
Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi

A Framework for the Semantics-aware Modelling of Objects

by

Andreas Scalas

Theses Series DIBRIS-TH-2021-XXXIII

DIBRIS, Università di Genova
Via Opera Pia, 13 16145 Genova, Italy http://www.dibris.unige.it/

Università degli Studi di Genova

Dipartimento di Informatica, Bioingegneria,

Robotica ed Ingegneria dei Sistemi

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

A Framework for the Semantics-aware Modelling of
Objects

by

Andreas Scalas

March, 2021

Dottorato di Ricerca in Informatica ed Ingegneria dei Sistemi
Indirizzo Informatica

Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Università degli Studi di Genova

DIBRIS, Univ. di Genova
Via Opera Pia, 13

I-16145 Genova, Italy
http://www.dibris.unige.it/

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

(S.S.D. INF/01)

Submitted by Andreas Scalas
DIBRIS, Univ. di Genova

....

Date of submission: December 2020

Title: A Framework for the Semantics-aware Modelling of Objects

Advisors: Michela Mortara, Michela Spagnuolo
Istituto di Matematica Applicata e Tecnologie Informatiche “Enrico Magenes”

Consiglio Nazionale delle Ricerche
...

Ext. Reviewers: Mario Botsch, Hamid Laga, Sorin Hermon

Abstract

The evolution of 3D visual content calls for innovative methods for modelling shapes
based on their intended usage, function and role in a complex scenario. Even if dif-
ferent attempts have been done in this direction, shape modelling still mainly focuses
on geometry. However, 3D models have a structure, given by the arrangement of
salient parts, and shape and structure are deeply related to semantics and functional-
ity.

Changing geometry without semantic clues may invalidate such functionalities or the
meaning of objects or their parts. We approach the problem by considering semantics
as the formalised knowledge related to a category of objects; the geometry can vary
provided that the semantics is preserved. We represent the semantics and the variable
geometry of a class of shapes through the parametric template: an annotated 3D
model whose geometry can be deformed provided that some semantic constraints
remain satisfied.

In this thesis, we design and develop a framework for the semantics-aware mod-
elling of shapes, offering the user a single application environment where the whole
workflow of defining the parametric template and applying semantics-aware defor-
mations can take place. In particular, the system provides tools for the selection and
annotation of geometry based on a formalised contextual knowledge; shape analysis
methods to derive new knowledge implicitly encoded in the geometry, and possi-
bly enrich the given semantics; a set of constraints that the user can apply to salient
parts and a deformation operation that takes into account the semantic constraints
and provides an optimal solution. The framework is modular so that new tools can
be continuously added.

While producing some innovative results in specific areas, the goal of this work is the
development of a comprehensive framework combining state of the art techniques
and new algorithms, thus enabling the user to conceptualise her/his knowledge and
model geometric shapes.

The original contributions regard the formalisation of the concept of annotation,

1

with attached properties, and of the relationships between significant parts of ob-
jects; a new technique for guaranteeing the persistence of annotations after signifi-
cant changes in shape’s resolution; the exploitation of shape descriptors for the ex-
traction of quantitative information and the assessment of shape variability within a
class and the extension of the popular cage-based deformation techniques to include
constraints on the allowed displacement of vertices.

In this thesis, we report the design and development of the framework as well as
results in two application scenarios, namely product design and archaeological re-
construction.

2

To my father. I wish you were here...

Acknowledgements
This thesis is the product of several years in which I received a lot of help and assistance from a
huge amount of people. I will just try to go in chronological order.

First of all, I really want to thank my family and friends, who always supported me and without
whom I would not be here now.

I would like to thank Prof. Scateni, who was my first guide in the research environment together
with the students of the Batcave (especially Alessandro).

I am deeply grateful to Livio, who always insisted for me to apply for a PhD position and sup-
ported me throughout all of it, explaining to me its mechanisms and difficulties. I will never
forget it.

Then, I have to thank Chiara, first and most important of all my supporters, from every point of
view. I appreciate it more than I can say.

After my first attempt for entering the PhD program in Cagliari, I accepted a Research fellowship
in Genova, where I got to know a lot of nice people, who I really want to thank for their friendship
and closeness, even in the darkest moments.

In particular, I would like to thank my invaluable supervisors. Dr. Michela Spagnuolo, for giving
me the opportunity to embark on this path in the first place and for her continuous encourage-
ment. Dr. Michela Mortara for her constant support during the four years of my stay and her
conspicuous help in writing this thesis. Then, I want to thank Elia for helping me a lot, espe-
cially with my poor mathematical knowledge, and my other partners in crime for giving me the
funniest years possible. I can not thank you singularly, but none the less I am very grateful to
each of you.

I wish to thank all the people whose assistance was a milestone in the completion of this project,
in particular Valentina, who was always available for help and discussion and to write several
papers (even in the dead of the night); Prof. Botsch, who hosted me at the Bielefeld University,
assisted me during our collaboration and accepted to be one of the reviewers of this thesis to-
gether with Prof. Hermon and Prof. Laga, whom I thank equally. I also want to thank the whole
Computer Graphics group, formerly in Bielefeld and now in Dortmund, for the best possible
hospitality and the friendly environment, as well as for their help on different occasions.

Thank you, thank you very much, cited or not, I know that without each of you this result would
not have been possible.

2

Abbreviations

3D-PSM Patient-Specific 3D Model. 26

AI Artificial Intelligence. 25, 32

AR Augmented Reality. 96, 97

BBW Bounded Bi-harmonic Weights. 77

BC Barycentric Coordinates. 75–77, 84, 133

CAD Computer-Aided Design. 11, 17, 24, 26, 89, 97

CG Computer Graphics. 6, 10, 66

CH Cultural Heritage. 6, 9, 12–14, 17, 20–22, 24, 25, 49, 112, 114

CP Control Point. 97–101, 103–105

CVA Corpus Vasorum Antiquorum. 13

DoF Degrees of Freedom. 74, 81, 82, 120

DQS Dual Quaternion Skinning. 71, 72

FFD Free-Form Deformation. 66–68

GBC Generalized Barycentric Coordinates. 72, 73, 76, 78, 82, 98, 99, 104, 120, 125, 129

GC Green Coordinates. 77, 84, 125

GPU Graphics Processing Unit. 77

GUI Graphical User Interface. 78, 88, 89, 107, 112, 125, 139

1

HC Harmonic Coordinates. 77

HMD Head-Mounted Display. 97, 98

ICP Iterative Closest Point. 12

JSON JavaScript Object Notation. 139

LBC Local Barycentric Coordinates. 78, 99

LBS Linear Blend Skinning. 69–73

LMC Leap Motion Controller. 97, 98

LoD Level of Detail. 27, 33, 44, 120

MBR Minimal Bounding Rectangle. 55, 56

MRI Magnetic Resonance Imaging. 13

MVC Mean Value Coordinates. 77, 78, 82, 99, 104, 125

NLP Natural Language Processing. 19, 23

OBB Oriented Bounding Box. 74, 88

PMVC Positive Mean Value Coordinates. 77

PNRA Programma Nazionale di Ricerche in Antartide. 123

RoI Regions of Interest. 24, 26, 44, 99, 100, 104

VR Virtual Reality. 20, 87, 96–98

2

Table of Contents

Chapter 1 Introduction 6

1.1 Template: meaning and examples . 10

1.2 Overview of the framework . 18

1.3 Contributions . 20

Chapter 2 Representation and preservation of Semantics 22

2.1 Annotation systems in application domains . 24

2.1.1 Cultural Heritage . 24

2.1.2 Medicine . 26

2.1.3 Engineering . 26

2.2 Formalisation of annotations . 26

2.2.1 Information . 27

2.2.2 Selection . 27

2.2.3 Attributes . 28

2.3 Relationships among annotations . 30

2.4 Annotation persistence . 32

2.4.1 Annotation Transfer . 34

2.4.2 Transfer results . 40

2.4.3 Transfer limitations . 44

2.5 Discussion . 46

3

Chapter 3 Semantics enrichment through shape analysis 47

3.1 The Ayia Irini case study . 49

3.2 Quantitative attributes identifying artisan expertise and production process 52

3.2.1 Experiments and results . 54

3.2.2 Inferring fixed proportions . 56

3.3 Quantitative approach to the sub-grouping of artefacts based on moulds 57

3.3.1 Similarity assessment . 59

3.3.2 Head clustering . 59

3.3.3 Experiments . 60

3.4 Limitations and Discussion . 63

Chapter 4 From semantics to geometry through template deformation 65

4.1 Review of surface deformation techniques . 66

4.1.1 Variational techniques . 67

4.1.2 Free-form deformation . 67

4.1.3 Skinning . 68

4.2 Constrained deformation . 78

4.2.1 The ShapeOp library for geometric constraints 79

4.2.2 ShapeOp extension for cage-based deformation 81

4.2.3 Low-level and high-level constraints . 84

4.3 Discussion . 85

Chapter 5 Results and applications 87

5.1 Operational workflow of the system . 88

5.2 Product Design scenario . 89

5.2.1 Same “level” constraint . 90

5.2.2 Structural “continuity” constraint . 92

5.2.3 Deformation in a VR environment . 96

4

5.3 Archaeological reconstruction scenario . 107

5.3.1 Interactive virtual archaeological reconstruction 107

5.3.2 A constraint based on “proportions” . 112

5.4 Discussion . 116

Chapter 6 Discussion and future works 119

6.1 Discussion . 119

6.1.1 Lack of a semantics-aware generation of cages 120

6.1.2 Need for a “semantic” optimisation . 120

6.1.3 Work in progress . 122

6.2 Further Applications . 122

6.2.1 Investigation of biological species . 123

6.2.2 Generation of random shapes belonging to a same homogeneous class . . 123

6.2.3 Classification of shapes based on non-rigid fitting 123

Appendix A Graphical User Interface 125

A.1 Main window . 125

A.2 Annotation window . 130

A.3 Relationships window . 137

Appendix B File formats 139

B.1 Annotation file format . 139

B.2 Graph file format . 140

Bibliography 142

5

Chapter 1

Introduction

In the last decades, there was an endeavour in research for the definition of 3D acquisition tech-
nologies (e.g., [LPC+00]), bringing to life new and astounding techniques, such as computer
tomography, magnetic resonance imaging and 3D laser scanning. These techniques have en-
abled highly accurate digitisation of complex 3D objects [BKP+10].

The number of areas that are profoundly changing due to the availability and usage of digital con-
tent is increasing day by day, passing from entertainment (including video-games, cinema and
cartoons) to education (serious games), from industry (fabrication, predictive maintenance) to
scientific research (e.g., neuroscience, mechanical engineering, astrophysics), and also in fields
like Cultural Heritage (CH), where research can be conducted on the digital replica of the physi-
cal and often fragile assets.

Historically, Computer Graphics (CG) focused primarily on setting the foundations for the rep-
resentation of the geometry of 3D shapes rather than their semantics, but such an approach is
reaching its limitations and is not expected to satisfy the requirements of the hectic and cus-
tomised usage required, for example, by social media sharing of 3D shapes [Spa16]. The reasons
are several:

1. 3D content really falls in the context of big data: generally speaking, the footprint of 3D
models is way heavier compared to text or images and even video clips, making the real-
time streaming of such data really difficult.

2. During the last years, the attention of industry was mainly focused on the visualisation of
3D media, while the creation and manipulation of 3D models were not identified as critical,
mainly due to the complexity of such actions for non-expert users.

3. Almost all the efforts spent until now focused on defining a good geometric representation
for objects, without considering the meaning of the objects, their function or intended

6

usage and their role in a complex scenario, or at least they have only been considered as
an add-on.

While the first issue is likely to be overcome by the introduction of new transmission and compu-
tational technologies (e.g., 5G wireless communications technologies and quantum computing),
the solution of the remaining two really requires a paradigm shift. For this reason, in the latest
years more and more research has focused on the introduction of an intelligence layer in the
definition of shapes (e.g., [AIM04], [FOC08]): in this view, 3D representations embed seman-
tic data at the geometric level, communicating information about the geometry via a formalised
description of an object’s meaning.

Typical approaches in this direction study the presence of symmetries, repeating patterns or ex-
tract a skeleton of the object for trying to sort out low-level geometric data into a more structured
and semantics-oriented representation of 3D models [Spa16].

In this thesis, we argue that, while nowadays software for the manipulation of images are reach-
ing a good level of simplicity and effectiveness even when utilised by users with little expertise,
while allowing to obtain extremely high-quality results (e.g., see Figure 1.1), the same does not
hold for 3D shapes, yet there are situations in which the search, editing and reuse of 3D shapes
would really be useful. The reasons are several:

1. It is relatively easy to define a part of an image (e.g., with the lasso selection) while the
same selection on a 3D object is much more difficult. In 3D, indeed, there is not a unique
single view of the whole object and the selection of the part of interest is more complex
from the interaction point of view, while we are trying to interact with the shape acting on a
2D representation of it (typically mouse-based interaction with visualisation on monitor);

2. After managing to select one part, there are many ways for defining the deformation to
be applied to it and this deformation may or may not change the overall shape of the
object in several different ways. With reference to Figure 1.2, if we wanted to enlarge the
flowers, scaling the whole object would not change the relationship between flowers and
teapot; moreover, the teapot has several flowers: enlarging one does not necessarily mean
enlarging all the others, even if intuitively they are part of the same decoration and should
remain similar after one has been modified.

In this thesis, we aim at defining an approach and the methods to support the editing of 3D
shapes in a “smart” way, that is, controlling how the modifications should impact the nature,
functionality or purpose of an object, or on the peculiar features that discriminate that object
from others of the same type, that is, features that characterise its style. We will name all these
aspects as pertaining to the semantics of an object, and the editing system will therefore be named
a semantics-aware modelling of objects.

7

Figure 1.1: An example of the modifications obtainable using image manipulation software, such
as Photoshop® (image by Kevin Carden on https://www.christianphotoshops.com/).

8

Figure 1.2: An example of a teapot shape with some floral pattern on its surface.

Core part of the proposed framework is the definition of an abstract representation that couples
geometry and semantics of a class of shapes and allows to express geometric, structural and
stylistic constraints on the object, its parts and the relations among parts. Thanks to this abstract
representation, semantics-aware (and compliant) deformations can be expressed, at the degree to
which the user will drive them, allowing or precluding modifications that satisfy or breaks certain
constraints. We will call this abstract representation the “parametric template” of an object:
“template” because it captures the main traits of the object within its class and “parametric” to
convey the idea of the range within which the semantic traits are considered constraints during
object editing sessions.

The research challenge addressed in this thesis was studied first in a specific context, and in
particular to aid the reconstruction of broken CH artefacts, where domain experts possess strong
knowledge on the stylistic properties of objects, the intra-relationships within their parts and the
inter-relationships between different objects. Thanks to the component defined and developed
during the research work of this thesis, CH domain experts are provided with an interactive
system for merging such knowledge and their shape representation through the mechanism of
3D annotation. We believe that the constant synergy of geometry and semantics is crucial to
define simpler yet smarter modelling frameworks, where even non-expert users can define and
model an instance of a shape by exploiting the knowledge of domain experts in a transparent
way.

9

1.1 Template: meaning and examples

As already introduced, the goal of this thesis is to set up a framework for allowing a seman-
tically guided modelling of shapes belonging to the same class of homogeneous objects (i.e.,
sharing specific properties). We have in mind several applications: the manipulation of an object
forbidding modifications that would change its nature or the characteristics that identify it as a
part of its class; the adaptation of an object from one style to another by modifying properly the
characteristics that correspond to a particular canon; the recognition/classification of an object
by assessing if it exhibits the features of a certain class; the shape completion/reconstruction of a
complete model through the matching of one or more compatible fragments to an archetype. All
these applications assume more or less implicitly that the features identifying a class of shapes
and discriminating it from others are known and encoded in a machine-readable form, either at
the semantic level (the knowledge of what “makes this object a teapot”) or at the geometric one
(the geometry of a reference teapot), or both.

The term template has meanings explicitly related to the concepts of “similarity” and “structure”
and to the act of “production”. According to the Cambridge dictionary, for instance, a template
is “something that is used as a pattern for producing other similar things”, “a particular model
for arranging information”, “a design or pattern that is used for making copies of a shape”. The
template is, therefore, a reference for other similar objects, but how much similar, and similar
under which point of view? Implicitly, the template is an abstract representative for a class of
objects, which share some homogeneous features, but not necessarily they are perfectly identical.
A template document specifies what kind of information needs to be inserted and in which order,
but the information itself will be specific to each document written following the template. We
could say, the template represents a class and the documents are instances of that class.

Bringing forward this reasoning, we could claim that conversely, if an object does not follow
the template, it does not belong to the class. Therefore, the template discriminates what objects
belong or not to a certain category; in other words, the template represents the knowledge priors
about a class of objects.

Indeed, templates have been and are still widely used in CG applications as shape priors to opti-
mise complex problems that typically require human intervention (e.g., segmentation of medical
images) or to solve under-constrained problems such as shape reconstruction from incomplete
data. We briefly sketch the use of templates in several domains in the following subsections.

Last, but not least, geometric deformability arises as one of the main features of a shape template
in CG applications: indeed, the template represents an ideal, reference object of a given class,
and classification, recognition or completion problems must cope with the shape variability of
objects within a class. Therefore, the template is typically deformed to fit some input data, and a
mechanism must be in place to assess the range of this deformation, e.g., if it is acceptable (the
input object is similar enough to the template and belongs to the class) or not. This is even more

10

true for production purposes: generating new shapes based on a template, e.g., in product cus-
tomisation, content adaptation or re-purposing, requires to change a reference geometry adapting
to a new setting or new constraints.

Templates in Computer-Aided Design

Being able to modify interactively the geometric models associated with a product is a necessary
condition to ensure the efficiency of a design process. Indeed, the geometric model of a future
product is subject to several modification steps, at different stages of the design process, where
different professionals are also involved. For example, the shape defined by a stylist may not be
compatible with the mechanical characteristics the engineers aim for.

Therefore, this domain requires modelling systems allowing the creation of new shapes and their
modification through the use of high-level operations such as copy/paste, move, size changes,
remove and so on. These modifications have to be intuitive since different stakeholders are
involved in the design process.

To meet these requirements, the modelling process should be shape-oriented, in the sense that the
designer should think and build his/her geometric model through the use of high-level entities
and not directly through the manipulation of simple primitives (faces, edges). This approach
is known as feature-based modelling. The feature concept has been successfully adopted for
the design of shapes defined by analytic surfaces such as planes, cylinders, spheres and so on
[SM95].

Following the feature-based approach [PFGL08], the geometric model is not anymore perceived
as a collection of vertices, edges and faces but as a well-organised set of features corresponding
to slots, ribs, stiffeners and so on.

All the properties related to a feature type are specified within a feature class that defines a
template for all its instances. This always includes the generic shape of the feature, and a few
parameters, e.g. length, width, and constraints, e.g. parallel, perpendicular, that characterise this
shape.

By specifying values for the parameters, an instance of the feature class can be created and then
be added to a feature model [BBN06]. The feature model usually contains the feature instances,
the information related to their mutual dependencies and the chronology of construction.

Still in the context of product design, but unrelated to Computer-Aided Design (CAD) systems
and feature-based modelling, a recent method [ZAC+17] has been published to tackle the re-
targeting of mechanical parts to adapt to new outer shapes. The system is based on the obser-
vation that, for many functional objects, the mechanical architecture remains the same while
the shape varies. The approach aims at allowing novice users to re-target an existing mechan-
ical template to a user-specified input shape. In this work, a mechanical template encodes a

11

parameterised mechanism, mechanical constraints that ensure a physically valid configuration,
spatial relationships of mechanical parts to the user-provided shape, and functional constraints
that specify an intended functionality. The algorithm interactively optimises the mechanical tem-
plate while the user manipulates the placement of mechanical components and the shape.

While the previous approach fits a mechanical template to an input shape to preserve the de-
sired functionality, another relevant work published earlier [LMS13] focused on the automatic
recognition of functional parts of man-made 3D shapes in the presence of significant geometric
and topological variations. The authors observed that under such challenging circumstances, the
context of a part within a 3D shape provides important cues for learning the semantics of shapes.
They model the context as structural relationships between shape parts and use them, in addi-
tion to the part geometry, as cues for functionality recognition. They represent a 3D shape as a
graph interconnecting parts that share some spatial relationships, actually defining a template for
a class of man-made objects.

Templates in Shape Reconstruction

The construction of a 3D model from acquired data plays an important role in Computer Graph-
ics. The challenges in reconstruction are related to noisy data and outliers, to missing data due
to occlusions or simply to the sparsity of data, which significantly aggravates the problem of re-
construction. The setting of the problem can vary from the digitisation of a single static object to
the acquisition of indoor and outdoor scenes or geographic areas, to the real-time reconstruction
of deformable, moving subjects. In such cases, the input to the reconstruction is a point cloud
acquired by laser scanning, photogrammetry or depth sensors, but 3D reconstruction can be
achieved from videos (e.g., [YRCA15]) or from a few or even a single image (e.g., [BGC+15]).
The solutions to such hard problems typically exploit contextual information to incorporate prior
knowledge about the shape to be reconstructed.

The template shape is computed through a statistical analysis of the class of shapes and is then de-
formed to fit the acquired data. In the CH domain, the input data could represent partial, damaged
and fragmented artefacts to be virtually completed using a reference [GSP+14]. The template is
particularly effective when dealing with the creation of avatars based on scans of the real person:
indeed, the acquisition process is subject to errors that might arise for differences in light, move-
ments of the subject, poor calibration, pose complexity and occlusions. This noisy and incom-
plete data can be cleaned and completed by fitting a template shape to the input points [SKR+06],
through one of the many generalisations of the Iterative Closest Point (ICP)[Zha94] algorithm
(see [ARV07, BR07]) to non-rigid registration (e.g., [YWLM11, AWLB17, WAB+20]).

12

Templates in the medical field

Template shapes are very useful when dealing with several shapes which are similar to one
another. This is the case of the modelling of anatomical parts of the human body, such as bones
and organs, which exhibit a known shape with a certain variability among patients. This shape
variability is limited but considerable; on the other hand, identifying significant shape deviation
is of particular importance in this domain, as it might indicate pathological situations.

This fact has increased the interest in the creation (or synthesis) of mean shape models to cope
with the variability of anatomical structures in medical data analysis.

Banerjee et al. [BLP+15] explored the suitability of statistical shape analysis to produce 3D
canonical models of bones [RST+07], built from homogeneous classes of 3D bones reconstructed
from Magnetic Resonance Imaging (MRI) data. Grounded on previous results in landmark-
guided deformation of elastic shapes [KSKL13], they generate a 3D model that captures the
variability exhibited by the members of the class, while preserving important anatomical land-
marks, which characterise both the function and status of the anatomical part. They argue that
3D canonical models could be used to support the diagnosis of musculoskeletal diseases, acting
as reference 3D atlases (healthy average shape) on which important morphometric parameters
can be evaluated and quantified.

Templates (e.g., [CJV06]) could be exploited, for example, for the reconstruction of broken
bones, like skulls [YWLM11].

Finally, image segmentation of anatomical structures under challenging conditions such as tissue
inhomogeneity, noise, and contrast loss can be significantly facilitated by incorporating prior
knowledge, constraining the solution to remain close to a predefined template shape [PCM+14].

Templates in Cultural Heritage

Particularly in the CH sector, templates are suitable representations of a-priori knowledge of
shape variability within classes of objects. Indeed, qualitative and quantitative analyses of arte-
facts have been documented over the centuries by archaeologists and curators with great detail,
cataloguing pieces according to shared types and styles and reporting shape characteristics and
variations within categories. Specific objects have been particularly studied, thanks to the num-
ber of findings, and some reflect the presence of established proportions.

For instance, the Corpus Vasorum Antiquorum (CVA) is an international research project for the
documentation of ceramics from the classical era. The CVA mostly publishes Greek (includ-
ing Italian) pottery between the seventh millennium B.C. and late Antiquity (third-fifth century
A.D.). The publications are divided into fascicles catalogued by country and museum. Today
the project covers a compendium of more than 100,000 vases located in collections of 26 partici-
pating countries. The documentation of a vessel includes the description of its overall condition,

13

Figure 1.3: Mean shapes for the bones of the right wrist: (a) capitate, (b) hamate, (c) lunate, (d)
scaphoid, (e) trapezium, (f) trapezoid, (g) triquetrum, (h) pisiform (images from [BLP+15]).

followed by an iconographic interpretation. Hypotheses about an artist or a workshop are also
determined. Integral parts of the documentation are photographs and hand-drawings depending
on the condition of the vessel and a chronological classification. Figure 1.4 shows a few exam-
ples from the Cracow fascicule 1 [PW12], set of the “Athenian black figure” pottery. On the left,
the image for the Olpe with inventory number 189 (described as an “Oinochoe of SHAPE 5”).
On the right, three exemplars of “Lekythos”. The structural and geometric similarity, as well as
the presence of proportions within objects in the same class, is evident and the amount of infor-
mation available makes it possible to derive reference measures, variances and proportions from
the metric analysis of the inventory items, facilitating the “data-driven” creation of a template.

Another example refers to the representation of the human figure across cultures and styles,
following proportions or canons [Wik20a] defining ideal body shapes and poses. This concept
has been thoroughly exploited in several civilisations, e.g., in the Egyptian [Rob94], Minoan
[Wei00], Greek [Tob75] and Chinese art [WH19] (see Figure 1.5).

As well as in the other fields, templates can be deployed in CH as a powerful tool for shape
completion or re-assembly of damaged and fragmented findings. Indeed, archaeologists and
curators often deal with incomplete and damaged objects for which a template can represent a
reference, complete shape exemplifying how the original object would look [GSP+14, DZY+16,
PSA+17, LBB19]. Typically, an artist produces drawings about reconstruction hypotheses using
similar known artefacts of the same period and style as references, and 3D digital reconstruction
or completion methods often follow a similar approach [FCD20].

Finally, the template can be used for the classification of artefacts, for instance to identify spe-

14

Figure 1.4: Extracts from the “Athenian black figure” pottery in CVA. From left to right: Olpe
n.189, Lekythos n.345, Lekythos n.194 and Lekythos n.204. Note the inter-class differences be-
tween the olpe (a specific type of Oinochoe) and the lekythoi, as well as the intra-class stability
of proportions among the lekythoi. Qualitative (e.g., form of the handle section) and quantitative
descriptions are also documented.

Figure 1.5: From left to right: the first Egyptian canon of proportions: the 18-square division
[Rob94]; the second Egyptian canon of proportion: the 21-grid division [Ive68]; the 21-grid
division for the Palaikastro Kouros statue, as proposed in [Wei00]; the 15-grid division in As-
syrian human figures [Rob90]; the Cennini’s canon division in large-scale Italian Renaissance
sculptures [Mor78]; terracotta warrior T10G7 with grid proposed in [WH19]. All images are
taken from [WH19].

15

Figure 1.6: On the left, some trees built using L-systems, on the right some buildings created
using a procedural grammar (figures respectively from [Wik21] and [MWH+06]).

cific groups of pieces such as according to a homogeneous production technique or provenance
[GG20].

Templates in Procedural Modelling

Procedural modelling has its roots in computer graphics techniques, such as Shape Grammars
by Stiny and Gips [SG71], who were interested in developing a computational basis for design,
and Lindenmayer systems or L-systems [Lin68], mathematical models for creating organic self-
similar forms.

Both L-systems and procedural grammars are structural/constructive descriptions of shape classes,
which offer an efficient way to generate multiple differentiated objects with a minimal number of
rules (e.g., see Figure 1.6). Most current work on procedural modelling occurs within the field of
computer graphics [SKU15], with applications in the urban planning, gaming, and entertainment
industries (e.g., [PM01]). In recent years, archaeology and cultural heritage projects, such as the
significant test cases built around ancient Rome and Pompeii, have also begun to explore the use
of procedural modelling for the reconstruction of ancient sites [HMVG09].

Common properties of templates in the different contexts

From the above examples in different applications and domains we can synthesise the following
observations concerning templates:

1. the template represents the contextual shape priors needed to solve complex problems (e.g.,
in shape reconstruction);

16

2. the template is either an “average” shape in a class of objects of the same kind (e.g. statis-
tical shapes of bones in medicine) or an archetype of the class;

3. the template shape is deformable to fit the input data (e.g., in shape reconstruction);

4. there must be a way to measure the distance between an object of the class and the template
(e.g., for medical diagnosis);

5. the template can express how the object is structured and the construction process to
achieve it (e.g., in procedural modelling);

6. the template expresses dimensions, proportions and other quantitative properties of a class
of shapes (e.g., in CH);

7. the template can be used to build new objects of the same type (e.g., in CAD).

Some of the above properties address more the semantics of an object (e.g., the way it is con-
structed) while others refer to its spatial extent (e.g., the requirement to be deformable). This fact
highlights how templates have a double nature, being both a semantic and a geometric reference
for a class.

Having to define a template for a set of 3D models, an important observation regards the cardi-
nality, the variability and the available documentation for the shapes at hand. For instance, in
the medical domain, the amount of patient-specific data coming from diagnostic devices allows
to build statistical shapes as templates, which already encode in themselves the variance of class
elements.

In the CH sector, the amount of documentation for certain objects is so huge that deriving a tem-
plate is easily affordable without many examples (e.g., amphorae are very well studied, classified
into agreed taxonomies and their shape properties and variability are documented). This aspect
highlights how geometric information and documentation can help each other in defining an ex-
pressive template. In the case of many objects available, the template construction can follow a
data-driven approach e.g., learning the geometric features characterising a group and the range of
the corresponding parameters. With few models available, still some semantics can be inferred
trough shape analysis techniques, but certainly external domain knowledge will be needed to
define a proper template.

Variability in the class deals with the range of parameters or statistical variation in the template,
and we observe that for a new query shape the evaluation of the same parameters can be used
for classification purposes. In other words, the template can also express a set of constraints for
class membership.

17

Figure 1.7: The overview of the proposed framework.

1.2 Overview of the framework

In this thesis, we focus on the formalisation of a parametric template, including both the geo-
metric and semantic nature, where one helps and enriches the other, and provide a modelling
framework where the parametric template supports several shape and semantics’ related pro-
cesses. With reference to Figure 1.7, the proposed framework has two parallel levels or views
that involve the definition of a representative shape for the homogeneous class of objects and the
encoding of the semantics of the class, that is the set of parts, properties and relationships that
unite objects belonging to the same class.

The combination of these two sides generates what we call a parametric template, that is, at
least ideally, a conceptual representation of an object, whose geometry can be instantiated at
will according to application needs, e.g., in terms of re-meshing or deformation, always (and
transparently) in compliance with the attributes and constraints that are proper of the object
itself.

18

From the homogeneous class, it is possible to select one of the shapes inside the class as an
archetype (a 3D shape chosen as representative), or to use existing techniques for exploiting the
composition of the different shapes and creating what is called a statistical model to produce a
geometric template.

Statistical models are mainly composed of two parts: the mean model, which is the “average”
shape or appearance of the objects within the collections, and statistical variance with respect
to the mean model [HM09]. In theory, a good statistical model should represent most of the
variability that exists within the sample population using less number of variance. This kind of
homogeneous class descriptions are largely used, e.g., in the biomedical field [CJV06, MVL+11,
SWZ14, BLP+15]. Typical approaches for the generation of a statistical model are based on
landmark-guided surface registration and standard linear statistics to compute the mean shape
and the modes of variation (e.g., [KSKL13]).

In parallel, we assume that domain experts, with very strong knowledge related to the homo-
geneous class, have formalised their knowledge into the semantic template: a set of properties,
constraints and rules governing the definition of the class itself. With reference to Figure 1.7,
requirements for a statuette to be classified as “Ayia Irini small human idol with drum” could be
that the arms have the same length, that the head is coaxial to the base and that its head’s height
is 1

3
of the total height (this is just an example, not necessarily true).

Sometimes, however, this knowledge is available but not ready to use in a computational fashion.
For instance, in the archaeological field it is very common to textually describe relics belonging
to a particular style by considering proportions, repetitive patterns, materials, etc. However this
approach has some issues:

1. Natural language is prone to intrinsic ambiguities linked to the employed terms: indeed,
often a single word have different meanings and several different words can be used for
referring to the same concept;

2. Textual descriptions are not machine ingestible: even if branches of research are focusing
on Natural Language Processing (NLP), the management of free-form text is still an open
issue;

3. Quantitative measurements are not repeatable, if the measuring process has not been prop-
erly documented (e.g., direction and reference points of a measure).

In this thesis, we start from the assumption that a representative shape exists and is given (e.g.,
selected from a database of shapes) as well as a formalisation of the domain expert’s knowledge
(e.g., an ontology) and try to connect these two views into a single concept: the parametric
template.

Of course, the parametric template is a dynamic entity: indeed we can enrich the semantics
by means of shape analysis (see Chapter 3) or simply by allowing further documentation by

19

final users, in terms of free textual annotation, addition of new measurements, definition of new
relationships or constraints. At the same time, the semantics (in the form of constraints set over
relationships and attributes) can be exploited for generating a new geometry through constrained
deformation (see Chapter 4). This also calls for the definition of techniques for guaranteeing
the persistence of the bridge between semantics and geometry (namely, annotation persistence -
see Section 2.4) when severe transformations are applied to the latter. As can be seen, the only
geometry transformations which present difficulties in our settings are change of resolution and
change of representation (e.g., passing from a triangular to a tetrahedral mesh). In this thesis, we
will focus on triangular meshes, thus tackling only the change of resolution issue, by means of
annotation transfer.

1.3 Contributions

In this work, we designed and developed a framework for the semantics-aware modelling of
shapes, offering the user a single application environment where the whole workflow of defining
the parametric template and applying semantics-aware deformations can take place. To this aim,
we combined state of the art techniques and new algorithms to enable the user conceptualising
her/his knowledge and modelling geometric shapes. We produced an implementation posted
on GitHub [Sca20], providing the functionalities of annotation, measuring, documentation, and
definition of constraints together with cage-based deformation, interactive reassembly and shape
analysis tools (see Appendix A).

The original contributions of this thesis are the following:

1. A formalisation of the parametric template, based on the mechanism of annotation as the
link between geometry and semantics of objects;

2. A method for the automatic transfer of annotations between meshes with different resolu-
tions representing the same shape;

3. New shape analysis methods specific for the semantic enrichment of a set of clay statuettes
of the “Ayia Irini” collection (see Chapter 3);

4. A system for the constrained deformation based on the parametric template extending the
state of the art library ShapeOp [DDB+14] for working with cages;

5. A template-based method for virtual reconstruction of archaeological findings (see Section
5.3).

The potential of this framework in shown in two applications: product customisation, also de-
ployed in a Virtual Reality (VR) environment for collaborative design, and fragment fitting in the
CH domain.

20

The remainder of the thesis is organised as follows:

• in Chapter 2, we present techniques for representing and preserving the semantics of the
template and formalise the entities involved in the bridge between geometry and semantics;

• in Chapter 3 we discuss how geometric analysis can enrich semantics, through two ex-
emplary applications in the CH domain: how to extract metric properties and hints about
production techniques and provenance for a collection of clay statuettes, and to more finely
sub-group objects in a certain class;

• Chapter 4 focuses on the definition and implementation of a constrained deformation sys-
tem, where geometry is updated according to semantic rules;

• in Chapter 5, we briefly describe the functionalities of the implemented system and then
present the results obtained applying it in concrete application scenarios;

• Finally, Chapter 6 presents a discussion on the achieved results and describes various di-
rections for future research that this thesis opened up.

21

Chapter 2

Representation and preservation of
Semantics

Summary. In this Chapter, we describe the concept of annotation over 3D models and give an overview
of different annotation systems, focusing on those targeting the CH, medicine and engineering domains.
We define a novel formalisation of annotations and organise annotated parts into a hierarchical structure
induced by the annotation containment relationship, possibly enriched inserting further relationships (e.g.,
adjacency) among annotated parts, thus creating the relationships graph (Section 2.2). Finally, we intro-
duce the problem of annotation persistence and present an original method for guaranteeing the persistence
of annotations after change of resolution (Section 2.4).

As introduced in the previous Chapter, while techniques and frameworks dealing with the shape
or geometry of objects have been extensively studied and a huge amount of pure geometric
applications exist today, the semantic description of objects has often been considered as an
add-on and rarely studied or included in the loop.

A semantic description of 3D objects may be understood as a description of the content em-
ploying terms which are meaningful in some domain of knowledge [CMSF11]. Consider the
following example:

One of your friends is going to a furniture shop and you ask him to buy a precise object. It is a
cookie holder built in the shape of the Death Star (see Figure 2.1), but your friend has not seen
any Star Wars movie. So you try to describe it: it is a grey, sphere-like “starship” with several
engravings and a big notch in the upper part containing other circular concentric engravings.
Since the Death Star is spherical and you want to lay the cookie holder on a shelf in your living
room, you require it to have a planar base. Is such a request likely to be understood in a virtual
scenario, in which our avatar steps into a virtual furniture shop held by a virtual salesman?
Probably not, because with the current technologies the specification of these descriptions and

22

Figure 2.1: The Death Star-like cookie holder (image from https://comicbook.com//news/death-
star-cookie-jar-revealed/).

their use in human-computer interaction with 3D digital content is almost impossible.

The first steps for trying to overcome this problem came from the shape retrieval community:
since the introduction of the first online repositories [3DC01, STA03, AIM04, SMKF04], the
increase of the number of shapes called for more intelligent searching methods. For achieving
this goal, different paths have been followed, starting from a search by geometric similarity (e.g.,
with queries defined by sketching or by example) [SMKF04] and then basing on a formal organ-
isation of 3D models enriched with metadata to search for content also in terms of knowledge
about the 3D shapes [AIM04].

The latter approach really went in the direction of trying to encode the knowledge directly along
the shape, so that in the future it would be possible to understand what the people are saying
when describing an object, e.g., using NLP techniques [FRC13], and then searching for objects
that meet the requirements, i.e., which possess those characteristics (previously described and
encoded) that the user is searching for.

While this paradigm is really effective in the search for objects meeting some requirements, a
big improvement can be introduced by using structural decomposition of objects, thus giving the
possibility to reason not only on the object as a whole but also on the arrangement of its sub-
parts (e.g., “find a shape containing two arms and two legs”, “find a virtual character which is
strong/big/tall”) [RASF07]. Structural decomposition allows, on the one side, to define new and
smarter shape retrieval tools; on the other hand it sets the foundations for part-based annotations,

23

that is broadly used in several fields, from CH to CAD.

Following the concept of part-based annotations, expressing the semantics of a shape requires
[RASF07]:

• the identification of significant parts (features);

• the specification of the semantics using some kind of formalism;

• the storage of the geometry plus its semantic description in a way that could be accessed
easily, by humans as well as by software agents.

Generally speaking, the purpose of annotations is the localisation of object properties on specific
parts, called Regions of Interest (RoI), of it. In principle, there is no constraint on the kind of
information that can be associated to a specific RoI and, indeed, it can go from text (tagging) to
any kind of multimedia (e.g., images, audio and video clips) and even to other 3D shapes.

2.1 Annotation systems in application domains

In the last years, several different frameworks for the definition of annotations have been intro-
duced, in particular in the CH, medical and engineering contexts.

2.1.1 Cultural Heritage

One of the critical issues in CH is the management and processing of information. Indeed, work-
ing on archaeological sites or CH artefacts usually generates huge amounts of heterogeneous
data given in the form of text documents, images, data tables, video clips, etc. The exploitation
of such data requires a smart solution for their collection, organisation and access by experts and
specialists, but even totally novice users.

For reliability and ease of sharing, the consistency of objects’ documentation is crucial and,
so, the use of recognised standards, common record structure and homogeneous terminology is
needed.

The coupling of experts’ qualitative and quantitative analysis with digital tools really boosts the
possibility for documentation to be shared, accessed and exploited while giving strong means
for the repeatability of experiments and data acquisition. Just to give a brief example, suppose
to have to measure a statue arm length. Where should we start measuring it? Would we use a
ruler or a tape measure? The entire set of possible choices in measuring make a certain level of
ambiguity to be implicit in the presentation of the measure itself.

24

Figure 2.2: Examples of measures taken with the ruler (Euclidean - on the left), tape (Geodesic
approximation - in the middle) and bounding (still Euclidean - on the right) tools (see Section A)

At the same time, taking measures from a physical relic introduces some risk of damaging it:
indeed CH objects are often very sensitive to any kind of solicitations, from touch to illumination
change.

For these reasons, in the last years CH researchers and experts are moving from a “physical”
annotation of reflections and measurements to the digital equivalent and a huge amount of efforts
has been spent in the definition of interactive systems supporting the annotation work.

Some examples are 3DSA [YGH13], a system for crowd-sourcing textual annotations (tagging)
of objects for inferring archaeological classification of findings, CHiSEL [STLL13], an informa-
tion system based on the use of the 3D representation of an object as a sort of “blackboard” where
different information is represented, Aı̈oli [DLPDM+18], a collaborative annotation framework
based on photogrammetry and high-performance cloud computing, and CHER-Ob [SKA+16],
a framework providing different tools for evaluation and publication of the results of cultural
heritage research and support for visualisation of different data formats. A further step forward
is given by the always increasing use of Artificial Intelligence (AI)-based segmentation methods
(e.g., [PGDF+20]).

25

2.1.2 Medicine

Ontology-driven annotation is not a completely new concept in medicine. Some medical software
(e.g. ePAD [RAAA19], RadSem [MRS09]) already adopted this approach where the users are
allowed to mark the RoI inside the 2D images (manually or automatically), and annotate it with
the anatomical and/or pathological terms deriving from the ontology. Although such tools were
initially limited to 2D images, they introduced the idea of the geometry-knowledge coupling in
the medical field, giving means for their extension to Patient-Specific 3D Model (3D-PSM).

In the digital era, the concept of 3D-PSM is becoming increasingly relevant in computer-assisted
diagnosis, surgery training on digital models, or implant design, even thanks to the availability
of a wide range of advanced techniques for creating accurate and detailed 3D anatomical recon-
struction (Magnetic Resonance Imaging, Computed Tomography, etc.). For this reason, in the
last years there has been a surge in the interest for 3D-PSMs and, in particular, to really integrate
the heterogeneous and huge quantity of data about each patient in an accessible way. This has
been done by exploiting the concept of annotation by associating tags coming from an ontology
[Mit08, BAC+16] or, in any case, from a controlled vocabulary [BCK+11, KC15] to portions of
geometry, but also with pointers to web-resources (e.g., wiki, books) [QSO+12].

2.1.3 Engineering

In the engineering domain, the concept of feature is well known to identify parts associated
to context-specific semantic information and modelling behaviour [SM95, DFG+94]. On the
one hand, features are commonly adopted by commercial Mechanical CAD systems, allowing
an easy modification of parts through meaningful parameters, which drive the shape changes
according to engineering objectives. On the other hand, feature recognition systems allow the
annotation of CAD models in terms of features useful for production purposes, allowing the
integration with manufacturing or assembling tools and operations [JPR00].

A further step forward was taken with the introduction of the functional analysis and annotation
of parts and sub-parts [WTD14], enabling both the search for shapes and their segments with
certain functional properties and an effective reuse of previously defined designs.

2.2 Formalisation of annotations

In this thesis, a 3D shape is represented as a closed triangular meshM = {VM, EM, TM}, where
VM = {v = (xv, yv, zv) | xv, yv, zv ∈ IR} is the set of vertices of the mesh, EM = {e = (vs, ve) |
vs, ve ∈ VM} is the set of its edges and TM = {t = (e1, e2, e3) | e1 ∈ EM = (v1, v2), e2 ∈ EM =
(v2, v3), e3 ∈ EM = (v3, v1), v1, v2, v3 ∈ VM} the set of its triangles.

26

An annotation is defined as a triplet A = (I, S, P), where I is a piece of information, S is the
geometric selection of parts of the mesh the information refers to, and P is a set of properties of
the annotation. Each of the components of the triplet can be defined in several ways and needs to
be subject to careful analysis and correct formalisation. In the following, we present an in depth
view of I , S and P respectively in subsection 2.2.1, 2.2.2, 2.2.3.

2.2.1 Information

While in principle information related to a piece of geometry could be of any type (a descrip-
tive text, a link to a multimedia content, a quantitative measure), in this thesis we will consider
information as a concept in the form of a textual tag, which is assigned to a geometric por-
tion (tagging). We assume concepts to be selected from a shared and controlled vocabulary in
order to avoid typical issues introduced by natural language (ambiguity, different levels of ex-
pertise, different language, granularity, etc.). Note that, while a simple controlled vocabulary is
extremely useful for the reduction or even avoidance of these issues, employing more structured
organisations of terms such as partonomies (e.g., [CVHS20], thesauri (e.g., [get]) or ontologies
(see [RM08]) allow to infer information exploiting the already built network of connections and
relations between objects. In this thesis, we will not follow this direction, but rather encode
relations among entities in the form of graphs of relationships between annotations (see Sec-
tion 2.3). Additional details can be anyhow encoded as annotation properties or attributes (see
Section 2.2.3).

2.2.2 Selection

There are many ways for defining the geometric selection S. For example, in [PCDS20] clipping
volumes are defined for selecting specific parts of the shape in real time, so that the selection re-
mains well defined at varying Level of Detail (LoD). In this thesis, we define S as a homogeneous
subset of mesh vertices, edges or triangles (i.e., no selection can be made both of vertices and
triangles). We take into account three types of annotations according to their geometric selection
(or nature, or dimension): points, poly-lines and regions.

• A Point annotationAp corresponds to a set of single mesh vertices and identifies landmarks
on an object, that are typically used for reference or measurements, such as the nose tip,
the sellion and the eye corner for the human face (e.g., [Cae20]). So, SAp = VAp ⊆ VM

• A Poly-line annotation Al is formed by one or more connected sets of edges (i.e., adjacent
vertices) that can either be open or closed. So, SAl

= {l}, where

l =
{
eli = (vs, ve) ∈ EAl

| i = 1∨ i = |l| ∨
(
∃e′ ∈ l : e′ = (, vs)∨∃e′ ∈ l : e′ = (ve,)

)}
27

where EAl
⊆ EM is the set of edges associated to Al. Given the edge-vertices relationship

in the definition of the triangular mesh, one can obtain the vertices associated to the poly-
line annotation as VAl

= {v ∈ VM | ∃e ∈ EA′
l

: e = (, v) ∨ e = (v,)}. Annotations of
this type identify feature lines such as crease lines, character lines, highlight lines in CAD.

• A Region annotation Ar is a bi-dimensional patch formed by one or more connected sets
of faces. A region can be formed by multiple components and may have holes. So, SAr =
{r}, where r = {t ∈ TAr | ∃t′ ∈ TAr : t ∩ t′ = e ∈ EM 6= ∅ ∨ |r| = 1}, where
TAr ⊆ TM is the set of triangles associated to Ar. Given the triangle-vertices relationship
in the definition of the triangular mesh, one can obtain the vertices associated to the region
annotation as VAr{v ∈ VM | ∃t ∈ TA′

r
: v = vt1 ∨ v = vt2 ∨ v = vt3}. Notice that, since we

are using triangular meshes as shape representation, this kind of annotation regards both
regions having a superficial (e.g., a drawing on a vase) and a volumetric nature (e.g., the
head of a statue).

Here the whole object is considered as an annotated region, labelled according to the template
class (e.g., a “teapot”). This will be helpful both for enriching the contextual search (e.g., search
for all the “teapot” shapes) but even for the organisation of annotations.

2.2.3 Attributes

Each annotation can be described by a set of properties P , quantitative or qualitative character-
istics defining some aspect of that specific part. We name those properties Attributes. The whole
object (i.e., the root of the annotation containment tree, see subsection 2.3) maintains the global
attributes of the shape (e.g., total height of the object, site of excavation of the archaeological
finding, etc.).

Qualitative attributes describe the annotated part qualitatively, e.g., a “beard” region may have
a “beard style” attribute specifying whether it is curly, wavy, or straight. We expect qualitative
attributes to be textual tags from a vocabulary of terms that are meaningful for the attributes of a
certain concept.

On the other hand, quantitative attributes are numbers, measurements or more complex descrip-
tors of the geometrical component of an annotation. For instance, an “eye” may have a “width”
attribute specifying the horizontal span of that piece of geometry. A region annotated as “beard”
might be investigated more through a surface curvature analysis; the output curvature map might
be the value of a quantitative “bumpiness” attribute. This last example also shows how qualitative
and quantitative attributes may refer to the same aspect from different perspectives: a “straight”
beard with high “bumpiness”, with the curvature map evidencing linear structures, might mean
that the beard presents deep engraved lines. This example highlights how some qualitative at-
tributes may be defined by geometric rules and be, to some extent, inferred by quantitative ones.

28

Figure 2.3: Typical cases of measures taken in the physical world (fragments coming from the
Salamis collection studied in the GRAVITATE project [PWM+16]) (images from the British Mu-
seum repository at https://www.britishmuseum.org/collection).

While the meaning of a measure could be known by convention (e.g., “height” for a statue is
likely to be the Euclidean distance between the base and the topmost point, with the statue having
an explicit upright orientation) or defined in the knowledge formalisation in terms of landmarks
(e.g., the width of an eye is the distance between the internal and external apex), we provide
“pins” to specify and store the measurements reference. This addresses a common archaeological
documentation issue: often objects are described along with a “length” value, without specifying
the direction and extreme points of the measurement, nor the tool to measure it (or equivalently
the distance involved, Euclidean or geodesic). Things get even more vague when pieces lacking
a principal direction or orientation are concerned, e.g., terracotta fragments (see Figure 2.3).

Attributes play a twofold role: on the one side, it is likely that attributes for different objects in
the same class will stay the same or change in a controlled pattern (e.g., within a range). There-

29

fore, attributes and relationships between attributes will be subject to constraints to guarantee a
valid intra-class deformation (see Chapter 4). On the other side, annotations and their attributes
provide a documentation mechanism for the 3D object, supported by interactive selection and
measuring tools, that allows quantitative and qualitative descriptions of a specific object rather
than of the class of objects in general.

2.3 Relationships among annotations

To better exploit the information provided by annotations, they are organised into a hierarchy,
where the parental relationship is given by the annotation containment (here denoted by @ and
A). There are different types of annotation containment. In particular:

• A point annotation Ap can be contained

1. into another point annotation A′p if and only if all of its associated vertices can be
found into the set of vertices associated to the other.

2. into a poly-line annotationA′l if and only if all of its associated vertices can be found
into its poly-lines: Ap @ A′l ⇐⇒ VAp ⊆ VA′

l
;

3. into a region annotationA′r if and only if all of its associated vertices can be found in
any of the selected triangles: Ap @ A′r ⇐⇒ VAp ⊆ VA′

r
;

• A poly-line annotation Al can be contained

1. into another poly-line annotation A′l if and only if all of its associated edges can be
found into any of the others’ poly-lines: Al @ A′l ⇐⇒ EAl

⊆ EA′
l
;

2. into a region annotationA′r if and only if all of its associated vertices can be found in
any of the selected triangles: Al @ A′r ⇐⇒ VAl

⊆ VA′
r

.

• A region annotation Ar can be contained only in another region annotation A′r if and only
if all of its associated triangles can be found in the set of triangles associated to the other:
Ar @ A′r ⇐⇒ TAr ⊆ TA′

r

Following this procedure, a tree structure can be populated, with the whole shape as root and
all the other annotations as child nodes, following the containment relationships. An example
of this hierarchical organisation of the annotations can be seen in Figure 2.4. This first structure
will then be enriched with other types of relationships, defining a relationships (hyper)graph.

Some of these relationships are naturally defined and can be automatically extracted directly from
the geometry; beside containment we consider in our implementation the adjacency between
two parts; other notable relationships like symmetries, co-axiality, co-linearity (in case of points

30

Figure 2.4: A possible annotation of a teapot shape. Here, the different types of selection are
shown: point (“Tip”), poly-line (“Curve”) and region (e.g., “Flower”). In the lower part we
show the hierarchical structure of annotations induced by containment.

31

selections), part similarity, etc. [LMS13, BDS+12], that are deeply studied in previous works,
could be easily added to the framework in future versions.

On the other side, there are relationships that are not directly inferred from the geometry, because
they require a more complex reasoning, like semantic attributes. Examples can be the expertise
level of an artisan crafting certain parts of a statuette, which we analyse in Section 3.2 for building
tools supporting archaeological studies, the erosion severity of certain parts of a building but
even the style of components of an object. These kind of relationships are necessarily stated by
a domain expert, who possess a strong knowledge on the homogeneous class and has a priory
knowledge about them, even if future improvements in AI approaches are likely to substitute
human expertise with automatic tools.

Of course a vast number of relationships could be defined among annotations, some of them
maybe more salient than others in specific domains or for particular object classes. In this thesis
we provide a small set of example relationships, but the system allows for defining new ones.

Laga et al. [LMS13] focused on man-made objects and used containment, adjacency, symmetry,
side contact, co-axiality and horizontal support as part relations. Similarly to their approach, we
insert additional relationships in the hierarchy defined by annotations containment as additional
arcs with type, either directed or not. The additional relationship arcs are likely to create loops,
so that the annotation hierarchy will not have a tree structure any longer. Relationships between
annotations may simply translate into a relationship among their attributes, e.g., a “same length”
relationship between the two arms of a human shape is verified if the two “arm” annotations have
the same value of the length attribute).

The above example introduces the idea that the relationship graph, encoding the semantics of a
homogeneous class of objects, can be exploited for defining constraints on the deformation (see
Chapter 4). An example of relationship graph for chairs is depicted in Figure 2.5.

2.4 Annotation persistence

In the proposed framework, annotations represent the link between semantics and geometry and
the glue between the two sides of the parametric template. In this thesis, we pursue the contin-
uous synergy between these two natures, exploiting geometric analysis to enrich the semantics
and using the semantics to drive geometric deformations.

However, asynchronous changes on either the semantic or geometric side could compromise the
consistency of annotations. For example, a computational intensive algorithm could require a
decrease in geometric resolution of the 3D model at hand, or the annotations defined by two
users may use a different language for defining the same concept.

While language-related issues can be mitigated by the use of a shared and controlled vocabu-

32

Figure 2.5: An example showing some relationships between the different parts composing a
simple chair shape.

lary, geometric changes can indeed damage the annotations [HF07]. The main issues can be
synthesised in these categories:

• Change of resolution: the object representation’ resolution is changed, e.g., in a multi-LoD
application or for specific requirements of the system, and so coarsened or refined in the
vertices and triangles density;

• Change of arrangement: the spatial displacement of vertices’ positions is changed, e.g.,
due to a geometry processing algorithm (e.g., Laplacian fairing);

• Change of representation: e.g., passing from a triangle mesh to a quadrilateral mesh or a
tetrahedron mesh.

Therefore, mechanisms are required to guarantee consistency of annotations regardless of the
transformation applied to the geometry.

Issues introduced by geometric changes are easily solved by defining geometric selections in
terms of indices of vertices, edges and triangles respectively for the point, poly-line and region
annotations (see Section 2.2.2). So, even if the simplexes involved in the representation are
moved in space, the annotations would not be corrupted.

Conversely, the change of resolution is a very difficult issue. This could be solved by employing
a spatial indexing of annotations, such as the one in [PCDS20]. This technique defines a portion

33

Figure 2.6: Different types of selection (from left to right disk, holes, cylinder and fork). No-
tice that holes and fork are topologically equivalent so that the same solution solves both the
configurations.

of space into which the geometric embedding of the annotation could be found. Of course,
changing the resolution would not damage the selection, because the corresponding portion of
shape would be still enclosed in the defined volume. However, this type of techniques can not
easily deal with deformations of the shape, re-introducing the change of displacement issue (e.g.,
elongating one finger of the hand can make it partially fall off the defined volume).

For this reason, we implemented an annotation transfer method to guarantee the survival of
annotations after changes in resolutions, obtained by projecting the annotations from one source
representation to another [SMS17, SMS20].

2.4.1 Annotation Transfer

Let a region annotation be defined as Ar = (I, S, P), where I is some information of any type,
S is the geometric selection of interesting parts on the geometry of the mesh and P is a set of
attributes or properties of the annotation.

Let a selection patch Si ⊆ TM be a connected, 2-manifold subset of triangles inM, such that its
boundaries, named patch outlines Oij ⊂ EM, are ordered sets of vertices, connected in pairs by
edges ofM.

Each selection patch is therefore connected, but can have an arbitrary number of boundaries.
In the simplest case, the selection is topologically equivalent to a disk and the outline is a sin-
gle boundary curve. We describe the solution to this configuration in [SMS17]. However, the
selection can have multiple boundaries, e.g., in case of holes (see Fig. 2.6).

Starting from an annotated patch Ss, totally enclosed by a single outline Os and belonging to a
source meshM we want to identify a set of triangles onto a target meshMt that well approxi-

34

mates Ss, which is the corresponding target patch St onMt. Note that the transferred patch St
will consist of elements ofMt, that is, we do not insert vertices onMt to define St.

In our study, an important hypothesis is that the source and target meshes are perfectly aligned,
which makes the procedure easier. With this, we do not mean that the association between
the vertices of the source and target shape is known in advance, but rather that the two shapes
are nothing more than a representation, at different resolution, of the same object. So, the pose,
orientation and position of them should be the same. In cases that do not respect this requirement
from the beginning, it is necessary to adopt a prior shape alignment phase, using one of the many
methods offered by the state of the art [TCL+13].

For each vertex in Os, the transfer procedure identifies the best match among vertices inMs and
Mt. This builds an ordered set of matched vertices Om, which belong to Ot but are not adjacent
in Mt on a general basis. So, more vertices of Mt might belong to Ot, especially when the
transfer targets a higher resolution mesh. Then, the complete outline of St can be reconstructed
by tracing the shortest paths between successive pairs of vertices in Om.

The main steps of the procedure are listed in Algorithm 1.

Algorithm 1 Transfer a patch outline Os onto a new meshMt.
1: procedure PATCHTRANSFER(Os,Mt)
2: for each (vis, vi+1

s) in Os do
3: vit ← FINDCORRESPONDENCE(vis,Mt)
4: vi+1

t ← FINDCORRESPONDENCE(vi+1
s ,Mt)

5: Ot ← Ot ∪ SHORTESTPATH(vit, v
i+1
t)

6: end for
7: end procedure

SinceMs andMt differ, maybe considerably, the transfer will necessarily introduce a distortion
in the shape of the selection area. The amount of such distortion depends on four factors:

• the geometric difference betweenMs andMt;

• the shape of the original selection Ss;

• the method chosen for the vertex correspondence procedure (see Section 2.4.3);

• the metric employed for the distance in the shortest path computation (see Algorithm 3).

Indeed, given Ss,Ms andMt, we can define a vertex correspondence procedure such that the
transferred patch St either totally encloses Ss or only partially overlaps it. Intuitively, the partial
overlap approach is preferable to minimise distortion (see sub-section 2.4.2). This is synthesised
in Algorithm 2.

35

Algorithm 2 Find the correspondence as the mapping of a vertex v onto the one (vC) of the target
meshMt which is closest to the projection and whose normal matches the one of v.

1: procedure FINDCORRESPONDENCE(v,Mt)
2: d←∞
3: r← getNormal(v)
4: for each t′ in TMt intersected by r do
5: d′ ← distance between v and t′

6: if (d′ < d) ∧ (getNormal(t′) · r >= 0) then
7: t← t′

8: d← d′

9: end if
10: end for
11: vC ← vertex of t closest to v
12: end procedure

It may happen that different vertices of Os are mapped onto the same target vertex, and this may
produce a badly-shaped (i.e., non manifold) target selection. To avoid this case, we add a check
for rejecting duplicated vertices in Ot.

Note that the projection is made with a raycast-like approach, checking, for each vertex in Os,
if its ray intersects any triangle inMt. Indeed, the simple search for the closest vertex may fail
in case of high resolution reduction and/or very close features with no relation with the current
vertex, while issues related to noisy normals can be solved or at least reduced by de-noising the
surface and/or re-computing the normal by averaging with respect to the neighbours.

This raycast-like approach results in a very high computational complexity (O(n) only for the
projection, where n is the number of triangles of the target model). So, we improved the ef-
ficiency of the approach by inserting all the target vertices in a KD-tree (managed with the
nanoflann library [BR14]) and checking only triangles inside a sphere with a pre-defined radius.

KD-tree radius selection. Note that the definition of the radius for the sphere impacts very much the
procedure. In fact, if the radius is too small the intersection check would not find any triangle, whereas
if it is too large the whole process would be slowed down drastically, equal to the complexity without
optimisation in the worst case.
So, the best radius value is a trade-off between performance and retrieval power. Furthermore, note that
it would be better to have two different radius values: one from low-to-high and one for high-to-low
transfers. In fact, going from low to high resolution it is likely to have a lot of target vertices very close to
the source one, so that we can reduce the radius (we usually use 1

1000 of the bounding box diagonal for the
low-to-high transfers), while the opposite is true from high to low resolution (we used 1

100 of the bounding
box diagonal).

36

Once corresponding vertices have been found, we take all successive couples in Om and we
search onto Mt the shortest path between them. This is done with an approximation of the
Dijkstra algorithm [Dij59], where the search is interrupted as soon as the target vertex has been
reached. The pseudo-code for the shortest path algorithm can be found in Algorithm 3

Algorithm 3 Finds the shortest path between the given pair of vertices.
1: procedure SHORTESTPATH(v1, v2)
2: D.add((v1, 0))
3: F.push(v1)
4: do
5: v← F.pop()
6: for each v′ in the first ring neighbourhood of v do
7: d← D(v) + dist(v, v′)
8: if v′ has not been visited then
9: D.add((v′, d))

10: P.add((v′, v))
11: F.push(v′)
12: else if D(v′) > d then
13: D(v′)← d
14: P (v′)← v
15: end if
16: end for
17: while v 6= v2

18: path← P ’s elements sequence from v2 to v1 (reversed)
19: end procedure

With reference to Algorithm 3, there are many different possibilities for the definition of the dist
function. In the present work, we have tested three different types of distances:

• The common Euclidean distance.

• The Euclidean distance to the segment between the current pair of target vertices (from
now on we refer to this as the Segment distance).

• The combination of the above (from now on we refer to this as the Combined distance).

The results obtained using these three distances are compared in Section 2.4.2.

Note that it is not guaranteed that the path between successive target vertices will not intersect
other parts of Ot. In practice, this issue is solved by assigning an infinite weight to arcs incident
in vertices already in Ot in the check for the shortest path computation. Notice that this solution

37

Figure 2.7: On the left, a transferred outline with a “spike”, on the middle the result obtained
with the infinite weight on the used arcs for the Dijkstra algorithm, on the right the pruned result.

even allows to manage the “spikes” (see Figure 2.7) that are sometimes created by the procedure.
While the obtained result is good in general, we allow the user to decide whether to follow this
path or post process the outline by simply pruning the generated spikes (the results can be quite
different, see Figure 2.12).

Finally, we combine the paths computed in the previous step between couples of successive target
vertices to obtain a closed outline.

Once the ordering of the outline of the target selection is completed, obtaining the enclosed patch
is straightforward (region growing with the triangle on the left of any edge in Oij).

The next step regards the transfer generalisation to regions of arbitrary topology. Indeed, selec-
tions may exhibit significant variations: some examples of selections are shown in Fig. 2.6. As
one can see, the difference between those cases consists in the number of boundaries. Further-
more, we can envisage multiple patches to be part of the same selection.

To generalise the approach to selections of arbitrary topology, we project all the outlines of a
selection onto the target mesh as described above; the only issue is how to identify the interior
of the target selection properly. In the previous solution, the ordering of the single target outline
was induced by the ordering of the source outline and, as such, defined a priori and uniquely; the
same paradigm holds for additional boundaries, provided that they are ordered consistently, i.e.,
all the boundaries are ordered so that the interior of the selection lies on the left of the oriented
boundary edges.

We then define a selection S, of a Region annotation (see Subsection 2.2.2), as a set of patches
Si, each one uniquely identified by a set of boundaries Oij , each one ordered so that the interior
of Si always lays on the left side of the edge (vk, vk+1) ∈ Oij for every k. With this assumption,
the selection area is uniquely defined by its outlines.

38

Outlines extraction

In general, we have no clue about what are the boundaries of a region selection, nor about their
number. So we have to define how to obtain a set of outlines, ordered as already said, from a set
of triangles (TS ⊆ TM), not necessarily connected.

For each t ∈ TS we check if any of its edges separate it from an external triangle and, in that
case, the separating edges are marked. In this way we obtain an unordered and not necessarily
connected set of edges ES ⊂ EM. Then, starting from a vertex v of any edge in ES , we check
for each v′ in its 1-neighbourhood if (v, v′) is an edge in ES and, in that case, we remove it from
ES and put it in Oi. This process is repeated iteratively until Oi is completed, taking each time
v′ as v (when (v, v′) is in ES) and ignoring the already used vertices. Then, if ES is not empty,
we initialise a new outline component and we repeat the whole process until there are edges in
ES . This allow us to obtain a set of closed outlines. At last, for each Oi enclosing S we check
if the triangle on the left of its first edge is in TS . If this is not true, we invert the outline. The
whole process is reported in Algorithm 4. Using the presented approach, we managed to obtain
the result presented in Fig. 2.10.

Algorithm 4 Extracts the ordered outlines that uniquely identify the selection (encloses T)
1: procedure OUTLINESEXTRACTION(TS)
2: ES ← edges in TS with only one incident triangle in TS
3: while there are elements in ES do
4: v0 ← first vertex of any edge in ES
5: v← v0

6: do
7: o.push(v)
8: e← first edge incident to v that is in ES
9: v← e.oppositeV ertex(v)

10: ES.pop(e)
11: while v 6= v0

12: O.push(o)
13: end while
14: for each o ∈ O do
15: if left triangle of any edge in o is not in T then
16: revert o
17: end if
18: end for
19: end procedure

39

2.4.2 Transfer results

The annotation transfer presents some interesting properties. First, it guarantees to always
achieve a result; in the worst case, the target area may be degenerate (the annotated area col-
lapses to a point due to a very large disparity of mesh sampling density). In most of the cases,
the transfer works well, identifying target areas very similar to the source (see Table 2.1).

The quality of the transfer procedure has been studied in the context of the GRAVITATE project
[PWM+16], tackling problems related to the re-unification, re-assembly and re-association of
archaeological terracotta fragments of the Salamis collection, now divided among several muse-
ums throughout Europe. In particular, the transfer has been extensively used for the propagation
of the so called “facets”1. In the project, facets were computed (the faceting extraction pipeline
is explained in [ED17]) for 117 fragments in the Salamis collection (that were selected for their
archaeological interest) on models at 50K resolution, due to the time complexity of the faceting
algorithm. The resulting facets, annotated, were then transferred to the other resolutions used in
the project (100K, 1M and full resolution) using our method.

More precisely, depending on the available resolutions, the presented method has been applied,
for each distance type, for 105 transfers from 50K to 100K, 42 transfers from 50K to 1M and for
117 transfers from 50K to the full resolution version of the model.

The results of these transfers has been summarised in Table 2.1. For a visual evaluation of the
degree of precision of the method see Figure 2.8, 2.9 and 2.11.

Notice that those in Table 2.1 are average values. Time is expressed in seconds and it is reliable
only for the 50K → 100K and the 50K → 1M transfers, because the full resolution spans from
∼ 46K to ∼ 27M vertices, so the average is not representative (further details can be found in
the supplementary material of [SMS20]).

As can be seen, the Euclidean distance and the Segment distance produce better results in terms
of perimeter distortion and area distortion, respectively. This is probably because of the nature
of the Segment distance, which privileges paths closer to the starting segment, thus leading to a
connecting path having a sort of zigzag pattern; this behaviour keeps the area distortion very low,
while incrementing the perimeter distortion in turn. Still, if we analyse the ratio between perime-
ter and area (and vice versa) we see that the Euclidean distance stays the best and the same goes
for the circularity (P 2/A). So, we believe that the advantage of reducing the area distortion of the
Segment distance is compromised by the corresponding worsening of the perimeter distortion, at
the extent that it reduces the overall precision of the transfer. As for the Combined distance, its
only advantage is it never gives the worst result, but it always stands in a sort of middle place.

1The facets are different regions of a model which belong to a specific view of a fragment. There are three
different kinds of facets, that are the external, internal and fracture facets.

40

Figure 2.8: Different facet transfers (going downward) from 50K to 1M vertices resolution and
backwards

Figure 2.9: Transfer of a facet between 50K, 100K, 1M, full resolutions (respectively) and back-
wards

41

Table 2.1: The results of the application of the procedure, in the GRAVITATE context, for the facet
transfer. The columns refer to the distortion of the target region (in percentage) with respect to:
A → Area, P → Perimeter, C → Circularity (P 2/A); the P/A and A/P columns are obvious.
The best results between Euclidean, Segment and Combined distance are highlighted in bold.
The transfers have been performed on a computer with 64 GB DDR4 RAM and Intel® Core™ i7-
7700 CPU. These values are all obtained applying the specified descriptors to the facets before
and after the transfer and then computing their ratio.

S→ T Metric Time (s) A P P/A A/P C Average

50K→ 100K
Segment 0,82 0,0170% 1,2818% 1,2687% 1,2888% 2,5305% 1,2774%

Euclidean 0,81 0,0182% 1,2305% 1,2158% 1,2341% 2,4280% 1,2253%
Combined 0,82 0,0174% 1,2435% 1,2297% 1,2484% 2,4544% 1,2387%

50K→ 1M
Segment 6,44 0,1675% 6,7841% 6,6310% 7,1235% 12,9461% 6,7304%

Euclidean 6,47 0,1808% 5,4278% 5,2584% 5,5609% 10,3909% 5,3638%
Combined 6,45 0,1694% 6,0404% 5,8836% 6,2672% 11,5545% 5,9830%

50K→ clean
Segment 8,67 0,0805% 4,3484% 4,2782% 4,5804% 8,3411% 4,3257%

Euclidean 8,63 0,0927% 3,5538% 3,4688% 3,6547% 6,8423% 3,5225%
Combined 8,65 0,0821% 3,9051% 3,8321% 4,0672% 7,5121% 3,8797%

Figure 2.10: A selection with different boundaries at different resolutions (from left to right: 5K,
10K, 30K and ∼ 50K)

Figure 2.11: Zoomed-in view of a fragment at, respectively, 50K and 1M vertices resolution

42

Figure 2.12: Transfer results on aggressively reduced resolution. From left to right: annotation
on the 1M vertices model and transferred annotation on a simplified version (~5K vertices) using
a pruning technique on the spikes produced by the algorithm and the infinite weight on used arcs
for the shortest path computation.

43

2.4.3 Transfer limitations

The proposed transfer approach presents some issues:

• Degeneracy: the area of a patch, expressed as an outline composed of more than two
vertices, might map to a degenerate outline which encloses an empty area (see Figure
2.13a);

• Wrong projection: a vertex in the higher resolution mesh can be nearer to a triangle which
isn’t actually connected to the annotation even if its normal points in the right direction (see
Figure 2.13c; this is the case when the shape exhibits several nearly overlapping layers);

• Distortion: when some parts of an annotated area are greatly simplified, there could be an
excessive distortion, in terms of area and shape (see Figure 2.13b).

• Intersection: if two or more boundaries of the same patch are very close, the transfer
distortion could lead to an intersection of the boundaries, causing problems in the region
growing for obtaining the inner triangles (Figure 2.13d-f).

Currently, the transfer procedure has been defined only to tackle region annotations (see Section
2.2.2). In future developments, we plan to address point and poly-lines annotations. Note that
allowing and formalising dishomogeneous transfer (between selections of different dimensions,
e.g., region to line) would solve the degeneracy issue in transferring regions: in fact, the mapping
of an entire area onto a point or line can be viewed as a way for keeping track of the presence
of an interesting feature opening for innovative representation of the object annotations where
semantic LoDs could be implemented.

Another interesting improvement could be to consider the insertion of new vertices on the target
mesh to better approximate the original RoI shape in case of huge distortions or to prevent de-
generacies. This approach is potentially dangerous as it could introduce inconsistencies across
different users in shared applications.

A final observation regards different kinds of correspondence between vertices. Indeed, defining
the correspondence between source and target vertices strongly impacts the resulting target area,
going from a totally enclosing to a totally enclosed transferred annotation. However, the latter
approaches would introduce more distortion, depending on the arrangement of the vertices on
the model. An example can be viewed in Figure 2.14

We believe that the presented method, even if currently specialised to tackle the change of resolu-
tion issue only, could be exploited and generalised to tackle the change of representation as well.
For instance, the change from a triangular to a quadrilateral mesh could be faced in principle by
triangulating the quad mesh and falling again in the projection from a triangular mesh to another.
An interesting problem would be projecting from a triangular to a tetrahedral mesh: the exterior

44

(a) (b) (c)

(d) (e) (f)

Figure 2.13: In the first row, (a) the degeneracy,(b) distortion and (c) wrong projection issues.
In the second row, the intersection issue, where (d) represents the original annotation, (e) an
overlapping of it onto the target mesh and (f) is the result.

Figure 2.14: An example of different vertices correspondence. From left to right: the original
annotation, the partial overlapped, total enclosing and total enclosed results.

45

shell is again a triangle mesh to triangle mesh case, while how to project the annotation from
the surface to inner tetrahedra will require a more in-depth analysis and could be topic for future
development.

2.5 Discussion

In this Chapter, we presented our formalisation for the semantic part of the parametric template,
providing definitions of annotations, attributes and relationships; in this work the mechanism
of annotation represents the tool for bridging the gap between the semantics and its geometric
counterpart. Once this bond is created, we need methods to guarantee that it remains unchanged
after geometric changes. Therefore, we presented the annotation transfer approach whose aim is
the persistence of annotations after resolution change.

Results show that the annotation transfer works pretty well even after severe changes in mesh
resolution, until the size of the annotated feature is compatible with the level of detail of the
target mesh. Especially in the downsampling case, the target mesh could be so coarse that the
corresponding part actually fades, thus providing unreliable results. Future research will inves-
tigate how to determine the minimum resolution required to preserve an annotation as well as
local refinement in order to cope with high distortions.

46

Chapter 3

Semantics enrichment through shape
analysis

Summary In the previous Chapter, we have defined the annotation mechanism as the bridge to bind
semantics to portions of geometry; semantics is given by an available formalisation of knowledge about
the object class and is embedded in the geometry through manual annotation by a domain expert. Once
the annotation takes place, we need tools to guarantee the association between geometric selections and
knowledge remains consistent with geometric deformations, and we proposed a method for annotation
persistence to cope with severe changes in mesh resolution. However, geometry also carries shape in-
formation that can be automatically extracted by shape analysis methods and enriches the semantics
itself. Indeed, shape descriptors, from metric measurements to more complex characteristics like cur-
vature, thickness or straightness, could provide precise numeric attributes, analyse the variability range
of attributes within a class, facilitate expert’s study on the digital piece and support to find new domain
knowledge, which could be put back in the loop.
In this Chapter, we present two approaches based on 3D shape analysis to support expert’s study and
new contextual knowledge discovery in the archaeological research domain. Both applications focus on
a collection of ancient clay statuettes, namely the “Ayia Irini small human idols” collection. In the first
place, we define and deploy several shape descriptors to determine the level of expertise of the artisan
(e.g., roundness, straightness) and study the production process (e.g., identify rules of proportions among
parts). Secondly, we apply geometric based clustering to highlight the use of different moulds related to
the workshop of production. Results highlight ranges in the variability of measures and stable proportions,
which can be used to set attributes and relationships on annotations. The head clustering also suggests a
further sub-classification of statuettes and in turn the use of a specific template for each sub-class.

As introduced in Section 1.1, the encoded semantics, initially derived from a shared knowledge
formalisation or defined by a domain expert, can continuously be enriched by applying shape
analysis tools for extracting measures or other geometric properties as well as relationships be-

47

Figure 3.1: A subset of the statuettes from the Ayia-Irini collection

tween different parts (and/or their attributes). In fact, even if the knowledge of domain experts
is very deep, there can be still room for investigation; with reference to the archaeology context,
the work of researchers is indeed the analysis of the material to find out new undiscovered pieces
of knowledge.

Shape analysis would be particularly useful especially in those fields where common measures
and other geometric properties are important for classification purposes and/or for elaborating re-
search hypothesis (e.g., in human physiognomy there are some well known proportions between
measures taken from the eyes, the nose, etc. [ZJB+18]).

In particular, we focus on defining techniques to derive indicators for stylistic features of archae-
ological findings. These indicators can be used to:

1. derive quantitative attributes identifying a collection, to better specify the semantics and
the constraints on the class [SMVS18, SVM+18] (see Section 3.2)

2. suggest new sub-grouping of archaeological collections, providing new hypothesis on pro-
duction, provenance and reunification of pieces, and driving the selection of more specific
sub-class templates [SVM+19] (see Section 3.3).

In the following, we first describe the archaeological collection representing our experimental
case study and then the developed solutions for the two above problems, namely the quantitative
descriptors to characterise the collection and the identification of a possible sub-classification of
the statuettes based on manufacturing.

48

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3.2: The head of some artefacts in the data-set

3.1 The Ayia Irini case study

Documentation in the CH sector is the process of recording information about collections; for
reliability and ease of sharing, it is crucial that objects are documented consistently, using recog-
nised standards, common record structure and homogeneous terminology. According to the UN-
ESCO guidelines, writing a textual description of the shape and appearance of the object is
highly recommended [Sti08], possibly including measures. The typical approach for archaeo-
logical analysis is mainly qualitative and, as such, object descriptions are rich but subjective and
prone to ambiguities. Furthermore, even when some measures are reported, they are limited to
global dimensions (e.g., height), are approximate (e.g., a curved surface measured by ruler) and
are often not uniquely defined: for example, measuring the length of the arm of the statuette in
Figure 3.4 involves choosing a distance metric (e.g., Euclidean versus geodesic) and the extreme
points: where exactly does the arm begin? So, measurements by different archaeologists may be
quite dissimilar, the exact procedure followed very hard to specify in textual notes.

Conversely, the quantitative approach is based on objective metrics to produce replicable results
and, coupled with digital tools, can assist the qualitative one in different ways. Firstly, the use of
a 3D model as a digital twin of the artefact allows pinpointing precise landmarks (measurement
extrema, feature lines, areas of interest) and define them uniquely. Secondly, a variety of shape
analysis tools can be applied to get quantitative descriptors directly in the digital domain, with
no risk of damage to the real artefact. Finally, the study of shape descriptors allows for feature
identification, automatic comparison of models (or parts of them) and classification.

Indeed, archaeologists are used to classify and categorise the material remains coming from past
cultures [PB10]. It is a way to understand and interpret such material.

As Irving Rouse declares in his work on artefacts’ classification in archaeology, ‘analytic classifi-
cation consists of forming successive series of classes, referring to different features of artefacts.
Each class is characterised by one or more attributes which indicate a custom to which the arti-
san conformed, for example, a manufacturing technique, or a concept which he expressed in the
artefacts, such as a design’ [Rou60].

In this Chapter, digital shape analysis tools are suggested as a quantitative support for archae-

49

ological research and, in the long term, for the task of suggesting new possible classifications,
with particular focus on the collections analysed in the framework of the GRAVITATE project
[PWM+16]. Among the case studies under investigation in the project, the Ayia-Irini collec-
tion of small terracotta figurines seemed appropriate to demonstrate the beneficial support of
quantitative analysis to answer different archaeological research questions [Vas16, Vas17].

The Ayia-Irini collection consists of almost 2000 votive clay statues and statuettes of different
size, shape, and style found in an ancient Cypriot sanctuary. The site was brought to light by
a small group of Swedish archaeologists during the Swedish Cyprus Expedition led by the ar-
chaeologist Ejnar Gjerstad [GLSW35] in the 20-th century. The collection includes medium and
large human statues (man-size and over), animals, Minotaurs, horsemen, etc. After the excava-
tion, the artefacts were divided between Sweden and Cyprus and currently they are conserved in
five different museums.

Here, the focus is on the so called ‘small human idols’, mostly attributed to the Cypro-Archaic
period (700-500 BC). Gjerstad’s classification of the ‘small human idols’ was based on visual
investigation of criteria such as iconography (e.g., arm position, dress, headgear), technique
(handmade, wheel-made, and moulded), clay colour, slip type (also in this case according to the
colour: e.g., light/white slip), and decoration (e.g., black and red).

As Gjerstad himself admits, his first idea of classifying according to all noted typological dif-
ferences (shape, technique, representation, etc.) would have created more than fifty types. For
this reason, he decided to organise the material in less and bigger groups, deriving sixteen (16)
groups that he named Types [GLSW35, pp. 785-786]. This classification presents ambiguities
since many criteria overlap between Types. Some of these variations are explained by Gjerstad as
advancement in the production technique, without taking other possibilities into consideration,
such as artisans’ diverging ambition and skill.

For example, various experimental studies on ceramic prove that the technique used and the man-
ufacture level, the form and the shape of the artefact, the weight and the size, and the thickness
of the material, are some important parameters that could help us to interpret the artisanal signa-
ture of a workshop, or of an individual, and her/his level of expertise [DD86, pp. 19-36] [BS09]
[Bot16, pp. 32-33].

Seventy years later, another interpretation of the Ayia-Irini material based on stylistic similari-
ties suggested that stylistic features could indicate the provenance; such hypothesis brought to
the creation of sub-groups pertinent to those different areas of production or imitation [Fou07,
pp. 89-92, 127-132].

In both studies, even if greatly carried out and representative of interesting results, the analyses
of the Ayia-Irini material followed a qualitative approach.

The study reported in this Chapter takes into account 103 statuettes of the collection, which were
chosen from the different hosting institutions and digitised, both through laser scanning and

50

photogrammetric technique, in order to produce 3D replicas to be quantitatively analysed. All
sampled statuettes represent male standing figures (up to 25 cm height maximum), sometimes
holding weapons, animals, or music instruments. They belong to three of the Gjerstad ‘small
human idols’ types: Type 5, 6 and 7. The Type 5 and 6 comprehend 60 handmade statuettes
sharing similar characteristics, which make difficult a definite attribution to a class respect to
another. Moreover, some items present common characteristics that make us hypothesise the
presence of production patterns that could be meaningful for the identification of workshops or
even different artisans’ hands. The 43 statuettes attributed to Type 7 are made by three integrated
techniques (handmade, wheel-made and moulded) and share more defined characteristics, such
as the use of several moulds for the production of the heads. Moreover, the archaeologists state
that for the Type 7 statuettes 5 moulds were used to produce their heads but no attribution of
how many and which statuettes correspond to each mould was done [Fou07, pp. 89-92, 127-
132]. Also, some similar features of the hand-made heads suggest a possible same artisan’s
production.

The traditional classification approach followed by the past studies on the Ayia-Irini material and
the issues identified, led to some interesting archaeological questions:

• Can quantitative analysis support the qualitative one and suggest new, objective classifica-
tions of archaeological material?

• Is the presence of fixed measurements, ratios between the parts and geometric similarities
expression of a “serial” production to be attributed to specific workshops or even artisans’
hands?

• Is it possible to identify different levels of expertise according to the uniformity of the
statuettes’ clay width and other dimensions?

• How many moulds can be quantitatively identified in the sample? How many artefacts
come from the same mould? Is it possible to identify a ‘chronological sequence’ through
the comparison of the heads which seem to come from the same mould?

In the following, we describe our effort to identify the proper shape descriptors to support an-
swering each of these questions. Firstly, we aim at identifying indicators for the artisan’s ex-
pertise and for the presence of fixed proportion in the production; secondly, we investigate new
sub-groupings based on the use of a specific mould.

51

3.2 Quantitative attributes identifying artisan expertise and
production process

As previously mentioned, the statuettes of the sample under study are diverse with respect to
several factors, such as the production technique. With reference to Figure 3.1, the bodies of the
statuettes are all tubular-shaped, but those on the left are produced by hand, while the remaining
are obtained by wheel for the “body” part, by mould for the head and by hand for arms, neck and
accessories (animals, musical instruments, etc.).

The production technique is particularly important to identify the proper dimensions to be mea-
sured and useful to possibly detect the presence of different hands/level of expertise. For ex-
ample, an experienced craftsman is able to produce by hand a more rounded and straight body
than a novice; in the same way, operating the wheel requires good skills to achieve homogeneous
thickness of the clay.

The level of expertise of the craftsman’s hand could then be quantified using:

1. An estimation of roundness of the tubular part, for hand-made statuettes;

2. A measure of how much the thickness of the material varies over the tubular parts of the
shape (thickness’ homogeneity);

3. A straightness measure for the tubular part (e.g., distance from the principal axis), for
wheel-made statuettes.

In our publication [SVM+18], a set of slices of the shape extracted by virtually slicing the model
with parallel, horizontal planes at increasing heights is analysed to estimate the above dimen-
sions. The focus will be on the lower part of the body, by slicing the tubular part at different
predefined heights.

The roundness is computed slice by slice as the average distance between the shape and its
equivalent circle (circle centred on the centroid of the shape which has the same area of the
slice). This can be computed even as the best-fitted circle using circular regression, however,
the equivalent circle is computationally much lighter to compute and, since all the slices are
sufficiently round, it is a good approximation of the fitted one (see Figure 3.3).

Wheel-made statuettes present an inner cavity (due to the production technique used) which, for
scanning limitations, the digital counterpart represents only partially. However, the cavity can
be detected in the lower slices, as an inner planar hole. Therefore, thickness is computed as the
average distance between the inner and outer boundary of each slice, thickness variance is then
extracted over the set of slices.

Finally, straightness depends on the definition of the axis of the statuette. A linear regression
system for interpolating the barycenter of the slices can be set up, but this can be too sensitive to

52

Figure 3.3: Difference between fitted circle (blue one) and equivalent circle (red one) computed
from the original shape (brown). As it can be seen, as the shape approaches that of a circle, the
differences between fitted and equivalent one become thinner.

noise (any imperfection over a slice can tilt the line). Another approach follows the extraction of
the axis of rotational symmetry, but the features applied onto the tubular body (e.g., arms) affect
its computation. For this reason, the focus will be on the tubular part, which exhibits a good
symmetric structure and allows for a simple extraction of the axis (being a generalised cylinder).
In particular, the choice fell on the vertical line passing through the barycenters’ average. The
average distance between the principal axis and the barycenters of the slices is computed and
taken as a measure of straightness.

With the aim of answering the second research question, and so seeking fixed proportions be-
tween parts, we investigated the following entities:

1. Total size of the statuette;

2. Clay amount (volume);

3. Position and length of the arms;

4. Ratio between body parts measures.

In a first place, the overall volume of the object was considered as an indicator for both the total
size and the clay amount1. This measure, however, can not be sufficiently precise due to the
partial lack of the inner representation of the object.

1The volume V can be easily computed from a closed triangular mesh, following the divergence theorem of
Gauss, as V =

∑m
i=1 ci · ni · ai, where ci = 1

3 (v
1
i + v2

i + v3i) is the centroid of the i-th triangle, ni = (v2i − v1i)×
(v3

i − v1
i) its normal, ai = 1

6

∥∥(v2
i − v1i)× (v3i − v1i)

∥∥ the corresponding area and v1i , v2i , v3i are the vertices of the
triangle (see [LK84]).

53

Figure 3.4: The point-wise curvature on the statuette A.I. 245, following the colour bar on the
right. Notice how arms and head joints are highlighted by curvature.

Concerning the arm position and length, the precise identification of the junction area between
arms and chest is needed, and this is not trivial. It is commonly understood that the statuettes
were produced in separate pieces (the body, the arms, the accessories and the head), which where
successively joined together. In many cases the junction of the arms or of the head is not clearly
visible. However, sometimes a tiny relief of clay marks the joint location: indeed, in some
statuettes, the mean curvature calculated on the mesh highlights that rim (see Figure 3.4).

After the identification of joints, it is possible to measure parts and look for fixed ratios among
different statuettes or within the same statuette (e.g., different statuettes have arms with the same
size, the head of a statuette is always 1

3
of the torso, and so forth).

3.2.1 Experiments and results

In order to optimise the above-mentioned analyses, automatic ways to identify regions where
specific tools apply are needed: e.g., the tubular part of the body for measuring roundness, the
head for mould identification. At a finer detail, there may also be the need to identify features’
location (e.g., nose or ears).

The paradigm of slices is used to ideally segment the statuette into meaningful sub-parts, and use
clustering to group similar slices (Figure 3.5). To this end, a set of descriptors are employed on
slices extracted from the entire height of each statuette:

54

Figure 3.5: Slice clustering. On the left, the A.I.130 statuette with a few slices highlighted; on
the right, resulting clustering of the full set of slices into 3, 4 and 5 clusters, respectively.

1. Elongation: 1− m
M

, wherem andM are the minor and major axis of the Minimal Bounding
Rectangle (MBR) (the smallest oriented rectangle, in terms of area, containing the shape);

2. Solidity: A
ACH

, where A is the area of the shape and ACH is the area of its convex hull (the
smallest, in terms of area, convex shape enclosing the shape)

3. Compactness: 4πA
P 2 , where P is the perimeter of the shape;

4. Circular variance: error with respect to the equivalent circle;

5. Rectangular variance: error with respect to the MBR;

6. Euler number: number of connected components - number of holes;

7. Hole-area ratio: A
AH

, where AH is the total area of all the holes.

Then, the clustering is obtained with a k-means approach [Mac67] (see Figure 3.5). The problem
of identifying the proper number of clusters still remains.

In the second experiment, an attempt is made to obtain automatic recognition of wheel-made ver-
sus hand-made statuettes (archaeologists already have this classification, but it is useful for us to

55

automatically launch the proper descriptors depending on the case). The statuette clustering and
a successive comparison of the performance of two descriptors applied to slices are performed:

• Eccentricity: the ratio between the axes of the MBR;

• Roundness: the average error between the shape and the circle which best fits the points of
the shape.

These descriptors are properly applied to the lower body. Once the segmentation into meaningful
parts will be satisfactorily solved, the slices will be automatically selected. At this stage, how-
ever, 100 slices from the lowest part of each statuette are considered (about 2

5
of the statue), then

the average values and variance are taken: the variance for wheel-made ones is expected to be
lower. Comparing the results with the ground-truth (archaeological classification) the classifica-
tion based on eccentricity gets a F1-score of 0.6993 while roundness reaches the value of 0.8167,
both with some manual tuning.

These first results are very promising: in fact, the classifier based on roundness reaches a very
good score.

3.2.2 Inferring fixed proportions

Understanding if the statuettes where produced following rules about proportions between parts
would be really important to enrich the set of constraints defining the belonging to a certain class
(see Chapter 4), e.g., for classification purposes.

An example of such a study can be seen in Table 3.1, where 4 different measures are taken (using
the tools presented in Chapter 5 from the statuettes of the Type 7 (see Figure 3.6):

• total height: the Euclidean distance between the base and the topmost point, with the statue
having an explicit upright orientation;

• base diameter: the Euclidean distance between the two points on the base which are far-
thest away from each other (this is because the bases produced by the same artisan are
likely to have more or less the same diameter in proportion with the rest of the statuette,
both because of her/his skills and for stability purposes);

• arm length: this has been taken as the (approximated) geodesic measure between the hy-
pothetical joint of the arm (near the neck) and the end of the “hand”, i.e., the point attached
to the hold object or to the body, passing on the “exterior” of the arm itself (the idea is to
understand if the arms could come from clay cylinders all of similar length);

56

Table 3.1: Some measures taken from the Type 7 statuettes. The values in the first 4 rows are
expressed in cm.

Average Min Max Median St. deviation
total height 20.03720 17.74204 25.23407 19.80382 1.35701
base diameter 5.79426 4.96149 6.84970 5.77085 1.03491
arm length 8.23578 6.78108 12.76251 8.04783 0.43048
head’s height 4.35963 3.08510 7.34923 4.18244 0.86102
arm length/total height 41% 31% 52% 41% 4.7%
base diameter/total height 29% 23% 35% 29% 2.8%
head’s height/total height 22% 15% 35% 21% 3.9%
arm length/base diameter 143% 117% 186% 140% 16.2%
arm length/head’s height 194% 114% 281% 186% 37.6%
base diameter/head’s height 137% 81% 194% 139% 25.6%

• head’s height: the Euclidean distance between the joint of the head and the topmost point,
with the statue having an explicit upright orientation (the idea is to understand if the chosen
size of the different parts could depend on the employed mould).

To try and understand if the proportions are fixed, some ratios between the measures are com-
puted and a statistical study applied, e.g., analysing the variability of the measures. Of course,
one cannot expect the variability to be low, because even while using fixed proportions ancient
artisans where limited by the tools and techniques of their epoque, but the first results in this
direction are very promising. Indeed, the standard deviation reported in Table 3.1 suggests that
the total height of the statue could present a fixed proportion with respect to head’s height, arms’
length and base diameter.

3.3 Quantitative approach to the sub-grouping of artefacts
based on moulds

In this section, we present a preliminary study, published in [SVM+19], aiming at re-analysing
the material already available for the Ayia-Irini collection utilising a quantitative approach [Vas16,
Vas17, SVM+18] to complement the previous results with traditional methods on the same mate-
rial [GLSW35] with the aim of identifying potential sub-groups for the Ayia Irini classification.

Note that this kind of approaches can be beneficial when dealing with classes with an high inner
variability: indeed, in these cases sub-grouping the class can be a way for generating a more tight-
fitting geometric template and a semantic template more rich in shared features and relationships
(see Section 1.1).

57

Figure 3.6: The measures taken from the statuettes of Type 7, respectively total height, base
diameter, arm length and head height.

The 3D analysis in this study will try to answer the following archaeological questions: can char-
acteristics in the hand-made heads been quantitatively measured to help us identify a production
by the same artisan? How many moulds can be identified in the sample? How many and which
artefacts come from the same mould?

In the following experiments, the focus is on the statuettes’ heads and their mutual similarity
to group figurines whose heads are most similar. Each output class should possibly represent
figurines created by the same hand or produced with the same mould.

The procedure works as follows: firstly, the head part from the mesh of the whole figure is
extracted. Then, two state-of-the-art algorithms are exploited to i) assess the similarity among
faces and ii) cluster similar faces into classes. In this preliminary work, the heads were manually
segmented using MeshLab [CCC+08].

Any mesh defect (e.g., isolated vertices, duplicated faces) were fixed using MeshLab and ReMesh
[AF06]. Since apparently the moulds consisted only of a front half, the head back may bias the
comparison. Therefore, faces are also extracted for Type 7 statuettes (i.e., those with moulded
faces, wheel-made body and hand-made arms and accessories) by removing the head’s back
using MeshLab.

58

3.3.1 Similarity assessment

MeshSIFT has been chosen and employed to assess the similarity between pairs of head meshes.
It was first introduced by Smeets et al. in 2013 for expression-invariant face recognition [SKDP13].
Albeit the invariance to face expression is not a requirement in this setting, this method has
been employed because it is robust to incomplete data (heads and faces are represented as open
meshes). Moreover, the method has proven to achieve a good recognition rate in international
contests like the “SHREC ’11: Face Scans”[VJD+11]; an open implementation in MATLAB
is available online [CDJF19]. In brief, MeshSIFT computes correspondences between salient
points on the two meshes, the number of matched pairs being the estimate for how similar the
two meshes are (further details can be found in the original article).

Comparing n heads in pairs produces a n × n matrix S of integers such that Si,j contains the
similarity value sij between face i and face j.

The maximum values by row and by column lay on the diagonal (self-similarity). The range
of similarity values for each head/face differs a lot: in this experiment, the self-similarity value
ranged between 1466 for the model with inventory A.I.1249 and 160 for A.I.1295. Furthermore,
the clustering algorithm employed for the next step needs distances among elements rather than
similarities.

Therefore, the similarity scores for each model (with the maximum being the self-similarity
value) are normalised in the range [0, 1]; then, data are reversed into matrix D to represent the
distance between two heads as dij = 1− sij .

3.3.2 Head clustering

To cluster heads based on their normalised distance, DBSCAN [EKSX96] has been applied to
the first three components of the eigenvectors extracted from D (this triplet being also used as
coordinates to plot heads in the score space). DBSCAN is one of the most used and cited clus-
tering methods: it is designed to discover clusters of arbitrary shape in noisy applications (e.g.,
see Figure 3.7). We refer to the original article for details. The main idea is the following:

A point q is density-reachable from a point p if their distance is less than a specified threshold ε
and if p is surrounded by a sufficient number of points. In this way, the density-connectivity can
be stated as: two points p and q are density connected if there exists a point o such that both p and
q are density-reachable from o (the latter definition guarantees that the points on the boundary of
the clusters are grouped with those in the interior).

So, any cluster in the database will satisfy the following properties:

59

Figure 3.7: Some examples of clusters of points that are detected by DBSCAN.

1. Each pair of points in the cluster are mutually density-connected;

2. If a point in a cluster is density connected to another point, that point is part of the same
cluster.

The DBSCAN algorithm (we employed the MATLAB R2019a implementation) requires two
parameters: the minimum number of points to define a cluster (we set it to 1) and the value of the
threshold ε, which relates to the density of clusters and affects the clustering granularity. Higher
values of ε determine few, huge clusters; conversely, a smaller ε will produce more, smaller sets.
If ε is not set, the algorithm self-estimates this parameter.

Different values for ε has been tested. Since values are normalised in the range [0,1], the max-
imum distance between points in the same cluster is arbitrarily fixed to be below the 10% of
the maximum distance (so 0.1). A sort of average distance inside the clusters was also used,
evaluated by extracting the k nearest neighbours (where k is the expected size of the cluster) for
each point and then computing the average of the mean distance between them. The knn-search
algorithm provided in [FBF77] and available on MATLAB has been used. In the following, we
will refer to this value as knn-ε. Finally, the self-calculated ε provided by DBSCAN was also
tested.

In the following, we will present the results achieved using the knn-ε threshold (details can be
found in [SVM+19]).

3.3.3 Experiments

Three experiments to analyse and interpret the manufacturing of the statuettes for classification
purposes have been performed: in the first two, moulded and hand-made heads were analysed
separately while in the last one the same procedure was applied to whole data-set.

60

(a) (b)

Figure 3.8: On the left, the results of the clustering (using the knn-ε threshold) of all the moulded
faces; on the right, the results of the clustering (using the knn-ε threshold) on the whole data-set.

Intra-class clustering: moulded faces

The first experiment was focused on the 43 moulded heads of the Type 7 statuettes, to estimate
how many moulds were used for their production and which statuettes were produced with each
mould. In this test only faces where taken into account (after back side of the head removal).

The clustering highlights two main classes, namely #1 “short hair” and #2 “long hair” heads,
according to their most apparent characteristic. Also, though testing different values of ε, the
stable and constant presence of two separate and well definite clusters within the “long hair”
heads group has been noticed. With reference to Figure 3.8a, using knn-ε as threshold highlights
two subgroups (in yellow and green) in the “long hair” class, and other two (in blue and violet)
in the “short hair” class. The result suggests that the “long hair” heads might come from two
different moulds, while the “short hair” heads appear very close to each other, suggesting a
production from the same mould but, at the same time, with a distinction.

Indeed, 13 heads out of the 32 in the “short hair” class show a small piece of clay representing a
beard, manually added after moulding.

Moreover, at finer clustering levels (i.e., at smaller values of ε) the subdivision between “heads
with beard” and “heads without beard” within the “short hair” class emerges, but two sub-classes
are not always precisely delineated, possibly because the added handmade beards bias the com-
parison.

61

Therefore, the experiment on the “short hair” subset has been repeated with three different set-
tings:

• analysing only the 18 faces that have no added beards (“heads without beards”);

• analysing all the 32 faces after manually removing the beards from the 14 (“heads with
beard”);

• analysing all the 32 faces after manually removing the beards from the 14 “heads with
beard” and the chin from the 18 “heads without beard”

The first experiment was done to check if any subdivision within the “short hair” faces “without
beard” appeared. With knn-ε threshold, one main group was created, with only three external
items. Only a further quantitative comparison among the faces could clarify if these deviations,
rather than indicating different moulds, could be due to mould degradation, different pressure on
the clay, or degradation of the artefacts.

The aim of the second experiment was to check if any new clustering could have been identified.
The results show a definite subdivision between faces “without beard” and faces once “with
beard”. The reason could be that modified faces present a lack and therefore the recognition
happened only on the superior part, creating a group per se.

So, the test has been repeated eliminating the chin, bearded or not, from the 32 faces, to make
the group homogeneous.

The third experiment produced a big group with some small other clusters, which can be possibly
introduced by the erosion and/or by different pressure on the material during the production.

Intra-class clustering: handmade heads

The same approach has been tested on the 60 handmade statuettes (Types 5 and 6). They were
more troublesome, principally because of the peculiarities induced by the mere use of the hands
for production. In this case, the whole head mesh has been analysed, since the artefacts are
entirely handmade.

As mentioned, this group is characterised by a range of different features: “long hat” (Figure
3.2a), “short hat”, “truncated hat” (Figure 3.2g), “turban hat” (Figure 3.2d), and so forth, terms
used by the archaeologists just to describe them qualitatively and therefore in a subjective and
not homogeneous way. Changing the value of ε during the experiment, it appears that certain
subgroups are stable, such as the one composed of statuettes with “long hat” heads, with “short
hat” heads or the one represented by statuettes with “truncated hat” heads. The latter group
is particularly interesting for the interpretation of the production of the statuettes: a parallel

62

investigation on the same material showed the identification of traces of the very same type of
decoration and pigments, suggesting a probable production by the same hand [VGH].

Inter-class clustering

The aim of this last experiment was, firstly, to understand if the followed procedure is able to
guess the classification of the heads into handmade and moulded and, secondly, to test whether
other interesting information (i.e., a new classification) could be extracted from the whole data-
set. Since the handmade heads are analysed integrally, the entire head was used for the moulded
elements as well.

The unsupervised analysis indeed shows the principal subdivision of the artefacts between moulded
and handmade statuettes according to their production technique (Figure 3.8b, where the hand-
made are the teal ones and the wheel made the remaining).

Moreover, previous tests identified the presence, within moulded statuettes, of a “short hair” (blue
and yellow) and a “long hair” subgroups (lime and green), and at least two possible moulds, x and
y in the “long hair” heads. It is worth to note that the group of heads created with the hypothetical
mould y could be still divided in two further parts (the lime dots represent the heads produced
with the mould y, while other points here demarcated as outliers - violet - should be part of the
same group). In the future, these artefacts will be further analysed.

3.4 Limitations and Discussion

In this Chapter, we have discussed the combined use of several shape descriptors to support
the domain expert in his/her reasoning on a shape in order to reveal new contextual knowledge
which, in turn, can be used to enrich the semantics itself. We focused on an example from the
archaeological domain, where different descriptors were able to support quantitative attribute
extraction and showed potential to help answering complex archaeological questions. However,
the methodology as well as the single tools have a general value; adding more shape descriptors
will provide the expert users more tools to use and combine in his/her study, to test hypotheses
and document new findings.

The work described in this Chapter has some limitations. Firstly, the automatic recognition
of parts have proved to be very challenging. The part segmentation using slices was not fully
successful, and this hindered the composition of a fully automatic procedure for shape under-
standing. For instance, some measures to investigate the presence of fixed ratios among parts
had to be taken manually, making measures prone to subjectivity. Similarly, the study on heads
required some heads to be segmented manually. Concerning arm joint detection, we still have to
investigate curvature patterns that could highlight clay artefacts due to hand pressure.

63

The next steps will regard the study of additional descriptors to identify new different subgroups.
In the longer term, classifications either compliant with the archaeological ones, but even totally
divergent are envisaged. Finally, it has been noticed that different statuettes have similar weights,
so an attempt to understand if there is a connection based on total amount of clay used for the
construction of different statuettes will be done. The question about if it is possible to estimate
quite precisely the weight (the volume) of a statuette despite the lack of inner representation issue
will be further investigated.

64

Chapter 4

From semantics to geometry through
template deformation

Summary We approach now the core contribution of this thesis, that is, the geometric deformation
guided by semantics. The subject of this Chapter is the definition of the constrained deformation tech-
nique, based on the bridge between geometry and semantics defined in Chapter 2; the implementation of
the semantics-aware deformation based on constraints with examples and applications is instead presented
in Chapter 5.
In the following, we present a review of the state of the art for surface deformation techniques, with
particular focus on skinning. Then, we focus on cage-based deformation as the most suitable technique
for the requirements of our application and discuss its potential and drawbacks.
We ground our approach to constrained deformation on a previous technique (ShapeUp [BDS+12]), which
is designed for working directly on vertices positions, while our aim is to introduce cages to speed up the
deformation. Therefore, we present our extension in order to manage constrained deformation through
cage-based techniques. Finally, we discuss the pros and cons of this approach.

There are several levels at which the semantics can be exploited for acting on the geometric side
of the template. Ideally, the structural information that can be found in the relationships graph
(see subsection 2.3), along with annotation attributes, could be exploited for creating a dummy
geometry from scratch, composing shape primitives (like a stick-man for the human shape). In
our case, a reference geometry is available for a class of homogeneous shapes and we want to
use the semantics to change this geometry, i.e., to deform it in such a way that the semantics is
preserved. In other words, we can produce a new geometry acting not directly on the shape but
rather on the transformations applied to it, by setting up a framework for semantically constrain-
ing the deformations. It is left to the domain expert to select those attributes and relationships
that are crucial for an object to be considered part of the homogeneous class (e.g., what are the
properties of a shape that defines whether it is a “teapot”?) and stating that they have to be

65

satisfied, at least up to a certain precision.

In this Chapter, we briefly present (a non exhaustive compendium on) the state-of-the-art of the
deformation techniques; among these, we will apply in this work cage-based deformation (see
[NS13]), because of the freedom it gives to the manipulation, its interactive speed and its simple
implementation; then, we define the constraints, how we can mathematically formalise them
exploiting some state-of-the-art techniques (e.g., [IMH05, BDS+12]) and how we can adjust the
shape so that the constraints on attributes and relations are satisfied up to a certain error threshold
or, otherwise, discard the deformation.

4.1 Review of surface deformation techniques

Computer animation has attracted a lot of attentions since the foundation of CG (a brief history
of computer animation can be seen in https://youtu.be/IhQp6eol76c).

Historically, humans have always tried to achieve shape animation: for example, in ancient times
drawings were made on pottery or other media so that the same character was pictured in dif-
ferent poses (e.g., animated vessel in Shahr-e Sukhteh [Wik20b] or Vitruvian Man of Leonardo
da Vinci). It was not until the early 18th century that the first machines for producing anima-
tions were studied and produced (e.g., thaumatrope, phenakitoscope, zoetrope, flip-book, prax-
inoscope) exploiting the human brain’s interpolation power to make images appear to move.

Then, in the early 20th century, the first cartoons made using the technique of stop-motion and
drawn key-frames [SB85] were produced with the addition first of the sound (Steambot Willie
with Mickey Mouse) and then of colour with several techniques (the first successful one being
Kinemacolor). After the foundation of new companies such as Walt Disney Studios and Warner
Brothers Cartoons, cartoons production rose more and more until the first cases of animated TV
series on prime-time (Hanna Barbera’s The Flinstones). Afterwards, cartoon became ubiquitous.

In the latest 20th century, animation started the paradigm shift from pure analogic towards totally
digital techniques, with Toy Story being the first fully computer-animated feature film released.
While traditional animation was obtained by drawing key-frames that were shown with a certain
frequency and with some (also drawn) in-betweens inserted to give the illusion of smoothness in
the transition from a key-frame to the successive one, nowadays key-frames are commonly ob-
tained by animators exploiting shape deformation techniques applied to 3D shapes, while inter-
polated in-betweens are generated by means of morphing techniques (e.g.,[Ale02b, AFNS12]).

Here, we review the state of the art for interactive 3D shape deformation techniques, which
will be a key feature of the proposed framework. All this techniques are based on the concept
of handle, i.e., an intermediate entity that can be manipulated by the user to apply the desired
deformation on the target shape. Basing on how the transmission is propagated from the handles
to the target shape, they can be grouped into variational, Free-Form Deformation (FFD) and

66

https://youtu.be/IhQp6eol76c

skinning techniques.

4.1.1 Variational techniques

Commonly, the handles manipulated by the users in variational approaches are the vertices
(called control points) of the shape representation. Once the user has moved one or more control
points, the shape deforms consequently minimising an objective function (called deformation en-
ergy) [BS08], so that the deformation itself is posed as an optimisation problem, which typically
requires iterative solvers [JDKL14].

Examples are techniques based on Radial Basis Functions [NFN00, BK05] and As-Rigid-As-
Possible deformations [ACOL00, SA07].

This methods allow to obtain high-quality shape-preserving deformations, but they are very slow
at the extent that they can not be used for interactive applications for deforming high resolution
shapes; other drawbacks are the lack of means for changing the topology of the shape and for
performing global shape changes. Since our purpose is to provide an interactive application to
users, we will not use this kind of techniques directly (as can be seen in Section 4.2.2, we will
re-introduce variational techniques as means for including constraints in the deformation, but
in such a way that they will work on a reduced representation with respect to the mesh to be
deformed - the corresponding cage - thus reducing the weight of computations).

4.1.2 Free-form deformation

Firstly introduced by the pioneering work of Sederberg and Parry [SP86], these techniques base
on the definition of a control lattice, whose nodes can be manipulated by the user without any
kind of constraint on the target shape, apart for it to be enclosed by the lattice.

This kind of methods are widely-used in commercial software (such as Autodesk 3Ds Max and
Maya [3DS20, May20]) for providing smooth deformations and preserving the volume of the
skin [MJBF02].

Using FFD, a complex shape can be deformed by positioning the control vertices of the coarse
control grid. A more general extension of FFD (Extended FFD) was later presented by [Coq90].
Moreover, Hsu et al. [HHK92] provided a method that allows the user to control the FFDs by
manipulating the object directly and, finally, the method in [AB97] uses an independent defor-
mation function to provide a more flexible FFD while defining constraints on the preservation of
the shape’s volume.

Although FFD techniques are really simple to be implemented and extremely efficient, the dif-
ference in shape and resolution between the target shape and the control lattice greatly reduce

67

the amount of control allowed to the user, while the indirectness of the deformation propagation
often leads to difficulties in predicting the result of the manipulation (FFD act on the volume into
which the shape is embedded, rather than on the shape itself) [RF17].

To try and reduce the issues of these methods, cage-based deformation techniques have been
introduced as a specialisation of this concept.

4.1.3 Skinning

Skinning is the process of controlling deformations of a given object using a set of deformation
primitives. A typical example of an object often subjected to skinning is the body of a virtual
character. In this case, the deformation primitives are rigid transformations associated with bones
of an animation skeleton, but other kind of primitives are also possible (e.g., cages).

Given this broad definition, even the variational techniques fall within the class of skinning tech-
niques so, according to [JDKL14], we will refer in the following only to the so called direct
methods. Direct methods compute the resulting deformations using closed-form expressions,
i.e., without any numerical optimisation. They are often very fast and trivially parallelisable,
which makes them particularly attractive for interactive, real-time applications and GPU imple-
mentations.

Skeleton-based deformation techniques

This kind of techniques exploit the concept of control skeleton as a handle for manipulating the
target shape.

The concept of skeleton is relatively simple and intuitive: in nature, vertebrate beings, like mam-
mals, reptiles, birds, etc., have a inner structure called skeleton, which drives and controls their
motion. Analogously, in computer animation, a control skeleton is an inner structure composed
by bones and joints connected by bones, through which the user controls the character move-
ments defining a set of poses.

There have been several attempts (see [TDS+16]) in defining how to automatically extract such
skeletons from the target shape, mainly grouped into “medial-axis” based techniques (e.g., [WP00,
WP02a, PFW+03]), where a force field is used to shrink the shape until it become a medial sur-
face that is simplified to obtain a curve skeleton later sampled to generate the discrete control
skeleton, and segmentation based approaches (e.g., [DMMT+07, CCXS11, dBA16]) that first
segment the target shape into meaningful parts and then extract one or more line segments from
each of them that are later joined.

Notice that not all the shapes allow to define a control skeleton (e.g., see Figure 4.1) at least in
some parts, or anyhow the definition of such handles would be hardly usable (what use would

68

Figure 4.1: Some shapes on which it is difficult to define a control skeleton, for example on
the “head” of the jellyfish or on the whole muffin or, at last, in fragmented shapes like that of a
statue on the right (images respectively from open3dmodel.com, hum3d.com and from the STARC
repository of the Cyprus Institute public.cyi.ac.cy/starcRepo).

it be to have a control skeleton for a car shape?). So, control skeletons are better suited for the
deformation of the so called articulated shapes, i.e., shapes having articulated parts.

In the following, we present a list of techniques for defining the propagation of the deformation
from the control skeleton to the target shape.

Linear blend skinning Linear Blend Skinning (LBS) , also known as skeleton-subspace defor-
mation, (single-weight-)enveloping, or matrix-palette skinning, is the basic and most well known
algorithm for direct skeletal shape deformation, defining a de-facto standard in videogames and
animation communities.

It is difficult to trace the roots of LBS. Some of the early ideas appeared in the pioneering works
[NM82] and [MTLT89]. Perhaps the first paper that gives an exact mathematical description of
LBS is due to [LCF00], but it only mentions the algorithm is well-known and implemented in
commercial software packages [JDKL14].

Linear blend skinning assumes the following input data:

• Rest pose shape, typically represented as a polygon mesh. The mesh connectivity is as-
sumed to be constant, i.e., only vertex positions will change during deformations. We
denote the rest-pose vertices as v1, ..., vn ∈ IR3 . It is often convenient to assume that vi
are in fact IR4 vectors with the last coordinate equal to one (homogeneous coordinates).

• Bone transformations, represented using a list of matrices T1, ...,Tm ∈ IR3×4. The matri-
ces Ti can be conveniently defined using an animation skeleton; in this case they corre-
spond to spatial transformations aligning the rest pose of bone i with its current (animated)

69

pose.

• Skinning weights. Each vertex vi of the shape has an associated set of weightswi,1, ..., wi,m ∈
R, where every weight wi,j describes the amount of influence of bone j on vertex i. Com-
mon requirement are wi,j ≥ 0 and wi,1 + · · ·+ wi,m = 1 (partition of unity).

LBS computes deformed vertex positions v′i according to the following formula:

v′i =
m∑
j=1

wi,j · Tj · vi =

(
m∑
j=1

wi,j · Tj

)
vi (4.1)

Notice that, while this formula is referred to bone transformations Tj applied to a control skele-
ton, the same approach applies to different types of handles by simply changing the definition of
the deformation primitives (e.g., cage vertices’ position in space).

LBS works very well when the blended transformations Tj do not differ significantly in their
rotation components. Despite its fast and straightforward implementation, LBS suffers from
some visible artefacts when the joint is rotated of more than 90°. In a rotating joint, the skin is
expected to rotate around the joint as well, maintaining the volume. However, the linear model
interpolates skin vertices positions linearly between the bones, shrinking the nearby volume. This
is a very well known issue of the method which is called “candy-wrapper” artefact, that depends
on the fact that a linear combination of rotations is no longer a rotation [Ale02a]. Geometrically,
this is a consequence of the fact that the Lie group of 3D transformations, SO(3), is not a linear
(or “flat”) space, but a curved manifold [JDKL14].

Later on, this issue has been first reduced by the use of more deformation weights in the so-called
multi-linear methods and then totally removed moving to non-linear methods).

Multi-linear blend skinning One of the main issues of LBS and, at the same time, one of its
main advantages, is the simplicity of the propagation scheme. It starts from the assumption that
the only entities that will change during the deformation are the transformations T0,T1, ...,Tm ∈
IR3×4, which means that the LBS scheme is a linear function which accepts as input a set of
transformations (12 × m scalars, since each transformation is a 3 × 4 matrix) and produces in
output the deformed positions (3× n scalars).

Now, while LBS associate only one weight for each vertex-bone pair, it is possible to derive a
more general skinning model by adding more weights (with a maximum of 36 weights) associ-
ating a weight to each entry of the transformation matrices (3 × 4 matrix = 12 entries) for each
spatial coordinate of the vertices (3 coordinates ×12 entries in a matrix = 36 possible weights).
We refer to [JDKL14] for the details. Currently, no work employs all 36 weights to the best of
our knowledge.

70

In [WP02b], a first extension of this model (Multi-weight enveloping) has been presented for
trying to reduce the issues of LBS by simply changing the last matrix assigning twelve different
weights for each vertex-bone couple (i, j). This approach, while using twelve times the number
of weights with respect to LBS, still is not the most general approach possible. However, it
is able to solve the candy-wrapper artefact while, on the other hand, loses the very intuitive
interpretation of the single weight associated to each vertex-bone pair: this leads to difficulties
in designing good weights for the deformation, a problem that, always in [WP02b], has been
solved by extracting them from a set of examples. Unfortunately, these examples are not always
available.

Another possibility, that has been proposed in [MMG06], is Animation Space, an approach for
reducing the number of weights per vertex-bone couple to 4, while still enforcing the invariance
to world-space rotation and translation. However, Animation Space has the same limitation of
the previous approach, so that even in [MMG06] the weights are learned from examples.

Non-linear blend skinning While concretely solving the candy-wrapper artefact (even if keep-
ing sometimes some shrinking of the volume), multi-linear methods defines weights with a very
unintuitive nature, at the extent that typical multi-linear methods learns the weights from exam-
ples.

Another non-linear approach tries to bypass the candy-wrapper artefact by taking into account
the fact that the rotations that are being blended in LBS are in the Lie group of 3D transformations
SO(3) which is a curved manifold [JDKL14]. In particular, common non-linear methods employ
the concept of quaternion (or, better, unit quaternion, i.e., a quatenion q : ‖q‖ = 1) as a tool for
defining rotations. This is because, unlike matrices which are the most commonly used tool for
expressing rotations, the set Q1 of unit quaternions offer the so called double cover property, i.e.,
Q1 covers SO(3) twice, so that the quaternions q and −q represent exactly the same rotation
matrix[Han06]. This allows to distinguish between 360° and 0° rotations, thus not shrinking the
volume applying huge rotations. However, in the first version a 720° is again equal to 0° and this
issue has been solved generalising the algorithm to more than two rotations in [BF01] by means
of an iterative procedure, or avoided using linear combination of unit quaternions in [Hej04] and
[Kv05].

These early non-linear methods all suffer from the bad handling of the translations: they try to
handle rotations (defined with unit quaternions) and translations (defined with translation vec-
tors) separately and, in this way, introduce artefacts [KCvO08]: indeed, splitting a rigid transfor-
mation into a rotational and a translational component, a specific pivot point (which by default is
set near the object’s centre of mass) is defined as centre of rotation.

In Dual Quaternion Skinning (DQS) [KCvO07, KCvO08], a dual quaternion-based definition
of rigid transformations is used to simultaneously represent rotations and translations, leading
to better results with reference to the previous approaches but introducing another well-known

71

Figure 4.2: Some shapes with the corresponding control cage.

artefact, called bulging artefact [KS12, KCGF14], while at the same time not allowing non-rigid
transformations. The solution of these issues inspired several research efforts from different per-
spectives, going from the combination of LBS and DQS (e.g., [KS12, OBP+13]) to the definition
of other kinds of deformation primitives (e.g., [SF98, JBPS11]).

For further information on the presented techniques or a broader coverage of the state-of-the-art
in skeleton-based skinning we refer the reader to [JDKL14] and [RF17].

Cage-based deformation

While skeleton-based skinning techniques have become a de-facto standard in the animation
community, deformations required in other application contexts may be better obtained with the
employment of cages.

Let us denote a cage C any closed polygonal mesh that envelops another polygonal meshM to be
deformed (see Figure 4.2). The cage is usually a simplified version of the meshM and contains
much less vertices. This tool finds several application contexts, such as the collision detection
and in general everywhere a coarser version of a mesh could be useful e.g., for reducing the
computational complexity.

Here, however, we will focus on the usage of cages for manipulating the shape of objects. This
kind of manipulation is based on the usage of the vertices of C as handles, i.e, the user selects
and moves the vertices of the cage, and the model mesh will deform accordingly. Cage-based
deformation techniques base on the concept of Generalized Barycentric Coordinates (GBC),
which give means for defining the value of a certain function over a point in space (and so even

72

Figure 4.3: The candy wrapper artefact in cage-based deformation.

over the model mesh vertices) in terms of a linear combination of some control points (cage
vertices) [NS13]:

f(vi) =

∑m
j=1wijf(cj)∑m

k=1wik
, (4.2)

These kind of techniques falls into the LBS group and inherit from it pros and cons (e.g., candy-
wrapper artefact - see Figure 4.3). The (modified) formula for the computation of the deformed
mesh vertices positions v′i ∈ VM is computed as:

v′i =
m∑
j=1

bi,j · cj (4.3)

where bi,j =
wij∑m

k=1 wik
is the deformation weight associated to the couple composed of the mesh

vertex vi and the cage vertex cj . Indeed, with reference to equation 4.2, taking as function to be
interpolated the position in space of a vertex, i.e., f(x) = x, equation 4.3 would be the resulting
formula. A deeper comparison between GBC application and LBS is presented in [JDKL14].

Notice that equation 4.2 can be seen in matrix form as

VM = B · VC (4.4)

where VM is the n × 3 matrix obtained stacking the position in the space of the mesh vertices
and VC is the m× 3 matrix obtained in the same way for the cage vertices. This will be useful in
subsection 4.2.2 and in subsection 5.2.3.

In the following, we briefly present techniques for (semi-)automatically generating cages and the
properties of GBC and their different formalisation.

73

Cage generation The optimal cage size in terms of vertex cardinality is given by a trade-off
between the number of Degrees of Freedom (DoF) available to the user for the deformation and
the manipulation and computational complexity. A fine cage (e.g., having the same number of
vertices of M) will give the user a lot of control points allowing very detailed deformations,
which, however, are more complex to perform: she/he should be skilled in order to manage
many control points and obtain the desired shape. Moreover, this will increase considerably the
computational time so that possibly a standard hardware will not suffice to achieve an interactive
deformation. Conversely, a cage with few points enables a coarser control on the deformation
but allows the modification to be much more intuitive and a faster computation.

In brief, a “good” cage should have the following properties [CLM+19]:

• tight envelopment of the original model without either intersecting it, or self-intersecting;

• its control points should be close to the parts of the model one would like to deform or
bend;

• be coarse enough to be easily manipulated, yet fine enough to capture the necessary details,
thus it might need variable resolution;

• endow the symmetries present in the model.

There have been several attempts on the automatic generation of cages, each one with pros and
cons, which can be roughly grouped into:

• Template based methods [YCSZ13, JZvdP+08] generate new cages using a set of cage
templates with predefined topologies. This allow reuse of cage parts but requires a well
defined set of topologies and, even in that case, it is almost impossible to generate tight-
fitting cages for complex shapes.

• Simplification based methods [BCWG09, DLM11, XZG13, SVJ15] follow a resample-
and-offset approach, which is very simple and quite fast, but can introduce cage self-
intersections and not always guarantee that the mesh is inside the cage.

• Bounding shape based methods [XLG09, XLG12, XLX14] obtain the cages by iteratively
refining the Oriented Bounding Box (OBB) of the shape. This can cause cages to be bad
fitting and, because of the extraction of the OBB (repeated many times in some methods),
these approaches are inefficient and slow.

• Interaction based approaches [CF14, LD17, CLM+19] where a certain level of interac-
tion with the user is required to generate the cage. In [CF14] and [CLM+19], a starting
skeleton is required as a guideline for the generation. While implicitly encoding the struc-
ture of the shape to be deformed (especially if the skeleton has been generated taking into

74

account the segmentation in parts of the shape), these methods are quite fast and require
little interaction with the user, but they can be used only if the shape to be deformed al-
lows the definition of a skeleton, partly losing the advantages of using a cage: typically
shapes allowing the definition of a skeleton are better deformed using the latter handling
abstraction, even if there are some exceptions (e.g., cases in which the scaling of parts of
the shape is required in addition to the articulation - see [CTL+20]). The method defined
in [LD17], instead, generate cages starting from some user-specified cut slides: while al-
lowing the creation of tight fitting and high genus cages, this method requires huge efforts
and a certain level of skills from the user.

In this thesis, we employed a very simple resample-and-offset approach (details can be found in
Appendix A). This, of course, can give very bad results on complex shapes (e.g., self-intersections,
loose-fitting cage, etc.) but we decided to employ it because of its simplicity. We leave to future
works the definition of a semantics-based technique, where a cage will be built with more control
points in proximity to features (annotations) of the object and less in more generic areas, while
enforcing that some of the defined relationships reflect on the generated cage (e.g., sets of control
points influencing two symmetric areas should be symmetric all the same). We believe that this
approach will produce a cage respecting all (or at least a good percentage) of the desiderata ex-
pressed above (note that the perfect cage is not something that can be built a priori, but depends
on the specific deformation required by the user).

Barycentric Coordinates and their generalisation Barycentric Coordinates (BC) where first
introduced in 1827 by Möbius [M2̈7]. Their basic philosophy can be explained with an example:
suppose that we have a line segment l delimited by two points x1 and x2 (see Figure 4.4a). In
the example, the purpose is to derive a colour shading onto l passing from a point to another
(interpolating the colour function c(.) of x1 and x2 onto the line segment). To do this, a BC
function for each control point is defined, namely w1 for x1 and w2 for x2, as:

w1(t) = l2
l1+l2

w2(t) = l1
l1+l2

Where t is the position over the line segment and l1 and l2 its distances, respectively, from x1 and
x2. Finally, the colour value at each point over the line segment can be derived as:

c(t) = w1(t)c(x1) + w2(t)c(x2)

This simple and yet powerful tool has been extended by Möbius himself to any kind of triangle.
The key is to use the area ratio rather than the distance one (see Figure 4.4(b)). So, any function
values φ(x1), φ(x2), φ(x3) can be interpolated inside the triangle as:

φ(t) = w1φ(x1) + w2φ(x2) + w3φ(x3)

75

(a) (b)

Figure 4.4: The Barycentric Coordinates: on the left the colour gradient application, on the right
the sub areas of a triangle given a point t.

wi = ai
a1+a2+a3

ai = area(xi+1, xi+2, t),∀i ∈ Z3

Later, BC were developed in many works [Flo97, Flo03, FHK06, MBLD02, HF06]. Here, how-
ever, we will focus on the linking between a cage and its interior. Let c1, ..., cm ∈ IR3 be a set of
control points which are the vertices of a closed control cage, and let Ω be the domain bounded
by the cage. The goal is to find a function wj : Ω→ IR for each cj , such that {w1(x), ..., wm(x)}
is a set of GBC of x ∈ Ω with respect to the control points cj . These coordinate functions are
used for interpolating function values f(c1), ..., f(cm), given at the control points over the inte-
rior of Ω by 4.2. In this thesis, we will use both wij and w(x)j for referring to the same entity,
i.e., a value associated to a couple composed of a point in the deformation domain and a cage
vertex.

With application to shape deformation, GBC should satisfy certain properties to allow high-
quality results. Here is a list of properties that are commonly considered crucial [ZDL+14]:

1. Reproduction:
∑m

j=0wj(x) · cj = x,∀x ∈ Ω;

2. Partition of unity:
∑m

j=0wj(x) = 1;

3. Non-negativity: wj(x) ≥ 0,∀i;

4. Lagrange property: wj(ck) =

{
0 if j 6= k,

1 otherwise;

5. Linearity: functions wj are linear on cage edges and faces;

76

6. Smoothness: functions wj vary smoothly on Ω;

7. Shape “preservation”: the deformation mapping should be at least quasi-conformal;

8. Locality: a control point only influences its nearby regions and a point x ∈ Ω is influenced
by a small number of control points, i.e., the vector [w1(t), ..., wm(t)] is sparse.

The first methods that generalised the concept of BC to volumes enclosed by polygonal meshes
were the simultaneous works from Floater [FKR05] and Ju et al. [JSW05] and worked exploiting
the Mean Value theorem, from which their generalisation take the name. While allowing to
compute the BC with a closed form expression, and so enabling parallel computation, and being
very simple to implement, these generalisations have some fatal defects:

• Negative values: these coordinates do not satisfy point 3 in the list of desired properties,
which leads to counter-intuitive deformations that result from inconsistent deformation
directions between the control points and the cage interior;

• Global behaviour: these coordinates do not satisfy point 8 in the list of desired properties,
thus leading to global modifications any time a cage vertex is moved, resulting in a non-
intuitive deformation.

For these reasons, there have been quite a few works that tried to overcome the issues of Mean
Value Coordinates (MVC):

• Harmonic Coordinates (HC) [JMD+07] were defined by finding the solution to the Laplace
equation under well chosen boundary conditions: while this approach avoids the introduc-
tion of negative values and gives a first degree of control over the locality of the deforma-
tion, it doesn’t provide a closed form expression, thus not enabling parallel computation;

• Positive Mean Value Coordinates (PMVC) [LKCOL07] solve the negativity issue of MVC
while reducing the computation time required by HC, but inherit the global behaviour from
MVC and requires a Graphics Processing Unit (GPU) implementation;

• Green Coordinates (GC) [LLCO08] have the goal of providing quasi-conformal defor-
mations and achieves it by taking into account the cage triangles and their normal in the
computation of the deformed vertices positions: this method, as well as MVC provides
a closed form expression while ensuring non-negativity, however it does not have a very
local behaviour (even if still more local than MVC);

• Bounded Bi-harmonic Weights (BBW) [JBPS11] are not, strictly speaking, BC because
they do not satisfy point 5 in the list of desired properties but they allow a complete in-
tegration between different types of handling abstractions, namely points, skeletons and
cages, and allow a very local deformation. This method does not provide a closed form
expression;

77

• Local Barycentric Coordinates (LBC) [ZDL+14, TDZ19] directly enforce local behaviour
during deformation while satisfying linear precision. Again, this method do not provide a
closed form expression.

Other notable generalisations of GBC have been defined in [HS08, MLS11, BLTD16, APH17,
DCH20].

In this thesis, we employed MVC because of their simple implementation and the compatibility
with the ShapeOp library (see subsection 4.9). However, in the future we plan to move to a more
sophisticated technique, namely LBC, for obtaining more local deformations.

4.2 Constrained deformation

In the context of this thesis, constraints are rules that a shape should comply to belong to a class.
To express this idea, the template has annotations, annotations share relations and have attributes
(as formalised in Section 2.2) and, most importantly, the expert can specify constraints over them.
Unconstrained relations and attributes can therefore be manipulated at will, while constrained
entities are limited or completely fixed. To make an example, the 103 “small human idols”
statuettes in the Ayia Irini terracotta collection [Vas17] have a height of 17 to 25 centimetres;
the collection includes other, bigger figures with real human size, which the archaeologists have
distinguished in a separate class.

In principle, the user can set constraints on attributes regardless their nature (qualitative and
quantitative, textual and numeric, etc.); however, in this work we focus on constraints that can be
checked and modified by geometric analysis algorithms. This includes “low level” constraints,
directly related to geometric measurements and quantitative properties of the surface (e.g., area
measure, relation of co-linearity), and “high level” constraints, which, even having a qualitative
nature, can be defined and assessed through one or more geometric properties (e.g., the example
of straight beard in sub-section 2.2.3). We refer to low level constraints as geometric, and to
high level constraints as semantic constraints, because the set of specific geometric constraints
corresponding to an high-level constraint will be transparent to the user, who will instead express
the semantic constraint through its intuitive meaning.

Constraints can apply either to a single annotation or to multiple annotations. A single annotation
can be constrained with respect to its position, shape and attributes (e.g., orientation, scaling,
length), while a set of annotations can be constrained according to their mutual arrangement,
relations or proportions (e.g., three points must stay aligned, or one line should be twice longer
than another). Constraints are, again, set by the user, who can express them through an ad-hoc
constraint window in the system Graphical User Interface (GUI) (see Appendix A).

Practically speaking, constraints (both low and high level) are implemented as sets of one or

78

more constraints defined on the geometry. In this thesis, we employed and extended the ShapeOp
library [DDB+15], which provides an optimisation engine to meet geometric constraints defined
over point clouds.

4.2.1 The ShapeOp library for geometric constraints

The ShapeOp library (based on the ShapeUp approach [BDS+12]), is an open source, header
only library for both static and dynamic geometry processing, using a unified framework for
optimisation under constraints.

In ShapeOp, a constraint is defined on a set of points and concerns a collection of admissible
positions or configurations for them. The library tries to obtain the best possible configuration
for the set of constrained points by relying on an iterative two-steps minimisation approach.

Let C = {C1, ..., Cm}, be the set of defined constraints and o = |C|. Then, for each iteration,
the two steps are:

1. Local solve or projection: the current configuration of points x is projected on the closest
position that satisfies each constraint singularly, obtaining a set of projected configurations:

Pi(x) = min
y∈Ci

‖y− x‖22 (4.5)

2. Global solve: a new configuration of points x′ is obtained by minimising the distances
from the projected configuration collection Pi(x). So this step solves:

minφ(x) = min
o∑
i=1

(wi · ‖x′ − Pi(x)‖22) (4.6)

where φ is called the proximity function and wi is a weight used for controlling the importance
of constraint Ci.

A simplified example of such a process is reported in Figure 4.5

The optimisation solver provided in the ShapeOp library is enriched with a set of built-in con-
straints and external forces for architectural geometry and physics simulation, that can be used
without further implementation [BDS+12]. These include some constraints to require points
co-linearity, co-planarity, co-circularity and co-sphericity, some others to restrict the strain ap-
plicable to edges, triangles and tetrahedrons, some constraints for area and volume preservation,
Laplacian fairing and bending resistance. Further details on this constraints’ formalisation can
be found in [BDS+12]. Luckily, to extend the library with additional constraints it is sufficient
to provide the necessary projection operation for the new constraints.

79

Figure 4.5: A simple example of optimisation of geometry configuration under 3 different and
unrelated constraints C1, C2 and C3. Step I: x is projected on the respective set of admissible
positions obtaining the 3 black points; Step II: a new configuration is obtained by minimising the
distance from the projected points.

80

Therefore, we enrich the ShapeOp library with new constraints and combine several constraints
together in order to make it possible to express an high-level constraint intuitively, while imple-
menting it through proper low-level geometric constraints (see Chapter 5).

Indeed, a domain expert could ignore what a Laplacian operator provokes to the surface, while
this is a crucial ingredient to many deformations if the outcome surface is expected to look
smooth. In other words, we are going to define macro-operations, whose outcome can be in-
tuitively expressed, consisting of the application of a series of low level geometric constraints
on the initial object, that will remain hidden to the user. The semantic constraints will likely
let the user manipulate the shape without bothering of maintaining the essential features (either
functional or stylistic) proper of its category.

4.2.2 ShapeOp extension for cage-based deformation

As already mentioned in the previous subsection, ShapeOp is designed for working directly with
the position of points, which allow the approach to be general and usable both with point clouds,
triangle and tetrahedral meshes.

Our aim, however, is to allow interactive constrained deformation, which requires to use low-
resolution meshes or, rather, to speed-up the deformation using the techniques at the state-of-
the-art (namely skinning - see 4.1.3).

Indeed, using skinning it is possible to deform the target shape by modifying the chosen handles,
here cages, whose DoF are hugely fewer than those of the target shape. So, since ShapeOp uses
vertices to define constraints and their positions for computing the transformations required by
the constraints to be satisfied, we modified the library in order to make it work with the skinning
handles rather then with the shape vertices directly.

Let VM be the n× 3 matrix obtained stacking the position in space of all the vertices inM and
VC the m× 3 matrix obtained in the same way with the cage vertices.

As can be seen in [BDS+12], if we define Vi ⊆ VM the vector of ni vertices involved in the
shape constraint Ci, then the proximity function φ(x) can be re-formulated as

φ(VM) =
o∑
i=1

(wi · ‖Ni · Vi − Pi(Ni · Vi)‖22) (4.7)

where Ni is the centring matrix1 that is used to centre the vertices in Vi on their mean.

This formulation is possible because shape projections are invariant under translation. Equation

1The centring matrix is defined as Ni = Ini − 1
ni
·Oni , where Oni is the matrix of all ones of size ni × ni.

81

4.7 can then be re-formulated by rewriting φ(VM) as:

φ(VM) = ‖Q · VM − p‖22 (4.8)

where the matrix Q combines all weighted mean-centred constraint vertices, and p integrates all
projections. The alternating optimisation scheme for each iteration then becomes:

1. For fixed VM, compute the projection vector p.

2. For fixed p, solve the normal equations QT ·Q · VM = QT · p for updating VM.

Since Q only depends on the shape constraints, the matrix QT · Q can be pre-factorised using
sparse Cholesky factorisation2, which hugely reduces computation time.

Now, substituting VM = B · VC , where B is the matrix of employed GBC, in equation 4.4, we
obtain:

QT ·Q · B · VC = QT · p
BT ·QT ·Q · B · VC = BT ·QT · p (4.9)

Thus, solving for the position of the cage vertices in space, we obtain the configuration of the
mesh vertices that better fits all the constraints. Notice that, again, Q and B do not depend on the
unknowns, so the matrix BT ·QT ·Q ·B can be pre-factorised using sparse Cholesky factorisation
as well.

Beside the computation efficiency, another noticeable characteristic of this approach is that it
follows the philosophy of skinning, i.e., it moves the biggest part of the computation time in pre-
processing for allowing interactive speed during deformation. A comparison of the computation
time required by ShapeOp and our extension can be viewed in Table 4.1.

These advantages of course are not for free: first of all, the quality of results really depends on the
characteristics of the employed GBC. This can be seen in Figure 4.6(d), where the optimisation
made on the cage tries to make the red part planar but the ears and the tail tip are affected
as well. This happens because of the employed GBC (MVC), which have a global behaviour.
Furthermore, since the DoF are way less than those of the model mesh, it may happen that there
is no possible configuration satisfying a constraint: again, in Figure 4.6(d) the red part is not
totally planar, even if the “Plane” constraint is the only one imposed on the shape. Of course,
this problem is even more severe when there are several constraints, possibly in contrast. Thus,
the choice of the resolution and topology of the cage is extremely important and should be a
trade-off between the computational complexity and the goodness of the deformation.

2The Cholesky factorisation of a symmetric and positive-definite matrix A is a decomposition into A = L · LT ,
where L is a lower triangular matrix with real and positive diagonal entries, which is used for solving efficiently
numerical problems. A symmetric matrix A is positive definite if, for any vector x, the product xT ·A · x is positive.

82

Table 4.1: The timings required for the solution (with maximum number of iterations allowed
set to 50) of the optimisation problem described in Figure 4.6 on a computer with 16GB DDR4
RAM and Intel® Core™ i7-7700HQ CPU. The same problem has been solved on meshes at higher
and higher resolution, namely at 20, 50, 70, 100, 150, 200, 280 and 500 thousands of vertices
resolutions. Values are expressed in seconds.

20K 50K 70K 100K 150K 200K 280K 500K
ShapeOp 0.228 2.064 2.866 6.735 15.543 28.601 45.566 147.518
Cage extension 0.133 0.393 0.49 0.819 1.18 1.622 1.95 5.019

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

vertices number (thousands)

co
m

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

ShapeOp
Cage extension

83

(a) (b) (c) (d)

Figure 4.6: Extension of ShapeOp for working with cages. Here a constraint imposing that all
the vertices have to stay on the same plane (called “plane” constraint in the library) has been
applied to the red part: (a) rest shape, (b) resulting shape after 2 iterations of the optimisation
made directly on the model mesh, (c) rest shape with corresponding cage, (d) resulting shape
after 2 iterations of the optimisation made on the cage.

Finally, ShapeOp works with points for allowing an application to almost every kind of shape
representations and this is one of its major pros but it introduces difficulties to work with every
possible generalisation of BC, for example GC works by taking into account triangles during the
deformation, so that working with vertices only does not work correctly.

4.2.3 Low-level and high-level constraints

As already stated in the previous subsections, ShapeOp is a library meant for geometry process-
ing. Here however, we are trying to enforce geometric approaches with the semantics given by
the formalisation of some domain expert’s knowledge. Thus, we introduced a bridge between
geometry and semantics.

As introduced in Chapter 2, such a bridge is given by 3D part-based annotations, that define parts
of the template shape and their attributes, and by the relationships among them. The idea is to
let the domain expert define constraints over attributes and relationships, including “low level”
constraints, that are directly related to geometric measurements and quantitative properties of
the surface (e.g., area measure, relation of co-linearity), and “high level” constraints, which,
even having a qualitative nature, can be defined and assessed through one or more geometric
properties.

Our approach, then, is to allow the domain expert to specify what a certain relationship means in
terms of geometric entities in a transparent way: she/he will not need to have a deep geometry

84

knowledge. For example, the user can require that the selected part “keeps its original shape”,
and the system will call for the “Similarity” constraint in ShapeOp. Thus, we will provide a
vocabulary of high-level constraints, representing intuitive concepts, already implemented as
sets of low-level constraints.

Note that, since the manipulation of a shape here builds an optimisation problem, we can exploit
the constraint-specific “error” (i.e., the residual of the corresponding cost function) as an index
of constraint satisfaction extent. Such information can then be reported to the user, who could
accept or discard the produced deformation, or we could exploit it to build a shape classification
tool (see Sections 5.3 and 6.1). This, of course, requires a careful definition of how to extract the
error measure so that it could be comparable with that of the other constraints. In the developed
framework, we compute some statistics (namely average, median, min and max values) for the
normalised errors (i.e., since the residual is given by the sum of residuals over a set of vertices,
we divide the result by the number of vertices) that refer to low-level constraints regarding an
high-level one and report them as well as the associated weight, so that the user can take an
informed decision.

Of course, the meaningful high-level constraints are really context dependent and it would be
unfeasible to define all the possible constraints. In this thesis, we present just some examples
of constraints that are defined and implemented, extending ShapeOp, to test the potential of this
approach in specific application domains: product design (see Section 5.2) and archaeological
reconstruction (see Section 5.3). These regard the position of related annotation, the co-axiality
of annotated parts and the proportions among numerical attributes of annotations; they are de-
scribed, along with examples and results, in Chapter 5.

Anyhow, the vocabulary of constraints can be continuously enriched to provide new deformation
constraints, to meet further application requirements.

4.3 Discussion

In this Chapter, we presented the foundations for the design of the semantics-aware deformation.
Firstly, we briefly reviewed the state of the art for surface deformation techniques, with particular
focus on skinning. Then, we selected cage-based deformation as the best fitting technique for
our requirements and gave means for imposing constraints on the cage-based deformation. We
follow an optimisation approach and extend the ShapeOp library in order to work with cages.

We discussed the pros and cons of the approach, i.e., cages allow to reduce the computation time
required by ShapeOp (which is a variational technique) but reduce at the same time the control on
the reachable deformations, at the extent that some constraints may never be fully satisfied. We
only implemented a simple cage generation tool within our system so far: as a future research,
we think the semantics encoded in the template could drive the generation of an “optimal” cage,

85

where the number and position of cage vertices are determined by the annotation arrangement
and characteristics. We believe that developing such a tool will heavily improve the achievable
results, as thoroughly discussed in Section 6.1.

The definition of three high-level constraints and constrained deformation results for specific
applications will be detailed in Section 5.2 and 5.3.

86

Chapter 5

Results and applications

Summary In this Chapter, we describe the results of semantics-aware deformation in two application
scenarios, namely product design and cultural heritage. We have described in the previous Chapter the
foundations of the optimisation system to compute constrained deformations, and we pointed out that
more “semantic” constraints are needed to support the user with intuitive modelling tools. In particular,
we tackle those semantic constraints that can be expressed as a combination of geometric ones. Semantic
constraints maintain high level features of the object and have meaning in a specific context, therefore,
they need to be designed with a specific application in mind.
To validate our system, we identified two application contexts where it is possible to interpret semantic
constraints in terms of a proper combination of geometric ones. We defined and implemented a “same
level” and a “structural continuity” constraint, aiming at maintaining a certain kind of alignment among
annotations in the scenario of product customisation. Since collaborative design of products in virtual
reality is gaining popularity, we investigated the feasibility of interactive cage-based deformation of anno-
tated models . We present preliminary results obtained by exploiting semantics to support user interaction
and facilitate selection of handles in VR.
In the context of cultural heritage, we focused on the intriguing problem of archaeological reconstruction
from a few fragments. When just a few remains are found, a complete re-assembly is out of reach, but the
expert is able to match in his/her mind the typical form of an object of the same type, provenance and style
with the characteristics of the fragment, and make hypotheses about the original shape. As seen in Section
1.1, proportions have a crucial role in determining a style. In this context, we defined a “proportions”
constraint, relating numerical attributes of annotations, which, applied to the template, can deform an
ideal shape to “complete” a fragment maintaining coherent features and providing an hypothesis of virtual
reconstruction.

In the following, we present the results of the semantics-aware modelling system in some con-
crete application scenarios. These applications are grouped with respect to the reference domain
sector, namely product design (Section 5.2) and archaeological reconstruction (Section 5.3). We
will begin with a brief description of the main functionalities of the implemented system and its

87

operational workflow. A more complete description of the GUI in given in Appendix A.

5.1 Operational workflow of the system

The current version of the software, available on GitHub [Sca20], provides all the features pre-
sented so far in the previous Chapters. An overview of the operational workflow and the main
functionalities is depicted in Figure 5.1. After launch, the system starts in the initial state, where
no entity is loaded in the application environment yet.

After loading a (geometric) template, the user can annotate it. We provide both a manual anno-
tation functionality and an annotation load function. We support manual annotation providing
a set of selection tools (lasso selection of closed surface patches, selection of points or trian-
gles behind a user-drawn rectangle - either applied to visible points/triangles only or to all the
points/triangles behind the rectangle - and selection of edges connecting user-picked points) and
tagging, with a textual label and a colour. An annotated shape can be saved in an output file
(the annotation file format that we designed is described in Appendix B) and loaded in future
sessions.

Furthermore, annotations can be enriched by attributes. Quantitative attributes can be computed
automatically by shape analysis tools as described in Chapter 3. We implemented three mea-
suring tools, namely the ruler, the tape and the bounding measure. The ruler and tape provide
Euclidean and approximate geodesic distance between successively picked points, whereas the
bounding measure provides the distance between two clipping planes. Additionally, slicing along
a direction and slice analysis functions (see Section 3.2) are available as well as slice clustering
methods and OBB extraction. Semantics can be enriched in every state of the system.

Then, the cage can also be loaded in the system or generated by a provided simplification and
offsetting function. We recall that the characteristics of the cage impact the quality of the re-
sulting deformation and the time performance. Therefore, the user may want to select a proper
cage resolution and is also allowed to edit cage vertices manually (e.g., to avoid self-intersections
or to follow the template shape more closely). In the future, we plan to investigate a new cage
generation optimised with respect to the annotations of the underlying mesh.

Once the cage is established, the barycentric coordinates that represent the connection between
the cage and the template must be computed. The system implements the automatic genera-
tion of the Green Coordinates and the Mean Value coordinates (see Section 4.1). Barycentric
coordinates can be saved and loaded in future sessions.

Cage and barycentric coordinates allow at this stage to perform unconstrained cage-based defor-
mation. This can be done by selecting the cage vertices (or control points) to be manipulated
and then translating them and/or rotating them around their barycenter. Combinations of these
manipulations allow to define any kind of cage configuration. The deformation is propagated

88

Figure 5.1: Overview of the system functionalities depicted as states, linked by arrows represent-
ing operations. Notice that the “Semantic enrichment” arrow groups the manual annotation, the
loading of pre-defined annotations and the extraction of new knowledge through shape analysis
techniques.

accordingly at a fixed frame-rate.

In order to achieve semantics-aware deformation, the user has now to define semantic constraints
on annotation attributes and relations. The implemented semantic constraints can be set through
the GUI: the user selects the annotations involved and the constraint to be applied with cor-
responding parameters, including an “importance” factor (weight), to set a priority in case of
multiple conflicting constraints. This factor is used as weight into the ShapeOp minimisation for
the corresponding geometric constraints and, as already anticipated in Section 4.2.3, can be used,
together with the residual of the cost function of the corresponding constraints, as an indicator
for accepting or rejecting a certain deformation.

We now go in the details of the developed semantic constraints in the two application contexts of
Product design and Archaeological reconstruction. A more in depth description of the GUI can
be found in Appendix A.

5.2 Product Design scenario

A natural application context for the proposed framework is the product design or CAD: in this
specific application, expert users may want to reuse previously designed shapes as a starting
base, which will be subject to manipulations under specific constraints until they are satisfied.
Similarly, an end user, who is possibly not very skilled in 3D modelling, can use our framework
to customise an item and have it fabbed.

In this section, we discuss the results in the context of constrained deformation of products under
semantic constraints. We provide two high level, intuitive constraints that a non expert user
can apply without bothering of the low level geometric constraints involved. In particular, we
implemented a “same level” constraint applied to a series of stylistic features, and a “structural
continuity” constraint, acting on structural relations among object components.

89

Figure 5.2: An all-around view of the “flowered teapot” model. Colours correspond to anno-
tations (only region annotations: “body”, “base”, “spout”, “handle”, “knob”, five “flower”,
plus the whole object annotated as “flowered teapot”).

5.2.1 Same “level” constraint

While working with shapes containing repetitive features (also called patterns) it is likely that the
user wants to change the overall shape without however changing the spatial displacement of the
features, i.e., the spatial relationship between the features should not change. As an example, we
refer to the teapot in Figure 5.2 and to a precise transformation applied to it, i.e., the stretch of
the shape upwards. Here, it is likely that the user wants all the flowers to keep at the same height
and, moreover, not to change their original shape. The result of this transformation without
constraints is depicted in Figure 5.3a

To provide this kind of high-level constraint to the user, we have followed the concepts introduced
in Section 4.2, first of all by selecting some geometric constraints already available in ShapeOp
ad useful to the current purpose (details about the available ShapeOp constraints can be found
in [BDS+12]) and then applying them to specific sets of mesh vertices, which may or may not
coincide with the geometric selection of an annotation, as follows:

1. “Rigid” constraint, applied to the vertices of each “flower” annotation separately. The
required behaviour is to keep the original spacial displacement (or relationship) of the sets
of vertices, thus keeping the original shape of the flowers;

2. “Plane” constraint, applied to the set of “reference vertices” of the flowers. The idea is that
for each flower, a reference vertex represents the position of the annotation in space1. So,
the requirement is for these reference vertices to stay on the same plane;

3. “Laplacian Displacement” constraint: uses the neighbouring vertices (1-neighbourhood)
in order to maintain the constrained vertices position with respect to them2; we applied the
constraint to all the vertices of the mesh. So, we want the original shape of the teapot to

1There can be several definitions for the reference vertex depending on the nature of the feature, i.e., if it is
symmetric or not, if it has an almost planar geometry or rather “enclose” a volume. Here, given the almost planar
and symmetric geometry of the flowers, the reference vertex is taken by fitting a plane on each flower, projecting its
associated vertices on the plane and taking the one nearest to the barycenter of the flower.

2The 1-neighbourhood of one vertex v is the set of vertices directly connected to v by an edge of the mesh.

90

(a) (b)

Figure 5.3: (a) the uncostrained stretch upwards of the teapot, the result after the addition of the
constraints.

be kept as much as possible without constraining the relative positions of all the vertices
of the teapot.

Notice that, as is, the “Plane” constraint implemented into ShapeOp projects these vertices on a
fitted plane and not to a user defined one. Since here we are interested in a specific plane, i.e.,
the one with normal pointing upwards and with lower distance from the reference vertices, we
have extended the vocabulary of constraints defining a new one, that we called “Orientation”
constraint3. The idea is to generalise the “Plane” constraint so that the constrained vertices
will stay on a plane whose direction (here called n is user-defined. In our case, we require the
reference points to stay on a plane with normal pointing in the positive z direction (of course this
may not be the case, see Figure 5.4d). The projection is defined by:

1. Centre the input points on their average position;

2. Compute the projected position of the input points vi on the defined plane as vi−n · (n ·vi)

Notice that the combination of constraints number 1, 2 and 4 (i.e., “Rigid”, “Orientation”) is
supposed to keep the reference vertices on the plane with normal pointing upwards, so that they
will stay at the same height, while the shape of the flowers is being preserved, thus answering

3The same one suggested int the documentation of the ShapeOp library as a possible extension

91

to the requirements of the user. Constraint number 3 is used just to reduce the distortions due to
the deformation. The result of the same stretch as before with these constraints can be seen in
Figure 5.3b, for a template mesh with ~60K vertices, without cage extension and with maximum
number of iterations of the solver allowed set to 3 (it was necessary to obtain almost interactive
speed).

As can been easily seen, some distortions have come up around the flowers. This is due to the
fact that the “Laplacian Displacement” constraint is in contrast with the other constraints, so
that reducing the distortion would require an higher weight for the “Laplacian Displacement”
and would reduce the precision of the keeping of the original shape of the flowers and/or of the
positioning on a plane of the reference vertices. Different experiments can be done for the fine
tuning of these parameters but, anyhow, the result would be a trade-off between these issues,
because the constrained deformation is posed as an optimisation problem (see Figure 5.4).

5.2.2 Structural “continuity” constraint

The general idea behind this constraint is that, sometimes, it is useful to require some “continu-
ity” in terms of direction of parts.

With reference to the chair in Figure 5.5, if we suppose that the user wants to change the shape of
the “arm” (green part) so that it is longer, we may think that such a modification would happen
without changing the fact that the base of its “support” (violet part) has the same direction of the
“leg” (orange part). This can be seen both as a structural and a style constraint.

To produce this deformation requires two steps:

1. Stretch of the “arm” (Figure 5.7a);

2. Rotation of the “support” so that the attachment to the arm falls in the same position.

Notice that, in the unconstrained version of the deformation (with result shown in Figure 5.7b)
this deformation gives pretty bad results that have to be fixed with several steps of post-processing.

This kind of high-level constraint is implemented as a combination of two geometric constraints:

1. “Co-axiality” constraint: is a new constraint that we implemented to require that the axes
of two parts coincide. This is applied to the base of the “support” of the “arm”.

2. “Laplacian” constraint: is a constraint already available in the ShapeOp library which fol-
lows more or less the same concept of the “Laplacian Displacement” constraint (see Same
“level”), but requiring that the configuration of vertices reduce to 0 the local curvature.
This is applied to the neighbourhood of all the vertices of the “arm” to enforce the smooth-
ness of the result.

92

(a) (b) (c)

(d)

Figure 5.4: (a) Result with no “Laplacian Displacement” constraint; (b) result with “Laplacian
Displacement” constraint with weight lower than the “Same level” one (2 vs. 4), (c) result with
higher weight for the “Laplacian Displacement” (10 vs. 4), (d) result with normal of the “Plane”
constraint not pointing upwards.

93

Figure 5.5: An all-around view of the “baroque chair” model.

We imagine that, for stylistic or artistic reasons, the domain expert would not want to constrain
the “support” to be wholly co-axial to the leg, but just its “base” or “attachment” (this is not a
specified part of the shape, it has not been annotated). Thus, one of the goals of this constraint
is to firstly understand what segment of the “support” needs to be constrained: intuitively, the
subset that is co-axial to the leg when the expert has set the constraint is the part to be constrained.

So, we extract the skeleton of the part to be constrained and the corresponding axis4 of the ref-
erence part (see Figure 5.6). Then, we move along the poly-line that represents the skeleton,
starting from the node corresponding to the boundary of the part to be constrained which is clos-
est in terms of adjacency relationships (see subsection 2.3 and blue connections in the graph of
Figure 5.6), to the reference part. We iteratively move to the following skeleton node consid-
ering the angle between the current skeleton segment and the axis of the reference part, until it
is bigger than a defined threshold (we used 10°) or until no more segments are available. Fi-
nally, we use the first boundary and the one associated to the last used node for performing a
region growing (as in 2.4.1) on the surface to obtain the corresponding subset of the part which
must be constrained. The seed triangle used here is the triangle on the left of the first edge of
the first boundary (since it is a boundary of a region annotation - see subsection 2.2.2 and 2.4.1
- its boundaries are ordered so that the interior of the annotation always lies to the left of the
boundary).

The “Co-axiality” projection is then obtained as follows:

1. Centre the input points on their average position;

2. Extract the axis a1 of the part to be constrained (namely, the “support”, from now on called

4The axis can be defined in several ways. Here, we used Plumber [MPS+04] to extract the skeleton of the part
and then fitted a line to the nodes composing it.

94

Figure 5.6: In the first row, the involved points and the corresponding skeleton can be seen
(rotated by 90°). The constrained part is highlighted in red. In the second row, the structure
of the “baroque chair” model and some coloured strips representing the edges intersecting a
construction sphere used by the skeleton extraction algorithm (see [MPS+04]).

95

(a) (b) (c)

Figure 5.7: Result of the application of the “structural continuity” constraint: (a) result after
elongation of the arm, (b) result after the rotation of the support without constraint, (c) result
after the rotation with the support constrained to be in “structural continuity” with respect to
the leg.

s) and the axis a2 of the reference one (namely, the corresponding “leg”). Compute the
angle α between them;

3. Define the matrix R for rotating a1 around the rotation axis given by a1 × a2 of an amount
defined by α, so that the direction of a1 is the same of a2;

4. Define the translation vector t for moving a1 so that it coincides with a2 as the projection
vector of the average position of s onto a2;

5. Rotate the points of s using R and move them using t.

The result of the same rotation as before with “Co-axiality” and “Laplacian” constraints (with
equal weight) can be seen in Figure 5.7c, for a template mesh with ~90K vertices, without cage
extension and with only 2 iterations of the solver allowed (it was necessary to achieve almost
interactive speed).

5.2.3 Deformation in a VR environment

During the last decade, the interest in the development of immersive VR and Augmented Reality
(AR) systems for manipulating and modelling 3D environments through gestures has increased
[CGM19, MCG+19, LHT+19]. This is also due to the technological improvement of low-cost

96

AR/VR technologies and gesture tracking acquisition devices, which allowed to reduce the sense
of sickness and the cost reduction. Recently, most of the Head-Mounted Display (HMD) pro-
ducers have begun to offer 3D modelling applications. The advent of more affordable systems
and less intrusive devices opens the possibility for companies to include end-users in product
evaluation and customisation.

Moreover, typical users of VR environments can be not experts in 3D modelling, so it is important
to allow such modifications with easy to use and easy to learn commands.

Typical capabilities of commercial applications, such as Sculpturing [scu], Oculus Medium
[ocu], MakeVR Pro [mak17], MindeskVR [min15] and Gravity Sketch [gra], are shape sculpt-
ing by push and pull operations through controllers together with the combination of free-hand
sketching for shape generation.

Various works address the manipulation, e.g. rotation, translation and limited modification in
size of 3D objects (e.g., compression and squeeze) in AR and VR using different devices: among
them, [JC18] provides manipulation in AR environments using the Microsoft Hololens;[LBGM19]
exploits HTC Vive HMD,Leap Motion Controller (LMC) and voice commands to browse, in-
spect and deform the results of a 3D CAD assembly search engine. LMC is also used for mod-
elling and shaping pottery objects [VR15] and for mid-air free hand sketching [CKS16]. [CS17]
proposed the use of bi-manual interaction, with one hand controlling 3D position and rotation,
while the other performing grasping and releasing actions. More devoted to the engineering con-
text, Cohen et al. [CRV20] used LMC to capture pinch and pull actions for flexible manipulations
on Control Point (CP)s coordinates of NURBS surfaces.

These systems are only focusing on the resulting shape, without any consideration on its as-
sociated semantics. However, being able to operate on selected semantically meaningful ar-
eas while simply using our hand movements makes the interaction more natural and pleasant
[OFBW07, FW13, VR15, LGJ+17].

The semantic organisation of the virtual scene is well recognised as a mean to better support
behaviour specification of VR elements in response to user actions [CTB+12, CMSF11]. [FW13]
described a semantic model usable for modelling purposes, highlighting its advantages for shape
modification and the potential of its integration in game engines.

Here, we summarise the results of an initial feasibility study [SZG+20] aiming at integrating
3D modelling capabilities in a VR environment, based on voice and gesture commands, with
focus on showing the potential of coupling cage-based deformation with multi-modal interac-
tion. In the following, we present the deployment of the basic functionalities of the deformation
system in a VR environment, tackling the issues of intuitive interactions to perform cage-based
(unconstrained) deformations on annotated shapes.

97

Application setting

We have already mentioned that cage-based deformation techniques are already quite common
on desktop applications (e.g., [CCLS18]) for the deformation of shapes, thanks to their flexibility,
ease of implementation and speed. However, VR environments introduce a number of additional
difficulties that require careful evaluation and treatment.

Here, objects are embedded in a 3D space that replicates the physical world, increasing the sense
of realism; but how can we exploit the 3D setting to effectively communicate the information
associated with the annotated geometry to the user? How can she/he act on the 3D elements
through a natural and intuitive behaviour? These questions call for an efficient mechanism and
a natural interface to: i) select the CPs related to the area to be deformed; ii) specify the desired
deformation on the selected CPs; iii) apply the required deformation in real time. Furthermore,
we want to exploit the semantics associated to the object.

Figure 5.8: System overview. From the left, the input data, the modules involved in the system
and the resulting VR environment.

We deploy the graphical engine Unity 3D to visualise a virtual scene accessible by the user
through an HTC Vive HMD. The interaction in the 3D space is ensured by the LMC, which is
able to track fingers’ joint positions and detect simple gestures.

Figure 5.8 shows the organisation of the VR system. A 3D object and its cage are given as input,
along with the list of annotations associated to the model (e.g., defined by a domain expert in the
system described in Appendix A) and the GBC values. The two 3D meshes (object and cage),
the annotations and the GBC are processed in the data manager module, also responsible for
managing cage and model modifications resulting from the user interactions. The visualisation
manager module is responsible for rendering the scene, updating it during the user interaction,
and communicating information, e.g., by adding extra virtual elements or exploiting colour vari-
ation of scene elements. Finally, the interaction manager module processes and interprets the
data derived by the LMC and the HMD recognising different interaction techniques.

98

Data manager module The data manager module loads the input data in the system and
performs the geometric analysis and processing operations required by the deformation, as ex-
pressed by the user either through gestures or voice and interpreted by the interaction manager.

With reference to Chapter 2, we assume the model has been previously annotated and comes
ready for the manipulation; therefore, the data manager loads the following files: i) the model
M, a 3D shape represented as a watertight triangle mesh; ii) the cage C, another triangle mesh,
coarser than the model itself and enclosing it; iii) annotations, a structured file specifying ge-
ometry, tag, colour and other useful data to manage the regions of interest; iv) the GBC, a list
of pre-computed values depending on the vertices ofM and C that specify the influence of the
different cage vertices on each of the object’s vertices.

With reference to 4.1.3, vertices M and and of the cage C are stored in matrices VM and VC ,
where each row corresponds to the 3D coordinates of a vertex. VM has size n × 3 and VC has
size m× 3, where n and m are the number of vertices inM and C respectively.

Then, a list of CPs
{
CPi

}m
i=1

is generated to allow the user selection, where theCPi is associated
with the position of the i-th vertex of C (i.e. the i-th row in VC).

Finally, the matrix B (of size n×m) in equation 4.3 is built from the GBC file, and annotations
are arranged in a tree structure accommodating the hierarchy information among the different
RoIs (see Section 2.3).

Automatic identification of CPs related to an annotation As introduced in Chapter 2 and
4, let A be an annotation with associated triangles TA and vertices VA and let the matrices VM
and VC , whose rows correspond to the 3D coordinates of the vertices in the meshesM and C,
respectively, be related by Equation 4.4. From this relation, it follows that a certain cage vertex
cj impacts each of the model vertices at a certain extent, defined by the values specified in the
corresponding column (the j − th) of B. Analogously, a mesh vertex vi is influenced by each
cage vertex at an extent defined by the elements in the i − th row of B. However, some cage
vertices will have a much higher influence than others on vi. Thus, given a region of interest
on the mesh, we will select the relevant CPs as the cage vertices whose influence on the region
vertices is greater than a certain threshold τ . So, given a vertex vi ∈ VA associated with A, we
are interested in finding all the vertices cj ∈ VC whose influence values bij are greater than τ .

Applying this procedure for all the vertices in VA, we select a set of cage vertices that can be
used to manipulate the area corresponding to S, up to a certain precision that depends on the
number of cage vertices around the interested area, their distance from the area, the presence
of other annotations close to A and the locality of the GBC that have been used. Indeed, we
remember that MVC [FKR05, JSW05] have a global behaviour, meaning that every cage vertex
always influences the shape almost in its entirety, while for example LBC [ZDL+14] provide a
high localisation of the influences.

99

Notice that, while in this work a single threshold τ has been applied to determinate the CPs
associated with the different RoIs, different thresholds may be identified for obtaining better
fittings on the single RoI and for different models or cages.

In particular, some considerations may be done regarding the values associated to the involved
entities: for instance, we can search for the maximum value bij ∈ B for each model vertex vi
and then take the minimum of these values as τ , and so τ = min bj , where bj = max bij . In
this way, we could be sure that each model vertex can be manipulated at least through one cage
vertex, while at the same time we are enforcing the reduction to the minimum possible number
of cage vertices associated to each model vertex.

Conversely, we can search for the maximum value bij ∈ B for each cage vertex cj and then take
the minimum of these values as τ , and so τ = min bi, where bi = max bij . In this way, we
would obtain a threshold allowing to each cage vertex to control at least one model vertex, while
at the same time reducing as much as possible the number of model vertices controlled by each
cage vertex.

Finally, another possibility is to design a different threshold for each model (or cage) vertex. An
in dept analysis of the goodness all these possible definitions for the threshold is left for future
works.

To allow more localised deformations possibly independent from the imported annotations, the
user can select CPs manually, or the achieved automatic selection can be edited by adding/removing
single CPs from the set of suggested ones (see interaction manager). Note that this validation
process does not affect the result of the previous step permanently: changing the CPs involved
with a certain RoI requires the editing of the threshold value.

Update of the model Once the CPs have been selected, and the deformation parameters are
interpreted from the user actions by the interaction manager, the actual deformation occurs: this
computation is performed by the data manager.

Firstly, the selected CPs are transformed (applying the same transformation to the associated
cage vertices); secondly, the deformation is propagated to mesh vertices as explained in 4.1.3.

Cage-based deformation techniques give the user total freedom, so that he can move one or more
CPs in the space regardless of their mutual arrangement. Of course, extreme displacements of
CP can give bad results, e.g., due to the nature of Linear Blend Skinning techniques, of which
cage-based techniques are a subset (details are given in [KCvO07] and [JDKL14]).

In this application, three main transformations are allowed:

• Translation. The CPs are moved in the space in the same direction.

• Rotation. The CPs are rotated with respect to an arbitrary axis a of an angle θ. Given the

100

two axes as and ae, returned by the interaction manager module and representing the start
and end configuration, the rotation axis a is defined as the line passing through the centroid
(Rc) of the selected CPs and with direction Rd equal to the cross product between as and
ae, while the rotation angle θ is defined as the variation between the starting and ending
axes as and ae. Notice that, if Rc does not correspond to the origin of the world reference
frame, a combination of translation and rotation is required.

• Scaling. Differently from the previous transformations, the proposed scaling operation
acts on the entire 3D model changing the positions of all the CPs, so that the CPs are
moved toward or away from the scaling centre (i.e. the centroid of the 3D model) resulting
in a uniform scaling.

Visualisation manager module This module receives input from the data manager and the
interaction manager to visualise the “semantised” object, the virtual hands used to interact in the
virtual environment and the effect of the user’s actions on the 3D model.

Once the data manager has processed the input data, the model meshM is (always) visualised
in the scene in a shaded mode, while the cage model mesh C is rendered in wire-frame mode
by default to avoid hiding the model M. At the cage vertices positions, independent sphere
elements are introduced to highlight the CPs. The user can hide completely the cage and the CPs
(with voice commands “Hide cage” and “Hide CPs”) to visualise only the 3D model with no
obstruction of additional elements.

Annotations are highlighted in the virtual scene by assigning a specific colour each, as expressed
by the data manager module. The latter is also responsible for identifying the CPs associated with
each annotation when required; the visualisation manager receives this information and colours
the CPs accordingly. If a CP influences multiple annotated parts, the visualisation manager
assigns it the average of the different colours involved. Figure 5.9a shows an example of this
effect.

The visualisation manager presents also the data derived from the interaction manager module.
First, it visualises the result of the hand tracking. Among the different avatar types of hands
included in the Leap Motion asset, here the capsule hand type is adopted for allowing to visualise
flexible fingers improving the sense of reality in the virtual scene.

In addition, this module provides an echo to the user for the selection operations detected by the
interaction manager module, i.e., when the user looks at a target it is highlighted. It is possible
to select a single CP or a a set of CPs associated with an annotation; in the latter case, all the
associated CPs are highlighted. Depending on the viewpoint and on the shape complexity, some
CPs related to a semantic part may be hidden behind the model itself; in this case, a yellow
marker appears in correspondence of the covered CPs. An example of this behaviour is depicted
in Figure 5.9b, where the user gazes at the palm.

101

Finally, to reduce the amount of information visualised simultaneously, this module allows the
selective rendering of annotations according to their hierarchy level.

(a) CPs associated to
multiple segments

(b) Selected CPs not visible
from the user point of view directly

Figure 5.9: Example of data represented by the visualisation manager

Interaction manager module To apply the deformation, we define a set of commands using
hand gestures and voice keywords considering that standard users are not expert designers of 3D
shapes. Thus, we aim at defining interactions that are easy to learn and easy to use.

Generally, to support these requirements, we define commands simple to be remembered and
not similar among them to avoid getting mixed up. In addition, the user can apply mathematical
transformations (translation, rotation and scaling) without the necessity of specifying axis, angles
or others specialist concepts.

In accordance with these considerations, we designed different interaction techniquesthat we
describe in the following. Note that the interaction manager analyses the user commands and
communicates the parameters required for the deformations to the data manager module at every
frame. The deformation is also computed and applied to the model every frame and rendered
simultaneously with the interaction.

Selection With the aim of providing easy to use interactions, we avoid a selection by using
virtual hands, because it requires an high precision level in picking exactly the desired target,
especially when target objects are small or surrounded by others possible targets.

For this reasons, we propose the use of a selection gaze, where the selection operation is per-
formed in two steps. First, the user acquires the desired target by looking at the different se-

102

(a) Hand-swipe (b) Finger-drag (c) Handling rotation (d) Magnify

Figure 5.10: Interaction gestures

lectable elements in the scene; then, she/he confirms the choice by using the voice command
“select”. The user can select one CP at a time, or select at once the set of CPs associated with an
annotated part or with the whole object.

Once a target has been acquired, it is highlighted to indicate the selectable element. Finally, once
the target has been confirmed, the colour of the CPs changes from the original colour (obtained
as specified in Visualisation manager) to red.

The same procedure is applied to deselect objects. In this case, the interaction is identical, the
voice command to confirm the deselection is “discard” and the user’s visual echo differs by
changing colour from red to the original one. The user can edit the selection by combining
selection and discard commands on annotated parts or single CPs until satisfied.

As mentioned in Chapter 2, annotations are organised into several levels of detail based on the
containment relationship. To browse and change level of detail for the selection, we propose a
hand-swipe command (see Figure 5.10a) allowing the user to increase or decrease the level of
detail moving his/her open hand vertically. If the user aims at accessing the n-th level, then she/he
can use voice commands saying “level n” to visualise and have access to the level of information
she/he is interested in directly.

Translation Through the finger-drag gesture (see Figure 5.10b), the user can deform a 3D
shape by moving the selected CPs in the virtual space in any direction. This technique allows to
interact with single and multiple CPs. Selecting the unique segment belonging to the first level,
it is possible to move the entire 3D model.

Selected elements can be moved according to the tip of the index finger position, whose dis-
placement in the space defines the translation vector, yielding the technique simple and intuitive.
Indeed, it is sufficient for the user to point at elements she/he aims to relocate, extending the right
index while closing the others, and wait for the acoustic signal confirming the gesture detection.
Once the gesture is identified, the user can move the selected objects in the 3D virtual space with
a complete freedom of movement.

Once the user has reached the desired modification, she/he can stop the interaction changing the

103

hand posture, for instance opening the hand completely.

Rotation To perform 3D rotation, the user can select the whole model or its portions, by se-
lecting one or more CPs or an annotated RoI.

Once the selection is accomplished, the user engages the handling rotation technique by main-
taining both hands open, with palms facing each other, until an acoustic echo communicates the
success of the command recognition. Maintaining the engaging posture, the user moves his/her
hands defining the starting and the ending axes as and ae in the space characterised by the hands
posture (see Figure 5.10c). The as and ae axes are used to compute the rotation parameters. To
conclude the rotation, the user has to close his/her hands.

This technique is quite simple since the user does not need to combine several rotations to rotate
along with a generic axis (i.e., not aligned with the coordinate system); then, also users non-
expert in design can achieve the desired result. In addition, large rotations can be achieved by
repeating the gesture several times.

Scaling The scaling operation (see Figure 5.10d) increases and decreases the size of the model.
To activate it, the user has simply to place the hand in front of herself/himself; if the hand presents
all extended fingers then the model is enlarged, otherwise, if the hand is closed, the model size
is reduced. To stop the interaction, it is sufficient to remove the hand from the leap motion field
of view.

With this technique, the interaction is affected only by the hand posture (open/closed hand).On
one hand this ensures a quite simple interaction, since the user has to control only one action.
On the other hand, the user cannot scale the 3D model along with a preferred direction, i.e. the
scaling is uniform. In addition, it is not possible to apply the scaling operation to a portion of the
model yet. A more in-depth study is required for local scaling.

Results

The proposed system has been developed adopting Unity 2019.2.4f1 as graphical engine and
programmed in C# language. In this work, the threshold τ used to define the CPs associated with
a certain RoI has been defined a priori and the user has no possibility to modify the default value.

For the first results here proposed, we used a hand, teapot and lifebuoy models and cages having
10K and 70, 15K and 200 and 10K and 179 vertices respectively. The employed GBC are
the MVC, which have been chosen because of their fast implementation and the closed form
expression allowing better performances (parallel computation) in the computation phase.

The threshold τ has been empirically estimated and the results of this setting are depicted in

104

Figure 5.11 with different annotation levels of the hierarchy illustrated, where Figure 5.11a rep-
resents the root of the hierarchy with the whole object annotated as “hand”, Figure 5.11b repre-
sents the segmentation in different semantic (and functional) parts of the hand and Figure 5.11c
represents the last level, containing only the nails (here the black part means a not annotated
surface).

(a) Level 1 (b) Level 2 (c) Level 3

Figure 5.11: The different levels of the annotation hierarchy; CPs are coloured according to their
influence on annotations with threshold 0.4.

Finger-drag interaction can be applied even to single control points translating each in different
directions. On the one hand, specifying the final positions of single CPs can seem a tedious task;
on the other hand, this allows to localise more deformation effects and, in some cases, to achieve
more easily the desired deformation.

Some examples of deformation are presented in Figure 5.12. In the first row, the user asked for
the visualisation of a certain level (level 1 - Figure 5.12a) and then selected a segment by gazing
at it. This triggers the selection of the control points shown in Figure 5.12b (highlighted in red),
which can be used to perform first a rotation of the control points (Figure 5.12c) and then their
translation to reduce the distortion introduced on the middle finger shown in Figure 5.12c (result
- with some minor adjustments - shown in Figure 5.12d).

Finally, a video-clip with simple modifications of the teapot model can be seen at https:
//youtu.be/4Kzs64iaq-4.

105

https://youtu.be/4Kzs64iaq-4
https://youtu.be/4Kzs64iaq-4

(a) Initial stage of
the 3D model

(b) Index finger
selected

(c) Result of
simple rotation

(d) Result after
translation

(e) Initial stage of the
3D model

(f) “Head” moved upwards
and rotated

(g) “Beak” elongated
moving the tip

(h) Initial stage of the
3D model

(i) “Spout” translated
and rotated

(j) “Handle” elongated
moving only some vertices

Figure 5.12: Top row: deformation result using selection of the control points associated with
the “index” segment, rotation of the selected control points and translation of the selected con-
trol points, with some minor adjustments. Middle row: deformation result using selection of
the control points associated with the “head” segment, rotation and translation of the selected
control points, selection of some control points corresponding to the tip of the “beak” segment
and their translation. Bottom row: deformation result obtained by translating the control points
associated with the “spout” segment and rotating the control points associated to the “handle”
of the teapot.

106

5.3 Archaeological reconstruction scenario

As a second application context, we identified the support to archaeologists for hypothesis for-
mulation and virtual reconstruction from fragmented findings.

Indeed, archaeologists and curators often deal with fragmented artefacts, which are scattered
among hosting institutions. This depends on a common behaviour during past expeditions: every
participating institution used to take some findings with them, causing a separation of objects
coming from the same excavation site into museums scattered all over the world.

This separation makes a re-assembly of shards particularly difficult since probably not all the
pieces are available in the same place. Not to mention the fact that the archaeological findings
are often eroded, meaning that some material is missing from their border or surface, and large
parts of objects are however missing.

For these reasons, the reconstruction is not the solution of a “simple” 3D jigsaw puzzle. Not
only that: the relics are even very sensitive to any kind of stimulus, such as incorrect lightning,
humidity, etc., and so the experts must be extremely careful when handling them. Finally, the
reconstruction has to be done bottom-up due to the presence of gravity. However, if parts are
missing from the base of the relics, the experts have to reconstruct the object in large “patches”,
which will be joined later on.

For all these reasons, a good idea would be to create a sort of virtual workshop, in which ar-
chaeologists could try to reconstruct objects without having to handle them directly, but rather
acting on their virtual replica, which can be obtained through different techniques such as pho-
togrammetry or laser scanning. The GRAVITATE project [PWM+16] applied ICT to tackle
issues related to the support of archaeological research on fragmented collections, in particular
the re-assembly of distributed fragments. However, in the worst case, only a few, maybe only one
fragment is found for an object. Nonetheless, the expert is typically able to figure out in his/her
mind the overall aspect of the original piece, thanks to his/her a-priori knowledge of provenance
and style, which implies certain dimensions, measurements, part appearance and relationships.
In other words, thanks to the semantics that defines how an object in that class should look like.

In the following, we tackle the presented issues developing a new kind of constraint meant to
keep certain “proportions” between parts of an object.

5.3.1 Interactive virtual archaeological reconstruction

As already introduced, one of the most common issues when dealing with archaeological findings
is their susceptibility to external stimulus: in this subsection we want to propose a pipeline, using
the GUI presented in Appendix A, which allows the manipulation of fragments’ position and
orientation and their registration on a reference or support shape. The template of the complete

107

object, individuated by the archaeologist or the curator, will serve as the support shape, and will
be deformed to allow a virtual shape completion to give a visual hint of the original, whole object.

In this application, the fragment itself needs to be annotated with respect to the same knowledge
formalisation of its template. In order to align the fragment to the template automatically, for
instance, the fragment must exhibit at least three landmarks (point annotations) in common with
the template.

The steps are the following:

1. Load a template;

2. Load a fragment. If it contains less than three landmarks in common with the template,
insert the remaining manually, through a dedicated additional pop-up window (see Figure
5.13);

3. The system automatically scales the template shape to fit the size of the fragment and
translates/orients the fragment to place it on the template;

4. Non-rigid registration of the template over the fragment;

5. Constraints check.

6. Iterate over step n° 2.

In the first step, the user is asked to select the reference template for the object to be reconstructed.

For allowing the selection of landmarks, we inserted in the framework a dialog window similar
to the interface for the bootstrap of the alignment in MeshLab [CCC+08] (see Figure 5.13).

In the third step, we employed Umeyama’s algorithm [Ume91] for the rigid registration of two
points patterns (associated in pairs), that are impersonated by the corresponding landmarks se-
lected on the geometric template and the fragment. This allows to perform a rough alignment
between the fragments and the template, in a least-square manner. The results of this step can be
seen in Figure 5.14.

Then, in the fourth step, we deform the shape of the template in a non-rigid manner so that it
fits more precisely the shape of the fragment. We first tried to employ a state-of-the-art method
for shape reconstruction through template fitting (see Section 1.1), namely the one defined in
[AWLB17]. However, this approach fails in some cases, for the reason it is not semantic-aware.

To explain this concept, in Figure 5.15 an example of situation in which the geometric approach
would fail: since the two shapes (red and blue) are quite dissimilar (which is often the case, deal-
ing with artistic creations), there may happen that some points in the source shape are wrongly
associated to the target shape (see Figure 5.15a) because they are geometrically closer; conse-
quently, the source shape is not very similar to the target one after the deformation. Moreover,

108

Figure 5.13: The dialog window for inserting the landmarks for the rigid alignment step.

Figure 5.14: The results of the rough alignment obtained employing Umeyama’s algorithm.

109

(a) (b) (c)

Figure 5.15: The choice for associating vertices of the red part (annotation over the template)
to vertices of the target mesh (i.e., vertices of the fragment, where a corresponding blue part is
annotated): (a) pure “geometric” association of vertices; (b) association restricted to vertices
involved in the annotation; (c) a more “semantic” approach.

[AWLB17] is designed to work on point clouds referring only to the outer surface of human bod-
ies, while archaeological fragments often include “internal” and “fracture” facets (see [ED17]),
thus adding complexity to the fitting.

For this reasons, our first result is obtained by exploiting the annotations defined over the template
shape. The idea is the following: if objects are part of the same homogeneous class, they should
all be composed of a core list of parts and features. Just to make an example, we can say that
most of human shapes possess a nose, a mouth, the eyes, etc. Thus, in object reconstruction, we
want to deform the template shape so that shared parts more or less overlaps in the final stage.
So, we defined the non-rigid registration as the composition of two optimisation problems:

1. Vertices correspondence: we want to find the mapping between each template vertex vi ∈
Va1 and a fragment vertex vj ∈ Va2 that are part of two compatible annotations a1 and a2
(e.g., they are both part of the “Drum” of an “Ayia-Irini small human idol with drum”),
minimising some costs:

• Cij = ‖vi − vj‖ is the distance between each vertex vi of the template and each
vertex vj of the fragment;

• Bij = |b(a1, vi) − b(a2, vj)|, where b : (A, IR3) → {0, 1} is a function stating if a
vertex belongs to the boundary of an annotation (1) or not (0). So, we want to map
vertices on the boundary with vertices on the boundary, and vice versa. This function
returns always 1 if the annotation has a line or point selector;

• Dij =
∑|L(a1)|

k=1 (d(vi, L(a1)k)− d(vj, L(a2)k)), where d : (IR3,L)→ IR is a function
defining the distance, over the boundary of an annotation, between a vertex and a
certain landmark (or point annotation with a single point selected) L(a) @ a. This
distance is defined by summing the length of the edges of the boundary snippet con-
necting the vertex and the landmark going in counter-clockwise order. Minimising

110

this cost, we want the vertices on the boundary to map with vertices more or less in
the same boundary position. Indeed, with reference to Figure 5.15b, a vertex on the
upper arch of the red part is mapped onto a vertex on the lower arch of the blue part,
resulting in a counter intuitive mapping. Note that possible landmarks in this exam-
ple may be the inner and outer apex of each part, since they are annotations of eyes
in the human body, so that the distance from the landmark corresponding to, e.g., the
inner apex would be hugely different for the original vertex and the mapped one in
Figure 5.15b. Finally, the function d is not defined for vertices not on the boundary,
so the value Dij equals zero if any of the vertices is not on the boundary (anyhow
the correspondence between vertices of the boundary with vertices in the interior is
rejected by the previous cost).

These costs are computed in pre-processing and normalised, so that the maximum value
of each cost equals 1 and the minimum one equals zero. Then, we simply search for the
permutation (mapping) of the vertices of the fragment which minimise the sum of these
costs:

min
P

|Va1 |∑
i=1

|Va2 |∑
j=1

(βBij + γCij + δDij) · Pij

s.t. Pij ∈ {0, 1}, ∀i ∈ {1, . . . , |Va1|}, j ∈ {1, . . . , |Va2|}
|Va2 |∑
j=1

Pij = 1,∀i ∈ {1, . . . , |Va1|}

(5.1)

where α, β and γ are weights useful for defining the importance of each cost for the
mapping. The presented minimisation problem is solved employing the Google OR-Tools
library [PF19].

2. Non-rigid alignment: we want to find the minimal movement that aligns the template
vertices with corresponding vertices of the fragment, without distorting too much the initial
displacement of vertices. Let V′ be the |Va1| × 3 matrix containing the the vertices in Va1 ,
in the current configuration, V̇′ the |Va1| × 3 matrix with same vertices in the original
configuration (time 0 configuration of the template) and V′′ the |Va2|×3 matrix containing
the vertices in Va2 , the resulting optimisation problem is the following:

min
V′

|Va1 |∑
i=1

(w1

∥∥∥V′i − V̇′i
∥∥∥2
2

+ w2 ‖V′i − (PV′′)i‖22 + w3

∥∥∥∆V′i −∆V̇′i
∥∥∥2
2
) (5.2)

where ∆ is the discrete Laplace operator. This problem can be solved by employing again
the ShapeOp library and applying to the template vertices corresponding to the annotation
two “Closeness” constraints (one for staying in the initial position and one for moving
towards the position on the fragment corresponding to the vertex mapped with the previous
optimisation problem) and one “Laplacian Displacement” constraint for the third cost.

111

Iterating over all the mesh annotations, exploiting the containment relationship and starting from
the leafs towards the root, it is theoretically possible to obtain the desired result. Our first ex-
periment in this direction gave us quite satisfactory results (see Figure 5.16), with the reached
result obtained in less than 9 seconds for a template shape at 25K vertices resolution and frag-
ment shape at 10K vertices resolution and about 36 seconds for the same experiment with a 50K
vertices fragment.

After the non-rigid registration of the template over the fragment, the vertices of the template
corresponding to the fragment are frozen in place, while some constraints may be violated (in
particular those related to proportions, which are very important in archaeology - see next sub-
section). So at this stage the system calls the optimisation engine to fix the violation moving the
remaining of the template shape.

However, when more than one fragment is placed on the template, it may happen that the two
fragments are not compatible, meaning that the optimisation engine is not able to give a satisfac-
tory result because the problem is over-constrained. This may happen either because fragments
belong to objects from different classes or more likely, their dimensions do not match: in other
words, the template cannot be deformed to fit their proportions simultaneously. This is a very
important feature, when trying to re-unify sparse fragments belonging to the same piece. For
example, by placing a head and a foot fragment on a common template, it can become evident if
their dimensions do not match, indicating they can’t be part of the same original object.

To support informed decision by the user in such a case, the error values for each high-level con-
straint are displayed in a dedicated view of the developed GUI (see Appendix A). The framework
can also suggest to reject fragments introducing an error higher than a certain threshold after the
optimisation process.

5.3.2 A constraint based on “proportions”

As introduced in Section 1.1, artistic production in many ancient cultures was based on the
application of canons, where standard proportions between shape parts were encoded. For the
Egyptian human figure, a grid was used so that the created object would resemble the idea of per-
fect or harmonious shape for the era where the specific canon was employed (think, for instance,
to what we mean by “well proportioned”).

Following the same concept, this kind of standard or style is deeply interleaved with the defi-
nition of belonging to a specific class of shapes in CH. So, developing a constraint for defining
proportions can be considered critical for this application.

This high-level constraint is bi-directional: indeed, if we say that a specific part A is twice
as long5 than another part B, it means that B has half A’s length. While this concept is quite

5The concept of length here needs to be treated with care: indeed, we can think about different metrics (e.g.,

112

(a) (b) (c)

(d)
(e)

Figure 5.16: The first result in the non rigid fitting step: (a) template, (b) annotated fragment, (c)
deformed template, (d) first distortion highlighted, (e) second distortion highlighted.

113

obvious semantically, it is not so trivial to define the expected geometric behaviour during the
deformation: when the proportion constraint is violated which part should be changed? For
example, if the current length of B is 2

3
of that of A, should A be elongated or rather B be

shortened?

For this reason, the domain expert is asked to define which part should change to keep the con-
straint satisfied. In the following, we assume that the part to be modified is the first one to be
selected.

This high-level constraint is implemented as a combination of two geometric constraints:

1. “Proportion” constraint, a new constraint that we implemented to establish proportions
between parts.

2. “Laplacian” constraint (the same one used for the “Structural continuity” constraint). This
is applied to the neighbourhood of all the vertices along the boundary of the part to enforce
the smoothness of the result.

Notice that, for the constraint to work, we need to define exactly what vertices compose a part
and which of them are involved in the measure. In the current state, the constraint only works for
Euclidean distances but it has been generalised to indirect distances between vertices: indeed,
commonly there is no vertex on the surface of the object specifying one or more extremes of a
measure (see for example the statue in Figure 2.2: the base is hollow, so we do not have the base
extreme in the middle for specifying the total height).

For working with this kind of situations, the framework provides the “bounding measure” tool
(see Appendix A) which provides in output a pair of vertices and a direction axis, so that the
measure can be computed using the projected position of the vertices.

Since proportions, at least in the CH field, are often not based on precise values, the framework
provides the possibility to define a range into which the constraint is considered valid (namely
defined by m (min) and M (max) values).

The projection for the “Proportion” constraint is obtained through:

1. Centre the involved points on their average position;

2. Compute the corresponding measures of the two part l1 and l2;

3. Compute the amount of stretch required for l1 to meet the constraint as:

p =

{ l2·M
l1

if l1 > l2 ·M
l2·m
l1

if l1 < l2 ·m
Euclidean and geodesic) so that the same two points can be at different distance depending on the metric definition
(see Chapter 2)

114

(a) (b) (c)

Figure 5.17: (a) the “height” of the “eye” and of the “nose” parts; (b) eye shrunk and corre-
sponding modification of the nose, (c) nose elongation and corresponding modification of the
eye.

4. Project the vertices vi of the first part on the axis a defining the measure6 l1 as

projavi =
vi · a
‖a‖22

· a

5. “Scale” the vertices’ position as v′′i = p · projavi

6. Apply the inverse projection to the new positions as v′i = v′′i + vi − projavi

Some results of the application of this constraint can be seen in Figure 5.17, for a template mesh
with ~25K vertices, without cage extension and with maximum number of iterations of the solver
allowed set to 5. The result in Figure 5.17b is obtained by constraining the measure between the
root of the “nose” and its tip to be 3 to 4 times the “height” of the “eye”. Then the “height” of
the “eye” is shrunk and the “nose” follows to keep the constraint satisfied. Conversely, in Figure
5.17c, the “height” of the “eye” is constrained to be 25% to 33% of the measure between the
root of the “nose” and its tip. After the elongation of the “nose”, the “eye” stretches to keep the
constraint satisfied.

6Notice that if the measure is directly computed between two vertices, the scaling axis will be the line passing
through them, while if the measure is indirect the scaling axis is given by the definition of the measure

115

5.4 Discussion

In this Chapter, we provided an overall description of the implemented system and presented
the encouraging results obtained applying the proposed framework in two application scenarios,
namely product design an archaeological reconstruction; we discuss in detail the design and
implementation of three semantic constraints useful in the application scenarios.

The quality of such results has currently been estimated only qualitatively, while their quantita-
tive analysis is planned to be analysed during broad user testing in future works, together with
the usability and effectiveness of the overall framework.

Even such a qualitative analysis, however, highlighted several problems related to the proposed
high-level constraints. As an example, we refer to the “Same Level” constraint (see 5.2.1) and
its application to the teapot: while achieving acceptable results, it is not possible to keep the
constraint without distorting the geometry around the flowers. This is because the library is
not aware of the fact that the flowers are an addition to the original shape of the teapot, so
that probably we should deform the teapot first and then re-apply the flowers or, at least, add a
constraint that would mimic this behaviour.

This is even more evident in the application of “Structural continuity” on the chair case: the
library is not aware of the fact that, for a “Co-axiality” constraint to have sense, the part to be
constrained must naturally admit an axis itself. Unfortunately, the optimisation works on surface
points only while, logically, the constraint should apply to the axis points and the modification
should fall back to the surface points as a consequence.

The result can be seen in Figure 5.18, where a subset of the points of the constrained part is
moved in such a way that the extracted “axis” do not follow the shape of the part, so the rotation
performed to align the axes gives a bad result messing up the part’s shape.

A final example regards the stretch direction for the “Proportion constraint” (see Figure 5.19).
Here, the little finger’s length is required to be from 70 to 90% of the ring finger’s length and, after
the stretch of the ring finger, the little finger stretches coherently. However, since the optimisation
is oblivious to the object’s structure, the stretch is performed both towards the outside and the
inside of the hand, thus leading to counter-intuitive results.

These artefacts are not trivially solvable, and we believe that a promising new research direction
would be the design and development of a new optimisation engine that is semantics-aware.

We still need to improve the non-rigid fitting module of the proposed pipeline for archaeological
reconstruction. Indeed, the current version has some critical issues:

• Annotation correspondence: while understanding what are the corresponding parts be-
tween shapes is quite trivial for a human being, we are still missing a way for defining
correspondences between annotations. The current implementation compares the selection

116

Figure 5.18: The issue related to the manipulation of a subset of the constrained part in the
“Co-axiality” constraint. On the left, bad result due to this issue; on the right, the blue points
correspond the constrained part, which are moved in the position of the orange points after the
projection

Figure 5.19: The issue related to the “Proportion” constraint. On the left, the original shape
with the measures highlighted. In the middle, the ring finger is stretched and the little finger
follows. On the right, a zoomed-in view from above of the little finger (the darker part is the
interior of the hand).

117

type (i.e., if both the annotation have a point, line or region selector) and tag of annotations,
but the tag is ambiguous (what happens if both the eyes of the human body are annotated
as “eye”?);

• Landmark correspondence: the proposed pipeline starts from the assumption that the num-
ber of landmarks contained in corresponding annotation is the same, e.g., there are 2 land-
marks contained in the “eye” (inner and outer apex). This may not be the case, indeed, if
we refer to the floral pattern in Figure 5.2, we may have flowers with different number of
petals, that intuitively leads to a different number of landmarks (petals extrema). While
this situation can be solved by requiring that different flowers should not be in correspon-
dence, others can be more complex: how do we deal with a broken part? indeed, since we
are trying to reconstruct archaeological fragments, we may end up with a fragment con-
taining only a partial representation of a part (e.g., half of an eye), thus allowing only the
annotation of a segment of the part, possibly not including one or more landmarks;

• Outline correspondence: apart from defining correspondences between annotations, we
need to define mechanisms for finding the corresponding outline of regions: indeed, as can
be seen in Section 2.4.1, regions can be defined by more than one outline and this makes
the definition of the cost Dij more complex;

• Vertices correspondence: some vertices of the template may not have any corresponding
vertex on the fragment, either because the parts which they belong are not annotated or
because there is no counterpart on the fragment. This leads to discontinuities in the output
surface (an example can be seen in Figure 5.16e);

• Scarce testing: we have currently tested the approach only for the non-rigid fitting of one
template mesh over one fragment.

So, in future works, we need to tackle these issues and set up a deep test phase for the proposed
pipeline.

Finally, a necessary future activity regards the validation of the proposed high-level constraints on
a broader data set of shapes: as an example, we should apply the structural continuity constraint
to a number of man-made objects (e.g., lamps, furniture, etc.) and gather the obtained results.
Besides, more constraints should be defined in order to make the framework concretely useful as
a semantics-aware modelling system.

118

Chapter 6

Discussion and future works

The purpose of this Chapter is a thorough discussion about the proposed framework and the re-
sults achieved in the applications described in the previous Chapter. The preliminary results have
opened up numerous ideas for improvements, further applications and future research, which are
presented at the end of this Chapter.

6.1 Discussion

In this thesis, we presented a framework for the semantics-aware modelling of shapes, where
some formalisation of the knowledge regarding a certain class of homogeneous objects is ex-
ploited for easing the modelling tasks.

The framework allows the creation of new shapes by means of constrained deformation, i.e.,
allowing to manipulate the shape in compliance to some relationships that are crucial for an
object to be part of a certain class, and provides tools for enriching the formalised information
regarding the class by analysing the class itself or a representative shape. The outcome is a system
prototype providing annotation, analysis and deformation functionalities in the same place to
support modelling and reasoning about shapes.

Our proposal has been tested in two application scenarios, namely product design (see Section
5.2) and archaeological reconstruction (see Section 5.3), with encouraging preliminary results,
but with the need of a broader user validation, since the framework has been tested only by a
very small group of people with high expertise on the subject).

While there are several ways in which the proposed framework can be extended and completed,
the purpose of this thesis is the proposition of a new methodology or paradigm for manipulating
3D shapes: indeed, we are proposing a step forward in the encoding and deployment of the

119

semantics related to objects sharing common properties, which will be used as a base for the
creation of smarter tools and approaches for dealing with modelling tasks.

In the following, we will discuss the main limitations of the proposed framework.

6.1.1 Lack of a semantics-aware generation of cages

As discussed in Section 4.9, it is possible to speed-up the deformation by manipulating the cage
vertices rather than those of the template directly.

However, the quality of the final result heavily depends, besides the choice of a suitable GBC, on
how the cage has been generated. Concerning the resolution of the cage mesh, if too many DoF
are available, the deformation speed would be dramatically slowed down, while too few of them
would not allow a fine control on the deformation. In Figure 6.2 and 6.1, some results obtained
using cages generated following a common resample-and-offset approach can be seen. However,
not only the mesh resolution determines the final quality of the deformation. Indeed, the position
of cage vertices seems to play an important role.

While the creation of an optimal cage for every shape is still an open issue, we argue that envelop-
ing the semantics in the generation of the cage would allow to insert DoF only where required in
correspondence to key features, which will be the focus of user manipulation.

An interesting approach in this sense is the one proposed by Xian et al. in [XZG13], where the
resample-and-offset approach is driven by the outlines of patches identifying interesting features.

So, we aim at extending and generalising this approach to analyse any kind of selection treated
in this framework (namely Point, Line and Region, see 2.2.2).

Another possibility is to employ a multi-LoD cage, both as in [SVJ15] and as in [GPCP13],
where the former gives means to employ cages at different resolutions referring to the same
target shape, and the latter defines a hierarchy of cages controlling smaller and smaller parts of
the shape.

6.1.2 Need for a “semantic” optimisation

The definition of constraints is still too much geometry-based: while the ShapeOp library pro-
vided a very useful tool for the definition of constraints, it is limiting when trying to define a
constraint that is intuitively related to the concept of “part” rather than to “points”. Our ap-
proach was to encapsulate the geometric constraints into some high-level constraints to be used
by domain experts; however, in our experiments, we found that a semantic constraint can be
translated as a set of geometric constraints only to some extent. The impossibility of exploiting
the semantics of parts within the optimisation phase still limits what can be achieved.

120

Figure 6.1: From left to right: the original shape with the corresponding cage; the result after
the stretch upwards.

Figure 6.2: From left to right: the original shape with the corresponding cage; the result after
the stretching of the arm; the result trying to rotate the arm’s support (the constraint does not
allow it, it moves other vertices).

121

An in-depth analysis of the results achieved in the experiments is given in Section 5.4.

6.1.3 Work in progress

As can be easily seen in Appendix A, we set up a wide framework that provides many function-
alities but is not complete; however, it can be extended in a modular fashion. For instance, tools
for the automatic generation of statistical models (see Section 1.1) and for the import of external
knowledge sources (e.g., thesauri and ontologies) could be added. Moreover, we plan to add
functionalities to compute and store more complex annotation attributes (e.g., curvature maps,
axis).

Another incomplete part is the non-rigid fitting module of the archaeological reconstruction
pipeline. Indeed, the management of multiple outlines with region annotations (i.e., selections
of general topology) introduce complex issues, as well the presence of inconsistent landmarks
number referred to corresponding annotations and the lack of parts of the geometry (an in depth
discussion of these issues can be found in Section 5.4).

A further interesting potential use of the template that has not been developed yet is for classi-
fication purposes: indeed, we could fit a template carrying annotations, attributes, relationships
and constraints that are crucial for an object to be considered part of the homogeneous class.
The deformation error with respect to the different constraints (see Chapter 4) can be used to
understand if a query shape is part of the class represented by the parametric template.

A function to propagate the semantics associated to the template to new shapes in the same class
would be another important improvement (e.g., [KLM+13]). For instance, we would exploit
the annotation of models in a class to automatically detect parts and analyse the variability of
attributes (whereas in Section 3.3 the extraction of heads and faces was done manually).

Finally, the set of high-level constraints for the deformation needs to be further enriched, espe-
cially for future application scenarios (e.g., see Section 6.2.1 and 6.2.2). Notice that any other
interested researcher in this field can add new constraints: indeed the code is open source on
GitHub [Sca20] and the ShapeOp library allows to enrich the set of predefined constraints just
by providing the required projection (see Chapter 4).

6.2 Further Applications

In the following, we present some possible further application scenarios.

122

6.2.1 Investigation of biological species

Our approach can be useful to study the morphological variability and functional capacities
of biological species. For instance, we will use our approach within the starting EMPHASIS
project. Funded by the “Programma Nazionale di Ricerche in Antartide (PNRA)” with code
PNRA18 00106, the goal of the project is to develop an eco-morphological study, based on the
analysis of traits of the feeding apparatus of nototheniod fish species representative of various
phylogenetic lineages. The proposed eco-morphological study consists in the analysis of various
structures of the buccal apparatus of nototheniod specimens available in Italian and international
museums. Biologists believe metrics of peculiar traits of head, mouth and gill rakers will allow
to calculate significant indices, from which it is possible to infer the feeding mode, connecting
design and performance.

The fundamental contribution of our research to the project will be the simulation and visuali-
sation of the structures involved in feeding activity of the fishes and their movements during the
feeding actions. To produce a realistic 3D rendering of the process, it is necessary to build a 3D
digital model resembling the fish with the appropriate measures and proportions. The relation
between the external surface and the structural parameters subject of this study is twofold: on the
one side, from a digitalised surface that represents faithfully the shape of the fish, it is possible
to measure some morphological traits directly on the digital domain, in a totally non-invasive
way; on the other side, if the surface is modelled by a designer, the parameters acquired by direct
measure or from other sources (e.g., x-ray) can be used to define class-dependent constraints to
drive the deformation of a representative shape to resemble the species at hand closely.

6.2.2 Generation of random shapes belonging to a same homogeneous class

The ability to generate novel, diverse, and realistic 3D shapes along with associated part se-
mantics and structure is central to many applications requiring high-quality 3D assets or large
volumes of realistic training data [AKZM14, MGY+19]. Using the proposed framework, this
could be done by applying “random” deformations on the template shape, provided that they
satisfy the constraints. There is a rich literature regarding this application context and we expect
to obtain competitive results applying our approach.

6.2.3 Classification of shapes based on non-rigid fitting

As already anticipated throughout the thesis, a possibility for future works is the exploitation
of the error introduced by the non-rigid fitting of the template shape over the query one for its
classification. In fact, as introduced in Chapter 4, the constrained deformation is expressed as an
optimisation problem: it follows that, in certain conditions, a constraint could not be satisfied,

123

or several constraints could not be satisfied at the same time. The optimisation engine will
minimise the overall error, but an hypothetical classifier could exploit the information about
which constraints could not be fully satisfied and at which extent. Indeed, since the template is
expected to capture the main traits of the objects within the class in form of constraints between
the parts composing them, violating too much the constraints can be interpreted as belonging to
a different class.

124

Appendix A

Graphical User Interface

In this Appendix, we provide a presentation of the developed system GUI, which offers all the
functionalities to interact with the framework proposed in this thesis: build the template through
manual annotation, enrich the semantics through measuring and analysis tool, add constraints on
annotation attributes and relations and perform semantics-aware deformations of the geometry.

A.1 Main window

When the software is run, the main window appears, with a menu bar, a toolbar, a sidebar and
a central canvas, initially representing the default shape of a tetrahedron, where objects will be
visualised (see Figure A.1). The menu bar allows to perform the most common operations (see
Figure A.2:

• File menu: provides the load, save and close operations for the various entities. The sys-
tem handles two kinds of entities, namely, barycentric coordinates and 3D models (the
template, the cage or other generic meshes representing specific objects in the class or
object fragments, which the user wants to investigate);

• Edit menu: includes

– undo/redo commands;

– choice and computation of the GBC (actually, the list of generalisations includes
MVC and GC, although the selection of the GC generalisation precludes the pos-
sibility to use the constrained deformation environment – it can be used for pure
geometric deformations);

125

Figure A.1: The Main window

– generation of a cage (presently with a simple resample-and-offset approach based on
two filters provided in MeshLab [CCC+08]: the “Uniform Mesh Resampling”, which
allows to offset the resulting mesh with respect to the original one (we normally use
55% offset with check on “Clean Vertices”), and the “Simplification: Quadric Edge
Collapse Decimation” with “Target number of faces” depending on the complexity
of the shape and checking on “Preserve Boundary of the mesh” (weight 1), “Preserve
Normal” and “Preserve Topology”).

• View menu: allows to change the colour of the geometric template and of the cage and to
change the visualisation modality: presently the system includes points, edges and surface
visualisation, which can be combined as preferred by the user. The default is only surface
visualisation for both template and generic meshes and only wireframe and points for the
cage.

The sidebar provides three different views, organised according to the entities involved:

• Layer view: displays the list of meshes actually in use, separated into “Geometric tem-
plate”, “Cage” and “Others”: only one geometric template and cage at a time are allowed,
while there is no limitation (at least in theory, of course it is restrained by the memory
availability) for the other meshes.

126

Figure A.2: From left to right: File, Edit and View menu

• Slice view: provides several shape analysis tools based on the slicing paradigm; these
apply to the template model (including the implementation of the method in [SVM+18]
described in Chapter 3);

• Constraints view: displays information about the high-level constraint defined by the do-
main expert.

In the Layer view, the user can interact with each mesh by clicking with the right button of the
mouse on it. The interaction includes the possibility to change the visualisation options (as in the
View menu) as well as other entity-specific options (see Figure A.3):

• Cage: allows to close the mesh (e.g., the user wants to use a finer or a coarser cage);

• Geometric template: in addition to the cage options, it exhibits the “Edit annotation” func-
tionality, which allows to open the Annotation Window (see A.2, and the “Show annota-
tion” checkbox, used for showing/hiding the annotations on the mesh;

• Generic mesh: has all the options of the geometric template, with the addition of the “Adapt
template to object” option, which starts the fitting procedure (see Section 5.3).

The Slice view allows to extract information of several kinds from the template shape. It is
equipped with three different sheets (see Figure A.4) enclosing tools for setting and moving the
plane which is used to slice the shape (sheet “Mesh”), tools for computing some shape descriptors
of a slice (sheet “Slice”) and computing and visualising the associated Medial Axis approxima-
tion at different levels of detail (sheet “Skeleton”). The slice under analysis is shown both in the
main canvas (over the geometric template’s surface) and in a smaller canvas in the upper part of
the Slice view.

The Constraint view presents a drop down list for selecting the high-level constraint whose in-
formation the user is interested in. Then, the frame below is populated with the information
associated to the constraint, e.g., id, type, etc. (most of information is constraint specific). This
view is particularly useful for visualising the error with respect to a certain constraint. Indeed, as

127

Figure A.3: On the left, the contextual menu corresponding to the right click on the template
item, on the middle the one referred to the cage and on the right the one corresponding to a
generic mesh.

Figure A.4: The three sheets in the Slice view.

128

introduced in Chapter 4, the constrained deformation is expressed as an optimisation problem.
It follows that, in certain conditions, a constraint could not be satisfied, or several constraints
could not be satisfied at the same time. Anyway, the ShapeOp library will minimise the overall
error, but the user must be aware of which constraints could not be fully satisfied and at which
extent. The user may then take an informed decision about whether to accept, reject or change
the deformation, e.g., when performing reassembly tasks (see Section 5.3).

After loading the geometric template and the cage (or computing it with the provided functional-
ity), the “Link cage and template” action in the Edit menu is enabled (this action will compute the
GBC) as well as the “Load coordinates” action in the File menu. After the computation/loading
of the GBC (it may require some time, depending on the resolution of the template mesh and of
the cage), the toolbar is enabled, together with its buttons, which provide the functionalities for
selecting cage vertices and using them as handles to define a deformation:

•
The Camera button, when checked, allows only to change the view around the
shape, without any other kind of interaction;

•
The Visible Selection button, when checked, enables a filter which allows select-
ing only of the vertices that are visible from the user point of view (by default it
is checked);

•

The Vertex Selection button, when checked, allows to select vertices of the cage,
either individually, or all those enclosed in a rectangle drawn by the user (the
rectangle selection is performed by holding the Ctrl button on the keyboard and
simultaneously left clicking on the canvas, dragging and releasing the left mouse
button, see Figure A.6), or all those associated to an annotation (this is obtained
by holding the Ctrl button and pressing the middle button of the mouse on the
annotation of interest and employs the technique defined in 5.2.3);

•
The Vertex De-selection button, when checked, allows to perform the opposite
operation of the previous button;

•

The Move Vertices button, when checked, allows to rigidly move the selected
vertices of the cage. There are two possibilities: to drag (translate) the selected
vertices following the mouse position (Ctrl + right button of the mouse) or to
rotate them around the axis orthogonal both to the camera direction and the mouse
movement1of an amount defined by the magnitude of the mouse movement (Ctrl
+ left button of the mouse). The template’s shape is updated at a fixed frame rate;

•

The Stretch Vertices button, when checked, allows to move the selected vertices
away from each other in a user defined direction. The operation is achieved by
holding the Ctrl button on the keyboard, left clicking on the canvas and dragging
in a certain direction: the stretch direction is computed using the current and
starting positions, while the amount of stretch is constant and added every frame.
As in the previous point, the template’s shape is updated at a fixed frame rate.

129

Finally, the Main window is equipped with a footer where the number of vertices, edges and
triangles of the template and of the cage are shown.

A.2 Annotation window

When the user clicks on the “Edit annotation” voice in the contextual menu of any mesh (cage
excluded) a new window, called Annotation, is opened. Indeed, the user can either annotate
the geometric template, thus actually adding the link with the semantic template, defined else-
where as a knowledge formalisation or based on her/his own contextual knowledge, or annotate
a specific object of the class for documentation purposes. It recalls the general schema of the
Main window, with a menu bar, a toolbar, a sidebar and a central canvas where meshes and other
entities are drawn.

Here, the user can select mesh vertices and add tags to create annotations, take measurements and
add attributes to annotations, set relationships among annotations and set constraints on attributes
and relationships.

In the current version, the menu bar contains the File menu only: it provides functionalities
for saving, loading and clearing (deleting all) the annotations, clearing the selections and sav-
ing/loading the constraints/relationships.

The toolbar contains several buttons:

•
The Camera button, when checked, allows only to change the view around the
shape, without any other kind of interaction;

•
The Restore Camera button, when pressed, resets the camera to the original dis-
placement;

•

The Visible Selection button, when checked, enables a filter which allows the
selection only of the vertices entities which are visible from the user point of
view, depending on the current interaction modality (see next points - by default
is checked);

•
The Eraser button, when checked, changes to the de-selection modality for dis-
carding the newly selected entities (vertices, edges, triangles, annotations) de-
pending on the interaction modality (see next points);

1If n is the camera direction, s is the click position of the mouse and e its release position, then the axis has
direction a = n× e−s

‖e−s‖ and passes through s

130

Figure A.5: The Annotation window with (bottom) and without (top) annotations.

131

•

The Points Rectangle button, when checked, changes the selection modality to
points selection, i.e., allows to select (or de-select if the Eraser button is checked)
vertices of the mesh, either individually or all the ones included in a rectangle
drawn by the user (following exactly the same procedure of the Vertex Selection
button in the previous Section;

•

The Polylines button, when checked, changes the selection modality to edges
selection, i.e., allows to select (or de-select if the Eraser button is checked) edges
of the mesh, by picking some successive points, in an additive way, on the surface:
the path between them is automatically computed by the system following an
approximation of the Dijkstra algorithm [Dij59] (the search for the shortest path
is interrupted when the target vertex is found - see Algorithm 3);

•

The Triangles Rectangle button, when checked, changes the selection modality
to triangles selection, i.e., allows to select (or de-select if the Eraser button is
checked) triangles on the surface of the mesh, either individually or all the ones
included in a rectangle drawn by the user);

•

The Lasso button, when checked, changes the selection modality to triangles se-
lection, i.e., allows to select (or de-select if the Eraser button is checked) triangles
on the surface of the mesh following the common lasso metaphor [Las20], i.e.,
the user draws a “polygon” on the surface picking successive points (as for the
Polyline button, but now the polyline must be closed), then right-clicks in the in-
terior of the “polygon” (this is necessary, since the interior of a polygon over a
3D surface is not well-defined) and the triangles enclosed in it are automatically
selected);

• The Annotate button, when clicked, opens a dialog asking information about the
annotation to be saved;

•
The Edit button, when clicked, allows to modify the selection associated to an
annotation (it requires that one and only one annotation is selected). The operation
can be completed re-annotating the selection (thus using the Annotate button);

•

The Annotation Selection button, when checked, changes the selection modality
to annotation selection, i.e., allows to select annotations from the mesh surface.
This can be obtained by holding the Ctrl key and left clicking over the annotation:
if more than one annotation is under the mouse when the user clicks the left mouse
over the surface, a dialog is opened to ask the user which annotation she/he wants
to select;

132

•

The Add Constraint button, when clicked, displays a dialog to input the type
and other properties of the constraint, based on the selected annotations. Gener-
ally speaking, the dialog allows to insert the weight associated to the constraint,
the minimum and maximum value of a range (in the constraints where it makes
sense). This button is shown only if the current mesh the template;

•

The Relationships Graph Construction button, when clicked, performs the ex-
traction of some basic relationships among the annotations, derived by geometric
analysis (see Section 2.3). Currently, the containment and adjacency relations are
extracted. This button is shown only if the current mesh is that of the template;

•
The Show Relationships button, when clicked, opens a window (see next Section)
showing the relationship graph. This button is shown only if the current mesh is
that of the template;

•

The Constrain button, when clicked, initialises the ShapeOp library to act on the
constraints defined until now (this typically requires some time, depending on the
resolution of the template shape and of the cage and on the number of defined
constraints). This button can be found only if the current mesh is that of the
template. This is disabled until a cage is loaded and the BC are computed/loaded;

•
The Withdraw Constraints button, when clicked, clears the ShapeOp library sta-
tus, thus reverting to the state of the system before the Constrain button was
clicked. This button is enabled only after the Constrain button is clicked;

•

The Transfer button is used to transfer the annotations from one source mesh to
a target one. When clicked, it opens a dialog for the selection of a mesh file and
then starts the transfer procedure (see sub-section 2.4.1). Currently, this switch
the new mesh with the original one in the system.

The sidebar can be viewed as the composition of two different parts:

• In the upper part, the user finds the tools for adding attributes to annotations. To do this,
the user has first to select one annotation (an error message is displayed if the user tries to
add an attribute to no or more than one annotation at a time). As specified in sub-section
2.2.3, in this thesis we consider two kinds of attributes: qualitative and quantitative. To add
a qualitative attribute, the user has to press the “Add textual property” button, which will
open a dialog asking for a name of the attribute and some free text (there is no specific use
for this kind of attribute, it can be used for taking notes, adding meta-data such as the place
of finding of a piece. etc.). In the current version of the software, we have implemented
only the possibility to add measures as quantitative properties, and in particular they can
be taken using three kinds of tools (see Figure 2.2 and 3.6):

133

Figure A.6: Different types of selections: going downwards selection of points, edges and trian-
gles, there the last two rows depict two different tools for the triangles selection, namely rectangle
and lasso selection.

134

Figure A.7: The simple list of annotations (left), the list with an expanded annotation (middle),
the list with an expanded annotation with one of its attributes expanded (right).

– Ruler: it requires to select two points over the surface (Ctrl+left click, it works only
on the selected annotation) for defining the extrema of the measure (Euclidean dis-
tance);

– Tape measure: it works pretty much as the Polylines selection, i.e., it requires to select
points on the surface (Ctrl+left click, it works only on the selected annotation) in an
additive way, while computing the shortest path between the couples of successive
points to define the geodesic measure (approximated);

– Bounding measure: this tool is useful for defining measures between extrema not
falling on the surface. It requires to define a direction for the measure (Ctrl+left click
and drag) and returns the distance between the two farthest points of the annotation
in that direction. To compute this measure, points are projected on a line having the
direction set by the user and passing through the barycentre of the annotation. Two
clipping planes are shown when defining the measure to help the user visualise the
measure.

• In the lower part, a list of annotations of the mesh is shown, were each voice can be ex-
panded for showing some properties, such as id and tag, and the list of associated attributes,
that in their turn can be expanded to show the associated properties, a button for removing
the attribute and, in the case of a measure, a checkable button for showing/hiding it in the
canvas (see Figure A.7).

135

(a) (b)

Figure A.8: The constraint dialog enables the input fields depending on the type of relation-
ship/constraint. In the current implementation the measures are constrainable only if the rela-
tionship is between 2 annotations.

136

Figure A.9: The Relationships window

A.3 Relationships window

In this window, the system provides an overview of the stated relationships between annotated
parts. The relationships are represented as line segments or arrows, depending on the direction
of the relationship (see sub-section 2.3), between nodes of a graph, representing annotations.

This window also allows the creation of new relationships. The user can select two or more anno-
tations (simply left-clicking on any node in the graph) and then press the button, which calls a
dialog for selecting the type and specifying the properties of the new relationship. Moreover, the
user can also constrain the existing relationships, by pressing the button) and so initialising
the ShapeOp library (same behaviour as in the Annotation window).

When passing the cursor over an annotation (node of the graph) or a relationship, the sidebar
displays related information regarding the specific entity (see Figure A.10).

137

Figure A.10: Different information shown when passing over annotations (left) and relationships
(right) with the cursor.

138

Appendix B

File formats

The formalisation of the semantics of a certain class of objects is (at least currently) a long work
which can be performed by one or more experts. For this reason, tools should be provided to
store the results produced so far in such a way that could be easily shared between the experts
and provided to the final user.

In this framework such results are stored exploiting the JavaScript Object Notation (JSON)©

[Bra17] format, which is hugely employed in several fields thanks to its simplicity.

In particular, here it is used for storing annotations and related info (i.e., tag, type, attributes,
etc.) and relationships/constraints (better, the relationships’ graph). The library employed for the
writing/parsing of the files is RapidJSON© [aTcY15].

B.1 Annotation file format

The annotation file format contains as root the object annotations, which is a list of annotation
objects containing the following fields:

• id: the integer number identifying the annotation in the system;

• tag: a string (in future extensions this field will be substituted with a more generic infor-
mation field containing a reference to an object, being it a string, an image, or whatever)
associated to the annotation;

• colour: a triplet (more formally, a list of 3 integers) defining a colour associated to the
annotation (in the future this field will be removed and the colour will be automatically set
by the application GUIs);

139

• attributes: a list of attribute objects specified in the following;

• type: the type of selector of the annotation. Currently there are 3 possible values: “point”,
“line” and “region”.

• Depending on the value of the type field, this field can have the following values:

– points: only when the type field has “point” value. It is a list of indices of mesh
vertices;

– polylines: only when the type field has “line” value. It is a list of lists of indices to
successive vertices of the mesh, defining one or more poly-lines;

– boundaries: only when the type field has “region” value. It is a list of lists of indices
to successive vertices of the mesh, enclosing bounded patches on the mesh surface
(as in sub-section 2.4.1).

The attribute objects contain the following fields:

• id: the integer number identifying the attribute within the annotation;

• name: a string containing the name associated to the attribute (e.g., “height”);

• type: a string defining the type of the attribute (currently we have only “semantic” and
“measure”);

• there are two possibilities for the final part of the object, depending on the value of the
previous field:

– note: only if the value of type is “semantic”. It is a string containing a free text.

– measure: an object containing the following fields:

* tool: a string specifying the tool used for taking the measure (currently only
“ruler”, “tape” and “bounding”);

* points: a list of indices to the mesh vertices involved in the measure. Depending
on the previous field, they can be 2 or more (2 for an Euclidean distance, more
for the approximate geodesic one).

* direction: this field is present only if the previous value is “bounding”. It i s a
vector (more formally a list of 3 doubles) defining the measure direction.

B.2 Graph file format

The graph file format contains as root the object’s relationships, which is a list of relationships
objects containing following the same base structure:

140

• id: an integer number identifying the relationship;

• type: a string identifying the relationship. There are several possible values, one for each
kind of constraint present in ShapeOp (the framework always gives the possibility to use
the geometric constraints) plus the high-level constraint defined in this thesis. Notice that
not all the relationships are constraints, so here possible values are even “containment” and
“adjacency” (see sub-section 2.3);

• isDirected: a boolean value for understanding if the arc correponding to the relationship is
directed or not (see sub-section 2.3);

• annotations: a list of indices to the annotations involved in the relationships;

• isConstraint: a boolean value stating if the relationship is a constraint;

• weight: a double value associating a weight to the constraint. This field is present only if
the previous is true;

• constraint: is an object reporting all the parameters of the constraint (so this field is present
only if isConstraint is true). The inner structure of this object is really dependent on
the constraint, e.g., the “Proportion” (see Section 5.3.2) constraint requires measure1 and
measure2 indices identifying the measure to be constrained both on the first and the second
annotation and a minValue and maxValue defining an acceptance range.

The recovery of the graph is simply achieved by creating a node for each annotation and then
scrolling the relationships list and creating arcs accordingly.

141

Bibliography

[3DC01] 3D CAD browser. http://www.3dcadbrowser.com/, 2001.

[3DS20] Autodesk 3ds Max, 2020. https://www.autodesk.it/products/
3ds-max.

[AB97] Fabrice Aubert and Dominique Bechmann. Volume-preserving space deforma-
tion. Computers & Graphics, 21(5):625 – 639, 1997.

[ACOL00] Marc Alexa, Daniel Cohen-Or, and David Levin. As-rigid-as-possible Shape In-
terpolation. In Proceedings of the 27th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’00, pages 157–164, 2000.

[AF06] M. Attene and B. Falcidieno. Remesh: An interactive environment to edit and
repair triangle meshes. In IEEE International Conference on Shape Modeling
and Applications 2006 (SMI’06), pages 41–41, 2006.

[AFNS12] Theodoros Athanasiadis, Ioannis Fudos, Christophoros Nikou, and Vasiliki Sta-
mati. Feature-based 3D morphing based on geometrically constrained spherical
parameterization. Computer Aided Geometric Design, 29(1):2–17, 2012.

[AIM04] AIM@SHAPE shape repository. http://shapes.aimatshape.net/,
2004.

[AKZM14] Melinos Averkiou, Vladimir G. Kim, Youyi Zheng, and Niloy J. Mitra.
ShapeSynth: Parameterizing model collections for coupled shape exploration and
synthesis. Computer Graphics Forum, 33(2):125–134, 2014.

[Ale02a] Marc Alexa. Linear combination of transformations. ACM Trans. Graph.,
21(3):380–387, July 2002.

[Ale02b] Marc Alexa. Recent Advances in Mesh Morphing. Computer Graphics Forum,
2002.

142

http://www.3dcadbrowser.com/
https://www.autodesk.it/products/3ds-max
https://www.autodesk.it/products/3ds-max
http://shapes.aimatshape.net/

[APH17] Dmitry Anisimov, Daniele Panozzo, and Kai Hormann. Blended barycentric
coordinates. Computer Aided Geometric Design, 52-53:205 – 216, 2017. Geo-
metric Modeling and Processing 2017.

[ARV07] B. Amberg, S. Romdhani, and T. Vetter. Optimal Step Nonrigid ICP Algorithms
for Surface Registration. In 2007 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, 2007.

[aTcY15] THL A29 Limited (a Tencent company) and Milo Yip. RapidJson, 2015.
https://rapidjson.org/.

[AWLB17] Jascha Achenbach, Thomas Waltemate, Marc Erich Latoschik, and Mario
Botsch. Fast generation of realistic virtual humans. In Proceedings of the 23rd
ACM Symposium on Virtual Reality Software and Technology, VRST ’17, New
York, NY, USA, 2017. Association for Computing Machinery.

[BAC+16] Imon Banerjee, Asan Agibetov, Chiara Eva Catalano, Giuseppe Patané, and
Michela Spagnuolo. Semantics-driven annotation of patient-specific 3D data:
a step to assist diagnosis and treatment of rheumatoid arthritis. The Visual Com-
puter, 32(10):1337–1349, Oct 2016.

[BBN06] W.F. Bronsvoort, R. Bidarra, and P. Nyirenda. Developments in feature mod-
elling. Computer-Aided Design & Applications, 3(5):655–664, 2006.

[BCK+11] Arthur Blume, Won Chun, David Kogan, Vangelis Kokkevis, Nico Weber,
Rachel Weinstein Petterson, and Roni Zeiger. Google Body: 3D Human
Anatomy in the Browser. In ACM SIGGRAPH 2011 Talks, SIGGRAPH ’11,
New York, NY, USA, 2011. Association for Computing Machinery. https:
//doi.org/10.1145/2037826.2037852.

[BCWG09] Mirela Ben-Chen, Ofir Weber, and Craig Gotsman. Spatial Deformation Trans-
fer. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, SCA ’09, pages 67–74. ACM, 2009.

[BDS+12] Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark
Pauly. Shape-Up: Shaping Discrete Geometry with Projections. Comput. Graph.
Forum, 31(5):1657–1667, August 2012.

[BF01] Samuel R. Buss and Jay P. Fillmore. Spherical averages and applications to
spherical splines and interpolation. ACM Trans. Graph., 20(2):95–126, April
2001.

[BGC+15] A. Bartoli, Y. Gérard, F. Chadebecq, T. Collins, and D. Pizarro. Shape-from-
template. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37(10):2099–2118, 2015.

143

https://rapidjson.org/
https://doi.org/10.1145/2037826.2037852
https://doi.org/10.1145/2037826.2037852

[BK05] Mario Botsch and Leif Kobbelt. Real-Time Shape Editing using Radial Basis
Functions. Computer Graphics Forum, 24(3):611–621, 2005.

[BKP+10] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. Polygon
Mesh Processing. AK Peters / CRC Press, September 2010.

[BLP+15] Imon Banerjee, Hamid Laga, Giuseppe Patané, Sebastian Kurtek, Anuj Srivas-
tava, and Michela Spagnuolo. Generation of 3D Canonical Anatomical Models:
An Experience on Carpal Bones. In Vittorio Murino, Enrico Puppo, Diego Sona,
Marco Cristani, and Carlo Sansone, editors, New Trends in Image Analysis and
Processing – ICIAP 2015 Workshops, pages 167–174, Cham, 2015. Springer In-
ternational Publishing.

[BLTD16] Max Budninskiy, Beibei Liu, Yiying Tong, and Mathieu Desbrun. Power coordi-
nates: A geometric construction of barycentric coordinates on convex polytopes.
ACM Trans. Graph., 35(6), November 2016.

[Bot16] Katarina Botwid. The Artisanal Perspective in Action : An Archaeology in Prac-
tice. PhD thesis, Lund University, 2016.

[BR07] Benedict J. Brown and Szymon Rusinkiewicz. Global Non-Rigid Alignment of
3D Scans. ACM Trans. Graph., 26(3):21–es, July 2007.

[BR14] Jose Luis Blanco and Pranjal Kumar Rai. nanoflann: a C++ header-only fork
of FLANN, a library for Nearest Neighbor (NN) with KD-trees. https://
github.com/jlblancoc/nanoflann, 2014.

[Bra17] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format. RFC
8259, RFC Editor, December 2017. https://www.rfc-editor.org/
info/rfc8259.

[BS08] M. Botsch and O. Sorkine. On Linear Variational Surface Deformation Meth-
ods. IEEE Transactions on Visualization and Computer Graphics, 14(1):213–
230, 2008.

[BS09] Sandy Budden and Joanna Sofaer. Non-discursive knowledge and the con-
struction of identity potters, potting and performance at the bronze age tell of
százhalombatta, hungary. Cambridge Archaeological Journal, 19(2):203–220,
2009.

[Cae20] Civilian American and European Surface Anthropometry Resource
Project—CAESAR, 2020. http://store.sae.org/caesar/.

144

https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
http://store.sae.org/caesar/

[CCC+08] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio
Ganovelli, and Guido Ranzuglia. MeshLab: an Open-Source Mesh Processing
Tool. In Vittorio Scarano, Rosario De Chiara, and Ugo Erra, editors, Eurograph-
ics Italian Chapter Conference. The Eurographics Association, 2008.

[CCLS18] Sara Casti, Fabrizio Corda, Marco Livesu, and Riccardo Scateni. Cagelab: an
interactive tool for cage-based deformations. In STAG, pages 65–74, 2018.

[CCXS11] W. Cheng, R. Cheng, L. Xiaoyong, and D. Shuling. Automatic skeleton gen-
eration and character skinning. In 2011 IEEE International Symposium on VR
Innovation, pages 299–304, 2011.

[CDJF19] Maes Chris, Smeets Dirk, Keustermans Johannes, and Thomas Fabry.
meshSIFT MATLAB implementation. https://mirc.uzleuven.be/
MedicalImageComputing/downloads/meshSIFT.php, 2019. Ac-
cessed: 13/08/2019.

[CF14] Xue Chen and Jieqing Feng. Adaptive Skeleton-driven Cages for Mesh Se-
quences. Comput. Animat. Virtual Worlds, 25(3-4):447–455, May 2014.

[CGM19] E. Cordeiro , F. Giannini , and M. Monti . A survey of immersive systems
for shape manipulation. Computer-Aided Design and Applications, 16(6):1146 –
1157, 2019. http://cad-journal.net/files/vol_16/Vol16No6.
html.

[CJV06] Gary E. Christensen, Hans J. Johnson, and Michael W. Vannier. Synthesizing
average 3D anatomical shapes. NeuroImage, 32(1):146 – 158, 2006.

[CKS16] J. Cui, A. Kuijper, and A. Sourin. Exploration of natural free-hand interaction for
shape modeling using leap motion controller. In 2016 International Conference
on Cyberworlds (CW), pages 41–48, 2016.

[CLM+19] Sara Casti, Marco Livesu, Nicolas Mellado, Nadine Abu Rumman, Scateni Ric-
cardo, Loı̈c Barthe, and Enrico Puppo. Skeleton based cage generation guided
by harmonic fields. Computers & Graphics, 81:140 – 151, 2019.

[CMSF11] Chiara Eva Catalano, Michela Mortara, Michela Spagnuolo, and Bianca Falci-
dieno. Semantics and 3D Media: Current Issues and Perspectives. Compututers
& Graphics, 35(4):869–877, August 2011.

[Coq90] Sabine Coquillart. Extended Free-Form Deformation: A Sculpturing Tool for 3D
Geometric Modeling. SIGGRAPH Comput. Graph., 24(4):187–196, September
1990.

145

https://mirc.uzleuven.be/MedicalImageComputing/downloads/meshSIFT.php
https://mirc.uzleuven.be/MedicalImageComputing/downloads/meshSIFT.php
http://cad-journal.net/files/vol_16/Vol16No6.html
http://cad-journal.net/files/vol_16/Vol16No6.html

[CRV20] M.W. Cohen, , D. Regazzoni , and C. Vrubel . 3D Virtual Sketching System
Using NURBS Surfaces and Leap Motion Controller. Computer-Aided Design
and Applications, 17(1):167–177, May 2020. http://cad-journal.net/
files/vol_17/Vol17No1.html.

[CS17] Jian Cui and Alexei Sourin. Interactive shape modeling using leap motion con-
troller. In SIGGRAPH Asia 2017 Technical Briefs, SA ’17, New York, NY,
USA, 2017. Association for Computing Machinery. https://doi.org/10.
1145/3145749.3149437.

[CTB+12] P. Chevaillier, T. Trinh, M. Barange, P. De Loor, F. Devillers, J. Soler, and
R. Querrec. Semantic modeling of virtual environments using mascaret. In 2012
5th Workshop on Software Engineering and Architectures for Realtime Interac-
tive Systems (SEARIS), pages 1–8, 2012.

[CTL+20] F. Corda, J. M. Thiery, M. Livesu, E. Puppo, T. Boubekeur, and R. Scateni. Real-
time deformation with coupled cages and skeletons. Computer Graphics Forum,
39(6):19–32, 2020.

[CVHS20] C.E. Catalano, V. Vassallo, S. Hermon, and M. Spagnuolo. Representing quan-
titative documentation of 3D cultural heritage artefacts with CIDOC CRMdig.
International Journal on Digital Libraries, 21:359–373, 2020.

[dBA16] Ryan Anthony J. de Belen and Rowel O. Atienza. Automatic skeleton gener-
ation using hierarchical mesh segmentation. In SIGGRAPH ASIA 2016 Virtual
Reality Meets Physical Reality: Modelling and Simulating Virtual Humans and
Environments, SA ’16, New York, NY, USA, 2016. Association for Computing
Machinery.

[DCH20] Chongyang Deng, Qingjun Chang, and Kai Hormann. Iterative coordinates.
Computer Aided Geometric Design, 79:101861, 2020.

[DD86] H.L. Dreyfus and Dreyfus. Mind Over Machine: The Power of Human Intuition
and Expertise in the Era of the Computer. Oxford: Basil Blackwell, 1986.

[DDB+14] Mario Deuss, Anders Holden Deleuran, Sofien Bouaziz, Bailin Deng, Daniel
Piker, and Mark Pauly. ShapeOp web site. https://www.shapeop.org/
index.php, 2014.

[DDB+15] Mario Deuss, Anders Holden Deleuran, Sofien Bouaziz, Bailin Deng, Daniel
Piker, and Mark Pauly. ShapeOp – A Robust and Extensible Geometric Mod-
elling Paradigm. In Mette Ramsgaard Thomsen, Martin Tamke, Christoph Geng-
nagel, Billie Faircloth, and Fabian Scheurer, editors, Modelling Behaviour: De-
sign Modelling Symposium 2015, pages 505–515. Springer International Publish-
ing, Cham, 2015.

146

http://cad-journal.net/files/vol_17/Vol17No1.html
http://cad-journal.net/files/vol_17/Vol17No1.html
https://doi.org/10.1145/3145749.3149437
https://doi.org/10.1145/3145749.3149437
https://www.shapeop.org/index.php
https://www.shapeop.org/index.php

[DFG+94] T. De Martino, B. Falcidieno, F. Giannini, S. Hassinger, and J. Ovtcharova.
Feature-based modelling by integrating design and recognition approaches.
Computer-Aided Design, 26(8):646 – 653, 1994. Special Issue Modelling in
computer graphics.

[Dij59] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerical
Mathematics, 1:269–271, 1959.

[DLM11] Zheng-Jie Deng, Xiao-Nan Luo, and Xiao-Ping Miao. Automatic Cage Build-
ing with Quadric Error Metrics. Journal of Computer Science and Technology,
26(3):538, May 2011.

[DLPDM+18] Livio De Luca, Marc Pierrot-Deseilligny, Adeline Manuel, Christine Chevrier,
Benjamin Lollier, Pascal Benistant, Anthony Pamart, Friederike Peteler, Violette
Abergel, and Anas Alaoui. Aı̈oli – a reality-based 3D annotation platform for
the collaborative documentation of heritage artefacts, 2018. http://www.
aioli.cloud/.

[DMMT+07] F. Dellas, L. Moccozet, N. Magnenat-Thalmann, M. Mortara, G. Patané,
M. Spagnuolo, and B. Falcidieno. Knowledge-based Extraction of Control Skele-
tons for Animation. In Proceedings of the IEEE International Conference on
Shape Modeling and Applications 2007, SMI ’07, pages 51–60, Washington,
DC, USA, 2007. IEEE Computer Society.

[DZY+16] Guoguang Du, Mingquan Zhou, Congli Yin, Zhongke Wu, and Wuyang Shui.
Classification and reassembly of archaeological fragments. In Proceedings of the
Symposium on VR Culture and Heritage - Volume 2, VRCAI ’16, page 67–70,
New York, NY, USA, 2016. Association for Computing Machinery.

[ED17] H. ElNaghy and L. Dorst. Geometry Based Faceting of 3D Digitized Archaeo-
logical Fragments. In 2017 IEEE International Conference on Computer Vision
Workshop (ICCVW), pages 2934–2942, Los Alamitos, CA, USA, oct 2017. IEEE
Computer Society.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A Density-based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In
Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining, pages 226–231, 1996.

[FBF77] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An Algorithm
for Finding Best Matches in Logarithmic Expected Time. ACM Trans. Math.
Softw., 3(3):209–226, September 1977.

147

http://www.aioli.cloud/
http://www.aioli.cloud/

[FCD20] Tong Fu, Raphaelle Chaine, and Julie Digne. Anatomy Changes and Virtual
Restoration of Statues. In Michela Spagnuolo and Francisco Javier Melero, ed-
itors, Eurographics Workshop on Graphics and Cultural Heritage. The Euro-
graphics Association, 2020.

[FHK06] M.S. Floater, K. Hormann, and G. Kós. A general construction of barycentric
coordinates over convex polygons. Advances in Computational Mathematics,
24:311–331, 2006.

[FKR05] Michael S. Floater, Géza Kós, and Martin Reimers. Mean value coordinates
in 3D. Computer Aided Geometric Design, 22(7):623 – 631, 2005. Geometric
Modelling and Differential Geometry.

[Flo97] Michael S. Floater. Parametrization and smooth approximation of surface trian-
gulations. Comput. Aided Geom. Des., 14(3):231–250, April 1997.

[Flo03] Michael S. Floater. Mean value coordinates. Computer Aided Geometric Design,
20(1):19 – 27, 2003.

[FOC08] FOCUS K3D project. https://cordis.europa.eu/project/id/
214993, 2008.

[Fou07] Sabine Fourrier. La coroplastie chypriote archaı̈que. Identités culturelles et poli-
tiques à l’èpoque des royaumes. Maison de l’Orient et de la Méditerranée Jean
Pouilloux, 2007.

[FRC13] Carol Friedman, Thomas C. Rindflesch, and Milton Corn. Natural language pro-
cessing: State of the art and prospects for significant progress, a workshop spon-
sored by the National Library of Medicine. Journal of Biomedical Informatics,
46(5):765 – 773, 2013. http://www.sciencedirect.com/science/
article/pii/S1532046413000798.

[FW13] J. Flotyński and K. Walczak. Semantic multi-layered design of interactive 3D
presentations. In 2013 Federated Conference on Computer Science and Informa-
tion Systems, pages 541–548, Sep. 2013.

[get] Getty vocabularies. https://www.getty.edu/research/tools/
vocabularies/index.html.

[GG20] H. Gao and G. Geng. Classification of 3D Terracotta Warrior Fragments Based
on Deep Learning and Template Guidance. IEEE Access, 8:4086–4098, 2020.

[GLSW35] Einar Gjerstad, John Lindros, Erik Sjöqvist, and Alfred Westholm. The Swedish
Cyprus Expedition: Finds and results of the excavations in Cyprus 1927-1931.
Cambridge University Press, 1935.

148

https://cordis.europa.eu/project/id/214993
https://cordis.europa.eu/project/id/214993
http://www.sciencedirect.com/science/article/pii/S1532046413000798
http://www.sciencedirect.com/science/article/pii/S1532046413000798
https://www.getty.edu/research/tools/vocabularies/index.html
https://www.getty.edu/research/tools/vocabularies/index.html

[GPCP13] Francisco González Garcı́a, Teresa Paradinas, Narcı́s Coll, and Gustavo Patow.
*Cages:: A Multilevel, Multi-cage-based System for Mesh Deformation. ACM
Transaction on Graphics, 32(3):24:1–24:13, July 2013.

[gra] Gravity Sketch. https://www.gravitysketch.com/.

[GSP+14] Robert Gregor, Ivan Sipiran, Georgios Papaioannou, Tobias Schreck, Anthousis
Andreadis, and Pavlos Mavridis. Towards Automated 3D Reconstruction of De-
fective Cultural Heritage Objects. In Reinhard Klein and Pedro Santos, editors,
Eurographics Workshop on Graphics and Cultural Heritage. The Eurographics
Association, 2014.

[Han06] Andrew J. Hanson. Visualizing Quaternions. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2006.

[Hej04] J. Hejl. Hardware skinning with quaternions. Game Programming Gems,
4:487–495, 2004.

[HF06] Kai Hormann and Michael S. Floater. Mean value coordinates for arbitrary planar
polygons. ACM Trans. Graph., 25(4):1424–1441, October 2006.

[HF07] Sven Havemann and Dieter W. Fellner. Seven Research Challenges of General-
ized 3D Documents. IEEE Computer Graphics and Applications, 27(3):70–76,
2007.

[HHK92] William M. Hsu, John F. Hughes, and Henry Kaufman. Direct manipulation
of free-form deformations. SIGGRAPH Comput. Graph., 26(2):177–184, July
1992.

[HM09] Tobias Heimann and Hans-Peter Meinzer. Statistical shape models for 3D med-
ical image segmentation: A review. Medical Image Analysis, 13(4):543 – 563,
2009.

[HMVG09] Simon Haegler, Pascal Müller, and Luc Van Gool. Procedural Modeling for
Digital Cultural Heritage. Journal on Image and Video Processing, 2009:7:4–
7:4, February 2009.

[HS08] K. Hormann and N. Sukumar. Maximum entropy coordinates for arbitrary poly-
topes. Computer Graphics Forum, 27(5):1513–1520, 2008.

[IMH05] Takeo Igarashi, Tomer Moscovich, and John F. Hughes. As-rigid-as-possible
shape manipulation. ACM Transaction on Graphics, 24(3):1134–1141, July
2005.

149

https://www.gravitysketch.com/

[Ive68] Erik Iversen. Diodorus’ account of the egyptian canon. The Journal of Egyptian
Archaeology, 54:215–218, 1968.

[JBPS11] Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. Bounded Bi-
harmonic Weights for Real-time Deformation. ACM Transaction on Graphics,
30(4):78:1–78:8, July 2011.

[JC18] Poonsiri Jailungka and Siam Charoenseang. Intuitive 3D model prototyping
with leap motion and microsoft hololens. In Masaaki Kurosu, editor, Human-
Computer Interaction. Interaction Technologies, pages 269–284, Cham, 2018.
Springer International Publishing.

[JDKL14] Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP Lewis. Skinning: Real-
time shape deformation. In ACM SIGGRAPH 2014 Courses, 2014.

[JMD+07] Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. Har-
monic Coordinates for Character Articulation. In ACM SIGGRAPH 2007 Papers,
SIGGRAPH ’07, 2007.

[JPR00] JungHyun Han, M. Pratt, and W. C. Regli. Manufacturing feature recognition
from solid models: a status report. IEEE Transactions on Robotics and Automa-
tion, 16(6):782–796, 2000.

[JSW05] Tao Ju, Scott Schaefer, and Joe Warren. Mean Value Coordinates for Closed
Triangular Meshes. ACM Transaction on Graphics, 24(3):561–566, July 2005.

[JZvdP+08] Tao Ju, Qian-Yi Zhou, Michiel van de Panne, Daniel Cohen-Or, and Ulrich
Neumann. Reusable Skinning Templates Using Cage-based Deformations. In
ACM SIGGRAPH Asia 2008 Papers, SIGGRAPH Asia ’08, pages 122:1–122:10.
ACM, 2008.

[KC15] Sung-Ho Kim and Kyung-Yong Chung. Medical Information Service
System Based on Human 3D Anatomical Model. Multimedia Tools
Appl., 74(20):8939–8950, October 2015. https://doi.org/10.1007/
s11042-013-1584-8.

[KCGF14] Vladimir G. Kim, Siddhartha Chaudhuri, Leonidas Guibas, and Thomas
Funkhouser. Shape2Pose: Human-centric Shape Analysis. ACM Transaction
on Graphics, 33(4):120:1–120:12, July 2014.

[KCvO07] Ladislav Kavan, Steven Collins, Jiřı́ Žára, and Carol O’Sullivan. Skinning with
dual quaternions. In Proceedings of the 2007 Symposium on Interactive 3D
Graphics and Games, I3D ’07, page 39–46, New York, NY, USA, 2007. As-
sociation for Computing Machinery.

150

https://doi.org/10.1007/s11042-013-1584-8
https://doi.org/10.1007/s11042-013-1584-8

[KCvO08] Ladislav Kavan, Steven Collins, Jiřı́ Žára, and Carol O’Sullivan. Geometric Skin-
ning with Approximate Dual Quaternion Blending. ACM Transaction on Graph-
ics, 27(4):105:1–105:23, November 2008.

[KLM+13] Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha Chaudhuri, Stephen
DiVerdi, and Thomas Funkhouser. Learning Part-Based Templates from Large
Collections of 3D Shapes. ACM Trans. Graph., 32(4), July 2013.

[KS12] Ladislav Kavan and Olga Sorkine. Elasticity-inspired deformers for character
articulation. ACM Trans. Graph., 31(6), November 2012.

[KSKL13] Sebastian Kurtek, Anuj Srivastava, Eric Klassen, and Hamid Laga. Landmark-
guided elastic shape analysis of spherically-parameterized surfaces. Computer
Graphics Forum, 32(2pt4):429–438, 2013. https://onlinelibrary.
wiley.com/doi/abs/10.1111/cgf.12063.

[Kv05] Ladislav Kavan and Jiřı́ Žára. Spherical blend skinning: A real-time deformation
of articulated models. In Proceedings of the 2005 Symposium on Interactive 3D
Graphics and Games, I3D ’05, page 9–16, New York, NY, USA, 2005. Associa-
tion for Computing Machinery.

[Las20] Lasso selection, 2020. https://helpx.adobe.com/photoshop/
using/selecting-lasso-tools.html.

[LBB19] Nikolas Lamb, Sean Banerjee, and Natasha Kholgade Banerjee. Automated Re-
construction of Smoothly Joining 3D Printed Restorations to Fix Broken Objects.
In Proceedings of the ACM Symposium on Computational Fabrication, SCF ’19,
New York, NY, USA, 2019. Association for Computing Machinery.

[LBGM19] Katia Lupinetti, Brigida Bonino, Franca Giannini, and Marina Monti. Exploring
the benefits of the virtual reality technologies for assembly retrieval applications.
In Lucio Tommaso De Paolis and Patrick Bourdot, editors, Augmented Reality,
Virtual Reality, and Computer Graphics, pages 43–59, Cham, 2019. Springer
International Publishing.

[LCF00] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: A uni-
fied approach to shape interpolation and skeleton-driven deformation. In Pro-
ceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’00, page 165–172, USA, 2000. ACM Press/Addison-
Wesley Publishing Co.

[LD17] Binh Huy Le and Zhigang Deng. Interactive Cage Generation for Mesh Defor-
mation. In Proceedings of the 21st ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, I3D ’17, pages 3:1–3:9. ACM, 2017.

151

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12063
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12063
https://helpx.adobe.com/photoshop/using/selecting-lasso-tools.html
https://helpx.adobe.com/photoshop/using/selecting-lasso-tools.html

[LGJ+17] Z. Li, F. Giannini, J.P. Pernot, P. Véron, and B. Falcidieno. Reusing
heterogeneous data for the conceptual design of shapes in virtual environ-
ments. Virtual Reality, 21:127 – 144, 2017. https://doi.org/10.1007/
s10055-016-0302-z.

[LHT+19] Yang LI, Jin HUANG, Feng TIAN, Hong-An WANG, and Guo-Zhong DAI. Ges-
ture interaction in virtual reality. Virtual Reality & Intelligent Hardware, 1(1):84
– 112, 2019. http://www.sciencedirect.com/science/article/
pii/S2096579619300075.

[Lin68] Aristid Lindenmayer. Mathematical models for cellular interactions in devel-
opment ii. simple and branching filaments with two-sided inputs. Journal of
Theoretical Biology, 18(3):300 – 315, 1968.

[LK84] S. Lien and J. T. Kajiya. A symbolic method for calculating the integral properties
of arbitrary nonconvex polyhedra. IEEE Computer Graphics and Applications,
4(10):35–42, 1984.

[LKCOL07] Yaron Lipman, Johannes Kopf, Daniel Cohen-Or, and David Levin. GPU-
assisted Positive Mean Value Coordinates for Mesh Deformations. In Alexander
Belyaev and Michael Garland, editors, Geometry Processing. The Eurographics
Association, 2007.

[LLCO08] Yaron Lipman, David Levin, and Daniel Cohen-Or. Green Coordinates. ACM
Transaction on Graphics, 27(3):78:1–78:10, August 2008.

[LMS13] Hamid Laga, Michela Mortara, and Michela Spagnuolo. Geometry and Con-
text for Semantic Correspondences and Functionality Recognition in Man-made
3D Shapes. ACM Transaction on Graphics, 32(5):150:1–150:16, October 2013.
http://doi.acm.org/10.1145/2516971.2516975.

[LPC+00] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller,
Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg,
Jonathan Shade, and Duane Fulk. The Digital Michelangelo Project: 3D Scan-
ning of Large Statues. In Proceedings of the 27th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’00, page 131–144,
USA, 2000. ACM Press/Addison-Wesley Publishing Co. https://doi.
org/10.1145/344779.344849.

[M2̈7] Augustus Ferdinand Möbius. Der barycentrische Calcul: ein neues Hülfsmittel
zur analytischen Behandlung der Geometrie. Barth, Johann Ambrosius, 1827.

[Mac67] J. Macqueen. Some methods for classification and analysis of multivariate ob-
servations. In In 5-th Berkeley Symposium on Mathematical Statistics and Prob-
ability, pages 281–297, 1967.

152

https://doi.org/10.1007/s10055-016-0302-z
https://doi.org/10.1007/s10055-016-0302-z
http://www.sciencedirect.com/science/article/pii/S2096579619300075
http://www.sciencedirect.com/science/article/pii/S2096579619300075
http://doi.acm.org/10.1145/2516971.2516975
https://doi.org/10.1145/344779.344849
https://doi.org/10.1145/344779.344849

[mak17] MakeVR Pro, 2017. https://www.viveport.com/
9e94a10f-51d9-4b6f-92e4-6e4fe9383fe9.

[May20] Autodesk Maya, 2020. https://www.autodesk.it/products/maya.

[MBLD02] Mark Meyer, Alan Barr, Haeyoung Lee, and Mathieu Desbrun. Generalized
barycentric coordinates on irregular polygons. J. Graph. Tools, 7(1):13–22,
November 2002.

[MCG+19] D. Mendes, F. M. Caputo, A. Giachetti, A. Ferreira, and J. Jorge. A sur-
vey on 3D virtual object manipulation: From the desktop to immersive virtual
environments. Computers & Graphics Forum, 38:21 – 45, 2019. https:
//onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13390.

[MGY+19] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy J. Mitra, and
Leonidas J. Guibas. StructureNet: Hierarchical Graph Networks for 3D Shape
Generation. ACM Transaction on Graphics, 38(6), November 2019.

[min15] MindeskVR, 2015. https://mindeskvr.com/.

[Mit08] Mitsuhashi, Nobutaka and Fujieda, Kaori and Tamura, Takuro and Kawamoto,
Shoko and Takagi, Toshihisa and Okubo, Kousaku. BodyParts3D: 3D structure
database for anatomical concepts. Nucleic Acids Research, 37(suppl 1):D782–
D785, 10 2008. https://doi.org/10.1093/nar/gkn613.

[MJBF02] Tim Milliron, Robert J. Jensen, Ronen Barzel, and Adam Finkelstein. A frame-
work for geometric warps and deformations. ACM Trans. Graph., 21(1):20–51,
January 2002.

[MLS11] Josiah Manson, Kuiyu Li, and Scott Schaefer. Positive gordon–wixom coordi-
nates. Computer-Aided Design, 43(11):1422 – 1426, 2011. Solid and Physical
Modeling 2011.

[MMG06] Bruce Merry, Patrick Marais, and James Gain. Animation space: A truly lin-
ear framework for character animation. ACM Trans. Graph., 25(4):1400–1423,
October 2006.

[Mor78] Piero Morselli. The Proportions of Ghiberti’s Saint Stephen: Vitruvius’s De
Architectura and Alberti’s De Statua. The Art Bulletin, 60(2):235–241, 1978.

[MPS+04] M. Mortara, G. Patane, M. Spagnuolo, B. Falcidieno, and J. Rossignac. Plumber:
A Multi-scale Decomposition of 3D Shapes into Tubular Primitives and Bodies.
In Gershon Elber, Nicholas Patrikalakis, and Pere Brunet, editors, Solid Model-
ing. The Eurographics Association, 2004.

153

https://www.viveport.com/9e94a10f-51d9-4b6f-92e4-6e4fe9383fe9
https://www.viveport.com/9e94a10f-51d9-4b6f-92e4-6e4fe9383fe9
https://www.autodesk.it/products/maya
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13390
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13390
https://mindeskvr.com/
https://doi.org/10.1093/nar/gkn613

[MRS09] Manuel Möller, Sven Regel, and Michael Sintek. RadSem: Semantic Annota-
tion and Retrieval for Medical Images. In Lora Aroyo, Paolo Traverso, Fabio
Ciravegna, Philipp Cimiano, Tom Heath, Eero Hyvönen, Riichiro Mizoguchi,
Eyal Oren, Marta Sabou, and Elena Simperl, editors, The Semantic Web: Re-
search and Applications, pages 21–35, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[MTLT89] N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. Joint-dependent lo-
cal deformations for hand animation and object grasping. In Proceedings on
Graphics Interface ’88, page 26–33, CAN, 1989. Canadian Information Process-
ing Society.

[MVL+11] Tommaso Mansi, Ingmar Voigt, Benedetta Leonardi, Xavier Pennec, Stanley
Durrleman, Maxime Sermesant, Hervé Delingette, Andrew M. Taylor, Younes
Boudjemline, Giacomo Pongiglione, and Nicholas Ayache. A Statistical Model
for Quantification and Prediction of Cardiac Remodelling: Application to Tetral-
ogy of Fallot. IEEE Transactions on Medical Imaging, 2011.

[MWH+06] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.
Procedural modeling of buildings. ACM Trans. Graph., 25(3):614–623, July
2006.

[NFN00] Jun-yong Noh, Douglas Fidaleo, and Ulrich Neumann. Animated Deformations
with Radial Basis Functions. In Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, VRST ’00, pages 166–174, New York, NY,
USA, 2000. ACM.

[NM82] Badler Ni and Morris Ma. Modelling flexible articulated objects. In Proc. Com-
puter Graphics’ 82, Online Conference, pages 305–314, 1982.

[NS13] Jesús R. Nieto and Antonio Susı́n. Cage Based Deformations: A Survey. In
Manuel González Hidalgo, Arnau Mir Torres, and Javier Varona Gómez, edi-
tors, Deformation Models: Tracking, Animation and Applications, pages 75–99.
Springer Netherlands, Dordrecht, 2013.

[OBP+13] A. Cengiz Öztireli, Ilya Baran, Tiberiu Popa, Boris Dalstein, Robert W. Sum-
ner, and Markus Gross. Differential blending for expressive sketch-based pos-
ing. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, SCA ’13, page 155–164, New York, NY, USA, 2013. As-
sociation for Computing Machinery.

[ocu] Oculus Medium. https://www.oculus.com/medium/.

154

https://www.oculus.com/medium/

[OFBW07] De Troyer O., Kleinermann F., Pellens B., and Bille W. Conceptual modeling
for virtual reality. In ER ’07: Tutorials, posters, panels and industrial con-
tributions at the 26th international conference on Conceptual modelling, Dar-
linghurst, Australia, pages 3–185, Cham, 2007. Australian Computer Society,
Inc.

[PB10] Susan Pollock and R Bernbeck. An archaeology of categorization and categories
in archaeology. Paléorient, 36(1):37–47, 2010.

[PCDS20] F. Ponchio, M. Callieri, M. Dellepiane, and R. Scopigno. Effective Annotations
Over 3D Models. Computer Graphics Forum, 39(1):89–105, 2020.

[PCM+14] Raphael Prevost, Rémi Cuingnet, Benoit Mory, Laurent D. Cohen, and Roberto
Ardon. Tagged template deformation. In Polina Golland, Nobuhiko Hata, Chris-
tian Barillot, Joachim Hornegger, and Robert Howe, editors, Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2014, pages 674–
681, Cham, 2014. Springer International Publishing.

[PF19] Laurent Perron and Vincent Furnon. Google OR-Tools. https://
developers.google.com/optimization/, 2019.

[PFGL08] J.-P. Pernot, B. Falcidieno, F. Giannini, and J.-C. Léon. Incorporating free-
form features in aesthetic and engineering product design: State-of-the-art report.
Computers in Industry, 59(6):626 – 637, 2008.

[PFW+03] Pin-Chou Liu, Fu-Che Wu, Wan-Chun Ma, Rung-Huei Liang, and Ming Ouhy-
oung. Automatic animation skeleton using repulsive force field. In 11th Pacific
Conference on Computer Graphics and Applications, 2003. Proceedings., pages
409–413, 2003.

[PGDF+20] Gaia Pavoni, Francesca Giuliani, Anna De Falco, Massimiliano Corsini, Federico
Ponchio, Marco Callieri, and Paolo Cignoni. Another brick in the wall: Improv-
ing the assisted semantic segmentation of masonry walls. In Eurographics Work-
shop on Graphics and Cultural Heritage. The Eurographics Association, 2020.
http://vcg.isti.cnr.it/Publications/2020/PGDCPCC20.

[PM01] Yoav I. H. Parish and Pascal Müller. Procedural modeling of cities. In Pro-
ceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’01, page 301–308, New York, NY, USA, 2001. Asso-
ciation for Computing Machinery.

[PSA+17] Georgios Papaioannou, Tobias Schreck, Anthousis Andreadis, Pavlos Mavridis,
Robert Gregor, Ivan Sipiran, and Konstantinos Vardis. From reassembly to object
completion: A complete systems pipeline. J. Comput. Cult. Herit., 10(2), March
2017.

155

https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://vcg.isti.cnr.it/Publications/2020/PGDCPCC20

[PW12] Ewdoksia Papuci-Wladyka. Corpus Vasorum Antiquorum, Poland, Fascicule 11:
Cracow Fascicule 1. Jagiellonian University Institute of Archaeology 1, Jagiel-
lonian University Museum, Polish Academy of Arts and Sciences, 2012.

[PWM+16] Stephen C. Phillips, Paul W. Walland, Stefano Modafferi, Leo Dorst, Michela
Spagnuolo, Chiara Eva Catalano, Dominic Oldman, Ayellet Tal, Ilan Shimshoni,
and Sorin Hermon. GRAVITATE: Geometric and Semantic Matching for Cul-
tural Heritage Artefacts. In Eurographics Workshop on Graphics and Cultural
Heritage. The Eurographics Association, 2016.

[QSO+12] John Qualter, Frank Sculli, Aaron Oliker, Zachary Napier, Sabrina Lee, Julio
Garcia, Sally Frenkel, Victoria Harnik, and Marc M. Triola. The BioDigital
Human: A Web-based 3D Platform for Medical Visualization and Education.
Studies in health technology and informatics, 173:359–61, 2012.

[RAAA19] Daniel L. Rubin, Mete Ugur Akdogan, Cavit Altindag, and Emel Alkim. ePAD:
An Image Annotation and Analysis Platform for Quantitative Imaging. Tomog-
raphy, 5(1):170 – 183, 2019.

[RASF07] Francesco Robbiano, Marco Attene, Michela Spagnuolo, and Bianca Falcidieno.
Part-Based Annotation of Virtual 3D Shapes. In Proceedings of the 2007 Inter-
national Conference on Cyberworlds, CW ’07, pages 427–436, Washington, DC,
USA, 2007. IEEE Computer Society.

[RF17] Nadine Abu Rumman and Marco Fratarcangeli. Skin Deformation Methods for
Interactive Character Animation. In José Braz, Nadia Magnenat-Thalmann, Paul
Richard, Lars Linsen, Alexandru Telea, Sebastiano Battiato, and Francisco Imai,
editors, Computer Vision, Imaging and Computer Graphics Theory and Applica-
tions, pages 153–174, Cham, 2017. Springer International Publishing.

[RM08] Cornelius Rosse and José L. V. Mejino. The Foundational Model of Anatomy
Ontology, pages 59–117. Springer London, London, 2008. https://doi.
org/10.1007/978-1-84628-885-2_4.

[Rob90] Gay Robins. Proportions of Standing Figures in the North-West Palace of
Aššurnas.irpal II at Nimrud. Iraq, 52:107–119, 1990.

[Rob94] Gay Robins. Proportion and style in ancient Egyptian art. Ann S. Fowler, 1994.

[Rou60] Irving Rouse. The classification of artifacts in archaeology. American Antiquity,
25(3):313–323, 1960.

[RST+07] Kumar T. Rajamani, Martin A. Styner, Haydar Talib, Guoyan Zheng, Lutz P.
Nolte, and Miguel A. González Ballester. Statistical deformable bone models

156

https://doi.org/10.1007/978-1-84628-885-2_4
https://doi.org/10.1007/978-1-84628-885-2_4

for robust 3D surface extrapolation from sparse data. Medical Image Analysis,
11(2):99 – 109, 2007. http://www.sciencedirect.com/science/
article/pii/S136184150600034X.

[SA07] Olga Sorkine and Marc Alexa. As-rigid-as-possible Surface Modeling. In Pro-
ceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP
’07, pages 109–116, 2007.

[SB85] Scott N. Steketee and Norman I. Badler. Parametric keyframe interpolation incor-
porating kinetic adjustment and phrasing control. SIGGRAPH Comput. Graph.,
19(3):255–262, July 1985.

[Sca20] Andreas Scalas. Semantics-aware modelling framework, 2020. https://
github.com/andreasscalas/SemanticModellingFramework.
git.

[scu] Leap Sculpturing. https://gallery.leapmotion.com/
sculpting/.

[SF98] Karan Singh and Eugene Fiume. Wires: A geometric deformation technique. In
Proceedings of the 25th Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’98, page 405–414, New York, NY, USA, 1998.
Association for Computing Machinery.

[SG71] G. Stiny and J. Gips. Shape grammars and the generative specification of painting
and sculpture. In IFIP Congress, 1971.

[SKA+16] Weiqi Shi, Eleni Kotoula, Kiraz Akoglu, Ying Yang, and Holly Rushmeier.
CHER-Ob: A Tool for Shared Analysis in Cultural Heritage. In Chiara Eva
Catalano and Livio De Luca, editors, Eurographics Workshop on Graphics and
Cultural Heritage. The Eurographics Association, 2016.

[SKDP13] Dirk Smeets, Johannes Keustermans, Vandermeulen Dirk, and Suetens Paul.
meshSIFT: Local surface features for 3D face recognition under expression vari-
ations and partial data. Computer Vision and Image Understanding, 117(2):158
– 169, 2013.

[SKR+06] Carsten Stoll, Zachi Karni, Christian Rössl, Hitoshi Yamauchi, and Hans-Peter
Seidel. Template Deformation for Point Cloud Fitting. In Mario Botsch, Baoquan
Chen, Mark Pauly, and Matthias Zwicker, editors, Symposium on Point-Based
Graphics. The Eurographics Association, 2006.

[SKU15] Christoph Schinko, Ulrich Krispel, and Torsten Ullrich. Built by algorithms -
state of the art report on procedural modeling. In 3D-Arch 2015 – 3D Virtual Re-
construction and Visualization of Complex Architectures, pages 469–479, 2015.

157

http://www.sciencedirect.com/science/article/pii/S136184150600034X
http://www.sciencedirect.com/science/article/pii/S136184150600034X
https://github.com/andreasscalas/SemanticModellingFramework.git
https://github.com/andreasscalas/SemanticModellingFramework.git
https://github.com/andreasscalas/SemanticModellingFramework.git
https://gallery.leapmotion.com/sculpting/
https://gallery.leapmotion.com/sculpting/

[SM95] J.J. Shah and M. Mäntylä. Parametric and Feature-Based CAD/CAM: Concepts,
Techniques, and Applications. A Wiley-Interscience publication. Wiley, 1995.

[SMKF04] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The Princeton Shape Bench-
mark. In Proceedings of the Shape Modeling International 2004, SMI ’04, page
167–178, USA, 2004. IEEE Computer Society.

[SMS17] Andreas Scalas, Michela Mortara, and Michela Spagnuolo. 3D Annotation
Transfer. In Tobias Schreck, Tim Weyrich, Robert Sablatnig, and Benjamin Stu-
lar, editors, Eurographics Workshop on Graphics and Cultural Heritage. The
Eurographics Association, 2017.

[SMS20] Andreas Scalas, Michela Mortara, and Michela Spagnuolo. A pipeline for the
preparation of artefacts that provides annotations persistence. Journal of Cultural
Heritage, 41:113 – 124, 2020.

[SMVS18] Andreas Scalas, Michela Mortara, Valentina Vassallo, and Michela Spagnuolo.
Geometric and topological tools for quantitative analysis in archaeology: the
Ayia Irini case study, 2018. Poster presented at Shape Modeling International
2018.

[SP86] Thomas W. Sederberg and Scott R. Parry. Free-Form Deformation of Solid Ge-
ometric Models. In Proceedings of the 13th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’86, page 151–160, New
York, NY, USA, 1986. Association for Computing Machinery.

[Spa16] Michela Spagnuolo. Shape 4.0: 3D Shape Modeling and Processing Using Se-
mantics. IEEE Computer Graphics and Applications, 36(1):92–96, 2016.

[STA03] The Stanford 3D Scanning Repository. http://graphics.stanford.
edu/data/3Dscanrep/, 2003.

[Sti08] Matthew Stiff. Cultural Heritage Protection Handbook n.3: Documentation of
artefacts’ collections. UNESCO, 2008.

[STLL13] F. Soler, J. C. Torres, A. J. León, and M. V. Luzón. Design of Cultural Her-
itage Information Systems Based on Information Layers. J. Comput. Cult.
Herit., 6(4):15:1–15:17, December 2013. http://doi.acm.org/10.
1145/2532630.2532631.

[SVJ15] Leonardo Sacht, Etienne Vouga, and Alec Jacobson. Nested Cages. ACM Trans.
Graph., 34(6):170:1–170:14, October 2015.

158

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://doi.acm.org/10.1145/2532630.2532631
http://doi.acm.org/10.1145/2532630.2532631

[SVM+18] Andreas Scalas, Valentina Vassallo, Michela Mortara, Michela Spagnuolo, and
Sorin Hermon. Shape analysis techniques for the Ayia Irini case study. In Euro-
graphics Workshop on Graphics and Cultural Heritage, 2018.

[SVM+19] Andreas Scalas, Valentina Vassallo, Michela Mortara, Michela Spagnuolo, and
Sorin Hermon. An Automatic Approach for the Classification of Ancient Clay
Statuettes Based on Heads Features Recognition. In Selma Rizvic and Karina
Rodriguez Echavarria, editors, Eurographics Workshop on Graphics and Cul-
tural Heritage. The Eurographics Association, 2019.

[SWZ14] Nazli Sarkalkan, Harrie Weinans, and Amir A. Zadpoor. Statistical shape and
appearance models of bones. Bone, 60:129 – 140, 2014.

[SZG+20] Andreas Scalas, Yuanju Zhu, Franca Giannini, Ruding Lou, Katia Lupinetti, Ma-
rina Monti, Michela Mortara, and Michela Spagnuolo. A First Step Towards
Cage-based Deformation in Virtual Reality. In Silvia Biasotti, Ruggero Pintus,
and Stefano Berretti, editors, Smart Tools and Apps for Graphics - Eurographics
Italian Chapter Conference. The Eurographics Association, 2020.

[TCL+13] G. K. L. Tam, Z. Cheng, Y. Lai, F. C. Langbein, Y. Liu, D. Marshall, R. R. Martin,
X. Sun, and P. L. Rosin. Registration of 3D Point Clouds and Meshes: A Sur-
vey from Rigid to Nonrigid. IEEE Transactions on Visualization and Computer
Graphics, 19(7):1199–1217, 2013.

[TDS+16] Andrea Tagliasacchi, Thomas Delame, Michela Spagnuolo, Nina Amenta, and
Alexandru Telea. 3D Skeletons: A State-of-the-Art Report. Computer Graphics
Forum, 35(2):573–597, 2016.

[TDZ19] Jiong Tao, Bailin Deng, and Juyong Zhang. A fast numerical solver for local
barycentric coordinates. Computer Aided Geometric Design, 70:46 – 58, 2019.

[Tob75] Richard Tobin. The Canon of Polykleitos. American Journal of Archaeology,
79(4):307–321, 1975.

[Ume91] S. Umeyama. Least-squares estimation of transformation parameters between
two point patterns. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 13(4):376–380, 1991.

[Vas16] Valentina Vassallo. A 3D Digital Approach to Study, Analyse and (Re)Interpret
Cultural Heritage : the Case Study of Ayia Irini (Cyprus and Sweden). In Ste-
fano Campana, Roberto Scopigno, Gabriella Carpentiero, and Marianna Cirillo,
editors, CAA2015, volume 229, pages 227–232. Archaeopress, 2016.

159

[Vas17] Valentina Vassallo. The archaeological collection of Ayia Irini (Cyprus) : A 3D
digital approach to analyse and reinterpret a 20th century study, pages 203–216.
Artemide Edizioni, 2017.

[VGH] V. Vassallo, S. Gasanova, and S. Hermon. Terracotta Small Figurines from Ayia
Irini (Cyprus): Identification of the Production Patterns through the integration
of 3D geometry and materials properties analysis. unpublished.

[VJD+11] R. C. Veltkamp, S. van Jole, H. Drira, B. Ben Amor, M. Daoudi, H. Li, L. Chen,
P. Claes, D. Smeets, J. Hermans, D. Vandermeulen, and P. Suetens. SHREC ’11
Track: 3D Face Models Retrieval. In H. Laga, T. Schreck, A. Ferreira, A. Godil,
I. Pratikakis, and R. Veltkamp, editors, Eurographics Workshop on 3D Object
Retrieval. The Eurographics Association, 2011.

[VR15] Vinayak and Karthik Ramani. A gesture-free geometric approach for mid-air
expression of design intent in 3D virtual pottery. Computer-Aided Design, 69:11
– 24, 2015. http://www.sciencedirect.com/science/article/
pii/S001044851500086X.

[WAB+20] Stephan Wenninger, Jascha Achenbach, Andrea Bartl, Marc Erich Latoschik, and
Mario Botsch. Realistic virtual humans from smartphone videos. In 26th ACM
Symposium on Virtual Reality Software and Technology, VRST ’20, New York,
NY, USA, 2020. Association for Computing Machinery.

[Wei00] Judith Weingarten. Reading the Minoan Body: Proportions and the Palaikastro
Kouros. British School at Athens Studies, 6:103–111, 2000.

[WH19] Chaoran Wang and Michael Hann. A Study of Terracotta Warrior Proportions
Based on Grid Division. In Proceedings of the International Association of So-
cieties of Design Research Conference, 2019.

[Wik20a] Wikipedia contributors. Artistic canons of body proportions — Wikipedia,
the free encyclopedia. https://en.wikipedia.org/w/index.
php?title=Artistic_canons_of_body_proportions&oldid=
990623149, 2020. [Online; accessed 8-December-2020].

[Wik20b] Wikipedia contributors. Shahr-e sukhteh — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=
Shahr-e_Sukhteh&oldid=993847600, 2020. [Online; accessed 26-
December-2020].

[Wik21] Wikipedia contributors. L-system — Wikipedia, The Free Encyclopedia, 2021.
[Online; accessed 9-March-2021].

160

http://www.sciencedirect.com/science/article/pii/S001044851500086X
http://www.sciencedirect.com/science/article/pii/S001044851500086X
https://en.wikipedia.org/w/index.php?title=Artistic_canons_of_body_proportions&oldid=990623149
https://en.wikipedia.org/w/index.php?title=Artistic_canons_of_body_proportions&oldid=990623149
https://en.wikipedia.org/w/index.php?title=Artistic_canons_of_body_proportions&oldid=990623149
https://en.wikipedia.org/w/index.php?title=Shahr-e_Sukhteh&oldid=993847600
https://en.wikipedia.org/w/index.php?title=Shahr-e_Sukhteh&oldid=993847600

[WP00] Lawson Wade and Richard E. Parent. Fast, Fully-Automated Generation of Con-
trol Skeletons for Use in Animation. In Proceedings of the Computer Animation,
CA ’00, pages 164–169, Washington, DC, USA, 2000. IEEE Computer Society.

[WP02a] Lawson Wade and Richard E. Parent. Automated generation of control skeletons
for use in animation. Vis. Comput., 18(2):97–110, April 2002.

[WP02b] Xiaohuan Corina Wang and Cary Phillips. Multi-weight enveloping: Least-
squares approximation techniques for skin animation. In Proceedings of the 2002
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’02,
page 129–138, New York, NY, USA, 2002. Association for Computing Machin-
ery.

[WTD14] Zhansong Wang, Ling Tian, and Wenrui Duan. Annotation and retrieval system
of CAD models based on functional semantics. Chinese Journal of Mechanical
Engineering, 27(6):1112–1124, November 2014.

[XLG09] Chuhua Xian, Hongwei Lin, and Shuming Gao. Automatic generation of coarse
bounding cages from dense meshes. 2009 IEEE International Conference on
Shape Modeling and Applications, SMI 2009, pages 21–27, 2009.

[XLG12] Chuhua Xian, Hongwei Lin, and Shuming Gao. Automatic Cage Generation by
Improved OBBs for Mesh Deformation. Visual Computer, 28(1):21–33, January
2012.

[XLX14] Chuhua Xian, Guiqing Li, and Yunhui Xiong. Efficient and effective cage
generation by region decomposition. Computer Animation and Virtual Worlds,
26(2):173–184, 2014.

[XZG13] Chuhua Xian, Tianming Zhang, and Shuming Gao. Semantic Cage Generation
for FE Mesh Editing. In Proceedings of the 2013 International Conference on
Computer-Aided Design and Computer Graphics, CADGRAPHICS ’13, pages
220–227, Washington, DC, USA, 2013. IEEE Computer Society.

[YCSZ13] Xiaosong Yang, Jian Chang, Richard Southern, and Jian J. Zhang. Automatic
Cage Construction for Retargeted Muscle Fitting. Visual Computing, 29(5):369–
380, May 2013.

[YGH13] Chih-Hao Yu, Tudor Groza, and Jane Hunter. Reasoning on Crowd-Sourced
Semantic Annotations to Facilitate Cataloguing of 3D Artefacts in the Cultural
Heritage Domain. In Harith Alani, Lalana Kagal, Achille Fokoue, Paul Groth,
Chris Biemann, Josiane Xavier Parreira, Lora Aroyo, Natasha Noy, Chris Welty,
and Krzysztof Janowicz, editors, The Semantic Web – ISWC 2013, pages 228–
243, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

161

[YRCA15] R. Yu, C. Russell, N. D. F. Campbell, and L. Agapito. Direct, Dense, and De-
formable: Template-Based Non-rigid 3D Reconstruction from RGB Video. In
2015 IEEE International Conference on Computer Vision (ICCV), pages 918–
926, 2015.

[YWLM11] Zhao Yin, Li Wei, Xin Li, and Mary Manhein. An automatic assembly and
completion framework for fragmented skulls. In 2011 International Conference
on Computer Vision, pages 2532–2539, Nov 2011.

[ZAC+17] Ran Zhang, Thomas Auzinger, Duygu Ceylan, Wilmot Li, and Bernd Bickel.
Functionality-Aware Retargeting of Mechanisms to 3D Shapes. ACM Trans.
Graph., 36(4), July 2017.

[ZDL+14] Juyong Zhang, Bailin Deng, Zishun Liu, Giuseppe Patané, Sofien Bouaziz, Kai
Hormann, and Ligang Liu. Local Barycentric Coordinates. ACM Trans. Graph.,
33(6):188:1–188:12, November 2014.

[Zha94] Z. Zhang. Iterative point matching for registration of free-form curves and sur-
faces. Int. J. Comput Vision, 13:119–152, 1994.

[ZJB+18] T Zogheib, R Jacobs, MM Bornstein, JO Agbaje, D Anumendem, Y Klazen, and
C. Politis. Comparison of 3D Scanning Versus 2D Photography for the Identifi-
cation of Facial Soft-Tissue Landmarks. Open Dentistry Journal, 2018.

162

	Chapter Introduction
	Template: meaning and examples
	Overview of the framework
	Contributions

	Chapter Representation and preservation of Semantics
	Annotation systems in application domains
	Cultural Heritage
	Medicine
	Engineering

	Formalisation of annotations
	Information
	Selection
	Attributes

	Relationships among annotations
	Annotation persistence
	Annotation Transfer
	Transfer results
	Transfer limitations

	Discussion

	Chapter Semantics enrichment through shape analysis
	The Ayia Irini case study
	Quantitative attributes identifying artisan expertise and production process
	Experiments and results
	Inferring fixed proportions

	Quantitative approach to the sub-grouping of artefacts based on moulds
	Similarity assessment
	Head clustering
	Experiments

	Limitations and Discussion

	Chapter From semantics to geometry through template deformation
	Review of surface deformation techniques
	Variational techniques
	Free-form deformation
	Skinning

	Constrained deformation
	The ShapeOp library for geometric constraints
	ShapeOp extension for cage-based deformation
	Low-level and high-level constraints

	Discussion

	Chapter Results and applications
	Operational workflow of the system
	Product Design scenario
	Same ``level'' constraint
	Structural ``continuity'' constraint
	Deformation in a VR environment

	Archaeological reconstruction scenario
	Interactive virtual archaeological reconstruction
	A constraint based on ``proportions''

	Discussion

	Chapter Discussion and future works
	Discussion
	Lack of a semantics-aware generation of cages
	Need for a ``semantic'' optimisation
	Work in progress

	Further Applications
	Investigation of biological species
	Generation of random shapes belonging to a same homogeneous class
	Classification of shapes based on non-rigid fitting

	Appendix Graphical User Interface
	Main window
	Annotation window
	Relationships window

	Appendix File formats
	Annotation file format
	Graph file format

	Bibliography

