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Abstract: This paper presents the T-RexNet approach to detect small moving objects in videos by
using a deep neural network. T-RexNet combines the advantages of Single-Shot-Detectors with
a specific feature-extraction network, thus overcoming the known shortcomings of Single-Shot-
Detectors in detecting small objects. The deep convolutional neural network includes two parallel
paths: the first path processes both the original picture, in gray-scale format, and differences between
consecutive frames; in the second path, differences between a set of three consecutive frames is only
handled. As compared with generic object detectors, the method limits the depth of the convolutional
network to make it less sensible to high-level features and easier to train on small objects. The simple,
Hardware-efficient architecture attains its highest accuracy in the presence of videos with static
framing. Deploying our architecture on the NVIDIA Jetson Nano edge-device shows its suitability to
embedded systems. To prove the effectiveness and general applicability of the approach, real-world
tests assessed the method performances in different scenarios, namely, aerial surveillance with the
WPAFB 2009 dataset, civilian surveillance using the Chinese University of Hong Kong (CUHK)
Square dataset, and fast tennis-ball tracking, involving a custom dataset. Experimental results prove
that T-RexNet is a valid, general solution to detect small moving objects, which outperforms in
this task generic existing object-detection approaches. The method also compares favourably with
application-specific approaches in terms of the accuracy vs. speed trade-off.

Keywords: object detection; neural networks; surveillance; real-time

1. Introduction

The recent growth of industrial applications for object detection stimulates the research
community toward novel solutions. Intelligent video analysis is the core of several industry
applications such as transportation [1], sentiment analysis [2], and sport [3,4].

Deep learning lies today at the core of state-of-the-art techniques for object detection,
such as Faster RCNN [5], YOLO [6] and SSD [7]. Thanks to GPUs, object detection so-
lutions based on deep learning can support real time applications; the edge-computing
market now offers a variety of relatively inexpensive devices for Artificial-Intelligence
(AI): microprocessors [8], hardware accelerators [9], up to complete Systems on Module
(SoM), such as the Jetson series by NVIDIA [10], and machine vision cameras such as the
JeVois A33 and Sipeed Maix Bit, used in [11]. These tools rely on GPUs and a collection
of software optimisations to deploy computationally intensive tasks, such as AI inference,
on resource-constrained hardware. Real-time object detection on embedded devices still
represents a major issue, as that goal involves quite complex architectures for deep learning.
In practice, one needs a trade-off between accuracy and latency to tune each method to the
target scenario.

This paper addresses the detection of small objects, which typically take up a few
tens of pixels. State-of-the-art approaches often exhibit poor performances when dealing
with very small objects, due to the apparent difficulty in discriminating these features from
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one another and from the background [12]. Figure 1 presents an example, including three
candidate sub-regions extracted from as many frames in a tennis-match video. While the
rightmost frame actually includes the ball, the other patches do resemble a tennis ball but
represent misclassification errors.

Human observers face a similar challenge when looking for tiny objects in a wide
scene. The detection task, in fact, gets simpler if the target moves with respect to a still
background, since the human vision system can combine motion information with the
visual aspect of the object. Figure 2 clarifies this concept: the image on the left is the frame
(at time tn) drawn from the tennis video. The image on the right merges the frames from
time tn−5 up to tn+3. In the former case, the ball is hardly distinguishable even by a human
viewer, not just for its small size, but also because motion blur hinders the detection of
fast-moving objects. In the rightmost image, instead, motion information makes the tennis
ball clearly detectable.

Figure 1. Three examples of patches which show how easily a small object might appear similar to
other objects. Only the rightmost patch is a tennis ball, while the other two objects appear similar to
it without actually being a tennis ball. Without a mean to discriminate the real object from potential
false positives, a neural network might fail to learn how to recognise the sought object.

Figure 2. The (left) image shows a single frame as it is extracted from the video. The tennis ball is
indicated by the red arrow and is almost undistinguishable. The (right) image overlays the position
of the tennis ball in the previous and following frames and shows how the motion information is
foundamental for its detection.
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The approach presented here deploys the detection of tiny moving objects in wide
scenes on limited hardware resources. The method adjusts the basic building blocks of
resource-constrained computer vision, and proposes a custom deep neural network for
the recognition task. The T-RexNet framework improves over generic hardware-aware
detectors, which only rely on visual features, and combines those features with motion
information. The framework processes three consecutive frames from the video source,
and prompts a set of bounding boxes around the detected objects. The overall architecture
includes two stacked blocks, for feature extraction and subsequent object detection.

The dedicated pair of parallel convolutional paths in the network support that im-
age/motion fusion process. As compared to generic object detectors, the computational
overhead brought about by the two-tiered feature-extraction network is mitigated by re-
ducing the network depth. As a matter of fact, focusing on tiny objects allows to leave out
the deep layers operating at low resolution.

Single-Shot-Detector (SSD) architectures are quite popular for resource-constrained
object detection. The custom feature-extraction module overcomes the well-known lim-
itations of SSD in detecting tiny objects. The resulting feature-extraction architecture is
quite shallow, and the object detection block relies on one of the least demanding available
State-of-Art (SoA) solutions. In summary, the integration of these two features yields a
viable solution for the real-time detection of small objects by constrained devices.

Experimental results prove that, in that context, T-RexNet improves significantly over
state-of-the-art methods for generic object detection. As compared to application-specific
solutions, T-RexNet exhibits a satisfactory accuracy vs/speed balance in several complex
scenarios such as aerial and/or civilian surveillance and high-speed detection, tackling
medium-sized to tiny objects, and varying target densities. In other words, it manages to
achieve high detection rates without sacrificing accuracy too much.

The paper is organised as follows. Section 2 overviews the state-of-the-art in object
detection, moving-object detection, and in the specific domains used for testing. Section 3
presents the T-RexNet approach in detail. Section 4 discusses the test scenarios considered,
whereas Section 5 makes some concluding remarks. Project website with downloadable
resources: http://sealab.diten.unige.it/ accessed on 8 June 2020.

2. Tiny Moving Object Detection: State of the Art

The identification of small moving objects is a subset of a wider research field in
object detection. Existing solutions and techniques can be arranged into three main
groups, namely, Single-image solutions, Background-subtraction solutions, and Spatio-
temporal CNNs.

2.1. Single-Image General-Purpose Solutions

Typical object-detection models handle one image at a time, even when spatio-
temporal information might be available. State-of-the art approaches, relying on deep
learning, can be divided into region-based and single-shot detectors.

In the former models, such as R-FCN [13] and Faster R-CNN [5], a dedicated algorithm
first extracts a set of Regions-of-Interest (ROIs), that is, sub-portions of the image that are
likely to contain an object; then fine-detection and classification modules analyze each ROI.
Single-shot detectors such as YOLOv3 [6], SSD [7] and DSSD [14], instead, avoid looping
over several ROIs, and tackle the input image in a single shot.

These methods apply a library of predefined bounding boxes (anchor boxes), which
have various shapes and sizes and cover the likely locations of objects in the image.
The inference phase takes care of fine tuning each anchor box in terms of size and position.
Region-based detectors usually prove more accurate that single-shot detectors, but are
computationally demanding, as they require a loop for each single ROI [15].

http://sealab.diten.unige.it/
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In the case of small objects at low resolutions, both region-based detectors and single
shot detectors tend to exhibit poor performances. Several techniques have been proposed
recently to overcome that issue [16]:

• Multi-scale representation : high- and low- resolution feature maps stem from differ-
ent levels of a feature-extraction network; after super-sampling low-resolution maps,
features fuse together by applying either element-wise sum (Multi-scale deconvo-
lutional single shot detector (MDSSD) [17]) or concatenation (Diverse region-based
CNN (DR-CNN), [18]).

• Contextual information: the network takes into account explicitly the contextual
information around a candidate object. For example, ContextNet [19] applies a custom
region-proposal network specifically aimed to small objects, and for each candidate
region an enlarged region is used to process contextual information.

• Super resolution: generative adversarial networks generate a higher-resolution ver-
sion of the candidate object, thus improving accuracy in the detection of small objects
(Perceptual generative adversarial networks (PGAN)) [20]).

• Mixed methods: features with distinct scales are extracted from different layers of
a convolutional neural network; they are concatenated together, and then used to
generate a series of pyramid features [21].

These methods all exhibit an increase in both computational and memory load. This
brings about lower update frequency, higher latency, and ultimately might compromise
implementations on resource-constrained devices for embedded applications.

2.2. Background Subtraction and Frame-Difference Solutions

In complex applications such as aerial surveillance, camera views can cover wide areas.
Target objects (e.g., pedestrians and cars) usually span just a few tens of pixels, and the
detection techniques discussed above [22] are ineffective. At the same time, in those
applications the majority of input images are quasi-static and only target objects move in
the scene, hence conventional background-subtraction approaches are widely adopted,
even in the era of deep learning. The basic idea consists in working out the difference
between a frame and the background model of the scene acquired by the same camera; the
time-difference information highlights the changes caused by moving objects.

Methods differ in terms of computational cost, robustness and accuracy—Mixture
of Gaussians (MOG) [23] approaches model each pixel as a random variable with a gaus-
sian mixture model; mean-filtering [24] techniques extract the background by averaging
the values of each pixel over the last N frames, whereas methods for frame-difference
background subtraction [24] only consider the pixel differences between the current frame
and the previous one. The latter approach is very fast but possibly less robust to noise;
moreover, by disregarding any sequence of past frames, frame differences only apply when
the camera is slowly moving.

Since these methods typically process gray-scale (or even B/W after threshold) images
that highlight changes at a given time, the actual detection of moving objects requires
some post-processing. This might possibly include morphological transformations, blob
detection [25], or more complex computations [26–28], to the detriment of detection speed.

2.3. Spatio-Temporal Convolutional Neural Networks (CNNs)

The literature witnesses the growth of spatio-temporal CNNs, which take into account
both visual and motion data. In MODNet [29], the authors proposed a two-stream neural
network that processed input RGB images and optical flows, thus learning object detection
and motion segmentation at the same time. The research presented in [30] adopted an
end-to-end approach for video classification. A pseudo-3D neural network learned spatio-
temporal information by considering multiple consecutive frames, which were processed
by a series of convolutional filters in both the spatial (1× 3× 3) and the temporal (3 × 1 × 1)
domains. The 3D neural networks virtually replaced explicit image pre-processing steps
such as background subtraction or optical-flow computation.
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A spatio-temporal CNN supported the detection of vehicles in Wide Area Motion
Imagery (WAMI) [31]. In the 2-stage approach, a CNN first handled 5 consecutive images
(taken by an aerial surveillance system) and highlighted promising regions. The second
stage completed fine detection within each region. The TrackNet approach [3] applied
spatio-temporal CNNs to track small fast-moving objects in sport applications; a fully con-
volutional neural network could accurately track a tennis ball by processing 3 consecutive
video frames (taken by a steady camera). The CNN prompted a heatmap of the possible
positions of the ball, subsequent blob detection eventually yielded the predicted location.

Spatio-temporal CNNs for object detection can prove effective, but also exhibit some
drawbacks: they are often computationally heavy; the various approaches are normally
tailored to specific applications, and application-independent detection of small objects
has not been proved yet.

2.4. Summary of Contribution

The methods discussed above all exhibit some features that make them unsuitable to
support the Real-Time detection of small moving objects on resource-constrained devices;
specific shortcomings possibly include the inability to recognize tiny objects, impractical
computational loads, or lack of general applicability. The approach described in this paper
can perform detection of small moving objects by maintaining some crucial features—it
is lightweight and suitable for embedded devices, accuracy keeps comparable to SoA
approaches and improves over them in particularly challenging conditions, the system is
end-to-end trainable, and finally the method is application independent, as it performs
satisfactorily in different scenarios.

3. Methodology

T-RexNet combines several of the techniques mentioned above to detect small moving
objects in a fast, lightweight manner. The system benefits from the versatility of an end-
to-end fully convolutional neural network, it processes differences between frames to
involve motion information, and relies on the efficiency of MobileNet-based convolutions
to integrate visual and motion data. Single-shot detectors attain real-time performances.
Thus T-RexNet can be regarded as a spatio-temporal, single-shot, fully convolutional deep
neural network, as per Section 2. With only 2.38 M parameters, T-RexNet turns out to be
one of the most lightweight networks in the object detection field.

Figure 3 outlines the three-step structure of T-RexNet. Three time-consecutive gray-
scale images It−1, It, It+1 make up the system input, where I{·} denotes the 2D matrixes
of pixel intensities at different time steps. The algorithm first works out a pair of motion-
augmented pictures, M and K, which undergo a feature-extraction process based on two
separate parallel convolutional paths. The actual object-detection results stem from the
third SSD-based step.
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Figure 3. T-RexNet macro architecture, showing the two parallel “Motion-only” and “Mixed Visual-
Motion” MobileNetv2-Based feature extractors. Their output is concatenated and then processed by
an SSD network.

3.1. Step 1: Extracting Motion-Augmented Images

This module received in input three gray-scale input frames, It−1, It, It+1. Since gray-
scale images are represented as matrices of size [height × width × 1], stacking three of them
we obtain a [height × width × 3] matrix, which is equivalent to the size of a single colored
image. In other words, compared to traditional object detection methods, we substituted
color with temporal data. The input of the network is processed in order to generate the
pair {M, K} of motion-augmented images, as explained in the following.

The image M includes three channels that are worked out as:

M1
t = |It+1 − It|, M2

t = It, M3
t = |It − It−1|,

where the superscripts (1, 2, 3) refer to the channel number and the | · | is the absolute-
value operator. Figure 4 illustrates the overall process in a graphic form. Channel M2

preserves visual features, while channels M1 and M3 bring in motion information via
frame differencing, which proves much faster than conventional background-subtraction
techniques. It must be noted that preserving single-frame visual features in one of the
three channels of the image makes the network able to detect, in principle, also non-
moving object.

The image K is the concatenation of the first and the last channels of M, hence it only
holds motion data without any visual feature.
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Figure 4. Computation of motion-augmented image M. For visualization purposes, after the
concatenation, each of the three channels is displayed as a single color channel like in RGB images.
Here, with respect to RGB, for visualization purposes the hue of the whole image has been modified.
In the zoomed area of the final M image we can see that a moving car appears as 3 cars, corresponding
to time instants t− 1, t and t + 1.

3.2. Step 2: Feature Extraction

Feature-extraction networks typically include stacks of convolutional layers and
pooling layers, in which lower layers involve the details of the image, whereas the topmost
layers extract object-related information [32]. From a spatial point of view, the deeper is
the feature map in the network, the larger is the receptive field of each of its “pixels”.

T-RexNet aims to detect small objects, hence high level information can be disregarded,
and the number of stacked layers in the feature extraction network reduces accordingly.
This feature also entails a beneficial effect on latency. In principle, high-level features might
provide context information and therefore help localise small objects; at the same time,
reducing contextual information makes the feature extractor more independent of any
specific scenario and therefore maximally flexible. Feature extraction in T-RexNet involves
two convolutional paths that process visual-motion mixed data (image M), and only
motion-related data (image K), respectively.

The rightmost path in Figure 3 processes image M and relies on a custom network
drawn from the MobileNet [33] model. This is a family of Neural-Networks (NN) archi-
tectures specifically designed for low-latency execution on mobile devices, and yields
a promising balance between computational cost and accuracy. T-RexNet inherits from
MobileNet the use of bottleneck residual block as a main building block, as shown in
Figure 5, to limit the sensitivity to high-level, context-dependent information.

The leftmost path in Figure 3 takes into account the motion-related data held in image
K. The architecture features a stack of several 2D convolutions, as per Figure 5. The stride
is set to 2, hence the input image is downsampled to match the output resolution of the
parallel convolutional path.

Finally, the outputs of the two paths are concatenated channel-wise.
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Figure 5. T-RexNet full architecture and image processing high level view. All the Conv2D blocks
in the motion-only path use a 3 × 3 kernel. C is the number of output channels, s is the stride. Box
locations are encoded with 4 numbers according to [7]. Bottleneck block [7] is highlighted: C = 6x
means that the first block of the bottleneck is an expansion block which increments by a factor of 6
the number of channels; C = same means that the number of output channels is equal to the input
ones; Nc is the number of classes.

3.3. Step 3: Object Detection

The object detection block relies on SSD [7], which mitigates computational costs as
compared with region-based approaches and better fits real-time applications. Since, in the
inference phase, the method prompts predictions for the whole list of predefined anchors,
execution time turns out to be image independent.

Detection in the basic SSD involves several feature maps that are extracted at different
levels of the feature-extraction network (the base network in [7]). This technique improves the
robustness to different object scales. Since T-RexNet is targeted at detecting small objects,
the output of the first stage just involves one feature map to contain computational costs.
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T-RexNet associates each element of the feature map (i.e., each position in the map grid)
with the dimension/position information and the classification (car/pedestrian/background
etc.) of the corresponding anchors. The anchor size is set to 0.2 · size(I), where I is a squared
input image and size(·) is a function which returns the height and width of the image.
The anchor’s aspect ratios depend on the shapes of the target objects. The standard values
are {0.5, 1, 2}, which correspond, respectively, to horizontal shape, squared shape and
vertical shape.

4. Experimental Setup
4.1. Scenarios

Three heterogeneous scenarios formed the test-bench for assessing the performances
of T-RexNet, namely, aerial surveillance, civilian surveillance, and fast object tracking.
Table 1 summarises the characteristics of the three scenarios and gives four quantities: the
number of objects to be detected, the target object size, the speed of objects, and the overall
image size in pixels.

To ensure fair tests, comparisons included methods with the following features:

1. the research community proved the comparison’s effectiveness in object detection and
its implementation on embedded devices; the experiments focused on each method’s
ability to detect small moving objects;

2. the various methods had been targeted to their specific test scenario, hence compar-
isons with T-RexNet could highlight the latter’s balance between accuracy and speed.

The Appendix A gives details about the training procedures adopted for T-RexNet,
whereas the actual experimental outcomes are discussed in Section 5.

Table 1. Overview of the test scenarios considered in this work. Object size and speed are relative to
the image frame. Image size is in pixels and measures the side of a squared image.

Scenario # of Obj. Obj. Size Obj. Speed Im. Size

Aerial surv. High Small Mid 2000
Civilian surv. Medium Med. & small Low 512

Fast obj. track. Single Small High 300

4.1.1. Aerial Surveillance

Aerial-surveillance tests addressed the Wright-Patterson Air Force Base (WPAFB) 2009
dataset, which is a well-established benchmark in Wide-Area-Motion-Imagery (WAMI).
Surveillance relies on powerful camera set-ups (and software) to detect and track hundreds
of targets, usually people and vehicles, possibly over areas of several squared kilometres.
This typically calls for airborne systems. Targets can be so small that motion information
is required to distinguish them from the background or noise. Background-subtraction
techniques are therefore popular for object detection in this field [34].

The WPAFB dataset holds images taken by an airborne system and focuses on moving
vehicles. Each frame roughly includes 315 million pixels and merges the shots by six,
partially overlapping, gray-scale camera sensors [31]. The total area covered by each frame
is around 19 squared km and the frame rate is about 1.25 Hz. On average, each target
vehicle covers a region of about 100 pixels. Due to the considerable size of each raw
image, state-of-the-art methods address a set of Areas of Interest (AOI); this allows fair
comparisons between the various approaches [34].

The tests presented in this paper involved AOI 1, 2 and 3, as they covered a variety of
layouts with different intensities of traffic. The size of each AOI was 2000 × 2000 pixels.
The WPAFB dataset gave the position of a vehicle within an AOI by means of the target
coordinates, (x, y); the position was mapped into a squared bounding box of 31 × 31 pixels.
Stationary vehicles were not taken into account to focus on moving targets; thus cars whose
positions changed less than 15 pixels between two consequent frames were removed.
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T-RexNet was trained on AOIs 1 and 3, which covered high-intensity and low-intensity
traffic situations, respectively. The images were taken from a moving camera, and the test
phase involved the remaining set, AOI 2. To ensure fair comparisons with other approaches,
time-consecutive images were recorded to support frame differencing. Due to the excessive
size of input images (for T-RexNet as well as other object detectors), in compliance with
the approach [35] each 2000 × 2000 image was split into a set of 16 partially overlapping
pictures, each holding 512 × 512 pixels. To be consistent with the literature [34], true
positives were only considered when the center positions of the detected boxes lied within
a 20-pixel distance from the ground-truth location.

4.1.2. Civilian Surveillance

The CUHK Square dataset [36] addressed people detection, and included videos
recorded (@30 Frames-Per-Second, FPS) by a surveillance camera monitoring a square and
a road crossing. Spatial resolution was 720 × 576 pixels. Since the original dataset featured
some misdetections [1], the proper labels were manually added. The overall set of videos
included 2105 detections for training and 593 detections for testing.

The quasi-horizontal inclination of the camera affected the depth of the scene and
the perspective; as a consequence, people close to the camera appeared much bigger than
people on the background. Thus CUHK also allowed to test the effectiveness of T-RexNet
in detecting medium-sized objects.

At 30 FPS, the slow advance of walking people resulted in minimal changes between
time-consecutive frames, hence the input videos were downsampled to 1 Frame-Per-Second
(FPS), and the spatial resolution was resized to 512× 512 pixels. That downsampling factor
set the trade-off between the amount of motion data captured and the update frequency of
the detections.

The experiments only considered valid detections when an IoU exceeded the 50%
threshold with respect to the ground truth. Whenever a bounding box was associated with
multiple ground truth points, the tests only considered one candidate, on a minimum-
distance basis.

4.1.3. Tennis Ball Tracking

This setup only included one target object per frame. The example presented in
Figure 2 points out the difficulty of tennis ball tracking in real-time detection: the small size
of the ball and the motion blur caused by its fast movement made it almost undetectable
even by human observers without the aid by motion data.

Tennis ball tracking lacks publicly available benchmarks, hence the training set col-
lected 18,220 labeled frames extracted from videos of various matches and recorded at
30 FPS. To avoid overfitting, the test set included 5160 frames taken from three videos
taken in different courts and with the camera placed at different heights, as per Figure 6c.
In the following, we will refer to these videos as Court A , Court B, and Court C. In both the
training and test set, the ground-truth labels were generated by using TrackNet [3], whose
precision, according to the authors and to our observations, exceeded 95%. The result of
such an automatic labelling method was anyway checked manually for correctness.

This scenario aimed to assess the suitability of T-RexNet for fast, real-time detections;
in both the training and the test set, the frames were downsampled to 300 × 300 pixels.
Only the detected boxes whose center was closer than 16 pixels to the ground truth location
were considered as true positives.



Sensors 2021, 21, 1252 11 of 18

(a) (b) (c)

Figure 6. The three test scenarios considered in this work: (a) aerial surveillance, WPAFB 2009 dataset; (b) civilian
surveillance, CUHK dataset; (c) Tennis ball tracking, custom dataset. In each image a sub-area is zoomed to highlight the
small size of the target objects.

4.2. Deployment

To allow a fair comparison with other methods in the literature and make the repeati-
bility of our experiments easier, we first performed our tests on a Desktop PC provided
with an NVIDIA GTX 1080 Ti graphic card.

Then, to prove the suitability of our method to embedded edge-AI devices, we de-
ployed it on an NVIDIA Jetson Nano [37], using its development board. This is the more
resource constrained device of the NVIDIA Jetson series, a suite of hardware platforms
specifically designed for bringing Artificial Intelligence to the edge. It is a System-On-
Module (SoM) which features HW acceleration for deep learning and runs a proprietary
modified version of Ubuntu 18.04. Basic characteristics of the SoM (not including develop-
ment board) are reported in Table 2.

Table 2. Characteristics of the NVIDIA Jetson Nano System-on-Module.

Parameter Value

AI Performance 472 GFLOPs
GPU 128-core NVIDIA Maxwell GPU
CPU Quad-Core ARM Cortex-A57 MPCore

Memory 4 GB 64-bit LPDDR4 25.6 GB/s
Storage 16 GB eMMC 5.1
Power 5 W/10 W

Mechanical 69.6 mm × 45 mm 260-pin SO-DIMM connector

Users can set hardware utilization using a software interface. Two optimized configu-
rations called 5 W and Max-N are available. The first one limits power consumption setting
a clock frequency of CPU and GPU to 0.90 and 0.64 GHz, respectively. In addition, two
cores of the CPU are turned off. In Max-N configuration all the hardware resources are set
to maximize performance, at the expense of power consumption.

NVIDIA provides a toolchain based on TensorTRT. This tool provides an optimized
implementation of common deep learning layers for Jetson devices. For the case of TF
models, the output of TensorTRT is again a TF frozen graph where the computed layers
are replaced with optimized versions. TensorTRT can adopt different data sizes when
deploying a network: standard floating-point representation (FP32), half-precision floating
point (FP16) and 8-bit integer representation (INT8). The experiments were conducted
with the FP16 format since this provides a good trade-off between accuracy and power
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consumption [38]. In addition, the results proved that FP16 is indeed sufficient to reach
good frame rates using Jetson Nano.

The code was developed in Python using the CV2 module and TensorFlow. The com-
puted latency considered only network processing. Each frame was elaborated in real-
time when acquired without the use of any batching strategy. The measures involved
100 images. The tests involved two versions of T-RexNet, one with input size 300 × 300
and another with input size 512 × 512. The networks were optimized using tensorRT with
FP16 representation. The results measured the average inference time for optimized and
non-optimized models, using the Jetson Nano with different power settings and different
input sizes.

5. Results

This section illustrates the results of the experiments performed in the three test scenar-
ios. According to our previous findings [38] we observed that moving the same architecture
from the Desktop to the embedded platform has negligible impact on the detection accu-
racy, while it mostly affects speed and memory footprint. Therefore, in Sections 5.1–5.3 we
first illustrate, for each scenario, our achievements using the Desktop platform and, then,
in Section 5.4, we analyze the impact of deploying T-RexNet on the Jetson Nano.

Tables 3–5 give an overview of the comparisons, in terms of F1 scores, with existing
methods in the literature.

Table 3. Comparison of F1 scores achieved in the Aerial surveillance scenario. Numbers in brackets
represent the measured speed, in frames per second, with the Desktop platform. The asterisk
indicates that the number is retrieved from the original paper.

Aerial Surveillance

T-RexNet 0.91 (3)
ClusterNet 0.95 * (0.3 *)

Median BG+ N 0.89 *

Table 4. Comparison of F1 scores achieved in the Civilian surveillance scenario. Numbers in brackets
represent the measured speed, in frames per second, with the Desktop platform. This scenario is
splitted into the sub-cases of normal and small object size to highlight the results of our method
when objects are particularly small.

Civilian Surveillance

Normal Small

T-RexNet 0.77 (44) 0.79 (44)
Faster R-CNN 0.69 (23) 0.5 (23)

SSD512 0.73 (41) 0.59 (41)

Table 5. Comparison of F1 scores achieved in the Tennis ball tracking scenario. Numbers in brackets
represent the measured speed, in frames per second, with the Desktop platform. This scenario is
splitted into the three videos we considered, with different camera view, court and environment.
The asterisk indicates that the number is retrieved from the original paper.

Tennis Ball Tracking

A B C

T-RexNet 0.78 (47) 0.84 (47) 0.67 (47)
SSD300 0.34 (43) <0.2 (43) 0.23 (43)

TrackNet >0.84 * (2.2) >0.84 * (2.2) >0.84 * (2.2)

5.1. Aerial Surveillance

Figure 7 shows the ROC curves achieved by T-RexNet and other state-of-the-art
algorithms on the AOI 2 test set. The ROC curve for T-RexNet was added to the original
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plot reported in [31]. To assess the balance between recall and precision the experiments
applied various threshold values on the detection confidence. We remind the reader that
Recall = TP/(TP + FN); Precision = TP/(TP + FP); where TP, FP, FN are True/False
Positives/Negatives.

T-RexNet outperformed the other comparisons in terms of accuracy, with the exception
of ClusterNet [31], which scored near-optimal performances. As reported in [31], however,
ClusterNet required 2–3 s per image on a Titan X GPU board, depending on the number of
selected regions; a time span of 3 s covered the inference phase to inspect the whole image
for fine detection. By contrast, the inference time for T-RexNet was 310 ms per image on
our Desktop platform featuring an NVIDIA GTX 1080 Ti board, which is similar to a Titan
X in terms of hardware resources and computational performances.
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Results on WPAFB 2009 Dataset
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Mean BG
IGMM
Inpaint
HawkNet

Figure 7. Comparison between the results achieved by our T-RexNet and other State-of-Art (SoA)
approaches in the aerial surveillance (WAMI) scenario. We took the comparison in [31] and added
the results of using T-RexNet. Despite Clusternet has better performance, our T-RexNet is ∼10 times
faster. For information about the other methods we compare with refer to [31].

5.2. Civilian Surveillance

Figure 8 gives the ROC curve scored by T-RexNet in object detection within one image.
The obtained results are compared with the corresponding curves attained by SSD [7]
(with MobileNetv2 [33] as backbone network) and Faster R-CNN [5] (with ResNet50 [39]
as backbone network). The Figure gives two curves for each comparison: the Full mark
refers to experiments on whole images, whereas Small curves refer to tests only performed
on the upper halves of images, where perspective made people appear smaller.

The ROC curves in Figure 8 witness that motion information greatly helped T-RexNet
achieve the best performance. More, T-RexNet was the only architecture that attained
satisfactory results when focusing on tiny objects.
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Figure 8. Comparison between the results achieved by our T-RexNet, SSD and Faster-RCNN in
the civilian surveillance test case using the CUHK square dataset. Full and Small indicate whether
the test has been conducted over the whole image or the upper half only, where perspective makes
people much smaller and the gap between our approach and others is even more pronounced.

5.3. Tennis Ball Tracking

Figure 9 shows the ROC curves measured by applying T-RexNet on the test sets
Court A, Court B, and Court C. The graph also give the associate ROC curves obtained by
MobileNetv2-SSD, which represented the single-image architecture from which T-RexNet
evolved. The comparison pointed out the significant impact of involving motion data in
the detection of the target object.

Experimental outcomes prove that T-RexNet featured a remarkable improvement
over State-of-the-Art, application-independent approaches. When considering application-
specific solutions, TrackNet [3] had generated our ground-truth labels and proved more
accurate than T-RexNet in tennis-ball tracking. As reported in the original paper, Track-
Net attained on average higher F1 scores than 0.84, which was consistent with the test
performed in this research. At the same time, TrackNet proved significantly heavier than
T-RexNet: Python implementations of both, running on the Desktop platform, resulted
in 2. 2 FPS for TrackNet and 47 fps for T-RexNet, that is ∼21 times faster. The limited
resolution of input images allowed to increase the batch size in the inference phase up to
10 consecutive frames, while still fitting the memory of the test GPU. This batch approach
allowed T-RexNet to run at 96 fps, at the price of an increased latency from 21 ms to 104 ms.
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Figure 9. Comparison between the results achieved by our T-RexNet and SSD in the tennis ball track-
ing test case. Due to the motion blur and the small scale of the ball, it becomes almost undetectable
by SSD, since it does not exploit motion data.

5.4. Deployment of T-RexNet on the Jetson Nano

This section presents the results of the deployment on Jetson Nano. Table 6 shows on
the rows the power setting of the board. Columns are divided into couples. The first pair
reports the result for input size 512 × 512, the second refers to 300 × 300. The first column
of each pair refers to an optimized model with FP16 representation. The second column
indicates the original TF model.

Table 6. Inference time measured on the NVIDIA Jetson Nano device for every combination of image
size, power mode and optimization level.

Power Mode
512 × 512 300 × 300

TRT (ms) TF (ms) TRT (ms) TF (ms)

Max-N 70.28 437.15 65.45 431.28
5W 108.77 616.74 98.28 661.14

The results reveal that T-RexNet can be deployed in embedded systems with real-
time performances. In Max-N configuration, the network can process a frame in 70.28 ms.
In other words, the device could elaborate 13 FPS, which is acceptable for many appli-
cations. The comparison with native TensorFlow solutions highlights the importance of
optimization combined with FP16. A similar observation holds for 5W power mode.

Memory requirements for this network are quite limited. The pb file, that is the
TensorFlow’s ProtoBuf file containing the description of the network, measures around
3.0 MB. The memory strategy implemented on Jetson Nano allocates a large amount of
memory that is not directly dependent on the model size. Accordingly, a direct measure
would yield biased results. Indeed, literature proves that similar models can be deployed
in devices using a smaller memory footprint [38].
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6. Conclusions

The T-RexNet approach involves a deep neural network for the detection of small
moving objects. It uses motion data as a discriminant contribution whenever visual-only
information is limited due to the small target sizes. The T-RexNet architecture includes a
two-path network, while keeping computational costs low. The method’s relevant features
consist in limiting computational and memory costs, allowing real-time execution, ensur-
ing reuse in several applications with an end-to-end approach, and yielding remarkable
accuracy performances that favourably compare with SoA approaches. T-RexNet was
tested in three real-world scenarios covering a wide range of applications. Accuracy results
confirmed that the proposed method outperformed most of SoA approaches; conversely,
when considering execution speed, T-RexNet improved over the most accurate methods.
Tests performed on an NVIDIA Jetson Nano proved that our solution is suitable for deploy-
ment on embedded edge devices. In conclusion, we believe T-RexNet can be regarded as
an easy-to-use alternative, suitable for embedded to high-end devices, to deal with tiny
moving targets.
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Appendix A. Hyperparameters and Training Details

In this section we use S1, S2, S3 to denote our three scenarios: aerial surveillance,
civilian surveillance, tennis ball tracking.

T-RexNet has been implemented in Python, version 3.6.9, using the TensorFlow library,
version 1.14. All the models have been trained from scratch using an NVIDIA GTX 1080 Ti
graphic card. The batch size has been set to 32, and the number of training steps to 20.000
in S1 and S2, and 60.000 in S3. RMSprop optimizer has been used, with a learning rate
of 0.004, momentum and decay equal to 0.9. Hard negative mining was used to balance
positive vs. negative (background) classes, with a maximum of 3 negative per positive
examples. All the convolutions use L2 regularization with a weight of 0.00004. No dropout
has been implemented. The default size of the anchor boxes has been set to 0.2 times the
size of the image, while the aspect ratio has been choosen on a scenario basis: 1 in S1 and
S3, 2 in S2. Training time lasted approximately 10 h per scenario.
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