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ABSTRACT
Speech processing is quickly shifting toward affective computing, that requires handling emotions and modeling expressive
speech synthesis and recognition. The latter task has been so far achieved by supervised classifiers. This implies a prior labeling
and data preprocessing, with a cost that increases with the size of the database, in addition to the risk of committing errors. A
typical emotion recognition corpus therefore has a relatively limited number of instances. To avoid the cost of labeling, and at
the same time to reduce the risk of overfitting due to lack of data, unsupervised learning seems a suitable alternative to recognize
emotions from speech. The recent advances in clustering techniques make it possible to reach good performances, comparable
to that obtained by classifiers, with much less preprocessing load and even with generalization guarantees. This paper presents
a novel approach for emotion recognition from speech signal, based on some variants of fuzzy clustering, such as probabilistic,
possibilistic and graded-possibilistic fuzzy c-means. Experiments indicate that this approach (a) is effective in recognition, with
in-corpus performances comparable to other proposals in the literature but with the added value of complexity control and (b)
allows an innovative way to analyze emotions conveyed by speech using possibilistic membership degrees.

© 2020 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Nowadays applications are more and more interactive, which
requires an optimal human–machine interaction. One of the most
obvious ways to achieve this goal is spoken communication. Since a
few decades, speech processing has registered considerable progress
in different applications, such as speech recognition, synthesis and
enhancement, source separation, etc.

Speech is a complex communication form that conveys informa-
tion at several levels in addition to verbal content. One of these is
emotion, a key component that may enable a much more effective
interaction. Unfortunately, speech processing applications perform
much better for acquiring the verbal content than for the recogni-
tion of expressive components. For instance, a benchmark compar-
ison of emotion recognition based on deep learning architectures
has shown that emotion recognition is providing accuracy rates
under 80% formost expressive speech databases [1]. Furthermore, a
recent evaluation of deep learning architectures for emotion recog-
nition on a state-of-the-art expressive speech database, i.e., IEMO-
CAP [2], has not shown better results [3].

The literature offers approaches that can showcase a very high
recognition performance. However, they are usually tested via
cross-validation on the same limited-size corpora that are used
for their training. It turns out [4] that cross-corpus evaluation is a
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muchmore difficult task, with some experimental results bordering
random guessing. Due to the high number of parameters character-
izing current deep learning models, this appears to be a clear indi-
cation that these methods are overfitting, i.e., learning the database
rather than its information content. In other words, the good results
reported by recent supervised methods on limited-size corpora are
not reproducible in different contexts. While the ability of large
machine learning models to work well in a regime of overfitting is
the subject of current studies [5], this phenomenon cannot be relied
upon in the absence of very extensive training sets.

Given the typical size of available corpora, the only alternative
approach to avoid overfitting is capacity control, which consists in
using machine learning methods whose ability to learn (and thus
also overfit) depends on a controllable number of effective parame-
ters. Classic theories developing this approach include Vapnik and
Chervonenkis’ statistical learning theory, the fat-shattering dimen-
sion and Rademacher complexity [6]. However, manymethods that
do not explicitly refer to these approaches can nevertheless be stud-
ied under the framework of complexity control, for instance those
based on regularization or stochastic regularization (stochastic gra-
dient descent, early stopping, dropout).

The work described in this paper has the goal to explore the task of
emotion recognition from speech signal using a mainly unsuper-
vised workflow. The use of this class of techniques can be justified
in the light of capacity control theories, as will be briefly exposed
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in the following. This gives it an advantage in the reliability of the
attained experimental results with limited data.

The methodologies adopted include (a) combined techniques of
features analysis, i.e., feature embedding by autoencoders and
feature selection by analysis of variance (ANOVA) or mutual
information (MI); (b) different clustering methods, such as crisp
clustering using K-means, and fuzzy clustering using probabilistic,
possibilistic and graded-possibilistic c-means; (c) a novel way to
analyze emotion recognition using the sum-of-membershipmatrix,
which ismade possible thanks to the use of a possibilistic-type fuzzy
clustering, as will be detailed hereafter.

The main contribution of this work consists in proposing a novel
methodology for speech emotional content analysis based on clus-
tering, using either crisp or fuzzy methods. The methodology uses
unsupervised learning methods, such as autoencoders, to extract
features. Up to our knowledge, this is the first work totally relying
on unsupervised learning, both for feature extraction and speech
clustering. This work is an extension of results presented at the 11th
Conference of the European Society for Fuzzy Logic and Technol-
ogy [7].

The rest of the paper is organized as follows: Section 2 presents
the state-of-the-art of emotion recognition from speech, including
databases, feature sets, emotion representation models, and the use
of unsupervised learning. Section 3 describes the speech materials
used in this work, including the expressive speech database cho-
sen, the standard feature set employed and the psychological emo-
tion model adopted. Section 4 details the methods employed for
this study. Section 5 reports on the results and the interpretation of
the experimental work; finally the conclusion (Section 6) presents
some comments and perspectives.

2. RELATED WORK

2.1. Emotion Models

Emotion recognition from speech relies upon established psycho-
logical models. For instance, the Ekman model [9] states that there
are six basic emotions, i.e., neutral, anger, fear, surprise, joy and sad-
ness, that are recognized whatever the language, the culture or the
means (speech, facial expressions, etc.). More detailed models of
emotions rely on continuous dimensions rather than atomic “basic”
emotions. Russel’s circumplex model [10] suggests that emotions
can be represented in a bi-dimensional space, where the x-axis rep-
resents valence and y-axis represents arousal (cf. Figure 1). Fur-
thermore, Plutchik proposes a tri-dimensional model [11] which
combines the basic and the bi-dimensional models. Thus, the outer
emotions are a combination of the inner ones.

Classically, and like in speech recognition, emotion recognition was
achieved using different methods, namely generative models such
as hidden Markov models with Gaussian mixture models (HMM-
GMM) [12], artificial neural networks (ANNs) [13,14], and sup-
port vector machines (SVMs) [15], yielding nearly the same accu-
racy [16]. Also, the combination of such models, either in series,
in parallel or in a hierarchical way, has given better results than
those obtained by single models [16]. Recently, deep learning tools
like deep feedforward, recurrent or convolutional neural networks,
have outperformed all the aforementioned models for emotion
recognition [3,17].

Figure 1 Valence/arousal model of emotion classes for the Emotion
Database (EMO-DB) [20]. Figure adapted from [8].

2.2. Emotional Speech Databases

A variety of emotional speech databases were designed or recorded,
covering more or less the emotion models described above, i.e., the
Eckman [9], Russel [10] and Plutchik [11] models. An inventory of
emotional speech databases [16] shows that the main differences
between them lie in (a) the size, varying from a few tens of sen-
tences to a few thousands [18]; (b) the number of speakers; (c) the
type of speech, whether uttered by professional actors, or recorded
from spontaneous conversation like telephone recordings; and (d)
the number of emotions, which depends on the emotion model.
A recent and updated comprehensive inventory [19] lists the main
emotional speech databases. In particular, the EMO-DB database
[20] has been widely used, since it covers all basic emotions in equal
and sufficient proportions.

2.3. Standard Emotion-Recognition
Features

Whatever the chosen model of emotions, a speech signal provides
a representation of it that lies at a much lower level, i.e., a train of
audio samples (see Figure 2). Therefore, special importance should
be given to intermediate representations thatmake it possible to dis-
criminate the types of emotional content; in other words, features
have a crucial importance.

In machine learning there are two main approaches to obtaining
good features: Using standard, expert-engineered feature sets that
are known to be well correlated with the desired recognition task; or
using optimization to learn features that will provide the best per-
formance. In this work we will adopt both approaches, by encod-
ing speech signals using standard feature sets at the lower level, but
subsequently extracting higher-level features by means of unsuper-
vised learning.

Generally in speech recognition the commonly used features can
be divided into prosodic vs. acoustic (or spectral) ones. Prosodic
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Figure 2 General scheme of an emotion recognition system.

features include f0, intensity and phone duration, whereas acoustic
features are extracted from spectrum such as Mel-frequency cep-
stral coefficients (MFCCs), Linear spectral parameters (LSPs), and
their first and second time-derivatives (Δ and Δ- Δ).
Another classification of features relies on the level of extraction,
i.e., local vs. global features. Local features are extracted at each
frame, like f0, intensity, MFCC, etc., whereas global features are cal-
culated using statistics all over the speech signal, like mean, vari-
ance, range, skewness, kurtosis, min and max values. This allows
making the extracted features less dependent on the linguistic
aspects of speech signal [16]. Interspeech’09 feature set [21], Com-
ParE [22] and GeMAPS [23], which use mainly global features, are
among themost used standard feature sets for emotion recognition.

2.4. Feature Learning Methods: Extraction
and Selection

The ultimate goal of feature analysis is to optimize the input space,
either by discarding the irrelevant (or redundant) features, i.e., fea-
ture selection, or by a nonlinear combination of features in order
to obtain more discriminant ones, i.e., feature extraction. In par-
ticular, one interesting technique for feature extraction is feature
embedding.

In the particular case of emotion recognition, feature analysis,
either by extraction or by selection, has been widely used. For
instance, feature extraction by sequential format floating search
(SFFS) was used to choose the most relevant features for emotion
recognition based on Bayesian classification [24]. The SFFS cri-
terion was applied with the assumption that the features follow a
multivariate Gaussian distribution. Then the variance of the correct
classification rate of the Bayesian classifier during cross-validation
is estimated.

Also, principal component analysis (PCA) was used in several emo-
tion recognition-related works [25–28]. For emotion recognition, it
has been noticed that the classification accuracy increases when the
number of principal components is increased up to a certain order,
after which the accuracy starts to decrease [16].

Albeit to a lesser degree, linear discriminant analysis (LDA) was
also used in some works about emotion recognition. However,
the results about the relevance of each group of features, i.e.,
pitch-related, energy-related and spectral features are not coherent
enough [16]. Thismay be due to the difference of databases and fea-
ture sets used in each work.

To compare PCA and LDA for emotion recognition, both tech-
niques were applied on BHUDES, a Chinese emotional speech cor-
pus [29], before undertaking classification with ANN and SVM
[30]. For both classifiers, the results have shown that using LDA
for feature selection gives better recognition rates than using PCA,
either for all classes or for every single emotion.

Furthermore, Eyben et al. evaluated the feature relevance in real-life
conditions [31]. To fulfill that, an experience was set up by corrupt-
ing clean speech by different noise level, before extracting the stan-
dard ComParE feature set [32]. Then the Pearson correlation coef-
ficients (CCs) of each feature with continuous target label was com-
puted. The selected features were the subset of 400 features (among
6353 ones) having the best CC coefficients for arousal, valence and
level of interest (LOI) tests. However, it has been shown in the tests
that change in feature group relevance depends more on the indi-
vidual tests than on the level of noise.

The feature extractionmethods described so far, PCA and LDA, are
linear mappings which make strong assumptions about the struc-
ture underlying the data. An alternative approach is nonlinear fea-
ture embedding.

The autoencoder is a neural network whose objective approximates
the identity function. It is commonly used as an unsupervised learn-
ing technique, that aims to extract features from unlabeled data. To
achieve this goal, the autoencoder optimizes the weights to mini-
mize the mean square difference between the given input and the
obtained output; then, the value of a hidden layer is used as an
encoded representation of the input.

As shown in Figure 3, a simple autoencoder has only one hidden
layer. It is therefore parameterized by weights (w ∈ ℝmxn, w̃ ∈
ℝnxm) and biases (b, b̃ ∈ ℝm), as follows:

{h = f(wx + b)
x̃ = ̃f(hw̃ + b̃)

(1)

where x = (x1, x2, … , xm) ∈ ℝm, x̃ = (x̃1, x̃2, … , x̃m) ∈ ℝm and h =
(h1, h2, … , hn) ∈ ℝn are respectively the inputs, the outputs and the
hidden layer code, and f, ̃f are nonlinear activation functions, such
as the sigmoid function, f(z) = 1

1+e−z
. [33].

It can be shown that the encoding obtained from a simple linear
autoencoder, i.e., with f(z) = ̃f(z) = z, spans the n principal compo-
nents of the data space, recovering therefore the same embedding
as PCA of order n. In this sense we may state that an autoencoder
is a nonlinear generalization of PCA.
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Figure 3 Autoencoder architecture.

Deep autoencoders with several hidden layers are also possible,
although this may imply an excessive overparameterization with
increased risk of overfitting, or, correspondingly, the need for expo-
nentially more data.

A simple autoencoder can be split into two parts: (a) the encoder,
from the input layer to the middle layer and (b) the decoder, from
the middle layer to the output layer. The encoded features are
obtained at the output of the encoder layer. Hence, to reduce the
dimension of the input space, the encoder layer should have a lower
dimension than the input layer (cf. Figure 3). The encoder layer
provides a useful transformation of input features, that allows, first
discovering hidden structure in the input features, and second gen-
erating new features through the nonlinear transformation of the
input features by the activation functions of the hidden layers.

The autoencoder has been used as a feature extraction method in
several clustering-basedworks. For instance, Song et al. [34] trained
an autoencoder with a new objective function, where the centroids
are updated at the same time as the weights and biases of the neural
networks. In thework of Xie et al. [35], clusteringwas based on deep
autoencoders. This process starts by initializing the parameters of
the clustering model with an autoencoder, and then the centroids
and the autoencoder’s parameters are optimized using Kullback–
Leibler (KL) divergence to maximize the similarity between the
distribution of the embedded features and the centroids. A compar-
ison between using or not autoencoded features for spectral clus-
tering was conducted on different data sets [36], such as documents
(20-Newsgroup), biological data (DIP [37] and BioGrid [38]) and
chemical data (WINE [39]), to reveal that the autoencoded features
yield better results.

2.5. Clustering

Clustering techniques can be inventoried following several
criteria, whether they are hierarchical, partition-based,
density/neighborhood-based or model-based [8]. Obviously

clustering was less used than classification for emotion recogni-
tion, since most works deal with labeled databases. However, in
a big data context, unsupervised recognition methods can prove
more useful, since labeling a huge quantity of expressive speech
data would be a tedious and expensive task.

For instance, self-organizing maps (SOMs) were used by Szekely
et al. to detect emotions in audiobooks [40], based on articulatory
features. Also, hierarchical K-means were used by Eyben et al. to
detect emotions in a corpus dedicated for expressive speech syn-
thesis, using prosodic and acoustic features [31]. It should be noted
that, since clusters do not necessarily correspond to classes, a “vec-
tor quantization” approach is usually used, whereby the number of
clusters is overestimated, and subsequently the detected clusters are
grouped into classes; methods based on this type of approach can
even be competitive with entirely supervised approaches, with the-
oretical guarantees [41], and can be easily used in a semi-supervised
context (partially labeled data).

Experiments have shown that in clustering the choice of features is
more important for the final accuracy than in classification, where
the generalization power of the classifier and the direct minimiza-
tion of a loss function could mask the irrelevance or the aberrance
of some features.

In this work, we are particularly interested in applying some of
our recent results in fuzzy clustering [42] for emotion recognition.
The soft/fuzzy clustering approach consists in using a real-valued
membership function instead of a categorical or binary member-
ship decision. Then an object belongs to all clusters, but with differ-
ent membership degrees, having values between 0 and 1 [43].

The fuzzy clustering problem can be stated as follows: Given a set
X = x1, ..., xn of data objects, a setΩ = 𝜔1, ..., 𝜔c and amembership
function 𝜇(x, 𝜔), find 𝜔 ∈ Ω such that ∀ x ∈ X, 0 ⩽ 𝜇(x, 𝜔) ⩽ 1.
Considering the membership function, fuzzy clustering methods
can be categorized as either probabilistic or possibilistic. Then the
pair (Ω,𝜔) is
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• A possibilistic partition if 𝜇(x, 𝜔) ∈ ℝ ∀x, ∀𝜔 such that
0 < ∑c

i=1 𝜇(x, 𝜔i) < c

• A probabilistic partition if it is a possibilistic partition such that
∑c

i=1 𝜇(x, 𝜔i) = 1

The extremely popular central clustering approach consists in
defining clusters 𝜔 and memberships 𝜇(⋅, ⋅) in terms of reference
points in the data space, or centroids. The fuzzy clustering litera-
ture abounds with variations over the basic K-means algorithm.We
now briefly review the specific approach followed in this work.

All fuzzy versions of K-means are in principle based onminimizing
the following objective function:

Ê =
c

∑
j=1

n

∑
l=1
𝜇jldjl (2)

where 𝜇jl = 𝜇(xl, 𝜔j) is the degree of membership of pattern xl to
cluster 𝜔j and djl =∥ xl− yj ∥ is the Euclidean distance between the
pattern xl and the cluster centroid yj, so that this objective repre-
sents the average weighted distance of data points to centroids, also
termed distortion in the vector quantization literature.

However, directly minimizing this objective yields a degenerate
problem, whose solution is given by the (crisp) K-means method.
For a real-valued (i.e., fuzzy) solution, the distortion objective is
regularized in either of two ways, which were proved to be related
by a common framework [44]: Either by introducing an exponent
m > 1 in the weights, that become 𝜇m

jl , or by additive regulariza-
tion terms. The first choice results in the fuzzy c-means algorithm
[45]. The second choice has been the basis of a number of further
methods and will be adopted in the following.

Optimization of the objective is customarily done via alternate
minimization, which iteratively solves two problems assumed as
independent: minimization with respect to centroid positions and
minimization with respect to memberships.

In all cases, the cluster centroids yj are not included in the regular-
ization terms, therefore their locally optimal values only depend on
the basic objective and are computed as follows:

yj =
∑n

l=1 𝜇jlxl
∑n

l=1 𝜇jl
(3)

Regarding the membership function, in the cases of our interest it
can be expressed as

𝜇jl =
vjl
Zl

(4)

where vjl depends on the specific regularization scheme adopted
and Zl, a “generalized partition function,” realizes the choice of the
particular clustering model. For a pretty wide family of objectives
regularized with entropy-like terms [44,46–49], vjl = e−djl𝛽j with
𝛽j > 0 a free parameter related to cluster width.

Regarding the generalized partition function Zl, given a transfor-
mation f(⋅) it can be written as Zl = f(∑c

j=1 vjl): here the choice of
f(⋅) defines the clustering paradigm, i.e.,

• Zl = (∑c
j=1 v

1
m−1
jl )m−1 in case of probabilistic clustering.

• Zl = 1 in case of possibilistic clustering.

• Zl = (∑c
j=1 vjl)

𝛼 in case of graded-possibilistic clustering.

The fuzziness parameter m ∈ ℝ,m > 1 recovers Bezdek’s [45] orig-
inal formulation, but it is not really needed in this context.

3. SPEECH MATERIAL

To perform this work, an emotional speech database was selected
from the available speech corpora. We chose EMO-DB [20] since
it has been widely used and cited as a reference. Besides, a special
attention was addressed to choosing the feature set, since several
ones have been proposed in the literature.

3.1. Speech Database

EMO-DB [20] is a publicly available database of prepared emotional
speech. Prepared speech corpora differ from spontaneous speech
corpora, since they are elaborated by linguists to represent all the
language phenomena in a balanced and normalized way. EMO-DB
contains 10 German sentences (5 short and 5 long) uttered by 10
native-speaking professional actors (5 male and 5 female). Every
sentence was uttered by every actor in 7 emotions (neutral, anger,
boredom, fear, disgust, joy and sadness) once (or twice in a few
cases). The sentences were recorded in an anechoic chamber, at 16
KHz sampling rate. The database was labeled including the emo-
tion of each sentence, the syllabic segmentation and the stress level
of each syllable. It is worth noting that EMO-DB has provided the
highest emotion recognition rates using state-of-the-art classifiers,
such as HMM-GMM and SVM [21].

3.2. Feature Set

Emotion recognition feature sets have been addressed extensive
research, yielding a variety of proposed sets [19]. However most
feature sets used a limited number of feature types, i.e., prosodic,
spectral, voice-quality-related [19] and in a lesser proportion artic-
ulatory features [40]. Furthermore, the global features, i.e., statis-
tics calculated all over the speech signal, were generally preferred
to local features that are measured at each frame [50]. In particular,
The Interspeech’09 emotion recognition challenge feature set was
preferred to conduct this work, for two main reasons: (i) its pre-
liminary results [21] and (ii) its compactness. Then features were
extracted using the Opensmile toolkit [51]. Tables 1 and 2 show the
complete set of features and the calculated statistics extracted for
each, respectively, so that 384 features (16 descriptors + their 16 Δ-
values) × 12 statistics) were extracted from each signal.

Table 1 Interspeech’09 emotion recognition challenge feature set.

Speech Parameter Descriptors

Zero-crossing rate ZCR, ∆-ZCR,
Root mean square energy RMS energy, ∆-RMS energy,
fundamental frequency F0, ∆-F0,
Harmonic-to-noise ratio HNR, ∆-HNR,
12 Mel-Frequency cepstral coefficients (MFCC (1–12)), ∆-MFCC(1–12)
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3.3. Emotion Classes

Initially, classes consisted in single emotions, namely neutral, anger,
boredom, disgust, fear, joy and sadness. However, we also employed
a second way to label speech signals by using groups of emotions
as classes instead of individual emotions. In fact, grouping emo-
tions using the valence/arousal mapping was thought to increase
clustering performance (cf. Table 3). Both sets of labels were
evaluated during experiments.

4. METHODS

To conduct the experimental process, different steps were followed.
First, the speech corpus was preprocessed to extract and select the
most relevant features, second crisp and fuzzy clustering were per-
formed following different strategies, third clusters were majority-
labeled with class labels and finally the clustering and classification
results were analyzed (cf. Figure 5).

4.1. Preprocessing

The experimental process starts with a preprocessing phase, in
which the following steps are performed: (a) feature embedding,
where the original descriptors (cf. Tables 1 and 2) were transformed
by embedding with the autoencoder, so that a new set of features
was extracted; (b) feature selection, where the final features were
selected amongst the extracted ones, using either ANOVA or MI
test.

4.1.1. Feature extraction

The first step in feature analysis consists in feature extraction. In
this work, it was performed through feature embedding using a 3-
hidden-layer deep autoencoder. The set of 384 features for each sig-
nal (cf. Table 1) is trained by the autoencoder to extract a smaller

Table 2 Statistical parameters used for Interspeech’09 emotion
recognition challenge feature set.

Features for Each
Descriptor

Parameters

Global statistics Mean, standard deviation, skewness,
kurtosis

Minimum Value, relative position, range,
Maximum Value, relative position, range,
Linear regression
coefficients

Offest, slope, Mean square error (MSE)

Table 3 Groups of emotions.

New Label Grouped Labels Common Characteristics

AJ Anger and Joy High absolute valence and
arousal

NB Neutral and
Boredom

Low absolute valence and arousal

FD Fear and Disgust Low absolute valence and
medium absolute arousal

S Sadness High absolute valence and
medium absolute arousal

number of features at the encoder layer. Therefore, two schemes
of preprocessing were tried out: (i) application of the autoencoder
to the whole set of features and (ii) application of the autoencoder
to each low-level descriptors (LLD) group, so that only one feature
is extracted out of each 12-feature LLD. The autoencoder architec-
tures used in (i) and (ii) are described in Table 4.

4.1.2. Feature selection

Once the features were extracted, through embedding, feature
selection was set up. Although features seem to be mostly uncor-
related, a finer analysis was performed using ANOVA and MI to
further reduce the cardinality of the set of extracted features. Fur-
thermore, to keep a certain coherence between the selected features,
two ANOVA strategies were adopted, the first evaluating individ-
ual features, and the second, denoted ANOVA group, evaluating
groups of features, where each group contains the 12 statistics of
each descriptor (cf. Tables 1 and 2).

4.2. Clustering

4.2.1. The graded possibilistic C means algorithm

As well as using the “crisp” K-means clustering method, we will
follow a fuzzy approach by employing the graded-possibilistic
c-means (GPCM) algorithm for unsupervised learning.

The graded-possibilistic paradigm [48] allows to switch continu-
ously between the probabilistic and possibilistic paradigms bymod-
ulating the free parameter 𝛼 ∈ [0, 1], a degree of probabilistic
tendency:

• 𝛼 = 0 → fully possibilistic

• 𝛼 = 1 → fully probabilistic

• 0 < 𝛼 < 1 → graded possibilistic

Also, it is worth noting that in case of probabilistic central cluster-
ing,∑c

j=1 𝜇jl = 1, whereas this condition is not necessarily met in
the possibilistic and graded-possibilistic paradigms [42].

To calculate the values for the cluster width parameters 𝛽j, the fol-
lowing is suggested [42]:

𝛽j = − ln(t)
min
h≠j

||yh − yj||2
(5)

where t ∈ [0, 1] is the threshold satisfying

max
h≠j

𝜇(yh, yj) ⩽ t,

i.e., it establishes the maximum accepted overlap between clusters.
In particular t = 1/2 guarantees no overlap. This provides a mini-
mum reference value for the width parameters, which can be sub-
sequently increased if deemed necessary.
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Figure 4 Distribution of single and grouped emotion classes, visualized using principal component analysis (PCA) to
project features in three dimensions: (a) for single emotions, three-dimensional projection suggests that the Interspeech’09
standard features are not discriminatory enough and (b) emotions were grouped the reduce feature scattering.

Figure 5 Experimental process as applied in this work: Preprocessing includes hand-crafted feature computation, feature
embedding and selection; clustering is achieved using crisp (K-means) and/or fuzzy methods, cluster labeling is applied to
recuperate emotion classes from clusters. The evaluation outputs are the confusion and the sum-of-membership matrices.

4.2.2. Use of possibilistic membership for
classification analysis

A distinctive advantage of the possibilistic paradigm, as compared
to “probabilistic” fuzzy clustering, is represented by the ability to
evaluate the typicality of patterns with respect to the learned clus-
ters. Since memberships are not constrained to have a constant
sum, for a given data instance it is possible to analyze the sum-of-
memberships to each cluster and evaluate how well it fits the clus-
ters distribution.

It is also possible to analyze the cumulative sum-of-memberships by
classes, to gain insight on the “perceived” internal structure of emo-
tions, to check for instance if two emotions are consistently consid-
ered similar. This particular analysis will be presented for the exper-
imental results in Section 5.

Table 4 Autoencoder architectures (layers and number of nodes).

Input Input Hidden Code Hidden Output
Ffeatures Layer Layer 1 Layer Layer 3 Layer

All features 384 500 32 500 384
LLD features 12 100 1 100 12

From the technical standpoint, the graded approach used in this
work partially constrains the sum-of-membership; one advantage
of this is ruling out degenerate solutions, and another one is
allowing for an easier convergence of the optimization. However,
the cumulative sum-of-membership matrix will have entries that
depend on the degree of probabilistic tendency 𝛼. For this reason,
this model parameter has been kept constant throughout the work
(see below).
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4.2.3. Parameter setting

In Rovetta et al. [42] it was observed that 𝛼 should be close to 1 due
to its exponential role. Therefore it was suggested to work with 𝛼 on
a logarithmic scale, by setting 𝛼 = log2(a + 1)2 where a ∈ [0.5, 1]
to have 𝛼 ∈ [0.9, 1]. This makes parameter tuning easier.

4.3. Capacity Control in Unsupervised
Learning

Now we provide a brief justification of the choice of supervised
learning for limited-size data sets. The learning capacity of a cen-
tral clustering model followed by supervised labeling was studied
in a previous work [41]. In particular, the Vapnik–Chervonenkis
dimension of this class of learning methods was established by
Theorem 1 from the reference.

Theorem 1. [41] The Vapnik–Chervonenkis dimension of a central
clustering model with c centroids, used for classification by majority
labeling, is c.

The significance of this theorem, whose proof can be found in the
referenced paper, lies in the fact that the only free parameter that
influences the learning capacity is the number of centroids, so nei-
ther the dimensionality (number of features) nor the size (number
of observations) of the data influence the Vapnik–Chervonenikis
dimension. This capacity measure is computed in a worst-case sce-
nario, so it is an overestimation of the actual learning capacity that
can be expected in real cases. If we can upper-bound the Vapnik–
Chervonenkis dimension, we can be confident that other, more
realistic indexes like the fat-shattering dimension will not exceed it.

5. EXPERIMENTAL WORK

5.1. Experimental Protocol

Experiments were carried out following a protocol where themodel
parameters were varied, one at a time:

• The labels set, i.e., single emotions or groups of emotions (cf.
Table 3).

• The number of clusters, increasing from the number of classes,
to 3 times.

• The feature selection method, i.e., ANOVA or MI.

• The number of selected features, decreasing from all features,
i.e., no feature selection, to 25% of features.

• 𝛽 for the fuzzy c-means models, by increasing the parameter t
from 0.1 to 0.5.

• 𝛼 for the graded-possibilistic c-means model, by increasing the
parameter a from 0.9 to 1.

These combinations yielded a high number of experiments, there-
fore only those providing themost relevant results are presented (cf.
Table 5). In addition, at every execution of the fuzzy clustering algo-
rithms, K-means was performed under the same conditions, i.e.,
number of classes, number of clusters, feature selectionmethod and

the number of selected features, and using a fixed number of repli-
cates, equal to 10.

5.2. Results

Figure 4 shows a representation of clusters, projected in 3D using
PCA as a visualization tool, for the original clusters, whereas Figure
6 shows the 2D distribution for predicted clusters using differ-
ent methods, i.e., K-means, probabilistic, possibilistic and graded-
possibilistic c-means.

5.2.1. Confusion matrix

The performances of both crisp and fuzzy clustering, followed by
supervised labeling, were analyzed through the scores calculated
from the confusion matrix, i.e., overall accuracy, precision, recall
and F1-score (cf. (6a) to (6d)).

accuracy = TP + TN
TP + TN + FP + FN , (6a)

Precision = TP
TP + FP , (6b)

Recall = TP
TP + FN , (6c)

F1score = 2 ∗ Precision ∗ Recall
Precision + Recall

, (6d)

where TP, FP, TN and FN are respectively the numbers of true pos-
itives, false positives, true negatives and false negatives.

5.2.2. Sum-of-membership matrix

This proposedmatrix (cf. Table 6) shows, for every recognized emo-
tion class, the sum of thememberships to original classes. The coef-
ficients of this matrix correspond to the sum-of-membership to an
original class, calculated for all samples. This method is proposed
in order to measure how many emotion classes were correctly rec-
ognized, or in other terms how much the features of every single
emotion are shared by the other ones. The matrix can be analyzed
like a confusion matrix, where the lines correspond to the recog-
nized emotions and the columns to the original ones.

5.2.3. Initial distribution of classes

It looks since the beginning that in spite of using a standard feature
set [21], the distribution of classes looks too dispersed (cf. Figure 4).

5.2.4. Fuzzy clustering performance

However, thanks to feature embedding and then feature selection,
and to a good choice of the possibilistic and graded-possibilistic
models parameters, i.e., 𝛼 and 𝛽, the fuzzy clustering methods pro-
vide as good rate as the crisp clustering (cf. Figure 6). Besides, using
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Table 5 Best recognition rates (in bold character) for different parameters combinations.

Number of Number of Feature Selection Proportion of t 𝛼 K-means GPCM
Classes Clusters Method Selected Features (%) Rate (%) Rate (%)

7 7 ANOVA group 50 0.1 0.9 51.9 69.6
7 14 ANOVA 25 0.1 0.9 56.6 55.9
7 21 ANOVA 25 0.1 0.9 60.9 63.0
4 4 ANOVA 75 0.1 0.9 62.4 61.3
4 8 ANOVA 50 0.1 0.9 69.9 77.4
4 12 ANOVA 50 0.1 0.9 73.9 75.1

Figure 6 Clustering results for 7 classes using 21 clusters and 96 features selected by analysis of variance (ANOVA) method for K-means and
different graded-possibilistic c-means (GPCM) methods (two-dimensional principal component analysis (PCA) projection): Though the
two-dimensional projection does not show clearly disjoint clusters, K-means and GPCMmethods seem able to separate some classes, e.g., Class
1 and Class 2.

Table 6 Sum-of-membership matrix calculated using 192 features selected byMI, GPCM with t = 0.1 and 𝛼 = 0.9. n.b The highest
sum-of-membership matrix are in bold character.

Classes Neutral Anger Boredom Disgust Fear Joy Sadness

Neutral 35.1571 5.0713 23.3220 5.1520 6.3261 2.7159 6.9717
Anger 5.2943 60.7539 3.9122 3.8892 9.9439 27.4724 0.1005
Boredom 6.0872 2.7400 17.6296 6.7532 4.8307 1.9224 17.0275
Disgust 9.3078 6.3142 10.6536 12.7571 5.9771 4.7399 0.5343
Fear 16.0078 28.1121 15.1840 11.4498 35.0615 12.5662 11.8798
Joy 0.5790 18.8198 0.1959 0.7331 2.8752 18.7432 0.0006
Sadness 6.5668 5.1887 10.1028 5.2657 3.9855 2.8400 25.4855

a number of clusters greater than that of classes helps increasing
performance (cf. Table 5). However, the number of clusters should
not be too big.

5.2.5. Single emotions vs. groups of emotions

Another result consists in increasing the clustering rate when emo-
tions were grouped using the valence/arousal model. This could be
explained by the fact that using more samples and less classes may
increase the clustering rate, but it also tells about the relevance of

grouping such emotions, despite some pairs contain opposite emo-
tions (e.g., anger and joy). This last point may be useful in emotion
analysis, using objective measures, such as the statistics used in the
feature set.

5.3. Benchmarking

In order to compare the performance of the proposed approach,
the results of other methods applied on the same expressive speech
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database, i.e., EMO-DB [20], have been investigated. Table 8 shows
the highest overall accuracy measured for such methods, combin-
ing supervised and unsupervised techniques for feature extraction
and classification. It looks that the proposed approach, entirely
based on unsupervised learning, both for feature extraction and
classification, is not far away from the othermethods that use super-
vised learning, either partly (for classification only) or entirely (in
the whole process).

5.4. Interpretation and Discussion

In addition to emotion recognition, further results could be
obtained from analyzing the results obtained by fuzzy clustering
under the possibilistic framework. In the following we the confu-
sion and the sum-of-membershipmatrices could provide as novelty
regarding emotion analysis.

5.4.1. Analysis of the classification results

Though the obtained classification results may be lower than
those that should have been provided by supervised learning, the
obtained rates can be considered as satisfactory in the framework
of unsupervised learning. In fact, cluster labeling has been utilized
in this work only to check the performance. However, in real-world
application of the proposed method, the data need not be entirely
labeled, hence obtaining an overall accuracy of about 60% might
be encouraging. A deeper analysis of the classification scores (cf.
Table 7 and Figure 7) shows that: (a) crisp and fuzzy clustering do
nearly the same for each class of emotions, e.g., anger and sadness
are both well recognized, whereas joy is much less predicted by both
techniques, though all classes have the same number of samples; (b)

F1-score is higher than 50% for most emotion classes and for both
methods, i.e., crisp and fuzzy clustering, whichmeans that precision
and recall are rather balanced (though it is less obvious for some
emotions like disgust and joy). In fact the F1-score is a measure that
reveals whether a high accuracy could hide unbalanced precision
and recall.

Finally, though emotion classes are balanced in the EMO-DB
database [20], the differences between classification results may be
due to the choice of features. Though we opted for a standard fea-
ture set, that has been successfully used for Interspeech’09 emotion
recognition challenge [21], it looks less efficient to detect all emo-
tions equally. Another interpretation could be that some intense
emotions, such as joy, may share a lot of their aspects like valence
and arousal, and hence have similar features as other emotions that
have similar levels of valence or arousal, such as anger.

As noted in Section 4, the sum-of-membership matrix provides a
way to analyze these aspects.

5.4.2. Analysis of the sum-of-membership matrix

By inspecting the sum-of-membershipmatrix (Table 6), in line 2 the
recognized emotion anger has the highest sum-of-membership to
the same original emotion, which means that most samples recog-
nized as belonging to the class anger have the highest membership
value to the same class. This is also the case for classes neutral and
sadness. However, for the other recognized emotions, like boredom,
disgust, fear and joy, the sum-of-membership matrix shows that
their sum-of-membership to some other classes are as high as for
the original classes, e.g., the recognized class boredom shares nearly
the same sum-of-membership to the original classes boredom and

Table 7 Confusion matrices calculated by K-means and GPCM, both with subsequent cluster labeling, using 192 features selected by ANOVA and with
GPCM parameters t = 0.1 and 𝛼 = 0.9. n.b The highest confusion matrix values are in bold character.
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Neutral 50 0 18 5 14 6 1 36 0 5 3 10 6 2
Anger 5 115 2 3 12 46 0 5 112 1 3 11 47 0
Boredom 12 0 42 11 1 2 8 25 0 48 11 3 2 6
Disgust 2 0 1 21 6 2 1 0 0 1 17 3 2 0
Fear 7 5 4 6 32 7 0 9 8 8 12 40 6 4
Joy 0 7 0 0 1 8 0 0 7 0 0 1 8 0
Sadness 3 0 14 0 3 0 52 4 0 18 0 1 0 50

Table 8 Benchmark results of different methods combining supervised and unsupervised feature extraction and classification on EMO-DB expressive
speech database (n.b. CNN: Convolutional neural networks, LSTM: Long short-term memory, BLSTM: Bidirectional long short-term memory, SVM:
Support vector machines).

Learning Input Features Feature Extraction Classification Accuracy (%)

All supervised Spectrogram images CNN BLSTM [52] 91.3
Raw audio CNN LSTM [17] 88.9

Unsupervised feature Spectrogram images K-means SVM [53] 71.5
extraction and Spectrogram images Autoencoder SVM [53] 67.4
supervised classification
All unsupervised Interspeech’09 [21] Autoencoder K-means-VQ (Prop) [7] 60.9

Interspeech’09 [21] Autoencoder GPCM-VQ (Prop) [7] 69.6
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Figure 7 Scores of the confusion matrix for (a) K-means, (b) graded-possibilistic c-means (GPCM), for clustering followed by labeling, using
192 features selected by analysis of variance (ANOVA).

sadness, and recognized joy shares the same sum-of-membership
with original joy and anger, etc.

In comparison to the scores calculated from the confusion matrix,
cf. Figure 7, it could be easily noticed that highly misclassified
emotions are the same which share most of their membership
functions with other ones, such as disgust and joy. Hence, the sum-
of-membership matrix could show the same tendency of the con-
fusion matrix in case of fuzzy clustering. These findings could be
interpreted as a novelway to approach emotion recognition/percep-
tion, e.g., when a recognized emotion class has most of its member-
ships in the same original class, e.g., for anger, this means that the
model succeeds to identify most of the angry voices as belonging
to the same class; however, when a recognized class has its sum-of-
membership shared by more than one original emotion class, this
could be interpreted, either as these classes share several features,
e.g., for joy and anger, or the emotion itself is amixture ofmore basic
ones, e.g., disgust is a mixture of anger, boredom and neutral. Still,
this interpretation could be deepened by human-listeners through
subjective evaluation. At last, such an analysis shows the relevance
of fuzzy clustering in (i) enhancing the emotion recognition from
single signals, (ii) analyzing emotions, or at least to reveal some of
their hidden characteristics thanks to the analysis of the sum-of-
membership matrix.

6. CONCLUSION

In this paper, a novel approach for emotion recognition using
fuzzy clustering is described. The main idea consists in clustering
speech according to basic emotions, using (a) unsupervised learn-
ing for feature extraction, and more precisely feature embedding
with autoencoders, (b) new advances in fuzzy clustering, such as
possibilistic and graded-possibilistic c-means, in addition to prob-
abilistic c-means, to recognize emotion from speech. Besides, the
crisp approach was treated using K-means algorithm, for evalu-
ation purposes. Several adjustments were also made to fine-tune
the models, including feature embedding using autoencoders, fea-
ture selection using ANOVA and MI analysis, and finally varying

the possibilistic models parameters. Also, using more clusters than
classes helped increasing the recognition rates. In addition, choos-
ing the optimal values of parameters had an impact on increasing
the performance of possibilistic and graded-possibilistic c-means
models.

The confusion matrix scores, i.e., accuracy, precision, recall and F1,
confirm the efficiency of using fuzzy clustering as an alternative
tool to supervised learning for emotion recognition. Either for sin-
gle emotions or for groups of emotions, crisp and fuzzy clustering
perform almost equally, yielding an overall accuracy of nearly 60%
and a precision higher than 80% for some emotions such as anger
and sadness, with equivalent recall. This may be quite useful as an
alternativeway for emotion recognition in large and especially unla-
beled speech data sets.

In addition to the classical confusion matrix, utilized to show the
classification performance, a novel representation based on the
sum-of-membership matrix is presented. The analysis of such a
matrix for fuzzy clustering shows a similar behavior than the con-
fusion matrix, where highly recognized emotions tend to have a
high membership to the same original emotion, whereas misclas-
sified emotions tend to share their sum-of-membership with other
emotions. This already allows differentiating between “strong” or
“basic” emotions, which monopolize their membership values and
“weak” or “mixed” emotions that tend to share their sum-of-
memberships. This representation allows studying the dependence
of each basic emotion to the other ones, and could be a helpful
tool for emotion analysis, to understand how speech signal conveys
emotions and how they are perceived.
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