
https://doi.org/10.1177/1545968320912756

Neurorehabilitation and
Neural Repair
2020, Vol. 34(5) 440 –449
© The Author(s) 2020
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/1545968320912756
journals.sagepub.com/home/nnr

Original Research Article

Introduction

People with Parkinson’s disease (PD) and freezing of gait 
(FOG+) are often referred by neurologists to engage in 
rehabilitation programs because of the increased fall risk 
associated with FOG.1,2 Yet, work to date does not allow 
drawing firm conclusions regarding training benefits in this 
patient cohort. As for effects on freezing severity, a recent 
meta-analysis suggested that nonspecific exercise was not 
effective to alleviate freezing, as assessed with self-reported 
questionnaires.3 An exercise program targeting a number of 
fall risk factors, that is, balance, leg strength, and FOG, also 

did not reduce fall risk or FOG, but improved balance, 
mobility scores, and fear of falling.4 Results of more recent 
work, investigating the effects of resistance versus balance 
training in FOG+, demonstrated no effects on balance out-
comes nor on FOG severity, irrespective of training arm.5 In 
contrast, an uncontrolled study showed that community-
based group exercise for FOG+ had positive effects on bal-
ance, gait, and FOG.6 When gait was the specific target for 
exercise, it was shown that FOG+ generally responded 
equally well to rehabilitation compared with FOG−, when 
testing interventions such as dual task gait training and cued 
gait training.7,8 However, other studies suggested that unlike 
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Abstract
Background. People with Parkinson’s disease and freezing of gait (FOG+) have more falls, postural instability and cognitive 
impairment compared with FOG−. Objective. To conduct a secondary analysis of the V-TIME study, a randomized, controlled 
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Interestingly, FOG itself was not helped by training, suggesting that although postural instability, falls and FOG are related, 
they may be controlled by different mechanisms.
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FOG−, FOG+ had compromised retention of motor learn-
ing, as applied to writing training and motor sequence 
learning.9,10 Repeated exposure to postural perturbations 
during one training session on a movable balance platform 
also showed overall less improvements in FOG+ than 
FOG−.11

The manifest cognitive decline and disease progression, 
which partly underlie FOG, may not only explain a higher 
fall risk but also contribute to an inability to have sustained 
benefits from training.12 This raises the question as to 
whether tackling both motor and cognitive functions rather 
than motor alone would be more beneficial for people with 
FOG versus those without.7,12,13

The V-TIME study, a large EU-funded international ran-
domized controlled trial (RCT) on fall prevention, showed 
a greater beneficial effect of treadmill training augmented 
by virtual reality (TT + VR) on fall risk compared with 
standard treadmill walking (TT) in fall-prone older people 
including subjects with PD.14 The V-TIME study was based 
on the very premise that combining motor-cognitive train-
ing would be better than just physical exercise to strengthen 
cognitive brain networks15 or the interplay between motor 
and cognitive circuitry.13 The VR-based intervention was 
also custom-made for older individuals and addressed a 
variety of cognitive challenges, such as executive and navi-
gation tasks.

The above considerations motivated us to conduct a sec-
ondary analysis of the V-TIME study, investigating whether 
training motor-cognitive domains together (TT + VR) is 
more beneficial to providing treadmill training only (TT) in 
FOG+ as opposed to FOG−. The main outcomes of inter-
est were balance and falls. We chose the Mini Balance 
Evaluation System Test (Mini-BEST) test as our primary 
outcome of this exploratory analysis. In previous work, we 
found that this multifaceted test of postural control discrimi-
nated between FOG+ and FOG−.16 We hypothesized that 
TT + VR, due to targeting motor and cognitive correlates of 
FOG synergistically, would lead to better or equal results in 
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FOG+ on the Mini-Best test and falls compared with FOG−. 
Given earlier findings on the lack of retention in FOG+, our 
second research question examined whether training gains 
were sustained over a period of 6 months in a similar way in 
both subgroups. Here, we expected that FOG+ would show 
reduced retention compared with FOG−. We also assumed 
that TT + VR would have a better effect on freezing severity 
compared with TT in the FOG+ subgroup alone. Indirectly, 
therefore, this study tested that if FOG, postural instability, 
and falls responded comparably to training (irrespective of 
training mode) that this would point to similar underlying 
neural substrates among these outcomes.

Methods

Study Design

This analysis was based on a subset of subjects who partici-
pated in the RCT titled “Virtual reality Treadmill combined 
Intervention to improve Mobility and reduce falls in the 
Elderly” (FP7 project V-TIME-278169). Five clinical part-
ners were involved from Israel (Tel Aviv Sourasky Medical 
Center), Belgium (Katholieke Universiteit Leuven), the 
United Kingdom (Newcastle University), Italy (University 
of Genoa), and the Netherlands (Radboud University 
Medical Center Nijmegen). Eligible subjects were assigned 
randomly to an intervention group consisting of treadmill 
training plus VR (TT + VR) or a control group entailing 
treadmill training alone VR (TT). Originally, the dataset 
consisted of 130 PD patients. The current subanalysis 
involved 121 patients with PD, as FOG scores from 9 
patients were unavailable. Patients were assessed 1 week 
before training, 1 week after the 6-week intervention, and 6 
months after training.

Participants

A total of 77 patients with FOG (FOG+) and 44 without 
FOG (FOG−) were included in this analysis. The FOG+ 
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group was defined based a score >1 on the New Freezing 
of Gait Questionnaire (NFOG-Q).17 Recruitment took place 
between January 2012 and January 2015. All participants 
provided written informed consent in accordance to the 
Declaration of Helsinki. The study was approved by ethics 
committees in each of the 5 clinical sites separately and reg-
istered under trial NCT01732653.

Participants were included if they were between 60 and 
90 years old, had been diagnosed based on the UK Brain 
Bank criteria, Hoehn and Yahr (H&Y) stage II or III, were 
on anti-Parkinsonian medication, were able to walk at least 
5 minutes without assistance, had adequate hearing and 
vision (as evaluated by the whisper test and Snellen test, 
respectively), and had experienced 2 or more falls in the 
previous 6 months (self-reported). Exclusion criteria com-
prised psychiatric comorbidity, clinical diagnosis of demen-
tia or other severe cognitive impairment (Mini-Mental State 
Examination [MMSE] score <24), history of stroke, trau-
matic brain injury or neurological disorders other than PD, 
rheumatic and orthopedic diseases, acute lower back or 
lower extremity pain, peripheral neuropathy, and an inabil-
ity to comply with the training.

Training

A detailed description of the intervention and the RCT find-
ings were published previously.14,18 In brief, participants 
exercised 3 times per week over a period of 6 weeks with 
each session lasting approximately 45 minutes in both train-
ing arms. Exercise programs were supervised by therapists 
(mean years of experience 5.2 ± 3.2 years, range 1-9 years), 
who were trained in the delivery methods prior to the first 
patient-in. Regular fidelity checks were performed across 
centers to ensure uniformity.18 Both arms received walking 
exercises on a treadmill, whereby gait speed and walking 
duration were progressively increased throughout the 
6-week intervention using predetermined levels and criteria 
for progression.18 In the beginning of each training week, 
over-ground gait speed was measured over 10 m. Based on 
this, treadmill speed was set at 80% of over-ground gait 
velocity in the first week. This was increased to 90% in the 
second week and was aimed to go up with 10% from the 
third week. Walking duration was also increased from 20 to 
45 minutes throughout the 6 weeks and a gradual reduction 
of handrail support was introduced until none was needed. 
As for the VR progression milestones, every week obstacle 
levels were increased in height and depth, visibility was 
reduced from daylight to darkness, distractors in the envi-
ronment were increased from calm to busy and navigation 
signposts were reduced from many to none to stimulate 
memory functions. Progression was, however, subject to 
participant’s performance and ability.18

The VR intervention was designed to tackle fall risk by 
training obstacle negotiation in a complex and interactive 

virtual environment. It included obstacles appearing at dif-
ferent sizes, frequencies and visibility, requiring step adjust-
ments in both height and length. In addition, the VR 
environment posed a cognitive load using a navigation task 
and by adding visual and auditory distractors, stimulating 
attention, executive function, dual-tasking, planning, and 
response selection. Visual and auditory feedback on perfor-
mance and results were provided during training and sum-
marized at the end of each session in both arms of the study. 
Details on the amount of visual and auditory feedback as 
derived from the VR intervention are described in previous 
studies.14,18 Training progression was modulated by gradu-
ally increasing the walking speed, duration, and difficulty 
levels in the VR environment.

Outcomes

Testing was conducted by blinded testers for group alloca-
tion, using standardized guidelines across centers. Training 
occurred in a separate room from testing to ensure that 
blinding was maintained. The trainer also delivered the 
intervention on an individual basis and at separate moments 
to avoid contamination between groups.

All assessments were performed when patients were in 
the on-medication state. Following the first medication 
anamnesis, test times were determined to allow testing in a 
stable on-period, which was standardized for subsequent 
tests. Testers also telephoned participants a day prior to 
each test to verify time of medication intake. For this analy-
sis, we focused on the Mini-BEST, as pathology in static 
and dynamic postural control likely underlies both FOG 
and fall risk. The validity and reliability for this scale in PD 
are well established.19,20 Other freezing-related outcomes 
were number of falls, assessed pretraining (by self-report of 
retrospective fall frequency) and at 6 months’ follow-up. 
During the 6 months after training, falls were recorded 
through a falls calendar, which was provided as a paper ver-
sion, web-based calendar or a smartphone application 
according to individual preference. Each fall was directly 
indicated on the calendar. FOG severity was assessed with 
the NFOG-Q.17

Secondary outcomes included executive function as 
assessed by the Trail Making Test part B (TMT-B). We 
chose this test for its psychometric properties21 and its 
ability to discriminate between FOG+ and FOG−.22 Other 
secondary outcomes included 2 tests of overall mobility 
(Short Physical Performance Battery[ SPPB], Four Square 
Step Test [FSST]), balance confidence (Falls Efficacy 
Scale–International [FES-I]), and daily activity (Physical 
Activity Scale for the Elderly [PASE]). Descriptor vari-
ables included age, gender, years of education, global cog-
nitive function using the MMSE and Montreal Cognitive 
Assessment (MoCA), and disease severity, assessed by 
Hoehn & Yahr (H&Y) staging, Unified Disease Parkinson’s 
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Disease Rating Scale motor part (III) (MDS-UPDRS-III) 
and disease duration.

Statistical Analyses

Statistical analysis was performed using IBM SPSS soft-
ware (version 22). Demographic characteristics were com-
pared between groups using independent t tests and 
chi-square statistics. Generalized linear mixed-effects mod-
els were used with Group (FOG+/FOG−), Training arm 
(TT/TT + VR), and Time (pre, post, 6 months’ follow-up) 
as fixed effects. We also used UPDRS-III as a continuous 
covariate to adjust for differences in disease severity, while 
avoiding colinearity. As this analysis was a secondary anal-
ysis, no a priori power analysis was carried out. All models 
controlled for within-subject differences by including par-
ticipants as random effects. Falls were examined using a 
negative binomial regression, with no exposure variable 
included. For all analyses, alpha was set at .05 and post hoc 
analyses were carried out using Bonferroni tests.

Results

Group demographics are presented in Table 1. Age, cogni-
tion, gender, and fall rates were similar in FOG+ and FOG− 
at baseline. The FOG+ group had worse disease profiles, 
as might be expected, shown by higher disease duration 
(P = .008), H&Y (P < .001), and UPDRS-III scores 
(P = .02). Furthermore, FOG+ had lower balance scores 
on the Mini-BEST (P = .044) and more fear of falling 
(P = .006).

The distribution of the 2 FOG groups differed between 
both training groups. Of the FOG+ group, 43 were in TT 
versus 34 in TT + VR. Of the FOG− group, 16 were 
included in TT and 28 in TT + VR. No differences were 
present between TT and TT+VR training arms at baseline. 
Within each FOG-subgroup, participants in the two training 
arms were well matched with regard to all baseline charac-
teristics (Table 1/Supplementary Material). Only within 
FOG−, disease duration was slightly longer in the VR com-
pared with those in the TT arm (P = .044).

Effect on Balance, Falls, and Freezing of Gait

An overview of these results is provided in Table 2 and pre-
sented in Figures 1 and 2. Overall, no 3-way interactions 
between, time, training modes, and FOG subgroups were 
found and most results indicated significant time effects 
only after controlling for disease severity. The primary out-
come, balance performance as evaluate by the Mini-BEST 
scores, improved in both groups immediately after training 
(P = .001), irrespective of training arm and subgroup. 
However, improvements were not retained at 6 months and 
declined in a similar fashion across subgroups and training 
arms.

A Training Arm × Time interaction (P = .027) did show 
a significantly greater reduction of falls in the TT + VR 
group in both FOG+ and FOG− as compared with the TT 
group (P = .008). Fall rates were significantly lower after 
6 months than at baseline in the VR group (5.39 [95% CI 4.09-
7.21]; P < .001), while this was not significantly differ-
ent in the TT group (11.95 [95% CI 8.76-16.31]; P = .099). 

Table 1. Demographic Characteristics of PD Groups and Training Arms.

Characteristic FOG+ (n = 77) FOG− (n = 44) Pa TT (n = 59) TT + VR (n = 62) Pa

Age, years 70.57 ± 6.04 71.66 ± 6.3 .351 70.86 ± 6.0 71.06 ± 6.3 .859
Education 13.22 ± 4.3 13.41 ± 4.8 .823 13.26 ± 4.4 13.32 ± 4.3 .936
Gender (male/female) 49/28 25/19 .459 37/22 37/25 .732
Disease duration, years 10.43 ± 6.7 7.25 ± 5.1 .008 9.55 ± 7.2 9.05 ± 5.5 .669
H&Y 2.58 ± 0.4 2.23 ± 0.4 <.001 2.49 ± 0.5 2.42 ± 0.5 .401
MMSE 28.22 ± 1.6 27.73 ± 1.6 .106 28.34 ± 1.5 27.76 ± 1.7 .047
NFOG-Q 15.87 ± 6.7 0.00 ± 0.0 <.001 11.69 ± 9.3 8.58 ± 9.3 .069
MoCA 24.01 ± 3.8 24.14 ± 4.4 .872 24.27 ± 3.5 23.85 ± 4.5 .572
UPDRS-III 31.83 ± 13.2 26.11 ± 12.2 .02 29.37 ± 13.2 30.11 ± 13.1 .757
Mini-BEST (/28) 20.44 ± 5.8 22.68 ± 5.9 .044 21.00 ± 6.1 21.50 ± 5.8 .643
FES-I 36.74 ± 11.7 30.65 ± 10.3 .006 36.39 ± 11.4 32.72 ± 11.7 .088
Falls 26.29 ± 65.1 16.20 ± 54.3 .387 26.44 ± 69.1 18.98 ± 53.3 .506
Group (TT/TT + VR) 

(FOG+/FOG−)
43/34 16/28 .039 16/43 28/34 .039

Abbreviations: FES-I, Falls Efficacy Scale–International; FOG+, patients with freezing of gait; FOG−, patients without freezing of gait; H&Y, Hoehn 
& Yahr; Mini-BEST, Mini Balance Evaluation System Test; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; NFOG-Q, 
New Freezing of Gait Questionnaire; PD, Parkinson’s disease; TT, treadmill training; TT + VR, treadmill training plus virtual reality; UPDRS-III, Unified 
Parkinson’s Disease Rating Scale motor part (III).
aBoldfaced P values indicate statistical significance (P < .05).
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Another main effect for fall rate was found for the FOG 
subgroup (P < .001), indicating that FOG+ had overall 
higher fall rates even after correcting for disease severity 
(slightly different from the baseline unadjusted fall rates in 
Table 1). When we analyzed the effects of training on FOG 
severity in FOG+ only, the NFOG-Q scores did not improve 
after both training modes. Additionally, FOG severity 
increased at 6 months compared with posttraining assess-
ment (P = .037) and got worse beyond baseline levels.

Effects on Other Outcomes

The results of training on the secondary outcomes are pre-
sented in Table 2. As above, no 3-way interactions between, 
time, training modes, and FOG subgroups were apparent. A 
significant effect of time was found for executive function 
(TMT-B scores) (P < .001), indicating that both groups 

benefited equally from both training modes. Overall 
mobility performance (SPPB scores) significantly improved 
immediately after training in both arms (P = .001), but 
improvements were not retained at 6 months (P = .030). 
Furthermore, SPPB scores were generally higher in the 
TT + VR group compared with the TT group (P = .026), 
but no interactions were found with time or subgroup. Fear 
of falling, as assessed with the FES-I, was overall higher in 
FOG+ (P = .004), but this was influenced neither by train-
ing (P = .388) nor by training mode (P = .178). No inter-
vention-related changes were found on other mobility 
measures, such as the FSST and PASE.

Discussion

This study investigated the effectiveness of treadmill train-
ing with (TT + VR) and without virtual reality (TT) on 

Table 2. Primary and Secondary Outcome Measures Pre- and Postintervention and at 6 Months’ Follow-up.a

TT TT + VR Contrast Estimate (95% CI) P (Time) P (Training Arm) P (FOG+/FOG−)

Mini-BEST .002 .407 .404
 Pretraining 21.27 21.62 0.333 (−1.564, 2.230)  
 Posttraining 22.26 23.51 1.258 (−0.697, 3.212)  
 6-month follow-up 21.76 22.37 0.616 (−1.586, 2.817)  
NFOG-Qb .036 .832 n.a.
 Pretraining 16.06 15.44 −0.623 (−3.876, 2.630)  
 Posttraining 14.89 15.75 0.852 (−2.419, 4.124)  
 6-month follow-up 16.87 17.64 0.776 (−2.574, 4.127)  
SPPB .001 .026 .214
 Pretraining 8.132 8.815 0.684 (−0.189, 1.556)  
 Posttraining 8.776 9.423 0.648 (−0.154, 1.449)  
 6-month follow-up 8.059 9.248 1.189 (0.310, 2.068)  
FSST .388 .829 .468
 Pretraining 14.85 13.91 −0.943 (−3.472, 1.586)  
 Posttraining 13.75 14.55 0.805 (−2.460, 4.069)  
 6-month follow-up 14.04 13.39 −0.653 (−3.254, 1.949)  
TMT-B <.001 .870 .195
 Pretraining 171.05 173.87 2.822 (−27.46, 33.103)  
 Posttraining 153.01 150.67 −2.335 (−29.192, 24.552)  
 6-month follow-up 158.44 164.3 6.088 (−23.146, 35.322)  
FES-I .388 .178 .004
 Pretraining 35.033 32.799 −2.234 (−6.399, 1.931)  
 Posttraining 34.249 32.49 −1.459 (−5.935, 2.418)  
 6-month follow-up 34.438 30.364 −3.674 (−8.149, 0.801)  
PASE .13 .86 .315
 Pretraining 90.18 93.12 3.031 (−20.566, 26.629)  
 Posttraining 81.59 91.46 9.874 (−10.994, 30.743)  
 6-month follow-up 100.53 92.87 −7.661 (−31.657, 16.334)  

Abbreviations: Mini-BEST, Mini Balance Evaluation System Test; TMT-B, Trail Making Test part B; NFOG-Q, New Freezing of Gait Questionnaire; 
SPPB, Short Physical Performance Battery; FSST, Four Square Step Test; FES-I, Falls Efficacy Scale–International; PASE, Physical Activity Scale for the 
Elderly; n.a., not applicable.
aValues represent estimated means (corrected for UPDRS-III). P values show main effects of time, training arm, and FOG subgroup. Boldfaced P values 
indicate statistical significance (P < .05).
bApplies to FOG-group only (uncorrected).
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Figure 1. Results on balance, executive function, falls and freezing of gait in the treadmill training with virtual reality (TT + VR) 
and treadmill training (TT) arms pre- and posttraining and at 6 months’ follow-up. No differences between freezing of gait (FOG) 
subgroups were apparent and therefore not individually displayed. Estimated means and standard errors are shown. *P < .05,  
**P < .01, ***P < .001.

Figure 2. Training effects on falls in both Parkinson’s disease (PD) groups with and without freezing of gait (FOG) and training arms 
with and without virtual reality (VR) pre- and posttraining and at 6 months’ follow-up. An Intervention × Time interaction (P = .027) 
showed a significantly greater reduction of falls in the TT + VR group in both FOG+ and FOG−. Fall incidence rate was lower in the 
VR group than in TT alone (incidence rate ratio [IRR] 0.35, 95% CI 0.21-0.57). Fall rates were generally higher in FOG+ compared 
with FOG− (P < .001). *P < .05, **P < .01, ***P < .001.
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balance and falls differentiating between PD patients with 
and without FOG. We hypothesized that TT + VR would be 
more, or at least as, beneficial for FOG+ compared with 
FOG−. In contrast, we found that FOG+ gained as much as 
FOG− from TT and TT + VR, as their postural instability, 
executive function, and general mobility improved to an 
equal degree. We also found that despite more severe clini-
cal profiles, higher fall rates, and more fear of falling than 
FOG−, FOG+ reported a greater reduction of fall rates after 
TT + VR compared with TT. The second hypothesis, that 
FOG+ would show less retention of training effects com-
pared with FOG−, was also rejected as both groups consis-
tently showed loss of training benefits after 6 months. As 
for the effects on FOG itself, which could only be deter-
mined in the FOG+ group, neither TT + VR nor TT influ-
enced this symptom. Disappointingly, freezing severity 
even increased considerably in both training arms at the 
6-month follow-up.

In line with what was presented for a wider group of fall-
prone older adults,14 both FOG− and FOG+ improved pos-
tural instability and cognitive function after both training 
modes, but did not retain these effects after cessation of the 
intervention. In FOG+, executive dysfunction is usually 
more pronounced compared with FOG−.12 Yet, here we 
could establish that complex training addressing motor-
cognitive integration was as beneficial for this subgroup, at 
least in the short term. This may partly be explained by the 
fact that at baseline FOG+ and FOG− had similar cognitive 
scores on generic tests (MoCA and MMSE). The results 
also show, overall, that long-term retention of treadmill 
intervention was equally impaired in both PD subgroups. 
Other studies indicated shorter retention of motor learning 
in FOG+ compared with FOG− after complex dual-task 
interventions and writing training.9 Providing motor-cogni-
tive rehabilitation on a regular basis and for a longer period 
might improve long-term retention. However, the optimal 
frequency and intensity to sustain training gains is not yet 
clear in PD and would need more frequent test moments. 
Recent study showed that, irrespective of the presence of 
FOG, the effects of intensive balance training for 10 weeks 
were predicted to disappear completely after 14 months 
without training.23

The rate of falls was significantly lower at 6 months’ 
follow-up, with a larger effect of TT + VR over TT alone. 
Training with VR may have led to increased attention while 
negotiating obstacles in the real world, as a result of which 
tripping risks may have been reduced, the most common 
cause of near-falls among fallers with PD.24 The VR envi-
ronment also stimulated cognitive and visual processing, 
such as focused attention, response selection, and planning 
while walking.18 As walking is a complex task, requiring 
integration of motor, cognitive, perceptual resources for 
dynamic postural control and bilateral coordination,25 com-
bined motor-cognitive training may have enhanced these 

processes in both FOG+ and FOG−. Recent frameworks 
for rehabilitation, specifically targeted at FOG, promote 
integration of cognitive and motor components.6,26-28 The 
present results strengthen the use of such approaches in 
clinical practice, at least for ameliorating falling, even when 
targeting extremely fall-prone individuals such as those 
with FOG.

Although falls, postural control, and FOG co-occur and 
are likely etiologically intertwined,29 the self-reported mea-
sure of FOG, the NFOG-Q, did not improve after training, 
unlike postural instability (the Mini-BEST test) and falls. 
Most strikingly, FOG deteriorated significantly with time 
beyond baseline levels, which was not the case for falls and 
postural instability as tested in both FOG+ and FOG−. 
Although speculative, these discrepant results support the 
notion that these phenomena are governed by not only par-
tially overlapping but also distinct neural pathways.30,31 We 
recently published a review of the literature to determine 
whether there is evidence to claim that FOG and postural 
instability have common mechanisms.29 We found that the 
findings on medication suggested that non-dopaminergic 
mechanisms were even more involved in postural instabil-
ity than in FOG. Common neural pathways for modulation 
of FOG and postural instability likely incorporate the mes-
encephalic locomotor region (MLR) and the cerebellum.32,33 
Still, motor imagery data revealed that the latero-rostral part 
of the MLR might regulate balance, whereas the medial-
caudal MLR appeared more involved in gait.34 The effec-
tors of balance and gait, primarily concerning the trunk and 
leg muscles, have different somatotopic representations in 
various brain regions, which would also account for the 
limited overlap between the 2 phenomena. All this, and the 
fact that training had such contradictory effects would sug-
gest that the occurrence of FOG episodes are etiologically 
different than falls, although postural instability and cogni-
tive capacity may mediate both these phenomena.

Our results are different than those of a series of studies 
that tested the effects of interventions specifically designed 
to alleviate FOG. A recent pilot study on the efficacy of a 
6-week supervised training to reduce FOG demonstrated 
consistent improvements of FOG, gait, and balance.6 
Similarly, 12 sessions of curved treadmill walking led to 
gains in both FOG and functional walking maintained for at 
least 1 month.35 Also, 8 sessions of 20-minute dual motor-
cognitive virtual reality training by stepping-in-place led to 
a reduction in the number of FOG episodes.36 Various 
modes of action observation, by watching FOG-alleviating 
videos as well as undergoing physical training, led to sig-
nificant improvements in FOG severity with good retention 
at follow-up.37-39 Together, these results could signify that 
motor-cognitive therapy needs to be specifically designed 
to alleviate FOG. In contrast, the TT + VR training of the 
present study, although relevant for FOG, was designed to 
target falls and mobility, but was not specifically aimed at 
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tackling FOG. The evidence above highlights the impor-
tance of tailored and intensive programs, addressing both 
FOG triggers and modifiers, in order to alleviate FOG.

Limitations

Falls were reduced when assessed over a total period of 6 
months. However, measures of postural instability were 
captured immediately after training as well as at follow-up. 
Future work should incorporate more frequent and parallel 
measures of fall rates, balance, and FOG scores to under-
stand how the changes over time in these outcomes are 
interrelated. In addition, it is possible that changes in FOG 
occurred that were not captured by the NFOG-Q, as respon-
siveness of this scale is still unknown. Although the groups 
were relatively large, this secondary analysis was not pow-
ered for this subanalysis and did not account for center 
effects, as none were found in the previous analysis of the 
V-TIME study.14 Therefore, our findings could have suf-
fered from type II error. In addition, the unequal group sizes 
between FOG+ and FOG−, especially within training arms, 
must also be acknowledged.

Conclusions

Despite the higher risk of falls, people with FOG benefited 
equally from treadmill training with and without VR with 
regard to improving their balance and reducing fall risk 
compared with their nonfreezing counterparts. Overall, the 
present exploratory findings identified a similar training 
potential in FOG+ and FOG−, as well as a similar decline of 
practice effects after a period without training. Interestingly, 
freezing itself was not alleviated by combined motor and 
cognitive training and deteriorated importantly over the 6 
months follow-up period. While the current positive results 
of treadmill training in people with FOG are encouraging, 
they also point to the need to specifically target rehabilita-
tion to the origins of FOG in order to be able to modify this 
complex problem.
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