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Abstract Modifying gravity at large distances by means
of a massive graviton may explain the observed acceler-
ation of the Universe without Dark Energy. The standard
paradigm for Massive Gravity is the Fierz–Pauli theory,
which, nonetheless, displays well known flaws in its mass-
less limit. The most serious one is represented by the vDVZ
discontinuity, which consists in a disagreement between the
massless limit of the Fierz–Pauli theory and General Rela-
tivity. Our approach is based on a field-theoretical treatment
of Massive Gravity: General Relativity, in the weak field
approximation, is treated as a gauge theory of a symmetric
rank-2 tensor field. This leads us to propose an alternative the-
ory of linearized Massive Gravity, describing five degrees of
freedom of the graviton, with a good massless limit, without
vDVZ discontinuity, and depending on one mass parameter
only, in agreement with the Fierz–Pauli theory.

1 Introduction

Motivations

It is an observational fact that the Universe is expanding
at an accelerated rate [1,2]. Within the theory of General
Relativity (GR), the cosmological constant � explains this
phenomenon. In a picture of the Universe seen as a perfect
fluid, the cosmological constant gives rise to an accelerated
expansion by acting as a constant energy density (called Dark
Energy) ρ ∼ �M2

P providing a negative pressure. A fine
tuning of the constant � enables us to match the expansion
predicted by GR to the one which is observed. The esti-
mate from observations is �

M2
P

∼ 10−65 [3], where MP is

the Planck mass, while the quantum field theoretical predic-
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tion on the cosmological constant seen as the vacuum energy
density gives �

M2
P

∼ 6 × 1054. Unfortunately, these two esti-

mates disagree by about 120 orders of magnitude. This huge
tension is known as the cosmological constant problem [4],
which motivates alternative descriptions for Dark Energy,
with the request that any cosmological model should repro-
duce an Universe which, at our epoch, is almost perfectly
flat and filled by matter and DE in the ratio of about 3/7,
where the DE is effectively approximated by a constant [5–
10]. Modifying gravity at large distances by means of a mas-
sive graviton is a possible solution to the cosmological con-
stant problem [11]. In fact, the Yukawa potential for a mas-
sive field at large distances goes like ∝ 1

r e
−αmr , where m

is the mass of the field and α a dimensional constant. At
scales comparable to 1

αm , the exponential factor suppresses
the potential and the strength of interactions as well. This is
the reason why long-range forces are associated with mass-
less bosons and short-range forces with massive bosons. By
means of a Yukawa-like potential, the gravitational effect of
the vacuum energy density is exponentially suppressed at
large scales, thus explaining the disagreement between the
quantum field theory calculation and the observed cosmo-
logical value. Clearly, this exponential suppression of long-
range gravitational interactions is constrained by experimen-
tal evidence and, consequently, the mass of the graviton is
subject to restrictive upper limits. Another way of under-
standing this point is to remember that a mass acts as a
momentum space cutoff of interactions, effectively damp-
ing the effect of low frequency sources. The vacuum energy
density can be considered constant, therefore its contribu-
tion to the expansion of the Universe is greatly reduced by
the introduction of a mass for the graviton, again confirming
that in a picture where the graviton is massive the cosmolog-
ical constant problem might be fixed by a suitable graviton
mass. Theories in which the graviton is massive are referred
to as Massive Gravity (MG) theories. We nonetheless remark
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that the introduction of a mass for the graviton as a potential
solution of the cosmological constant problem was a hope
more than a decade ago, but early experience with nonlinear
MG (see, for example [12]) showed that this expectation is
not realized in the nonlinear theory where a cosmological
constant bends spacetime in the same way as in GR. While
a large vacuum energy can be canceled by a MG contribu-
tion, this still requires fine tuning and does not amount to
a degravitation mechanism.1 In some sense MG is a sub-
stantial modification of GR, even if the mass of the graviton
is extremely close to zero. In fact, when adding a mass, the
two degrees of freedom (DOF) carried by the massless boson
become 2S + 1 massive DOF. For the graviton, which is the
spin S = 2 representation of the Poincaré group, the two
massless DOF become five massive ones.

Phenomenological limits

As previously said, long range forces are usually carried by
massless bosons because the Yukawa exponential factor lim-
its the range of interactions mediated by massive particles.
Nevertheless, choosing a sufficiently small value of the gravi-
ton mass, the interactions at scales of the observable Uni-
verse remain essentially identical to those of ordinary gravity,
while only interactions at greater scales are affected. Indeed,
the observed accelerated rate of the Universe gives an upper
limit to the mass of the graviton, which in [13] is shown to
be of order 10−34 eV

c2 , roughly an order of magnitude smaller
than the Hubble parameter at our epoch. With such a limit,
for interactions at distances much smaller than the radius
of the observable Universe (which is estimated to be about
46.6×109 ly [14]), the Yukawa exponential drops to one, and
the classical Newton potential ∝ 1

r is recovered, as desired.
Still, this cosmological upper limit becomes irrelevant when
the mass is acquired through the condensation of some addi-
tional scalar field (see [13]). Another constraint on the mass
of the graviton was recently obtained by the LIGO-Virgo col-
laboration through the analysis of binary black holes merger
signals, measuring the phase shift between components of
different frequencies of the gravitational waves detected by
the interferometers [15]. In this way, the upper limit for the
mass of the graviton is estimated to be 4.7×10−23 eV

c2 , which
is several orders of magnitude higher than the limit derived
in [13] by cosmological considerations.

State of the art

In 1939 Fierz and Pauli (FP) proposed a relativistic theory for
a massive particle with arbitrary spin f , described by a sym-
metric rank- f tensor field [16]. They showed that “in the par-
ticular case of spin two, rest-mass zero, the equations agree

1 We thank the referee for this remark.

in the force-free case with Einstein’s equations for gravita-
tional waves in GR in first approximation; the correspond-
ing group of transformations arises from the infinitesimal
coordinate transformations”. This is what is known as the FP
theory, which is considered as the standard paradigm for Lin-
earized MG (LMG). Much later, it has been realized by van
Dam, Veltman and Zakharov [17,18] that the massless limit
of the FP theory exhibits a discontinuity with GR, known
as vDVZ discontinuity. In particular, in [19] it is shown that
the interaction of light with a massive body, like a star for
instance, is 25% smaller in the massless limit of the FP theory
than in GR. Consequently, the angle of deviation of light is
also different by 25% in the two theories, a difference which
can be observed by means of the time delay in the gravita-
tional lensing phenomenon. The problems of the FP theory at
small scales can be solved by the Vainshtein mechanism [20],
which nonetheless requires a nonlinear modification of the FP
theory. In principle, this measurable disagreement between
GR and the FP theory of LMG would allow us to distinguish
between a strictly vanishing mass and a very small one. Such
a tension is crucial, since GR has been extensively tested and
as a consequence we might rule out the FP theory as a the-
ory of LMG. It was also pointed out in [21] that in order for
Linearized Gravity (LG) to describe a pure spin two system,
it is necessary to use a particular FP mass term, referred to as
the FP tuning. Otherwise, there will be admixtures of lower
spin, in general with negative-energy, called Boulware–Deser
ghost. Moreover, Boulware and Deser argued that the ghost
will reappear if nonlinear extension of LG are considered.
Some possibilities to circumvent these problems have been
proposed in [22–24]. A detailed review on MG can be found
in [25].

Strategy

The approach adopted in this paper is based on a field-
theoretical treatment of LG. We consider LG as a gauge
theory of a symmetric rank-2 tensor field, the gauge symme-
try being the infinitesimal diffeomorphism invariance [26].
Before adding a mass term to the action, which breaks the
gauge symmetry, the massless theory should be well defined,
in the sense that a well defined partition function must exist.
In gauge field theory this is achieved by gauge fixing the
action. This procedure (gauge fixing the massless action first,
adding a breaking mass term after) leads to a gauge theory of
LMG describing five DOF for the massive graviton, with a
good massless limit and without the vDVZ discontinuity. In
the FP theory, instead, the mass term is added directly to the
invariant action and effectively plays the double and unnatu-
ral role of both mass term and gauge fixing. Basically, this is
the reason why the FP theory displays an ill-defined massless
limit, which shows itself in a divergent propagator and, phys-
ically, in the vDVZ discontinuity with GR. We stress that any
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theory of LMG should display a good massless limit since
the phenomenological limits on the mass of the graviton are
such that the mass term must be seen as a small perturba-
tion of massless LG and, equivalently, as a small breaking of
diffeomorphism invariance.

Summary

This paper is organized as follows: in Sect. 2 the gauge fixed
massive theory is presented. We also review the FP theory
and the problems related to its massless limit which motivate
this work, and we remark that, curiously, the original 1939
paper by Fierz and Pauli does not exactly describe what is
generally known as the FP theory. In Sect. 3 we show, in a
gauge independent way, that the propagating DOF of the ten
components of the rank-2 symmetric tensor describing the
massive graviton are indeed five, and depend on one mass
parameter only, in agreement with the FP theory. In Sect. 4
we compute the propagator of the theory, we show that its
massless limit is regular and that the same observable which
is used to unveil the vDVZ discontinuity presents an unique
pole in the same mass parameter which characterizes the five
DOF of the theory. In Sect. 5 we show the absence of the
vDVZ discontinuity, for any gauge choice. Our results are
summarized and discussed in the concluding Sect. 6.

List of acronyms: DOF: Degree(s) of Freedom; EOM:
Equation(s) of Motion; FP: Fierz–Pauli; GR: General Rel-
ativity; LG: Linearized Gravity; LMG: Linearized Massive
Gravity; MG: Massive Gravity; vDVZ: van Dam, Veltman
and Zacharov.

2 The massive action

The weak field expansion of GR around the flat Minkowskian
background ημν = diag(−1, 1, 1, 1) is given by the LG
action

SLG [h] =
∫

d4x

[
1

2
h∂2h − hμν∂

μ∂νh

−1

2
hμν∂2hμν + hμν∂ν∂

ρhμρ

]
, (2.1)

where hμν(x) is a symmetric rank-2 tensor field representing
the graviton, and h(x) ≡ ημνhμν(x) is its trace. The action
SLG [h] (2.1) is the most general functional invariant under
the infinitesimal diffeomorphism transformation

δhμν(x) = ∂μξν(x) + ∂νξμ(x), (2.2)

where ξμ(x) is a local vector parameter. The transformation
(2.2) represents the gauge symmetry of the action SLG (2.1).

2.1 The Fierz–Pauli theory

The most general mass term which can be added to the
invariant action SLG (2.1), respecting Lorentz invariance and
power counting, is

Sm[h;m2
1,m

2
2] = 1

2

∫
d4x (m2

1hμνh
μν + m2

2h
2), (2.3)

where m2
1 and m2

2 are massive parameters. The presence of
a mass term breaks the diffeomorphism invariance (2.2), as
usual in any gauge field theory. It can be shown (see for
instance [25]) that the action

S = SLG + Sm . (2.4)

describes the propagation of five DOF only if

m2
1 + m2

2 = 0, (2.5)

otherwise a sixth ghost mode with negative energy appears
[21], and the theory does not describe a massive graviton.
The choice (2.5) is generally referred to as FP tuning, and
the FP theory is defined by the action

SFP [h;m2
1] ≡ SLG[h] + Sm[h;m2

1,−m2
1]. (2.6)

Following [11], we now show that the theory described by the
action SFP (2.6) does indeed display five DOF. The Equa-
tions of Motion (EOM) obtained from (2.6) read

δSFP

δhμν
= ∂2hμν − ∂α∂μh

α
ν − ∂α∂νh

α
μ + ημν∂α∂βh

αβ

+∂μ∂νh − ημν∂
2h − m2

1(hμν − ημνh) = 0, (2.7)

which, saturated with ∂μ, yield the constraint

∂μhμν − ∂νh = 0. (2.8)

Plugging (2.8) into (2.7) we get

∂2hμν − ∂μ∂νh − m2
1(hμν − ημνh) = 0. (2.9)

Saturating (2.9) with ημν we find

h = 0, (2.10)

which, together with (2.8), implies

∂μhμν = 0. (2.11)

Therefore, the EOM (2.7) imply the following set of equa-
tions

(∂2 − m2
1)hμν(x) = 0 (2.12)

∂μhμν(x) = 0 (2.13)

h(x) = 0. (2.14)

Equation (2.12) is the Klein–Gordon equation for the field
hμν(x), while (2.13) and (2.14) represent five constraints
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(transversality and tracelessness) which reduce the ten inde-
pendent components of hμν to five. These five components
carry the five massive DOF of the graviton.

2.2 Problems with the Fierz–Pauli theory

The propagator of the FP theory (2.6) is

GFP
μν,αβ(p) = 2

p2 + m2
1

×
[

1

2
(PμαPνβ + PναPμβ) − 1

3
Pμν Pαβ

]
,

(2.15)

where Pμν is the transverse massive projector defined as

Pμν = ημν + pμ pν

m2
1

. (2.16)

A crucial remark is that the propagator (2.15) exists only
thanks to the presence of the mass term (2.3) on the FP
point (2.5). As a consequence of this fact, it is apparent
from (2.16) that the FP theory has a divergent massless limit.
Moreover, the massless limit of the FP theory is flawed by
the vDVZ discontinuity [17,18], which basically consists in
the fact that the correlator involving two energy-momentum
tensors, computed in the FP theory in the limit m2

1 → 0,
does not match the GR prediction. We sketch here the
proof (for details see [11,19]). The gravitational interaction
between two non relativistic energy-momentum tensors T (1)

μν

and T (2)
μν (which are conserved, i.e. pν T̃ (1)

μν = pν T̃ (2)
μν = 0)

is described by the introduction in the action of an interaction
term of the type

Sint = λ

∫
d4x hμνT

μν , (2.17)

where Tμν denotes a generic energy-momentum tensor, cou-
pled to hμν(x) through a constant λ, which we call λLG and
λFP for LG and FP theory, respectively. Therefore, the inter-
action strength between T (1)

μν and T (2)
μν can be computed by

contraction with the propagator of the graviton. In LG, the
propagator Gμν,αβ

LG is obtained from the LG action (2.1) after

a gauge fixing, as done in [11]. The FP propagator Gμν,αβ
FP ,

on the other hand, is given by (2.15). In the non relativis-
tic limit, only the 00-components of the energy-momentum
tensors are non negligible. Two cases are considered: in the
first, T (1)

μν and T (2)
μν are associated with massive objects and

therefore have non vanishing trace. In the second case, T (1)
μν

still has a non vanishing trace whereas T (2)
μν is traceless, rep-

resenting, for instance, electromagnetic radiation (e.g. light).
Concerning the first case, the interaction strength in LG is

λ2
LG T̃ (1)

μν G
μν,αβ
LG T̃ (2)

αβ = λ2
LG T̃ (1)

00 T̃ (2)
00

1

p2 , (2.18)

while, in the second, i.e. when T (2)
μν is traceless, we have

λ2
LG T̃ (1)

μν G
μν,αβ
LG T̃ (2)

αβ = λ2
LG T̃ (1)

00 T̃ (2)
00

2

p2 . (2.19)

On the other hand, the interaction strengths corresponding to
(2.18) and (2.19) obtained using the FP propagator (2.15), in
the massless limit m1 → 0 are, respectively

λ2
FP T̃ (1)

μν G
μν,αβ
FP T̃ (2)

αβ = 4

3
λ2
FP T̃ (1)

00 T̃ (2)
00

1

p2 (2.20)

and

λ2
FP T̃ (1)

μν G
μν,αβ
FP T̃ (2)

αβ = λ2
FP T̃ (1)

00 T̃ (2)
00

2

p2 . (2.21)

The vDVZ discontinuity arises from the observation that it
is not possible to choose an unique FP coupling λFP which
matches both (2.18) with (2.20) and (2.19) with (2.21): the
value λ2

FP = 3
4λ2

LG matches the first pair but not the second.
The interaction strength between a massive body and an elec-
tromagnetic wave in the massless limit of the FP theory turns
out to be 3

4 of the LG prediction, hence the discontinuity.

2.3 Back to the origins

In [27] Fierz studied the general relativistic theory of force-
free particles with any (integer or half-integer) spin f ,
described by symmetric “world” tensors Aik...l(x)2. The
starting point in [27]. The starting point in [27] is the request
that the fields Aik...l(x) satisfy the massive wave equation
(which Fierz called of the “Schrödinger–Gordon type”)

∂2Aik...l = κ2Aik...l , (2.22)

where κ is a constant with the dimension of the inverse of
a length (to which corresponds the mass m = h̄κ

c ). In addi-
tion, the fields Aik...l(x) are asked to satisfy the additional
constraints (called “secondary conditions”)

Aii...l = 0 (2.23)

∂i Aik...l = 0. (2.24)

As explained in [27], the secondary conditions (2.23) and
(2.24) are introduced in order to ensure that only parti-
cles with the spin f and not also those of smaller spins
could be assigned to the tensor field, and that if the field
Aik...l(x) describes a particle with spin f satisfying the mas-
sive “Schrödinger–Gordon” wave equation (2.22), then the
number of linearly independent plane waves is 2 f +1, which
differ by the orientation of the spin. Shortly after, in [16] Fierz
and Pauli applied the general formalism described in [27] to

2 In this subsection we respectfully maintain the notation used in the
original paper by Fierz and Pauli in 1939. In particular, the indices (i, j)
refer to spacetime, contrarily to the rest of the paper, where greek letters
are used.

123



Eur. Phys. J. C           (2021) 81:171 Page 5 of 11   171 

the particular case of spin f = 2, simply taken as an exam-
ple. Hence, they looked for the theory of a symmetric tensor
field Ai j (x) satisfying the massive wave equation

∂2Ai j = κ2Ai j , (2.25)

together with the secondary conditions

Aii = 0 (2.26)

∂i Ai j = 0. (2.27)

Imposing the condition of tracelessness (2.26) by hand, they
derived the above Eqs. (2.25) and (2.27) from the EOM of
the following Lagrangian

Lorig = κ2Ai j A
i j + ∂l Ai j∂

l Ai j + a1∂i A
ik∂ j A

j
k

+a2κ
2C2 + a3∂iC∂ iC + ∂i A

i j∂ jC, (2.28)

where an additional scalar field C(x) is introduced, and
ai , i = 1, 2, 3 are dimensionless constant parameters. They
showed that the desired results (2.25) and (2.27) are obtained
if

a1 = −2; (2.29)

2a3 = a2 = −3

4
. (2.30)

In (2.28) the introduction of the scalar field C(x) is an arti-
fice which enables one to derive the transversality condition
(2.27). In a more modern language, we would call this scalar
field a Nakanishi-Lautrup Lagrange multiplier [28,29] intro-
duced to implement the gauge condition (2.27). It is therefore
interesting (and surprising !) to remark that, in the original
article [16], Fierz and Pauli wrote an action for the graviton
which included both a mass term and a gauge fixing term,
implemented by means of the Lagrange multiplier C(x). It
appears that the problem of treating the mass term as a gauge
fixing was absent in the original formulation. Moreover, the
massless sector of the lagrangian Lorig (2.28) does not coin-
cide with the LG action SLG (2.1), since the trace Aii (x)
(a.k.a. h(x)) is set to zero a priori. As a consequence, the
only mass parameter appearing in (2.28) is the one coupled
to Ai j Ai j (a.k.a. hμνhμν), which therefore corresponds to
m2

1 in (2.3). It seems that, despite the fact that the original
FP approach to LMG was realized in term of a gauge fixed
action, later developments left the gauge fixing term behind,
leaving room for the divergent massless limit and for the
vDVZ discontinuity.

In this paper we adopt a conservative policy, recovering
the original FP approach to LMG, with a few important dif-
ferences.

2.4 Adding masses to the gauge fixed action

One of the reasons of the divergent massless limit of the FP
theory is that the mass term Sm (2.3) serves as gauge fixing as
well, in the sense that its presence is necessary to define the
propagator (2.15), as shown in Sect. 2.2. The standard way to
proceed in gauge field theory, instead, is first to gauge fix the
invariant action, in order to have a well defined partition func-
tion Z [J ]. This latter generates all the correlation functions
of the theory, starting from the 2-points green function, a.k.a.
the propagator. Only after having obtained that, the fields of
the theory can be given masses through various procedures.
In LMG this is achieved by adding to the gauge fixed action
the mass term Sm (2.3) [30]. So, let us first proceed by gauge
fixing the invariant action SLG[h] (2.1). The gauge field is
represented by a rank-2 symmetric tensor hμν(x). Hence, the
most general covariant gauge fixing is

∂μh
μν + κ∂νh = 0, (2.31)

which, by means of the usual Faddeev-Popov (�) expo-
nentiation [31], yields the gauge fixing action term

Sg f [h; k, κ] = − 1

2k

∫
d4x

[
∂μh

μν + κ∂νh
]2

. (2.32)

Notice that the gauge fixing term (2.32) depends on two
gauge parameters k and κ , which play different roles. In
fact, k determines how the gauge fixing condition (2.31) is
enforced. It can be seen as a kind of primary gauge fixing
parameter, which corresponds to the standard gauge fixing
parameter of Yang-Mills theory: k = 0 corresponds to the
Landau gauge, for instance. On the other hand, the parameter
κ fine-tunes the class of gauge fixing identified by k. It plays
a secondary role. As an example, the harmonic, or Lorenz,
gauge is obtained with the choice κ = −1/2. Hence, it makes
sense to talk about harmonic-Landau gauge, for instance,
meaning by that the choice k = 0 and κ = −1/2. Once the
action SLG[h] (2.1) has been gauge fixed by the gauge fix-
ing term (2.32), we can add the mass term (2.3), so that our
starting point for a theory of LMG is given by the action

SLMG = SLG + Sg f + Sm . (2.33)

The action (2.33) is the starting, rather than the arrival, point,
because the road ahead of us is still long. We have indeed to
face the problems which affect the FP theory: in particular
the massless limit and the absence of the vDVZ discontinuity.
But, first, we have to deal with the main feature of LMG: the
five DOF which must characterize a spin-2 massive particle.
Our comparison is the FP theory, which reaches this goal with
one mass parameter only, because of the FP tuning (2.5). The
action (2.33), instead, depends on two masses, for now. This
will be done in the next section.
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3 Degrees of freedom

A realistic theory of MG needs five propagating massive
DOF. The easiest way to see this is to notice that the mas-
sive graviton is a spin S = 2 particle, which displays 2S + 1
independent components. Hence, given that the graviton is
described by a symmetric rank-2 tensor hμν(x), only five out
of its ten components correspond to physical DOF. Therefore,
a necessary condition for a gauge theory of a massive rank-
2 symmetric tensor to be promoted to a theory of LMG is
to recover the five linear equations represented by the con-
straints of tracelessness (2.26) (or (2.14)) and of transver-
sality (2.27) (or (2.13)), in order to lower the number of
independent components of hμν(x) from ten to five. The
realization of this necessary condition, in the framework of a
well defined gauge field theory of a symmetric rank-2 tensor,
is the main aim of this paper. To reach our goal, we shall now
consider the EOM of the action (2.33) and we shall manage
to restrict the mass parameters m2

1 and m2
2 to the cases in

which we can find enough constraints to ensure the propa-
gation of five massive DOF. Moreover, in order to deal with
a physically consistent theory, we must also require that the
propagating DOF do not depend on the gauge parameters k
and κ , allowing instead, of course, a dependence on the mass
parameters m2

1 and m2
2.

The action SLMG (2.33) in momentum space reads:

SLMG =
∫

d4p h̃μν �μν,αβ h̃αβ, (3.1)

where the kinetic operator � is

�μν,αβ = 1

2

[
m2

2 −
(

1 + κ2

k

)
p2

]
ημνηαβ

+1

2

(
1 − κ

k

) (
ημνeαβ + ηαβeμν

)
p2

+1

2
(p2 + m2

1)Iμν,αβ − 1

4

(
1 + 1

2k

)

× (
eμαηνβ + eναημβ + eμβηνα + eνβημα

)
p2,

(3.2)

I is the rank-4 tensor identity

Iμν,ρσ = 1

2
(ημρηνσ + ημσ ηνρ) (3.3)

and eμν is the transverse projector

eμν = pμ pν

p2 . (3.4)

From the action SLMG (3.1) we get the momentum space
EOM

δS

δh̃μν

= −
(

1 + κ2

k

)
ημν p2h̃

+
(

1 − κ

k

)
pμ pν h̃ +

(
1 − κ

k

)
ημν pα pβ h̃αβ

+ p2h̃μν −
(

1 + 1

2k

) (
pμ pα h̃ν

α + pν pα h̃μ
α

)

+ m2
1 h̃

μν + m2
2 ημν h̃ = 0. (3.5)

In order to study the propagating DOF, we saturate the EOM
(3.5) with ημν and eμν (3.4), to get

ημν :
[
(m2

1 + 4m2
2) −

(
2 + κ

k
(1 + 4κ)

)
p2

]
h̃

+
(

2 − 1

k
(1 + 4κ)

)
p2 eμν h̃

μν = 0 (3.6)

eμν :
[
m2

2 − κ

k
(1 + κ)p2

]
h̃

+
[
m2

1 − 1

k
(1 + κ)p2

]
eμν h̃

μν = 0. (3.7)

From these two equations we deduce that, if m2
1 �= 0 (we

will consider the case m2
1 = 0 later), the only solution is

⎧⎪⎨
⎪⎩
h̃ = 0

eμν h̃μν = 0,

(3.8)

(3.9)

since (3.6) and (3.7) form a homogeneous system of two
linear equations which has a non trivial solution only if the
determinant of the coefficients matrix vanishes. For m2

1 �= 0
this determinant cannot vanish, independently of the choice
of κ , k and m2

2. Substituting (3.8) and (3.9) into the EOM
(3.5) we get

(p2 + m2
1)h̃μν −

(
1 + 1

2k

)

×
(
pμ p

α h̃να + pν p
α h̃μα

)
= 0, (3.10)

which, saturated with pν and using again (3.9), yields
(
m2

1 − 1

2k
p2

)
pν h̃μν = 0. (3.11)

The above equation is satisfied if

p2 = 2km2
1 (3.12)

or

pν h̃μν = 0, (3.13)

but the requirement that the physical masses should not
depend on the gauge parameters, implies that the only allow-
able solution of (3.11) is (3.13). This, together with (3.8),
gives the five constraints
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⎧⎪⎨
⎪⎩
h̃ = 0

pμh̃μν = 0,

(3.14)

(3.15)

which ensure the propagation of five DOF. Conditions (3.14)
and (3.15) inserted into the EOM (3.5) give the massive prop-
agation of hμν

(p2 + m2
1)h̃μν = 0, (3.16)

which, interestingly, does not depend on the mass param-
eter m2. If, on the other hand, m2

1 = 0, the two Eqs. (3.6) and
(3.7) have non trivial solutions only if

κ = −1 ; k = −3

2
, (3.17)

which, plugged back into (3.6) and (3.7) with m2
1 = 0, yield

h = 0. (3.18)

Substitutingm2
1 = 0 andh = 0 in the EOM (3.5) we notice

that all the dependence on the mass parameters vanishes. The
resulting EOM would therefore describe the propagation of
a massless field or, alternatively, the propagation of a field
with a mass dependent on the gauge parameters k and κ .
Both cases do not represent acceptable descriptions of a LMG
theory, therefore we conclude that it must be

m2
1 �= 0. (3.19)

To summarize, we showed that the gauge fixed action
SLMG (2.33), with the mass term Sm (2.3), displays five DOF,
provided that m2

1 �= 0, for any value of m2
2 and for arbitrary

gauge parameters k and κ .

4 Propagators

The momentum space propagator Gμν,αβ(p) is defined by
the condition

�μν
αβGαβ,ρσ = Iμν,ρσ , (4.1)

where �μν,αβ(p) is the kinetic operator introduced in (3.2)
and Iμν,ρσ is the rank-4 tensor identity (3.3). In order to find
Gμν,αβ(p) it is convenient to introduce the rank-2 projectors
eμν (3.4) and

dμν ≡ ημν − eμν (4.2)

which are idempotent and orthogonal

eμλe
λ
μ = eμν, dμλd

λ
ν = dμν, eμλd

λ
ν = 0. (4.3)

With these rank-2 projectors we can construct a basis
formed by five rank-4 tensors which we collectively denote

Xμν,αβ ≡ (A, B,C, D, E)μν,αβ (4.4)

with the symmetry properties

Xμν,αβ = Xνμ,αβ = Xμν,βα = Xαβ,μν. (4.5)

In terms of the projectors eμν and dμν the operators Xμν,αβ

read

Aμν,αβ = dμνdαβ

3
(4.6)

Bμν,αβ = eμνeαβ (4.7)

Cμν,αβ = 1

2

(
dμαdνβ + dμβdνα − 2

3
dμνdαβ

)
(4.8)

Dμν,αβ = 1

2

(
dμαeνβ + dμβeνα + eμαdνβ + eμβdνα

)
(4.9)

Eμν,αβ = ημνηαβ

4
, (4.10)

and have the following properties:

• decomposition of the identity Iμν,αβ (3.3):

Aμν,αβ + Bμν,αβ + Cμν,αβ + Dμν,αβ = Iμν,αβ ; (4.11)

• idempotency :

X ρσ
μν Xρσ,αβ = Xμν,αβ ; (4.12)

• orthogonality of A, B, C and D :

Xμν,αβX
′αβ

ρσ = 0 if (X, X ′) �= E and X �= X ′ ;
(4.13)

• contractions with E :

Aμν,αβE
αβ

ρσ = dμνηρσ

4
(4.14)

Bμν,αβE
αβ

ρσ = eμνηρσ

4
(4.15)

Cμν,αβE
αβ

ρσ = Dμν,αβE
αβ

ρσ = 0 . (4.16)

The kinetic operator �μν,αβ(p) (3.2) can be written in
terms of the rank-4 projectors (4.6)–(4.10):

�μν,αβ = t Aμν,αβ + uBμν,αβ + vCμν,αβ + zDμν,αβ

+wEμν,αβ, (4.17)

where, after a lenghty but straightforward calculation, the
coefficients are given by

t =
(

3κ

2k
− 1

)
p2 + 1

2
m2

1 (4.18)

u = − 1

4k
(2κ + 1) p2 + 1

2
m2

1 (4.19)

v = 1

2
(p2 + m2

1) (4.20)

123



  171 Page 8 of 11 Eur. Phys. J. C           (2021) 81:171 

z = − 1

4k
p2 + 1

2
m2

1 (4.21)

w = −2κ

k
(1 + κ)p2 + 2m2

2. (4.22)

Similarly, we can expand the propagator Gμν,αβ(p) :

Gμν,αβ = t̂ Aμν,αβ + ûBμν,αβ + v̂Cμν,αβ

+ẑDμν,αβ + ŵEμν,αβ, (4.23)

where t̂ , û, v̂, ẑ and ŵ are functions of the momentum p and
depend on the gauge parameters k and κ appearing in Sg f
(2.32) and on the masses m2

1 and m2
2 of the mass term Sm

(2.3). Solving the defining equation (4.1), we find :

t̂ = 2(1 + κ)(1 + 4κ)p2 − 2k(m2
1 + 4m2

2)

DN(m1,m2, k, κ, p2)
(4.24)

û = 2
[
κ(1 + 4κ) + 2k

]
p2 − 2k(m2

1 + 4m2
2)

DN(m1,m2, k, κ, p2)
(4.25)

v̂ = 2

p2 + m2
1

(4.26)

ẑ = −4k

p2 − 2km2
1

(4.27)

ŵ = 8km2
2 − 8κ(1 + κ)p2

DN(m1,m2, k, κ, p2)
, (4.28)

where we used the shorthand notation for the denominator

DN(m1,m2, k, κ, p2) ≡ −2(1 + κ)2 p4

+
[
(1 + 2κ + 4κ2 + 2k)m2

1 + (3 + 2k)m2
2

]
p2

− 4km2
1m

2
2 − km4

1. (4.29)

The propagator (4.23) displays poles that depend on the
gauge parameters k and κ and might even be tachyonic. This
does not come as a surprise, given that the theory describes
the dynamics of a rank-2 symmetric tensor field, and the
pole structure of its propagator is more complicated than the
usual scalar, spinor or vector cases. Neither it should be seen
as a problem, since in the previous Section we proved that
only five of the ten components of hμν represent indepen-
dent DOF, which satisfy the massive wave equation of the
Klein–Gordon type (3.16) which depends on the mass m2

1
only, in agreement with the FP theory. Hence, looking at the
whole propagator is neither helpful nor correct in order to
identify the physical pole in this case, since we may allow
for non physical poles located in non physical sectors of the
propagator. Rather, what should be done in order to select
the physical pole, is to look to the observables related to the
propagator (4.23). An important example is the one already
considered in the analysis of the vDVZ discontinuity: the
scattering amplitude of light and a massive object, mediated
by the gravitational interaction, which is responsible for the

observed time delay in gravitational lensing. Formally, this
observable can be traced back to the more general interaction
amplitude of two conserved energy-momentum tensors T (1)

μν

and T (2)
μν , of which the one corresponding to light (which in

the following we choose to be T (2)
μν ) is traceless :

T̃ (1)
μν G

μν,αβ T̃ (2)
αβ . (4.30)

Substituting the propagator (4.23) into (4.30), we get

T̃ (1)
μν

(
t̂ Aμν,αβ + ûBμν,αβ + v̂Cμν,αβ

+ẑDμν,αβ + ŵEμν,αβ
)
T̃ (2)

αβ . (4.31)

The above expression contains contractions of the tensor
projectors (4.6)–(4.10) with T̃ (1)

μν and T̃ (2)
μν . These are greatly

simplified thanks to the fact that the energy-momentum ten-
sors are conserved: pν T̃ (1)

μν = pν T̃ (2)
μν = 0. In particular:

T̃ (1)
μν Aμν,αβ T̃ (2)

αβ = 1

3
T̃ (1)

μν ημνηαβ T̃ (2)
αβ (4.32)

T̃ (1)
μν Bμν,αβ T̃ (2)

αβ = 0 (4.33)

T̃ (1)
μν C

μν,αβ T̃ (2)
αβ

= 1

2
T̃ (1)

μν (ημαηνβ + ημβηνα − 2

3
ημνηαβ)T̃ (2)

αβ (4.34)

T̃ (1)
μν Dμν,αβ T̃ (2)

αβ = 0 (4.35)

T̃ (1)
μν Eμν,αβ T̃ (2)

αβ = 1

4
T̃ (1)

μν ημνηαβ T̃ (2)
αβ . (4.36)

Equations (4.32)–(4.36) can be further simplified by using
the fact that T̃ (2)

μν is traceless (ημν T̃ (2)
μν = 0), which means

that the only non-vanishing contraction left is

T̃ (1)
μν C

μν,αβ T̃ (2)
αβ = 1

2
T̃ (1)

μν (ημαηνβ + ημβηνα)T̃ (2)
αβ . (4.37)

Therefore the scattering amplitude (4.30) reduces to

T̃ (1)
μν

(
v̂ Iμν,αβ

)
T̃ (2)

αβ , (4.38)

according to which only the pole contained in the coefficient
v̂ (4.26) plays a physical role. Reassuringly, that pole is

p2 = −m2
1, (4.39)

which confirms that the theory describes a graviton with mass
m2

1, in agreement with the massive wave equation (3.16),
which was obtained by studying the EOM deriving from the
action SLMG (2.33), and also with the FP theory, (2.12).
Notice that the same argument may be repeated to show
that also the scattering amplitude between two radiation-like
objects, both described by conserved and traceless energy-
momentum tensors, isolates (4.39) as the unique physical
pole of the propagator (4.23).
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5 Absence of the vDVZ discontinuity

In Sect. 2.2 we reviewed the vDVZ discontinuity, which con-
cerns the mismatch between the gravitational interaction of
two energy-momentum tensors in the pure massless theory
described by the action SLG (2.1) and in the massless limit of
FP theory SFP (2.6). In [32] it has been shown that in a par-
ticular gauge (namely the k = − 1

2 , κ = − 1
2 harmonic one)

the theory described by the action SLMG (2.33) is free of the
vDVZ discontinuity. In this section we generalize the result
of [32] to all possible gauge choices, i.e. for every value of
the gauge parameters k and κ . With the propagator Gμν,αβ

(4.23) derived from the gauge fixed action SLMG (2.33),
hence for generic k and κ gauge parameters, we can compute
the interaction amplitudes between two non-relativistic con-
served energy-momentum tensors T (1)

μν and T (2)
μν and compare

them to the corresponding LG amplitudes, (2.18) and (2.19).
As explained in Sect. 2.2, the interaction of the graviton field
with an external energy-momentum tensor is obtained by
means of the interaction term Sint (2.17). To distinguish the
gauge fixed theory SLMG (2.33) from the LG and FP the-
ories, we denote its coupling constant with λLMG . Follow-
ing the steps described in [19], if neither T (1)

μν nor T (2)
μν are

traceless, which corresponds to the scattering between two
massive bodies, the resulting amplitude in the massless limit
(m2

1,m
2
2) → 0 of the theory is

λ2
LMG T̃ (1)

μν G
μν,αβ T̃ (2)

αβ = λ2
LMG T̃ (1)

00 T̃ (2)
00

1

p2 , (5.1)

whereas, if T (2)
μν is traceless, corresponding to the scattering

between light and a massive body, like in the gravitational
lensing, we have

λ2
LMG T̃ (1)

μν G
μν,αβ T̃ (2)

αβ = λ2
LMG T̃ (1)

00 T̃ (2)
00

2

p2 . (5.2)

It is straightforward to see that if we set

λLMG = λLG (5.3)

the LG amplitudes (2.18) and (2.19) exactly match (5.1) and
(5.2) respectively, which proves the absence of the vDVZ
discontinuity in a gauge independent way. We stress that,
although the massive propagator Gμν,αβ (4.23) depends on
the gauge parameters k and κ through the coefficients (4.24)–
(4.28), the massless limit of the interaction amplitudes (5.1)
and (5.2) is gauge independent and coincides with the LG
prediction. This is related to the fact that the massless limit
of the action SLMG (2.33) is the LG gauge fixed action

SLG + Sg f , (5.4)

where SLG and Sg f are given by (2.1) and (2.32), respec-
tively. Hence, in the massless limit, the propagators of the
two theories coincide. This is the basic reason of the absence

of the vDVZ discontinuity. In other words, the vDVZ dis-
continuity is a direct consequence of the structure of the FP
action, where the mass term Sm (2.3) is added directly to the
invariant action SLG (2.1), therefore acting effectively as a
gauge fixing term. Without the mass term, the invariant action
does not have a propagator. Therefore, the mass parameters,
which also play the role of gauge fixing parameters, can-
not be physical. In the massless limit, the FP theory is not
dynamical (i.e. does not have a propagator), and therefore
it is not surprising that a discontinuity arises. Throughout
this paper, we repeatedly claimed that the vDVZ disconti-
nuity may be related to the nature of the FP mass term as a
gauge fixing term. The massive gravity propagator in (2.15)
is not well defined in the zero mass limit due to the lack
of gauge fixing in the massless theory. However, the vDZV
discontinuity appears in the analysis of the propagator con-
tracted with energy-momentum tensors like in (4.30). This
quantity is gauge invariant in linearized GR (for conserved
sources). Hence one might expect that the ill defined terms
in the zero mass limit of massive FP propagator drop out of
equations like (4.30) which contribute to the vDVZ discon-
tinuity (this quantity indeed remains finite in the zero mass
limit). The apparent contradiction between this observation
and the explanation provided in this paper is explained by
observing that when we say that the mass term Sm (2.3) at
the FP point (2.5) has the role of a gauge fixing in the FP the-
ory, we are only referring to the fact that it enables us to invert
the quadratic part of the action. In fact, not all quadratic terms
which make it possible to find a propagator are also legiti-
mate gauge fixing terms. The gauge fixing procedure is much
more than this. Indeed, it consists in limiting the functional
integral in order to choose one representative for each gauge
orbit (modulo Gribov copies). This is realized through the
highly non trivial � trick. In the case of an abelian theory
such as linearized gravity, where the ghost sector decouples,
the � gauge fixing is realized by adding to the action the
square of a functional Fμ[hαβ ], where F must carry the same
number of Lorentz indices as the gauge parameter of the the-
ory, defined in our case in (2.2). Since the mass term cannot
be written as the square of any such functional, it follows
that Sm is not a true gauge fixing term and therefore no con-
tradiction arises when comparing the linearized GR and FP
propagators.

6 Summary of results and discussion

In this paper we presented a gauge field theory of a massive
symmetric tensor field describing a massive spin-2 particle.
We summarize here the main features which allow to interpret
this theory as an alternative to the FP theory of LMG.
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1. finite massless limit
The theory described by the action SLMG (2.33) yields
the propagator Gμν,αβ (4.23) which is regular in the limits
(m2

1,m
2
2) → 0 ;

2. five massive DOF
In Sect. 3 we showed that only five of the ten components
of the massive symmetric tensor hμν(x) actually represent
DOF, as required for a massive graviton . The remarkable
fact is that the mass associated with the propagation of
the five DOF is m2

1, while the value of m2
2 is irrelevant,

under this respect. Although obtained in a quite different
way, this result is in agreement with the FP theory, which
is characterized by one mass parameter only ;

3. gauge independence
In gauge field theory, any claim concerning physical prop-
erties should not depend on a particular gauge choice. In
our case, this requirement is met in the determination of
the physical DOF of the theory: none of the steps leading
to the five constraints represented by (3.14) and (3.15)
rely on particular values of the gauge parameters k and κ

;
4. continuity with LG

Any candidate theory for LMG must display a finite mass-
less limit, which implies a non divergent propagator, and,
in this limit, it should also provide physical predictions
in agreement with GR. Physically, LMG should represent
only a small correction of GR, therefore the mass term
(2.3) should be seen as a perturbation. In particular, the
effects of a mass of the graviton should become relevant
only at very large distances, while at smaller scales GR
predictions must be restored. As discussed in Sect. 2.2,
a serious flaw of the FP theory of LMG is the vDVZ
discontinuity [17,18]. This well known issue is fixed by
the Vainshtein mechanism [11,20,25], which recovers the
non linearities of GR in order to shield the effect of the
extra scalar DOF introduced by the Stückelberg formal-
ism [33] in the massless limit of the FP theory. Our gauge
fixed theory of LMG restores the continuity with GR in a
more natural way, without the introduction of additional
fields, cutoffs or non linearities of the theory. In [32] it
has been shown that in the particular (k = κ = − 1

2 ) har-
monic gauge, the theory described by the action SLMG

(2.33) does not display the vDVZ discontinuity. In Sect. 5
this result has been generalized to any gauge choice. The
fact that the gauge fixed massive theory described by the
action SLMG (2.33) is not affected by the vDVZ dis-
continuity with GR encourages to believe that the way
of approaching LMG presented in this paper is correct.
Moreover, although the absence of the vDVZ discontinu-
ity is a specific test and it does not prove in general that
every measurable quantity is continuous with GR, the way
the theory itself was constructed might imply this result.
In fact, the evaluation of any observable in quantum field

theory needs a gauge fixing in order to define a propaga-
tor, which is guaranteed by the � procedure, adopted in
this paper. The key feature of our approach is that the mas-
sive action SLMG (2.33) in the zero-mass limit becomes
exactly the � gauge fixed LG action, i.e. the one we
would have used to calculate the propagator and every
other quantity in massless LG as well. Therefore, while
it does not come as a surprise that the gravitational cou-
pling between non relativistic matter and light turns out
to be continuous with GR, we may also infer that every
other observable is, indeed, continuous with LG, in the
massless limit. Moreover, the striking difference between
the FP theory of LMG, where the vDVZ discontinuity is
present, and the massive � gauge fixed theory described
in this paper, where it is absent, gives evidence of the fact
that, as anticipated, the FP theory is not a sub-case of our
theory despite the fact that our approach contains the FP
tuning (2.5) ;

5. role of the mass parameters
We stress as a remarkable fact that, although by means of
a completely different approach, we recover here the main
result of the FP theory, i.e. that only the mass parameter
m2

1 associated to hμνhμν in the action Sm (2.3) appears in
the propagation of the physical DOF through the massive
wave equation (3.16), which is the starting request (2.25)
of the original FP theory [16]. Therefore, the mass of the
graviton should be identified by m2

1.
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