def. 4.3

[^3]: ${ }^{5}$ For other nodes the condition is true since they have a finite proof tree using the rules.
 ${ }^{6}$ Here we simplify a little; in the construction in Sect. 5 we assume a distinguished last premise called continuation, which is not kept in the corule.

[^4]: ${ }^{7}$ The order <: $\subseteq M^{\omega} \times M^{\omega}$ is defined by: for $\sigma=\left(x_{i}\right)_{i \in \mathbb{N}}$ and $\tau=\left(y_{i}\right)_{i \in \mathbb{N}}, \sigma<: \tau$ iff there exists a strictly increasing sequence $\left(k_{i}\right)_{i \in \mathbb{N}}$ with $k_{0}=0$ such that $x_{i}=y_{k_{i}} * \cdots * y_{k_{i+1}-1}$.

[^5]: ${ }^{8}$ The term continuation, even though overloaded, is chosen to suggest that, after evaluating dependencies (subterms), some actual computation takes place leading to a new term, from which the computation continues, as in a computational step in the small-step style.

[^6]: ${ }^{9}$ As can be proved by showing that the equivalence conditions of Sect. 7.3 hold.

[^7]: ${ }^{10}$ With the simplifying assumption that the size does not depend on the values in the heap.
 ${ }^{11}$ Produced by diverging programs allocating infinite references, without deallocating them.

[^8]: ${ }^{12}$ That is, the largest relation such that, if $c \xrightarrow{\sigma}{ }^{\omega}$, there are o, σ^{\prime} and c^{\prime} s.t. $\sigma=o: \sigma^{\prime}, c \xrightarrow{o} c^{\prime}$ and $c^{\prime} \xrightarrow{\sigma}$.

[^9]: ${ }^{13}$ That is, its label "can be seen as first part" of the observation in the big-step judgment.

[^10]: ${ }^{14}$ This rule can be either $\operatorname{div}\left(\rho^{\prime}, i, o_{\infty}^{\prime}\right)$, or $\operatorname{co}-m u l\left(\rho^{\prime}, o_{\infty}^{\prime}\right)$, or ρ^{\prime} itself.
 ${ }^{15}$ More precisely by induction on n.

[^11]: ${ }^{16}$ Note that this is needed only if some u_{k} is not empty, otherwise $\rho=\rho^{\prime}$ and $c=c^{\prime}$.

