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Black corals are important habitat-forming species in the mesophotic and deep-
sea zones of the world’s oceans because of their arborescent colony structure and
tendency to form animal forests. Although we have started unraveling the ecology
of mesophotic black corals, the importance of the associated microbes to their
health has remained unexplored. Here, we provide in-depth assessments of black
coral-microbe symbioses by investigating the spatial and temporal stability of these
associations, and make comparisons with a sympatric octocoral with similar colony
structure. To this end, we collected samples of Antipathella subpinnata colonies from
three mesophotic shoals situated along the Ligurian Coast of the Mediterranean Sea
(Bordighera, Portofino, Savona) in the spring of 2017. At the Portofino shoal, samples
of A. subpinnata and the gorgonian Eunicella cavolini were collected in November 2016
and May 2017. Bacterial communities were profiled using 16S rRNA gene amplicon
sequencing. The bacterial community of E. cavolini was consistently dominated by
Endozoicomonas. Contrastingly, the black coral microbiome was more diverse, and
was primarily composed of numerous Bacteroidetes, Alpha- and Gammaproteobacterial
taxa, putatively involved in all steps of the nitrogen and sulfur cycles. Compositional
differences in the A. subpinnata microbiome existed between all locations and both
time points, and no phylotypes were consistently associated with A. subpinnata. This
highlights that local conditions may influence the bacterial community structure and
potentially nutrient cycling within the A. subpinnata holobiont. But it also suggests that
this coral holobiont possesses a high degree of microbiome flexibility, which may be a
mechanism to acclimate to environmental change.

Keywords: 16S rRNA gene amplicon analysis, black coral, microbiome, gorgonian, mesophotic coral, Antipathella
subpinnata, microbiome flexibility, phylosymbiosis

INTRODUCTION

Antipatharians, commonly known as black corals, can be found throughout the world’s oceans
from tropical to polar latitudes (Wagner et al., 2012). This taxon of hexacorals consists of about 247
species (Brugler and France, 2007) and is particularly diverse in tropical and subtropical regions
(Tazioli et al., 2007; Wagner et al., 2012). Dense assemblages of black corals have been reported in
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the mesophotic (40–150 m depth) (Cairns, 2007; Bo et al.,
2019) and deep-sea zones (Molodtsova and Opresko, 2017),
where they provide critically important habitat. Because of their
typically wide bathymetric distribution, it has been difficult
to collect specimens and make direct observations of black
corals. As such, many aspects of the black coral ecology and
biology remain unknown. However, access to remotely operated
vehicles and technical diving now allows us to explore black
coral communities and investigate the physiology and microbial
ecology of these organisms.

Macro-organisms live in symbioses with microbes (an
assemblage termed the ‘holobiont’), which are known to play
important roles in host health, and contribute to their host’s
adaptation and acclimation to environmental change (Bosch
and McFall-Ngai, 2011; McFall-Ngai et al., 2013). In corals,
mutualist and commensal bacteria provide the host with
nutrients (Benavides et al., 2017) and protect it against pathogens
through occupation of available niches (Rohwer et al., 2002;
Rypien et al., 2010) and the secretion of antimicrobial compounds
(Ritchie, 2006; Nissimov et al., 2009; Kvennefors et al., 2012;
Shnit-Orland et al., 2012). For the fitness of the holobiont, it is
therefore important to maintain a microbial community with a
stable repertoire of metabolic and protective functions. In fact,
signals of phylosymbiosis in the coral holobiont have shown
that there is a long-term evolutionary history between corals
and various microbial taxa (Pollock et al., 2018; van de Water
et al., 2018b). The coral microbiome has been extensively studied
in tropical and temperate scleractinian corals (hexacorals) and
Mediterranean gorgonians (octocorals) (reviewed in Bourne
et al., 2007; Hernandez-Agreda et al., 2017; van de Water
et al., 2018a, respectively). While the microbial community
compositions of the latter have been found to be stable on
both spatial and temporal scales (van de Water et al., 2016,
2017, 2018b), the microbiota of scleractinians tends to be more
diverse and variable (Littman et al., 2009; Hernandez-Agreda
et al., 2016; Pollock et al., 2018). It should, however, be noted
that in contrast to Mediterranean octocorals, the majority of
scleractinian corals studied are in an intricate symbiosis with
Symbiodiniaceae and that these algal symbionts are known
to affect the microbiota of marine invertebrates (Bourne
et al., 2013). Generally, however, species-specific microbes and
environmentally responsive microbes can be found within the
holobiont of each coral species (Hernandez-Agreda et al., 2016;
van de Water et al., 2017; Pollock et al., 2018), with differences
observed between the microbiota in coral tissues and other
compartments, such as mucus and skeleton (Sweet et al., 2011;
Apprill et al., 2016; Pollock et al., 2018; Bednarz et al., 2019).
Although of high ecological importance in the mesophotic zone
and deep sea, the microbial ecology of black corals has so far
received little attention.

Initial investigations established cultures of various microbes
associated with black corals, particularly Firmicutes and
Actinobacteria from Antipathes dichotoma (Pallas, 1766)
(Zhang et al., 2012), and a range of Gammaproteobacteria and
Actinobacteria from Stichopathes luetkeni (Santiago-Vázquez
et al., 2007). However, as most microbes cannot be cultured
yet, a culture-dependent approach may not provide the best

overview of the black coral-associated microbiota. Early culture-
independent approaches found primarily Rhodobacterales
and Pseudomonadales on an unidentified deep-sea black coral
(Penn et al., 2006), but a more diverse microbiota associated
with S. luetkeni, consisting mainly of a range of Proteobacteria,
Actinobacteria, Firmicutes, Cytophaga-Flavobacterium and
Chloroflexi (Santiago-Vázquez et al., 2007). Two recent studies
using 16S rRNA gene amplicon sequencing on the widely
distributed deep-sea black coral Leiopathes glaberrima (Esper,
1788) and two Pacific Antipathes spp. found a similar microbial
community composition at the phylum level (Dannenberg,
2016; Liu et al., 2018). However, significant differences in
the microbiota were observed between sampling locations.
Interestingly, only one phylotype, which belonged to the genus
Endozoicomonas, was present in all colonies of L. glaberrima
(Dannenberg, 2016). These bacteria are commonly present in the
microbiota of scleractinian corals, gorgonians and various other
marine invertebrates, where they are believed to be important for
host health (Neave et al., 2016).

Black corals are also associated with various eukaryotic
microbes. For example, several Hawaiian (Wagner et al., 2011)
and Indonesian (Bo et al., 2011a) species have been found
to engage in symbioses with unicellular algae of the genus
Symbiodiniaceae. These algae contribute significantly to the
nutrition of shallow reef-building scleractinian corals, but their
relevance to black corals in the non-photic zone remains
unclear. Using a transcriptomics approach, apicomplexans were
found to be part of the L. glaberrima holobiont as well
(Dannenberg, 2016). Further genomic characterization of these
corallicolid apicomplexans revealed that members of this diverse
clade are widespread associates of deep-sea corals. Although
their ecological role remains uncertain, they do possess some
characteristics of a parasitic lifestyle (Vohsen et al., 2020).

While these studies have provided initial assessments of
the microbiota of black corals, a comprehensive assessment
of the black coral-associated microbial communities is an
important first step to understand the ecological success of
these animals better. Antipathella subpinnata (Ellis and Solander,
1786) is the most common mesophotic black coral species in
the Mediterranean Sea, but it has also been reported in the
Atlantic Ocean (OCEANA, 2011; de Matos et al., 2014). Its
arborescent colonies of up to 1.5 m form large (Bo et al.,
2018) and dense (5.2 colonies m−2) aggregations (Bo et al.,
2009; de Matos et al., 2014) on hard substrates, including
shipwrecks, between 55 and 500 m (Bo et al., 2008, 2012b;
Mastrototaro et al., 2010). This makes A. subpinnata one of the
most important habitat-forming species that provides structural
complexity to the Mediterranean mesophotic ecosystems and
serves as a refuge for a rich associated fauna, including species of
economic importance, such as seabream, jack mackerel, catshark
and octopus (personal observations, Bo et al., 2008, 2009;
Cau et al., 2017). Unfortunately, commercial fishing activities
and entanglements by lost fishing lines or nets have caused
significant damage to local populations of A. subpinnata (Bo
et al., 2014; Oliveira et al., 2015). While several aspects of
A. subpinnata’s reproductive biology (Gaino and Scoccia, 2010;
Coppari et al., 2019) and ecology, including its interactions with
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various macro-epibionts (Bo et al., 2011b; Gaino et al., 2013) and
feeding strategies (Coppari et al., 2020), have been studied, its
microbial associates have never been investigated.

Antipathella subpinnata commonly lives in mixed assemblages
with arborescent gorgonian octocorals, such as Paramuricea
clavata (Risso, 1826) (Enrichetti, 2019; Chimienti et al., 2020)
and Eunicella cavolini (Koch, 1887) (Bo et al., 2009; Gori et al.,
2017), which are commonly found at shallow and mesophotic
depths. While it is unknown how these black corals and
gorgonians interact, the similar colony structures and polyps
sizes (Weinberg, 1976; Bo et al., 2018) suggest that they may
occupy the same trophic niche. Comparison of the natural 13C
and 15N stable isotope signatures of the tissues of these corals
indicates that this may indeed be the case (Gori et al., 2017;
Coppari et al., 2020). E. cavolini may thus be a competitor
for food resources of A. subpinnata, particularly, because the
polyp density in E. cavolini is ∼3-fold higher compared with
A. subpinnata (Weinberg, 1976; Bo et al., 2018). Besides, this
gorgonian has been shown to be a strong competitor in physical
interactions with other gorgonians (Turicchia et al., 2020).
In contrast to A. subpinnata, the prokaryotic communities
associated with shallow E. cavolini colonies have been previously
described in detail (van de Water et al., 2017, 2018b), showing
a relatively stable microbiota dominated by a few bacterial
phylotypes, in particular Endozoicomonas. A comparison of the
microbiota of these two distantly related but sympatric species
in the mesophotic zone may provide insights into common
microbial taxa, possibly linked to the trophic niche or the
mesophotic environment.

Here, we describe the spatial and temporal patterns in
the bacterial communities of the arborescent black coral
A. subpinnata. In addition, we provide a comparison with the
gorgonian E. cavolini to assess differences between the microbiota
of these two sympatric species. We show that, in contrast to the
gorgonian, the bacterial communities of A. subpinnata are highly
diverse and differ significantly between locations and between
autumn and spring time points. Interestingly, no bacteria were
consistently associated with this species across space and time,
suggesting that local environmental conditions are the main
drivers of the microbiota associated with this black coral.

MATERIALS AND METHODS

Study Sites and Sampling Procedures
To assess the effect of seasonality on the microbiome of
Antipathella subpinnata, samples (one per colony) were collected
by technical diving in Portofino (coordinates 44◦ 17.63′ N, 9◦
13.27′ E, 67 m depth) (Figure 1) in autumn (n = 10 colonies,
30 November 2016, seawater temperature of 17.8◦C) and spring
(n = 10 colonies, 10 May 2017: seawater temperature 14.2◦C).
Here, samples of 6 colonies of Eunicella cavolini were also
collected at both time points. To characterize the spatial stability
in the microbiome of A. subpinnata, samples were collected
from two other locations off the Ligurian coast near Bordighera
(n = 10 colonies, coordinates 43◦ 46.11′ N, 7◦ 40.82′ E, 63 m
depth, 21 April 2017, seawater temperature 14.1◦C) and Savona

(n = 12 colonies, coordinates 44◦ 13.52′ N, 8◦ 27.61′ E, 70 m
depth, 15 May 2017, seawater temperature 14.3◦C) (Figure 1) in
spring 2017. Fragments of approximately 10 cm were cut from
colonies using scissors and placed in a zip-lock bag. On board the
vessel, samples were rinsed twice with 0.2 µm filtered seawater
and stored in RNAlater at 4◦C until further processing. From
each site and time point, three replicates of 2 L seawater were
collected close to the sampling site (about 2–5 m above the black
coral colonies) in a Niskin bottle. The collected seawater was
sequentially filtered through 3 and 0.2 µm Whatman Nucleopore
Track-Etched filters (Sigma-Aldrich) and the 0.2 µm filter was
kept in RNAlater at 4◦C. An overview of the sample collection
can be found in Table 1.

The three sites are characterized by rocky shoals with a
maximum height of 10 m, which emerge from a gently sloping,
sandy or detritic sea-bottom. The Portofino shoal is a large,
isolated rocky shoal under strong current conditions. It is
dominated by a dense forest of Eunicella cavolini and a small
population of A. subpinnata is located on the steep westernmost
side of the shoal (Figure 2A). The Bordighera shoal consists
of scattered large rocky boulders, which were heavily silted
and host a dense population of A. subpinnata, occasionally co-
existing with the gorgonian Paramuricea clavata (Risso, 1826)
on the margins of this animal forest (Figure 2B). The Savona
shoal extends parallel to the coast and is a gently sloping,
coralligenous elevation mainly hosting a scattered assemblage of
gorgonians. At this site, A. subpinnata colonies can be found with
a sparse distribution (Figure 2C). Additional information about
the benthic communities and environmental conditions at these
study sites can be found in Enrichetti et al. (2019).

DNA Extraction and Sequencing Library
Construction
To extract the DNA from both coral tissue and filter retentate,
the DNeasy PowerBiofilm Kit (QIAGEN, Hilden, Germany)
was used according to the manufacturer’s protocol, with the
exception that the bead beating was performed at 30 Hz for
1 min using a CryoMill (Retsch, Haan, Germany) at room
temperature. Extracted DNA was shipped to Macrogen (Seoul,
Republic of Korea) for sequencing library construction using
the 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R (5′-
GACTACHVGGGTATCTAATCC-3′) primers that target the V3-
V4 regions of the 16S rRNA gene (Klindworth et al., 2012), and 2x
300 bp paired-end sequencing (with a 30% PhiX control spike-in)
on the Illumina MiSeq platform.

Negative DNA extraction kit controls (i.e., an extraction
procedure without sample added) were not included in the
sequencing run, although DNA extraction kits are known to be
contaminated with microbial DNA. This may affect 16S rRNA
gene amplicon sequencing results (Salter et al., 2014), especially
in low bacterial biomass samples, whereas the impact will be
low on high bacterial biomass samples (Glassing et al., 2016).
To estimate the potential contamination in our DNA extractions,
the amount of microbial DNA present in 2 µl of coral and
seawater samples and negative DNA extraction kit controls
was quantified using the Femto Bacterial DNA Quantification
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FIGURE 1 | Map of the study sites along the Ligurian coast. Samples were collected from three mesophotic shoals near Bordighera, Savona, and Portofino.

Kit (Zymo Research, Irvine, CA, United States) following the
manufacturer’s protocol. Concentrations were 2.88 ± 0.92 ng/µl
(CT = 15.0 ± 0.23) and 0.148 ± 0.015 ng/µl (CT = 19.6 ± 0.08)
of bacterial DNA in seawater and coral samples, respectively. The
negative DNA extraction kit controls contained 0.02± 0.05 pg/µl
(CT = 32.4 ± 1.28) of bacterial DNA. As such, the potential
contamination was estimated to be low and had likely no to little
impact on our results.

16S rRNA Gene Amplicon Data
Processing and Analysis
The 16S rRNA gene amplicon data was analyzed using the
UNOISE2 pipeline (Edgar, 2016) as implemented in the

TABLE 1 | Overview of sample collection and distances between
sampling locations.

Portofino Bordighera Savona

November 2016 May 2017 April 2017 May 2017

A. subpinnata 10 10 10 12

E. cavolini 6 6

Seawater 3 3 3 3

Distance between
sampling locations

Portofino – Bordighera ∼135 km
Portofino – Savona ∼ 60 km
Bordighera – Savona ∼ 90 km

USEARCH package (version 9.21) (Edgar, 2010). The raw forward
(R1) and reverse (R2) sequence fastq files of the 66 samples
contained a total of 20,259,044 reads (ranging between 183,112
and 386,636 reads per sample) with an average Q20 score
of 89.43% and a Q30 score of 81.64%. R1 and R2 paired
reads were merged using -fastq_mergepairs. Primer sequences
were trimmed using -fastx_truncate and reads were quality
filtered with the -fastq_filter script, generating a filtered fasta file
containing 8,163,975 reads with an average length of 390 bp.
Unique sequences were identified using the –fastx_uniques
script followed by denoising of the sequence dataset with the
UNOISE2 algorithm, obtaining 16,450 denoised sequences or
‘zero-radius OTUs’ (zOTU, Operational Taxonomic Unit). The –
usearch_global script was then used to generate an OTU table
at the 97% similarity level, containing 13,076 OTUs and an
average 116,685 reads per sample (range 73,183 and 165,196
reads). The taxonomy was assigned to each OTU based on the
SILVA database (release v123) (Quast et al., 2013) using the -
sintax algorithm. The OTU table was converted to the HDF5
biom format and taxonomic assignment metadata was added.

Unassigned OTUs, and OTUs classified as chloroplast or
mitochondria were excluded from the dataset. The most
abundant OTU, OTU1 (representing 47% of all quality filtered
reads), was also removed from the dataset after it was identified
as a match to the mitochondrial 12S rRNA gene of black corals.
[This high background amplification reduces the sequencing

1https://www.drive5.com/usearch/
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FIGURE 2 | Populations of Antipathella subpinnata on the shoals near (A) Portofino at 67 m depth, (B) Bordighera at 63 m depth and (C) Savona at 70 m depth.
Colonies of A. subpinnata (As) and the sympatric gorgonians Paramuricea clavata (Pc) and Eunicella cavolini (Ec) are indicated with arrows.

depth of the microbial community dramatically, and thereby
could underestimate the diversity. Future studies on black coral
microbiomes should take into account that in order to fully
capture the microbial diversity of the black coral microbiome
relatively deep sequencing is required. This result also shows that
the 341F/805R primer set presents a strong amplification bias for
the 12S rRNA gene of black corals. We therefore also recommend
the testing of a range of primer pairs to assess which pair provides
the least 12S rRNA gene amplification without compromising
the accuracy of the assessment of the bacterial community
composition.] Three A. subpinnata samples collected in spring
2017 were identified as outliers (two samples from Portofino and
one sample from Bordighera) during sample quality assessment
of the dataset during differential abundance analysis (see below),
and were also removed from the OTU table.

Because negative DNA extraction kit controls had not
been included in the sequencing run, a statistical approach
was employed to identify and remove potential contaminant
sequences as an additional quality control step. The ‘Frequency’
method of the R-package decontam (Davis et al., 2018) was used
on (1) seawater and (2) coral (A. subpinnata and E. cavolini)
samples separately because of the large difference in microbial
DNA concentration in the samples. In case of contaminants,
a bimodal distribution of the decontam scores is expected
(Davis et al., 2018), but this was not observed in both cases
(Supplementary File S1). In addition, all OTUs within the
low decontam score (P∗ < 0.05) range (1 and 24 OTUs in
the seawater and coral datasets, respectively) had a very low
prevalence (present in 2–3 samples), indicating low classification
accuracy and sensitivity (Davis et al., 2018) (Supplementary
File S1). Taken together, no potential contaminant sequences
were identified in the dataset.

The final OTU table contained 5,621,675 reads belonging to
12,368 OTUs, with an average of 85,177 reads per sample (min
19,354, max 124,694). The unfiltered OTU table, sample metadata
and representative sequences of each OTU are provided in the
Supplementary Data S1–S3. Raw sequences were deposited
in the NCBI Sequence Read Archive (SRA) under accession
number PRJNA506661.

The OTU table was rarefied to 19,354 reads per sample,
containing 9,330 OTUs. Alpha diversity metrics (richness:
observed OTUs, diversity: Shannon-Wiener H, evenness:

Simpson’s E) were calculated from the OTU table using
QIIME v1.9 (Caporaso et al., 2010). The phyloseq package
(McMurdie and Holmes, 2013) integrated in R was used
to generate relative abundance plots and heatmaps. Using
PRIMER 6 & PERMANOVA+ (PRIMER-E Ltd, Auckland,
New Zealand) (Clarke and Gorley, 2006; Anderson and Walsh,
2013), Permutational Analysis of Variance (PERMANOVA)
performed under Type III partial sums of squares and 9999
permutations under the reduced model was used to statistically
assess differences in bacterial communities’ alpha and beta
diversity between locations, time points and species. Principal
Coordinates Analysis (PCoA) on square root-transformed Bray–
Curtis similarity matrices was used to visualize these differences
in beta diversity. Negative binomial generalized linear modeling
and Wald tests for pair-wise comparisons as implemented in the
DESeq2 package (version 1.20.0) (Love et al., 2014) in R (version
3.5.0) (R Core Team, 2018), were used for differential abundance
analysis to test which bacterial OTUs were differentially abundant
(adjusted p-value < 0.01) between time points and sampling
sites. Overall effects of location and time point on the coral-
associated bacterial communities were investigated using the
adonis() function in the R-package vegan (Oksanen et al., 2018).
Core microbiome analyses were performed on the non-rarefied
OTU table to identify the core microbiome (i.e., OTUs present
in 80–100% of the samples) for each coral species, as well as the
microbes that are consistently present at each location (locally
stable microbial associates, LSMA). Since many of the OTUs that
were identified as part of the core microbiome, an LSMA and/or
differentially abundant were also present in the seawater, we
used DESeq2 to assess which OTUs were more abundant in the
seawater than the bacterial communities of the coral to identify
potential transiently associated microbes, e.g., environmental
microbes trapped in the coral mucus.

The PICRUSt2 (Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States) pipeline (Langille
et al., 2013; Douglas et al., 2020) was used to identify OTUs
putatively involved in the nitrogen and sulfur cycles. Based
on the Kyoto Encyclopedia of Genes and Genomes (KEGG2)
(Kanehisa and Goto, 2000), the relevant KEGG orthologs were
selected (Supplementary File S7-1). OTUs that had a Nearest
Sequenced Taxon Index (NSTI) value of <2 and that were

2https://www.genome.jp/kegg/
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predicted by PICRUSt2 to contain at least one KEGG ortholog
involved in the each step of a nutrient cycling process (Nitrogen
Cycle: nitrogen fixation, nitrification/ammonium oxidation,
nitrate reduction/ammonification and/or denitrification, Sulfur
Cycle: DMSP demethylation or cleavage, sulfur oxidation and/or
sulfate reduction) were selected. The nitrite-to-nitrate step
in the nitrification process is, however, only performed by
highly specialized microbes possessing the nxrAB genes, but
KEGG orthologs K00370 and K00371 also contain the common
narGZHY genes involved in denitrification and dissimilatory
nitrate reduction. Therefore, we ensured that only taxa known to
be capable of performing this step (e.g., Nitrospina, Nitrospira)
were included. Differences in the relative abundances between
locations and time points of functional groups overall were
analyzed using a negative binomial generalized linear model
using the R-package MASS (Venables and Ripley, 2002)
followed by pairwise comparisons with the R-package multcomp
(Hothorn et al., 2008).

RESULTS

Microbial Community Diversity
Beta diversity analyses (Supplementary File S2: Supplementary
Table S1) showed that the prokaryotic communities of both the
black coral Antipathella subpinnata and the gorgonian Eunicella
cavolini were distinct from the surrounding seawater at each
location and time point (all comparisons p ≤ 0.0036, Figure 3).

FIGURE 3 | Differences in the diversity of the Antipathella subpinnata and
Eunicella cavolini microbiomes. Beta diversity of the microbiota of
A. subpinnata and E. cavolini and the surrounding seawater is presented in a
principal coordinates analysis (PCoA) ordination plot based on a Bray–Curtis
similarity distance matrix.

However, these analyses also indicated that the prokaryotic
community of A. subpinnata was different (I) between the three
sampling locations (all comparisons p < 0.0003, Supplementary
Figure S1A) as well as (II) between autumn and spring
at the Portofino location (p < 0.0005, Figures 1A,B) and
(III) compared with the sympatric E. cavolini at both time
points (both comparisons p ≤ 0.0002, Figure 3). In addition,
the microbial communities of the seawater also showed
spatial and temporal differences (spatial p ≤ 0.023, temporal
p < 0.0068, Supplementary Figure S1C). Contrastingly, no
temporal differences were observed in the microbial community
associated with E. cavolini (p = 0.3079, Figure 3).

Outcomes of the analyses of the three alpha diversity
metrics richness (observed OTUs), evenness (Simpson’s E), and
diversity (Shannon-Wiener H) are provided in Supplementary
File S2: Supplementary Table S2–S3. In the spring of 2017, no
significant differences in evenness and diversity were observed
between A. subpinnata and seawater, except at the Savona
shoal (p = 0.0001). In addition, the prokaryotic communities of
both A. subpinnata and the seawater showed significant spatial
differences (p < 0.02), however, no difference was found in
the microbiota of A. subpinnata collected near Portofino and
Bordighera. At the Portofino location, significant differences
in the richness of the microbiota were found between the
coral species and seawater. A similar pattern was observed in
microbiota diversity, with the exception that the diversity in the
seawater and in the A. subpinnata-associated microbiota was
similar. No temporal differences were observed in any of the
alpha diversity metrics.

Prokaryotic Community Composition
and ‘Core Microbiome’
Overall, we observed 7813 different bacterial and 73 archaeal
OTUs associated with A. subpinnata. In contrast, 343 bacterial
OTUs and no archaeal OTUs were found in the microbiota
of E. cavolini. Archaea were relatively low abundant in the
microbiota of A. subpinnata in comparison with bacteria,
representing only 0.25% of the prokaryotic community associated
with this black coral near Portofino, 0.17% near Bordighera and
0.02% near Savona.

Clear differences in the prokaryotic community composition
between A. subpinnata and E. cavolini were indeed observed
(Figure 4). The bacterial community of A. subpinnata was
composed of a range of Proteobacteria (particularly Gamma-,
Alpha- and Deltaproteobacteria), Bacteroidetes, Firmicutes,
Cyanobacteria, Planctomycetes and Verrucomicrobia (Figure 4).
Differences in the relative abundances of these taxa existed
between locations and time points (Figure 4, discussed below),
but also among individual colonies within the different locations
(Supplementary Figure S2). No ‘core microbiome’ (i.e., those
microbes that are ubiquitous and consistently present within
the microbiota of a species, regardless of space and time)
could be determined for A. subpinnata. However, we identified
94 OTUs that were present in at least 80% of the samples
at one of the locations. Twenty-one of those OTUs were
significantly more abundant in seawater and belonged to known
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bacterioplankton taxa (e.g., SAR11, SAR116, AEGEAN-169
and Flavobacteriaceae NS marine groups, Supplementary
Figure S3) and were therefore considered transient associates.
Of the remaining 73 locally stable microbial associates (LSMA)
of A. subpinnata 54 OTUs were significantly more abundant in
A. subpinnata than seawater (Figure 5), while for 19 OTUs no
difference was found (Supplementary Figure S3). The relative
abundance of these LSMAs within the bacterial communities
of A. subpinnata differed between on average 29 and 82%

depending on the location and time point (Supplementary
File S3). LSMAs belonged primarily to the main taxa identified
(relative abundance > 1%, Figure 4 and Supplementary File S4),
particularly Rhodobacteraceae, Thalassospira, Rickettsiales,
Pseudoalteromonas, Cellvibrionales BD1-7, Vibrio, Thiotrichales
and various taxa within the phylum Bacteroidetes. An archaeon
of the order Thermoplasmatales (OTU1066) was also found
commonly associated with A. subpinnata (relative abundance
∼0.05%) from the Bordighera (9/10 samples) and Portofino
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(9/10 and 5/10 samples in November and May, respectively)
populations, but it was absent in the Savona population
(Supplementary Figure S3).

The bacterial communities associated with E. cavolini were
dominated by bacteria from the genus Endozoicomonas and
to a lesser extent the Cellvibrionales Clade BD1-7 (Figure 4).
OTUs belonging to these taxa were the major constituents
of the E. cavolini core microbiome, which consisted of 7
OTUs that represented 89–97% of the associated bacterial
community. OTUs identified as Leptospira, Mycoplasma
and an unidentified Proteobacterium were also part of
the core microbiome of this gorgonian (Figure 5 and
Supplementary Files S2, S3).

Spatial Differences in the Black
Coral-Associated Bacterial Communities
Using differential abundance analysis (Supplementary Files
S5A–C), 101 OTUs were found to be primarily responsible
for the spatial differences in the prokaryotic communities
of A. subpinnata. However, 9 of these OTUs were more
abundant in the surrounding seawater and were therefore
likely environmental microbes trapped in the coral mucus
(Supplementary Figure S4). Nearly half of the remaining OTUs
matched the LSMA criterion (22 OTUs were present in at least
80% of samples at one location and 19 OTUs were present in
at least 100% of the samples at one location) (Figure 6 and
Supplementary Figure S3). The spatial differences observed in
the diversity of the bacterial communities of A. subpinnata in
May 2017 (Supplementary Figure S1A) could be discerned in the
community composition (Figure 4) and attributed primarily to
changes in the abundances of OTUs belonging to the main phyla
(Figure 6 and Supplementary Figure S4).

The microbial communities associated with A. subpinnata
at Savona were highly distinct from those at Portofino and
Bordighera (Figure 4). This was primarily driven by the high
relative abundance of Bacteroidetes LSMA OTU3 and the
unknown Bacteria OTU5, which represented respectively
∼66 and 7.5% of the bacterial communities at Savona.
Contrastingly, these OTUs were significantly lower or nearly
absent in the Bordighera (0.0006 and 0.05%) and Portofino
(7.1% and 0%) populations (Figure 6 and Supplementary
File S3). Consequently, the relative abundances of nearly
all other taxa were lower in comparison with Portofino and
Bordighera (Figure 4). The exceptions identified included
several Flavobacteriales OTUs that were only present in
Savona and higher abundances of the Gammaproteobacteria
Psychrobacter OTU55 and Alteromonadaceae (Figure 6 and
Supplementary Figure S4). We also observed significantly higher
numbers of the hydrocarbon-degrading gammaproteobacterial
genera Alcanivorax, Oleiphilus, and Marinobacter in the
Savona population (Supplementary Figure S4). These genera
represented 1.90% of the bacterial community compared with
0.03 and 0.2% in Portofino and Bordighera, respectively.

The A. subpinnata-associated prokaryotic communities at
Bordighera and Portofino in May 2017 were more similar
to each other than at Savona (Supplementary Figure S1A

and Figure 4), but compositional differences were still
observed. Most clearly visible were the significantly higher
abundances of Ascidiaceihabitans, Pseudoalteromonas, Colwellia,
Vibrionaceae and numerous Bacteroidetes phylotypes at
Bordighera (Figures 4, 6 and Supplementary Figure S4).
On the other hand, the Portofino A. subpinnata colonies
harboured significantly higher levels of Planctomycetes,
Thiotrichales, Bacteroidetes (OTU25 and Cytophagales OTU20),
Chlamydiales OTU45, Rickettsiaceae OTU102, Mycoplasma and
Endozoicomonas (Figure 6 and Supplementary Figure S4). Two
of the three Endozoicomonas OTUs (OTU2 and 7) were the main
core bacterial symbionts of the sympatric gorgonian E. cavolini
(Figure 5 and Supplementary Figure S4) and were exclusively
found in A. subpinnata at Portofino.

In addition, we found differences in the OTUs belonging to
specific genera present on A. subpinnata at the different sampling
locations. In the case of the Rhodospirillales genus Thalassospira,
for example, OTU13 was present in the Bordighera and Portofino
populations but absent from the Savona population, whereas
OTU231 was dominant in A. subpinnata near Savona but
absent at the other locations (Figure 6). Similarly, OTU78
was a Rickettsiales Ca. Lariskella phylotype only found in
Bordighera, while OTU178 was present only in Savona and
Portofino (Figure 6). A third example concerned the genus
Rubritalea of the Verrucomicrobia: OTU155 and OTU361 were
observed in the microbiota of A. subpinnata near Bordighera,
but OTU53 and OTU695 were detected in the Portofino
and Savona populations (Figure 6). Although these patterns
were obvious, the relevance of these spatial differences within
particular genera for holobiont functioning and acclimation
remains unclear.

Temporal Differences in the Black
Coral-Associated Bacterial Communities
At the Portofino location, we also observed temporal changes
in the diversity of the microbial community associated with
A. subpinnata (Supplementary Figure S1B). Samples collected
in November 2016 contained higher levels of Flavobacteriales,
Rhodospirillales (genus Thalassospira), Planctomycetes,
Alteromonadales and Thiotrichales compared with May
2017, but lower levels of Endozoicomonas and Rickettsiales
bacteria (Figure 4). These results were confirmed by differential
abundance analysis, identifying 129 OTUs (incl. 18 that
likely belong to the bacterioplankton) that were differentially
abundant between time points (Figure 6, Supplementary
Figure S4, and Supplementary File S5D). Of these OTUs,
65 were only present in the A. subpinnata microbiota in
November and 23 OTUs were exclusive to May, explaining
the significant differences observed in the diversity of these
bacterial communities. It should also be noted that we cannot
exclude the possibility that the microbiota of individual colonies
are stable over time but differ between neighboring colonies
(Supplementary Figure S2), as we did not sample the same
colonies at both time points. In contrast, no OTUs were found
differentially abundant in E. cavolini between those two time
points (Supplementary File S5E).
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No Relationship Between Differences in
the Bacterioplankton and Microbiota of
A. subpinnata
As significant spatial and temporal differences were also observed
in the seawater, we hypothesized that seawater microbes trapped
in the A. subpinnata mucus may be primarily responsible

for the differences observed. However, we found that only
a small portion of the OTUs differentially abundant in the
coral microbiota (spatial: 7–18%, temporal 25%) were also
differentially abundant in the seawater (Supplementary File S6).
In addition, we found that some of these overlapping OTUs
had contrasting abundance patterns. For example, OTU33 and
OTU41 were significantly lower in the A. subpinnata-associated
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bacterial communities in Portofino than in Savona in May
2017, however, their abundance in the seawater was higher in
Portofino than in Savona (Supplementary Figure S3). Besides,
several OTUs that were differentially abundant in both the
seawater and coral microbiota had an overall higher abundance
in corals than seawater (Supplementary Figure S3), suggesting
that these may thus be coral symbionts rather than trapped
environmental microbes.

Predicted Microbiome Functionality:
Nutrient Cycles in the A. subpinnata
Holobiont
PICRUSt2 analysis identified a number of taxa involved
in one or multiple steps of the nitrogen (Figure 7,
nitrogen fixation, nitrification/ammonium oxidation, nitrate
reduction/ammonification and denitrification) and/or sulfur
(Figure 8, DMSP demethylation or cleavage, sulfur oxidation,
sulfate reduction) cycles (Supplementary File S7). Microbes
likely involved in the different steps of these two nutrient cycles
were present in the A. subpinnata holobiont at each location
and at both time points at the Portofino site (Figures 7, 8).
However, significant temporal and spatial differences in the
relative abundances of the assigned functional groups and their
members were observed (statistical outcomes: Supplementary
File S8). The relative abundances of all functional groups were
significantly lower in the Savona population compared with
the other locations (Figures 7, 8, all comparisons p < 0.02,
Supplementary File S7). This was likely related to the high
relative abundance of Bacteroidetes at this location (Figure 4),
resulting in generally low relative abundances of all other taxa,
including those involved in the nitrogen and sulfur cycles.
Differences in functional groups were also observed between
the Bordighera and Portofino populations, with A. subpinnata
near Bordighera harboring higher levels of potential denitrifying
(Figure 7D, p = 0.0001), DMSP-demethylating (p = 1∗10–9,
Figure 8A) and sulfide-oxidizing (p = 1∗10–10, Figure 8D)
bacteria, especially Rhodobacterales. Temporal differences
could only be discerned in the relative abundances of nitrite-
and nitrate-reducing bacteria (p = 0.0008), which may have
been particularly related to the higher relative abundances of
Endozoicomonas in May compared with November (Figure 7C).

DISCUSSION

We present one of the first in-depth assessments of the
bacterial communities associated with black corals, which
provide crucial forest-like structural habitat in the mesophotic
and deep sea, by profiling its associated microbial community
on both spatial and temporal scales. Our findings show that
Antipathella subpinnata possesses a microbiome distinct from the
surrounding seawater as well as from a sympatric arborescent
gorgonian octocoral. The potential lack of a true core microbiome
and the significant differences in bacterial communities between
locations and sampling time points suggest that the composition
of this holobiont is highly influenced by local environmental
conditions. Here, we discuss (1) the composition of the black

coral microbiota in the context of coral microbial ecology,
(2) the putative functions of the prokaryotes associated with
A. subpinnata, (3) the potential causes of the high variability in
the microbiota of this black coral, and (4) the implications that
the lack of a ‘core microbiome’ may have for this coral species as
well as for the field of coral microbial ecology in general.

Microbiome of Antipathella subpinnata
Our study shows that the microbiome of the black coral
A. subpinnata was dominated by Proteobacteria (particularly
Gamma-, Alpha-, and Deltaproteobacteria), Bacteroidetes and
to a lesser extent by Firmicutes, Cyanobacteria, Planctomycetes,
and Verrucomicrobia. When placing these results in context
with the five other studies on black coral-associated microbes
published to date (Penn et al., 2006; Santiago-Vázquez et al.,
2007; Zhang et al., 2012; Dannenberg, 2016; Liu et al., 2018),
some interesting patterns emerge: namely, the bacterial
communities (classified at the genus level and higher)
may be relatively conserved across black coral species. For
example, Leiopathes glaberrima, a deep-sea species with a wide
distribution (Caribbean, Pacific, and Mediterranean), possesses
an associated microbial community that is composed mostly of
Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria
(Dannenberg, 2016). In addition, initial culture-based techniques
(Santiago-Vázquez et al., 2007; Zhang et al., 2012) isolated
and identified various bacteria from black corals that belong
to taxa which are now found widespread in the microbiota of
black corals based on culture-independent techniques (here
in A. subpinnata and Dannenberg, 2016; Liu et al., 2018).
These taxa include Firmicutes (e.g., Bacillus), Actinobacteria
(e.g., Propionibacterium) and Gammaproteobacteria (e.g.,
Acinetobacter, Pseudomonas, Pseudoalteromonas, Psychrobacter,
Vibrio). This also suggests that many of the bacterial symbionts
of black corals may be amenable to cultivation, allowing more
detailed studies of their function.

The bacterial communities of A. subpinnata and other
black corals were also found to share significantly more
characteristics of the microbial communities associated with
other Hexacorallia than with Octocorallia. The holobiont
of Mediterranean A. subpinnata showed similarities with
the Mediterranean corals Oculina patagonica and Cladocora
ceaspitosa. These shallow scleractinian corals also harbor
relatively high levels of Bacteroidetes and Alpha-, Delta- and
Gammaproteobacteria (∼60% of the overall community) and
lower levels of Verrucomicrobia, Planctomycetes, Cyanobacteria
and Firmicutes (Rubio-Portillo et al., 2018b; Bednarz et al., 2019).
Although at relatively lower abundances, bacteria from these taxa
are also commonly found in sea anemones (Brown et al., 2017;
Herrera et al., 2017), tropical scleractinian corals (Sunagawa et al.,
2010; Godwin et al., 2012; Morrow et al., 2012) and numerous
deep-sea coral species (Kellogg et al., 2009, 2016, 2017; Gray
et al., 2011; Lawler et al., 2016; Kellogg, 2019). Contrastingly,
the A. subpinnata prokaryotic community composition did not
show much similarity with the bacterial communities of the
gorgonian Eunicella cavolini, despite living sympatrically in the
same location, and having a similar arborescent colony structure
and ecological function.
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In conclusion, we show that, despite the lack of a ‘core
microbiome’ at the OTU level, the A. subpinnata-associated
prokaryotic community is primarily composed of a limited
number of bacterial taxa. Most of these higher level taxa have
also been found in the microbial community of other black
coral species. These similarities suggest that black corals may
have a relatively conserved bacterial community at the taxonomic
genus level and up.

Putative Functions of Antipathella
subpinnata-Associated Prokaryotes
Although many studies have addressed the composition of the
coral-associated microbial community under natural as well as
experimental conditions, still very little is known about the
functions of these bacteria. As such, it is difficult to understand
the role of the microbes within the A. subpinnata holobiont.
Based on functional and genomic studies on bacteria with

closely related 16S rRNA gene sequences, it might be possible to
infer the role of coral-associated microbes, which may provide
some insights into their niche within the holobiont. However,
it is important to remain cautious when inferring microbial
functions, as lateral gene transfer among bacteria and mutations
may have altered a microbe’s catabolic and anabolic capacities and
behavior, compared with its taxonomically close relatives.

The majority of the dominant bacterial taxa found in the
prokaryotic communities of A. subpinnata belong to taxa which
are commonly found within the holobiont of benthic marine
invertebrates, including corals. Some of these microbes may have
a role in nutrient cycling, which would be of high importance
to the health and nutritional status of the coral holobiont. For
example, bacteria in the phylum Bacteroidetes play an important
role in organic carbon cycling in the marine environment
(Thomas et al., 2011; Fernández-Gómez et al., 2013). They are
particularly recognized for their capacity to break down complex
organic molecules, including chitin. As such, these bacteria may

FIGURE 7 | Relative abundance of Antipathella subpinnata-associated bacteria with a putative role in the nitrogen cycle. The nitrogen cycle consists of four main
processes and microbes putatively involved in these processes are presented: (A) nitrogen fixation, (B) nitrification/ammonium oxidation, (C) nitrate/nitrite
reduction/ammonification and (D) denitrification. Differences between locations are indicated with letters, differences between autumn and spring in the Portofino
population are indicated with an asterisk (*). Taxa with low abundances are combined and indicated in light gray.
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FIGURE 8 | Relative abundance of Antipathella subpinnata-associated bacteria with a putative role in the sulfur cycle. The sulfur cycle consists of four main
processes and microbes putatively involved in these processes are presented: (A) DMSP demethylation, (B) DMSP cleavage, (C) sulfate reduction and (D) sulfur
oxidation. Differences in the abundance of functional groups between locations are indicated with letters. Taxa with low abundances are combined and indicated in
light gray.

aid the coral host with the digestion of captured prey. This may
also be the function of the relatives of Vibrio gigantis that we
found in A. subpinnata, as V. gigantis is a mutualist in shellfish (Le
Roux et al., 2005) and sea cucumbers (Beleneva and Kukhlevskii,
2010) that aids in the host’s food digestion using a broad spectrum
of enzymes, including chitinases. However, as the skeletons of
black corals have generally a high (∼10–15%) chitin content
(Goldberg et al., 1994; Bo et al., 2012a), these bacteria may
potentially also use the chitin produced by the coral as a carbon
and nitrogen source.

One of the best studied coral-associated bacterial
taxa, Endozoicomonas, was also commonly present in the
A. subpinnata and L. glaberrima (Dannenberg, 2016) holobionts,
although at relatively low abundances. Contrastingly, it is
the main symbiont of E. cavolini (Bayer et al., 2013; van de
Water et al., 2017, 2018b). Genome analyses have indicated
that Endozoicomonas may provide its host with a variety of

amino acids, which are synthesized using ammonium and
sulfur acquired through its involvement in nutrient cycling
processes of nitrogen (nitrate reduction and ammonification)
and sulfur (DMSP metabolism) (Neave et al., 2016). This led us
to investigate whether other bacteria involved in the (re)cycling
of essential nutrients (nitrogen, sulfur, and phosphorus) were
present in the microbiota of A. subpinnata. Overall, we found
bacteria putatively involved in all steps of the nitrogen cycle in
the black coral-associated microbial community (Figure 7). The
presence of these bacteria may indicate that the A. subpinnata-
associated bacterial communities are able to acquire (via nitrogen
fixation) and retain (via nitrification and ammonification)
nitrogen within the holobiont. Nitrogen fixation has been shown
in the deep-sea coral L. pertusa (Middelburg et al., 2015) and
a complete nitrogen cycle may be present in the microbiota of
several deep-sea octocoral species (Kellogg et al., 2016; Lawler
et al., 2016). However, the relatively high levels of potential
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denitrifying bacteria in comparison with nitrogen-fixing bacteria
in the microbiota of A. subpinnata could indicate that there
might be a net loss of nitrogen, requiring the holobiont to obtain
nitrogen from exogenous sources, such as predation on plankton
(Coppari et al., 2020).

Phosphorus is generally a limiting nutrient for organismal
growth, particularly in the marine environment and efficient
(re)cycling is therefore of high importance for a holobiont. In
addition to the uptake of inorganic phosphate, phosphonates
are another main source of phosphorus in the marine
environment. Although primarily a microbial process, some
marine invertebrates (incl. corals and anemones) possess genes
representing the complete pathway for phosphonate synthesis
(Shoguchi et al., 2013) and contain high levels in their tissues
(Henderson et al., 1972; Garrett et al., 2013; Godinot et al.,
2016). In two soft corals, microbes that are able to degrade
the highly stable C-P bonds of phosphonates have previously
been found, including Thalassospira, Vibrio, Pseudoalteromonas,
Psychrobacter and Bacteroidetes (Thomas et al., 2009). These taxa
were also commonly found in the microbiota of A. subpinnata,
indicating that phosphorus cycling likely exists within the black
coral holobiont, thereby limiting the loss and facilitating the
acquisition of this crucial nutrient.

We also found several microbial taxa linked to the
degradation of dimethylsulfoniopropionate (DMSP), a sulfur
compound shown to be produced at high levels by coral
animals (Raina et al., 2013). The sulfur contained in DMSP
can be recycled by a large number of bacterial taxa using
the demethylation pathway (Figure 8), and is then used
in the synthesis of purines and the essential amino acid
methionine. The other DMSP degradation pathway leads to the
cleavage of DMSP into DMS by bacteria (Figure 8). Although
sulfur may be lost after oxidation by bacteria in the form
of sulfate in both pathways, sulphite- and sulfate-reducing
bacteria (Figure 8) can reduce this and environmental sulfate
into bioavailable sulfide for incorporation into biomolecules.
The common presence of DMSP-metabolizing and sulfate-
reducing bacteria in the microbiota of A. subpinnata shows
that sulfur cycling likely takes place within the black coral
holobiont. Although the metabolic activities of these microbes are
unknown, the relatively high levels of sulfide-oxidizing bacteria
in comparison with sulfate-reducing bacteria may indicate a
net loss of sulfur.

DMSP has also been implicated in the structuring of the
microbiota of corals (Frade et al., 2016), and may be used by
coral-associated microbes to produce antimicrobial compounds
capable of eliminating coral pathogens (Raina et al., 2016).
This shows the importance of some bacteria in microbial
community regulation of the coral holobiont. This might also
be important in A. subpinnata as Vibrio bacteria were often
present at low abundance in its microbiota. These bacteria
are commonly found in corals, particularly in the surface
mucus layers (Bourne and Munn, 2005; Chimetto et al.,
2009; Raina et al., 2009; Porporato et al., 2013; Ainsworth
et al., 2015), where they are considered to be commensal or
opportunistic pathogens because of their implication in various
coral diseases (Ben-Haim et al., 2003; Ushijima et al., 2012;

Munn, 2015; Rubio-Portillo et al., 2018a). Some A. subpinnata-
associated bacteria, for example Pseudoalteromonas, may have
a microbiome regulatory role. These bacteria are often found
in association with marine animals, including cnidarians,
and are known to secrete compounds with antibacterial
(Holmström and Kjelleberg, 1999; Shnit-Orland et al., 2012;
Richards et al., 2017), antifungal (Shiroyama et al., 2017) and
alginolytic (Holmström and Kjelleberg, 1999) activities. Besides,
Endozoicomonas (Neave et al., 2016) and Actinobacteria (phylum
including Propionibacterium) (Ritchie, 2006; Nithyanand et al.,
2011; Krediet et al., 2013; Zhang et al., 2013) have been implicated
in coral microbiome regulation.

Overall, it appears that each step in the cycling of nutrients
may be performed by a number of different bacterial taxa present
in the A. subpinnata holobiont. This suggests that functional
redundancy may be present within the A. subpinnata microbiota.
However, it also implies that, rather than having a true ‘core
microbiome,’ this black coral holobiont may ensure the presence
of important core functions within its microbiome, with a
potential microbiome regulatory role for some of its common
microbial associates.

Potential Causes of Variability in the
Antipathella subpinnata Microbiota
The microbial communities associated with A. subpinnata were
found to be distinct at each of the three locations and different
between the spring and autumn. As all colonies were visually
healthy at the time of collection, a cause for these differences
is difficult to identify. However, it was unlikely to be related to
the trapping of bacterioplankton in the large amounts of mucus
produced by this black coral (Bo et al., 2008), because (1) only a
minor fraction of the differentially abundant OTUs in the coral-
associated bacterial communities was also differentially abundant
in the seawater, and (2) the relative abundance of some OTUs
was higher in the coral than seawater and these may thus have
been released through shedding – a known mechanism of corals
to regulate their microbiome (Garren and Azam, 2012).

The genetic structure of the black coral populations, and thus
host genotype, may be a driver of the spatial differences observed
in the prokaryotic communities associated with A. subpinnata.
Possible links between host genotype and microbiome were
recently found in two deep-sea octocoral species from the genus
Primnoa (Goldsmith et al., 2018) and spatial differences in the
microbiota were also observed in two Caribbean populations
of L. glaberrima (Dannenberg, 2016). However, preliminary
analyses have revealed that coastal A. subpinnata populations on
the western coast of Italy are highly connected (Costantini et al.,
2019). This suggests that genotype has a limited role, and that
the A. subpinnata-associated microbial communities were likely
influenced by local environmental conditions.

Increased seawater temperature (Bourne et al., 2007; Ziegler
et al., 2017; Pootakham et al., 2018) and anthropogenic stressors
(van de Water et al., 2017, 2018b), including pollution (Ziegler
et al., 2015; Leite et al., 2018), have previously been linked to
shifts in the coral microbiome. But in our study, the seawater
temperatures at the time of sampling were nearly the same at
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all locations and the shoals are not exposed to heavy river run-
off pollution due to their relative distance from shore and depth.
We did, however, observe a significantly higher abundance of
bacteria that are capable of degrading or exclusively feeding
on hydrocarbons in the microbiota of A. subpinnata of the
Savona population, such as Marinobacter, Alcanivorax, and
Oleiphilus. This may be linked to nearby activities, as the Port of
Savona (incl. Vado Ligure) handles petroleum products, harbors
a large fleet of commercial fishing vessels and is frequented
by cruise and cargo ships, whereas the ports of the other two
localities are primarily used for yachting. It is tempting to
speculate that these microbes may convert these hydrocarbons
into a bioavailable carbon source for the coral host as has
been previously hypothesized for deep-sea corals from the Red
Sea (Röthig et al., 2017). While this may partially explain the
highly different A. subpinnata-associated bacterial communities
near Savona, this does not account for all spatial and temporal
differences observed.

The local conditions at each of our sampling sites were likely
somewhat different in terms of silting levels, hydrodynamism
and upwellings due to nearby canyons. In addition, modeling
of the coastal currents in the Ligurian coastal region has shown
that coastal mesoscale eddies are common and long-lived (over
a month) (Casella et al., 2011). Particularly, the anti-cyclonic
eddies between the coast and the main Ligurian-Provencal-
Catalan current induce strong upwelling on their coastal side
and are an important source of nutrients for ecosystems in the
upper sea layer (down to 200 m depth) (Casella et al., 2011).
Unfortunately, we were unable to verify whether such eddies were
present at the time of sampling at any of the locations or how
much time had passed since the last upwelling, and no data on
nutrient levels at these locations are available. Regardless, our best
explanation of our results is that the observed differences in the
bacterial communities of A. subpinnata are due to the different
local environmental conditions that characterize the sites and
with a potential role of anti-cyclonic vortices.

Environmental conditions may also impact the main food
source of the filter-feeding A. subpinnata: plankton. It was
demonstrated recently that A. subpinnata in the Portofino area
feeds primarily on mesozooplankton in spring, but nano- and
picoplankton (incl. the bacterioplankton) in autumn (Coppari
et al., 2020), which coincides with the temporal differences
observed in the microbiota. Changes in food sources are
known to affect the nutritional status and the microbiomes of
organisms. Although a definitive link has not been established
here, it is tempting to speculate that the diet of this black
coral influences its microbiome and thereby potentially its
function. The observed differences in the abundance of microbes
involved in various steps of the nitrogen and sulfur cycles
may reflect changes in the coral’s nutritional status and fitness.
However, it could also be indicative of a change in the
nutritional needs of the holobiont and an adjustment of the
microbiome to fulfill these needs to improve host fitness. To
address this, further studies linking coral physiology with the
activity of host-associated bacteria will be required along with
investigations into the black coral holobiont’s capacity to actively
regulate its microbiome.

Microbiome Flexibility in Black Corals
and the Absence of a Bacterial ‘Core
Microbiome’
Black corals are one of the longest lived animals known, with
a reported colony age of up to 4,265 years for L. glaberrima
(Roark et al., 2009). As they are sessile animals, it is imperative
for their survival to employ strategies that allow them to acclimate
rapidly in response to environmental change. Actively changing
the microbiota may represent one such mechanism. Given the
significant differences in microbiota observed on spatial and
temporal scales in healthy populations of A. subpinnata, our
results indicate that the holobiont of this coral has indeed a
high degree of microbiome flexibility. The degree of flexibility
in holobiont structure and composition may, however, differ
between species as demonstrated by Ziegler et al. (2019).
They showed that the microbiota of the tropical reef-building
hexacoral Acropora hemprichii responds to different levels of
anthropogenic impacts and can even recover when transplanted
to non-impacted sites. In contrast, they found that Pocillopora
verrucosa’s microbiota remains stable regardless of the level of
impact. Based on these differences in microbiome flexibility, the
authors referred to corals that show microbial adaptation to
the surrounding environment as “microbiome conformers,” and
to corals that maintain a constant microbiome as “microbiome
regulators” (Ziegler et al., 2019). While these terms provide
guidance, most holobionts can likely not be strictly assigned to
one group, and a spectrum of microbiome flexibility where the
microbiome “regulators” and “conformers” are on either end of
the scale should be considered. For example, E. cavolini possesses
a microbiota dominated by its core microbiome, which shows
little temporal differences but some spatial differences as seen
here and previously (van de Water et al., 2017, 2018b). This
suggests that this gorgonian is in the ‘microbiome regulator’
spectrum, as its microbiome is relatively stable but exhibits some
variation, mostly in the abundances of core microbes. We also
observed stability in the structural complexity of the microbiome
of E. cavolini (based on alpha diversity metrics), which has
been linked to tolerance of another coral in the ‘microbiome
regulator’ spectrum to environmental change (Röthig et al.,
2020). As all colonies of A. subpinnata sampled were visually
healthy, the differences in the microbiota among populations
and time points likely did not reflect an unhealthy state of
the holobiont or a pathobiome. This black coral also did not
completely alter its microbiota as numerous microbes were
present at the three sampling locations. Instead, it is more
likely that A. subpinnata is on the “microbiome conformer”
side of the scale, adjusting its microbiota by selecting for
the most beneficial microbial community depending on the
environment (Reshef et al., 2006; Rosenberg et al., 2007) allowing
it to cope with change. Consequently, the structural complexity
of A. subpinnata’s microbiota was also significantly impacted,
particularly near Savona.

However, it should be noted that 90–95% of the prokaryotic
community of A. subpinnata was still composed of the main
microbial taxa (those with an abundance > 1%) at all locations.
This suggests that some degree of fidelity still exists within the
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composition of the holobiont, but not at the 97% phylotype/OTU
level. Instead, black corals may rely on a ‘functional core’ (i.e., a
complement of metabolic and other molecular functions that are
performed by the microbiome but are not necessarily provided by
the same organisms, Shafquat et al., 2014). This is in line with our
results on the stable presence of microbes involved in nutrient
cycling. Also Jaspers et al. (2019) determined that intimate
associations between a host and its microbiota may not be a sensu
stricto criterion for functional relevance as the composition of a
holobiont may depend on multiple factors, including age, sex,
life history and environment. Functional and/or metagenomics
studies are, however, required to investigate whether changes in
the microbiota affect the functioning of the coral holobiont.

Rigorous sampling at multiple locations, depths and over
time has revealed that numerous scleractinian and gorgonian
species possess a bacterial core microbiome, i.e., they consistently
associate with certain bacteria regardless of space and time.
Black corals, however, seem to largely lack this feature, as no
core microbiome has been detected in A. subpinnata here or
the other species studied in-depth, L. glaberrima (Dannenberg,
2016). The high level of microbiome flexibility in A. subpinnata
may explain this lack of a bacterial ‘core microbiome.’ In
agreement with Ziegler et al. (2019), we believe that, due to
the differences in the degree of microbiome flexibility among
coral species, elucidating a universal coral core microbiome
(Ainsworth et al., 2015; Hernandez-Agreda et al., 2017) is
difficult. However, recent papers have described strong signals of
phylosymbiosis in both tropical reef-building hexacorals (Pollock
et al., 2018) and the distantly related Mediterranean gorgonian
octocorals (van de Water et al., 2018b). Phylosymbiosis has been
defined as “microbial community relationships that recapitulate
the phylogeny of their host” (Brucker and Bordenstein, 2013;
Lim and Bordenstein, 2020). It is therefore surprising to see
that the Antipatharia-branch of the Hexacorallia may not fit
in the pattern of phylosymbiosis in corals as it appears to
lack close relationships with its microbiota. Phylosymbiosis has
often been considered to arise from long-term associations
between a host and its microbes (e.g., co-diversification in
scleractinian and gorgonian corals, Pollock et al., 2018; van de
Water et al., 2018b). However, a recent study on Drosophila
melanogaster found that phylosymbiosis may also be driven
by short-term changes in the microbiota (Rudman et al.,
2019). Consequently, Lim and Bordenstein (2020) suggest that
microbial communities are not passive agents of phylosymbiosis,
but may have the potential to induce genomic changes in the host
that could impact establishment, maintenance or breakdown of
phylosymbiosis. Whether a breakdown of phylosymbiosis in the
Antipatharia occurred during the evolution of the Hexacorallia
or phylosymbiosis arose multiple times during coral evolution
remains an open question.

CONCLUSION

The composition of the bacterial communities of black corals
is more similar to the microbial community associated with the
reef-building scleractinian corals than the structurally similar,

but more distantly related, and sympatric gorgonian corals.
The potential lack of a core microbiome and major spatial
and temporal differences observed shows that environmental
factors largely determine the compositional differences of the
black coral-associated microbial communities. However, whether
the functioning of the microbiota has changed or that there is
functional redundancy remains to be assessed through functional
and metagenomics studies. This may suggest that black corals,
such as A. subpinnata, have limited microbiome regulatory
capacities. Yet, microbiome flexibility may also allow these corals
to tailor their microbiota to local, and potentially changing,
environmental conditions by selecting the most beneficial
microbes from the surrounding environment. This could thus be
another strategy that may have contributed to the black corals’
success in colonizing the mesophotic zone and deep sea.
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