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Abstract: The vibration serviceability assessment of footbridges under pedestrian traffic requires a probabilistic approach considering the
uncertainty in the dynamic behavior of the structure and the variability of multiple load parameters, such as the pedestrians’ arrival time and
step frequency. In view of engineering applications, a major challenge lies in the development, verification, and validation of efficient pre-
diction models. With this challenge in mind, this paper uses a spectral approach to predict the dynamic response induced by unrestricted
pedestrian traffic. A spectral load model available in the literature is extended to account for multiple harmonics of the vertical walking
load and for application to arbitrary mode shapes. Furthermore, a closed-form expression is proposed to estimate the variance of the multi-
mode structural response taking into account both resonant and nonresonant contributions. The performance of the proposed approach is
evaluated for a simply supported beam as well as a real footbridge where multiple modes considerably contribute to the overall structural
response. The results show that the proposed approach allows a good and mildly conservative estimate of the structural response to be ob-
tained. DOI: 10.1061/(ASCE)BE.1943-5592.0001582. This work is made available under the terms of the Creative Commons Attribution
4.0 International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction

In civil engineering, the increasing strength of new materials, the
economic demand of efficiency, and esthetic requirements stimulate
the design of lightweight, slender, and, consequently, vibration-
sensitive structures (Ney and Poulissen 2014). When the structure
is designed for human occupants (e.g., grandstands, footbridges,
etc.), this trend is further stimulated by the relatively small service
loads involved (Živanović et al. 2005; Smith et al. 2009; Heinemeyer
et al. 2009b). For these structures, the vibration serviceability under
human-induced loading has become a key design criterion when de-
termining the structural shape and dimensions. Apart from a reliable
description of the dynamic behavior of the structure, anticipating and
preventing vibration serviceability failures requires reliable and de-
tailed characterization of human dynamic actions (Racić et al.
2009; McDonald and Živanović 2017). Since the “wobbly” London
Millennium Bridge brought this very problem in the limelight nearly
two decades ago (Dallard et al. 2001), an extensive amount of re-
search has been carried out on dynamic walking excitation. Signifi-
cant progress has been made on the characterization of the intrinsic
variability in the load pattern of an individual (Živanović et al.
2007; Racić and Brownjohn 2011) and the population (Sahnaci

and Kasperski 2005; Piccardo and Tubino 2012), and the related
human–structure interaction (HSI) (Agu and Kasperski 2011;
Ingólfsson et al. 2012; Caprani and Ahmadi 2016; Shahabpoor
et al. 2016b; Cappellini et al. 2016; Van Nimmen et al. 2017) and
human–human interaction (HHI) (Bruno et al. 2011, 2016) phenom-
ena. Furthermore, although the procedures presented by current
guidelines focus on the resonant footbridge response (AFGC 2006;
Heinemeyer et al. 2009a), recent observations indicate that also non-
resonant contributions can be of significant importance to the overall
dynamic performance (Dey et al. 2016).

Since the last decade, there exists a general consensus that the
modeling of pedestrian traffic requires a probabilistic approach
considering the variability of multiple load parameters such as
the pedestrians’ arrival time and step frequency (Živanović et al.
2007; Pedersen and Frier 2010; Krenk 2012; Piccardo and Tubino
2012; Demartino et al. 2017). A distinction is made between inter-
person and intraperson variability. Interperson variability refers to
the fact that each pedestrian has their own characteristics, such as
weight, step frequency, and walking speed (Caprani et al. 2012).
In turn, intraperson variability refers to the fact that some parame-
ters such as the step length and the walking speed may vary along
the individual trajectories (Racić et al. 2009; Sahnaci and Kasperski
2011). In addition, the pedestrian’s behavior is subject to various
environmental stimuli such as the behavior of their neighbors
and the group as a whole (HHI) (Helbing and Molnar 1995;
Bruno and Venuti 2009; Bruno and Corbetta 2017), as well as
the motion of the supporting structure (HSI) (Bocian et al. 2012;
Carroll et al. 2012).

The method generally used to account for the probabilistic
nature of pedestrian excitation is Monte Carlo (MC) simulation.
Using MC simulation, the aim is to statistically characterize the
(maximum) dynamic response of the footbridge for the considered
loading conditions (Živanović et al. 2010; Van Nimmen et al.
2016). To this end, the structural response is evaluated for a large
set of samples representing the desired traffic conditions, including
the relevant HHI and HSI phenomena, and by sampling the in-
volved load parameters from the proper probability distributions.
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As these MC simulations are computationally expensive and not
practical from the viewpoint of engineering applications, they are
mainly used to derive and validate simplified procedures and spec-
tral approaches.
• Simplified procedures aim to simulate, in an approximate way,

the excitation by groups or crowds of pedestrians. The most
widely applied approach involves the definition of an equivalent
uniformly distributed resonant load producing the maximum dy-
namic response corresponding to a certain probability of ex-
ceedance (AFGC 2006; Heinemeyer et al. 2009a; BSI 2008).
These approaches are generally overconservative, in particular
for group loading, and do not allow to account for the contribu-
tion of multiple harmonics and modes, nor for nonresonant con-
tributions (Živanović et al. 2005; Piccardo and Tubino 2012).

• In a spectral approach, the pedestrian-induced loading is mod-
eled as a stationary random process by means of a suitable
power spectral density (PSD) function (Ferrarotti and Tubino
2016). This approach was first introduced by Brownjohn et al.
(2004) based on the probabilistic Gaussian distribution of step
frequencies. Pizzimenti and Ricciardelli (2005) and Ricciardelli
and Pizzimenti (2007) derived PSD functions for the lateral
component of the single-person walking load. Caprani (2014)
proposed a spectral model to encompass both intrapedestrian
and interpedestrian variability. A wide experimental campaign
has been carried out recently to provide a more reliable spectral
characterization of the vertical component of the walking load,
providing parameters for the first six harmonics (Chen et al.
2019). A different model has been proposed by Casciati et al.
(2017), with a mathematical form similar to that used in wind
engineering. Starting from these spectral models, the dynamic
response can be estimated based on time-domain numerical sim-
ulations of the loading (Caprani 2014; Casciati et al. 2017), or
on frequency-domain numerical evaluations of the spectral
moments (Bassoli et al. 2018). Based on a spectral representa-
tion of the loading, other authors have focused on the search
for closed-form expressions for the dynamic response to walking.
Krenk (2012) introduced simplified expressions for the standard
deviation of the structural response of a single-degree-of-freedom
(SDOF) system to (resonant and nonresonant) excitation with a
frequency distribution representative for the fundamental har-
monic of the walking load. An equivalent spectral model for
the walking load in unrestricted pedestrian traffic condition has
been deduced analytically, verified numerically, and validated ex-
perimentally by Piccardo and Tubino (2012) and Tubino et al.
(2016). Piccardo and Tubino (2012) proposed a closed-form ex-
pression for the variance and the maximum value of the structural
response to unrestricted pedestrian traffic due to the fundamental
harmonic of the walking load and considering only the resonant
contribution of a bending mode of a footbridge. This spectral ap-
proach has been shown to provide excellent results when the
structural response is dominated by the contribution of a single
mode when the mean value of the step frequencies is (very)
close to its natural frequency.
The limitations and assumptions related to the closed-form sol-

ution for the dynamic response proposed in Piccardo and Tubino
(2012) are as follows.
• It accounts only for the contribution of a single mode and a sin-

gle harmonic. A generalization to multiharmonic response using
the square root of the sum of the squares (SRSS) combination
rule was proposed by Bassoli et al. (2018), but the maximum
single-mode structural acceleration due to a single harmonic
of the walking load is estimated numerically.

• It can only be applied to purely bending modes.
• Focus is only on the vertical component of the walking load.

• Unrestricted traffic conditions are considered whereby the walk-
ing trajectories can be approximated by straight lines. This as-
sumption can be made for bridge decks with a constant
width and low pedestrian densities (up to 0.5 pedestrians/m2

Weidmann 1993; Venuti and Bruno 2007; Ferrarotti and Tubino
2016), where the walking behavior of the pedestrians is not (or is
only negligibly) influenced by HHI and the interperson variability
in step frequency can be described by a Gaussian distribution, as
also assumed by Bassoli et al. (2018), Krenk (2012), and Piccardo
and Tubino (2012). Preliminary results (Wei et al. 2017), how-
ever, also suggest that the effect of social forces (Helbing et al.
2000), including HHI, on the dynamic structural response can
be accounted for by straight walking trajectories and an equivalent
distribution of step frequencies. To account for HHI in the spectral
model, a possible extension of the model was discussed in Ferrar-
otti and Tubino (2016). Microscopic modeling of pedestrian traffic
is outside the scope of this paper, but the reader is referred to Bruno
and Corbetta (2017), Bruno et al. (2011), Helbing et al. (2000), and
Venuti et al. (2016) for more information on this topic.

• Active HSI phenomena are disregarded: active interaction
phenomena, whereby the walking behavior of the pedestrian
is modified in response to the vibration of the surface, are
known to occur for lateral bridge deck motion (Ingólfsson
et al. 2012; Erlicher et al. 2010; Carroll et al. 2014; Fujino
and Siringoringo 2015; Bocian et al. 2016). In the vertical direc-
tion, it is argued that they are only achieved for vibration ampli-
tudes that exceed the acceptable limits for vibration comfort
(AFGC 2006; Butz et al. 2008; Dang and Živanović 2016).
This paper extends the spectral approach proposed by Piccardo

and Tubino (2012) and adopted by Bassoli et al. (2018) as follows.
• It is generalized analytically for multiharmonic excitation.
• It is generalized analytically for the multimode dynamic re-

sponse of footbridges with widely spaced modes. This limita-
tion is met by the majority of footbridges.

• It is extended for application to arbitrary mode shapes, e.g., for
cases where also the distribution of pedestrians along the width
of the bridge deck is of importance due to the presence of tor-
sional modes.

• A closed-form expression is proposed to estimate the variance
of the multimode structural response taking into account both
resonant and nonresonant contributions.
Every step in the extension process is numerically verified using

MC simulations, considering the variability of the relevant load pa-
rameters. First, the process is verified for a simply supported beam
where only the fundamental mode is considered. This allows an
evaluation of the performance of the spectral approach for a wide
range of modal parameters, in particular, a wide range of natural
frequencies and modal damping ratios. The considered range of
damping ratios is significantly wider than what is generally consid-
ered for inherent structural damping with the aim of also encom-
passing the added damping due to passive HSI phenomena (Van
Nimmen et al. 2017; Shahabpoor et al. 2016a; Sachse et al.
2004; Tubino 2018) or passive vibration mitigation measures
(Weber and Feltrin 2010). The spectral approach presented in
Bassoli et al. (2018) was the first to explicitly account for passive
HSI, but the method proposed only allows numerical estimation
of the single-mode structural response. The results are furthermore
also compared with those obtained using the closed-form solution
introduced by Krenk (2012). Second, the generalized spectral ap-
proach is verified through application to a real footbridge where
multiple low-frequency modes contribute to the structural response.

The outline of this paper is as follows. First, the general math-
ematical framework for the calculation of the structural response
to pedestrian traffic is presented. Second, the basic principles of

© ASCE 04020058-2 J. Bridge Eng.
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the spectral approach and its generalization to multiharmonic exci-
tation and the estimation of a multimode structural response are dis-
cussed. Third, the proposed approach is verified numerically.
Finally, conclusions are formulated.

Structural Response to Unrestricted Pedestrian Traffic

The equations of motion of a footbridge, modeled as a 2D contin-
uous linear structural system with classical viscous damping, can
be written in the following form:

M(x, y)
∂2u(x, y; t)

∂2t
+ C ∂u(x, y; t)

∂t

[ ]
+ L u(x, y; t)

[ ] = f (x, y; t)

(1)

where u(x, y; t) = displacement of the footbridge; t (s) = time; x and
y (m) = abscissa along the longitudinal and the lateral axis of the
structure with dimensions lx and ly (m), respectively; M(x, y) =
structural mass per unit area; C and L = damping and stiffness op-
erator, respectively; and f (x, y; t) = external force.

The external force in this study consists of the vertical pedes-
trian excitation, which can be expressed as the sum of moving mul-
tiharmonic loads:

f (x, y; t) =
∑mh

h=1

∑mp

p=1

αhpGp sin hωspt + ϑh + ϑ p

( )
δ x− �vs(t − τ p)
[ ]

× δ y− yp
[ ]

H(t − τ p)−H t − τ p − lx
�vs

( )[ ]
(2)

where αhp (-) = dynamic load factor (DLF); Gp (N) = the weight;
ωsp (rad/s) = circular step frequency; ϑ p (rad) = phase angle;
τp (s) = arrival time; yp (m) = abscissa along the width of the bridge
deck of the pth pedestrian; h = order number of the harmonic; mh =
number of harmonics; mp = number of pedestrians; ϑh (rad) = phase
angle of the hth harmonic; �vs = average walking speed of the
pedestrians; δ(·) = Dirac function; and H(·) = Heaviside function.
The phase angle ϑ p and the position of the pedestrians along the
width yp are assumed to be random variables, distributed uniformly
in [0, 2π] and [0, ly], respectively. The arrival times are assumed to
follow a Poisson distribution (Helbing and Molnar 1995; Živanović
2012).

After applying the modal coordinate transformation,

u(x, y, t) =
∑mm

j=1

ϕj(x, y)zj(t) (3)

where ϕj = jth unity-normalized mode shape; and mm = number of
modes and assuming proportional damping; the equation of motion
of the jth modal coordinate zj can be expressed as

z̈j(t)+ 2ξjωj żj(t)+ ω2
j zj(t) =

1

mj
f j(t) (4)

where ξj (-) =jth modal damping ratio; ωj (rad/s) = natural circular
frequency; nj=ωj/2π (Hz) = natural frequency; mj = modal mass;
and fj(t) is the jth modal load given by

f j(t) =
∑mh

h=1

∑mp

p=1

αhpGp sin hωspt + ϑh + ϑ p

( )
ϕ′
j �vs(t − τ p), yp
[ ]

(5)

with ϕ′
j=ϕj for 0 ≤ �vs(t − τ p) ≤ lx and ϕ′

j= 0 otherwise. When the
step frequency, or one of its multiples, coincides with the jth natural
frequency of the footbridge, and when it is assumed that the struc-
tural response is dominated by the resonant contribution of that

mode, Eqs. (3) and (5) are often reduced to the contribution of
the resonant mode j and the resonant harmonic h only.

Spectral Approach

This section first discusses the spectral approach for the special case
of single-harmonic excitation and the estimation of the single-mode
resonant structural response (section “Single-Harmonic Excitation,
Single-Mode Response”). The formulations presented in this section
are borrowed and adapted from Ferrarotti and Tubino (2016), Krenk
(2012), and Piccardo and Tubino (2012). Section “Multiharmonic
Excitation, Multimode Response” then discusses the generalization
of the spectral approach for the application to multiharmonic excita-
tion and the estimation of a multimode structural response.

Single-Harmonic Excitation, Single-Mode Response

The spectral approach introduced by Piccardo and Tubino (2012)
only considers vertical bending modes, making the pedestrians’ lo-
cation along the lateral dimension of the footbridge y nonessential.
Then, when only the fundamental harmonic of the walking load is
accounted for (h= 1), the modal force in Eq. (5) reads (Piccardo
and Tubino 2012)

f j(t) ≅
∑mp

p=1

α1pGp sin ωspt + ϑ p

( )
ϕ′
j �vst − τ p
( )

(6)

Given that the time needed by the pedestrian to cross the length
corresponding to a single sine wave of the structural mode ϕj is
much longer than the period of the force, the last term in Eq. (6),
ϕj(�vst − τ p), can be interpreted as a window function (Bendat
and Piersol 2010) as considered in the spectral analysis of random
processes (Elishakoff 1999; Bendat and Piersol 2010). Following
these developments, the single-sided PSD function of the modal
force S f j (ω) induced by mp pedestrians is found as (Piccardo and
Tubino 2012)

S f j (ω) =
mp�α21 �G

2

2
pωs (ω)

1

lx

∫lx
0
ϕ2
j (x) dx

[ ]
(7)

with pωs (ω) the probability density function (PDF) of the step fre-
quency ωsp.

To arrive at Eq. (7), a number of simplifying assumptions are
made regarding interperson and intraperson variability. Tubino
and Piccardo (2016) showed that the interperson variability of
the walking speed, the pedestrian weight, and the DLFs have a neg-
ligible influence on the structural dynamic response (Tubino and
Piccardo 2016). Therefore, these quantities are modeled determin-
istically through their mean value. As a result, only the variability
of the step frequency is considered, that is, the load parameter that
predominantly governs the structural response (Van Nimmen et al.
2014; Tubino and Piccardo 2016; McDonald and Živanović 2017).
Van Nimmen et al. (2017) showed that for a considerable degree of
interperson variability, as typically associated with unrestricted
traffic conditions, the effect of interperson variability on the struc-
tural dynamic response prevails over that of intraperson variability.
In other words, Van Nimmen et al. (2017) showed that considering
the step frequency ωs as a random variable, characterized by a prob-
ability distribution function (PDF) describing the interperson variabil-
ity of unrestricted traffic, is representative for the dynamic effect of
both interperson and intraperson variabilities in step frequency.
Based on the results reported in the literature (Racić et al. 2009;
Pedersen and Frier 2010), a Gaussian distribution of step frequencies

© ASCE 04020058-3 J. Bridge Eng.
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is assumed. The PDF pωs (ω) then reads

pωs (ω) =
1

σωs

���
2π

√ e−(ω−�ωs)
2/2σ2ωs (8)

where �ωs = mean value of the circular step frequencies; and σωs =
standard deviation of the circular step frequencies.

Based on the analytical spectral model of the modal force,
Eq. (7), the PSD function of the modal accelerations is given by

Sz̈j (ω) = Hz̈j (ω)
∣∣ ∣∣2S f j (ω) (9)

where Hz̈j (ω) = complex frequency response function (FRF) of the
jth modal coordinate in terms of accelerations. By assuming that the
response of footbridges is mainly resonant, the variance of z̈j can
be estimated through the classical methods of random vibration
for linear problems (Elishakoff 1999):

σ2z̈j =
πωj

4m2
j ξj

S f j (ωj) (10)

with S f j (ωj) the single-sided PSD function of the modal force,
Eq. (7), evaluated for ω=ωj.

In addition, Krenk (2012) introduced a closed-form expression
for the standard deviation of the response of a SDOF system ex-
cited by a force characterized by a Gaussian frequency distribution.
In the context of the present paper, the proposed expression is writ-
ten as follows:

σ z̈j ≅
�α1 �G

�������
mp

��
π

√√
4m2

j

��
ξj

√
��������
ξj + ξ0

√
1+ ω2

0

( )
����������������������������
1− ω2

0

( )2+4 ξj + ξ0
( )2

ω2
0

√ (11)

ω0 = �ωs

ωj

����������
1+ 2cs2

√
, ξ0 = cs

���������
2

1+ 2c2s

√
(12)

where cs = σωs/�ωs = coefficient of variation (COV) of the step fre-
quency. In contrast to Eqs. (10) and (11) also retains validity for
nonresonant excitation.

By assuming that the structural response is dominated by the jth
mode, the variance of the acceleration response in physical coordi-
nates may finally be estimated as

σ2ü(x) = ϕ2
j (x)σ

2
z̈j

(13)

where x = physical coordinate of the desired output location on the
bridge deck.

Although used by most of the current guidelines, the peak accel-
eration response as a measure for footbridge vibration serviceabil-
ity has been called into question (Tubino and Piccardo 2016). The
reason for this is that it concerns an instantaneous quantity that is
potentially not representative for the overall comfort evaluation,
in particular when the structural response results from relevant
resonant and nonresonant (transient) contributions, whether or not
frommultiple structural modes. Furthermore, for spectral approaches,
maximum acceleration levels can be estimated through the applica-
tion of a suitable peak factor (Davenport 1964), which involves ad-
ditional assumptions and approximations that are not to the benefit
of the accuracy of the obtained result. On the other hand, the variance
or standard deviation of the dynamic response can be estimated accu-
rately (Tubino and Piccardo 2016). It is for this reason that this study
evaluates the structural acceleration response in terms of its standard
deviation σü(x).

Multiharmonic Excitation, Multimode Response

In reality, the dynamic walking load is composed of multiple har-
monics mh. Consequently, the loading due to mp pedestrians can be
considered as a narrow-band random process characterized by
dominant contributions around hωh with h ∈ N [Eq. (2) and
Fig. 1-top]. To account for the multiple harmonics mh in the walk-
ing load, the modal force in Eq. (6) is reformulated as

f j(t) ≅
∑mh

h=1

∑mp

p=1

αhpGp sin hωspt + ϑ p + ϑh
( )

ϕ′
j �vst − τ p, yp
( )

(14)

where hωsp = hth harmonic of the step frequency for which the PDF
phωs (ω) is found as

phωs (ω) =
1

hσωs

���
2π

√ e−(ω−ωh)
2/2(hσωs )

2

(15)

where ωh = h�ωs = mean value of the hth harmonic; and hσωs =
standard deviation of the hth harmonic. Similar to Eq. (6),
ϕj(�vst − τ p, yp) can be interpreted as a window function. In addi-
tion, accounting for the phases of the different harmonics that are
independent and uniformly distributed (Živanović et al. 2007),
their contributions are uncorrelated and the single-sided PSD func-
tion of the modal load reads (Elishakoff 1999)

S f j (ω) =
∑mh

h=1

S f j,h (ω)

=
∑mh

h=1

mp�α2h �G
2

2
phωs (ω)

1

lxly

∫lx
0

∫ly
0
ϕ2
j (x, y) dx dy

[ ]
(16)

(a)

(b)

(c)

Fig. 1. (a) Schematic representation of a multiple narrow-band random
process; (b) the FRF of a SDOF system in modal coordinates; and
(c) the resulting modal acceleration response.
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where S f j,h (ω) = PSD function of the modal load associated with the
hth harmonic. Eq. (16) [and Eq. (7)] are valid for low values of
the COV of αh G. However, the higher harmonics of the walking
load are known to be characterized by higher values for the COV
(≈0.40), in comparison with that of the fundamental harmonic
(≈0.17) (Willford and Young 2006). To also account for larger values
of the COV for the different harmonics, the property for the variance
of products (Goodman 1960) is used to further extend Eq. (16) to

Sfj (ω)=
∑mh

h=1

mp�α2h �G
2
1+ c2h
( )
2

phωs (ω)
1

lxly

∫lx
0

∫ly
0
ϕ2
j (x, y)dxdy

[ ]
(17)

where ch = COV of αhG, with αhG and phωs as independent random
variables. It is noted that in Eq. (17), αhG is considered as a single
random variable. In case the random variables αh and G are individ-
ually statistically characterized and they are statistically independent,
the COV of their product can be estimated from the COV of the sin-

gle variables (cαh and cG) as ch =
�������������������
c2αh + c2G + c2αh c

2
G

√
.

The variance of z̈j is now given by

σ2z̈j =
∫∞
0

Hz̈j (ω)
∣∣ ∣∣2S fj (ω) dω =

∑mh

h=1

∫∞
0

Hz̈j (ω)
∣∣ ∣∣2S f j,h (ω) dω (18)

The variance of the response can be considered as the superposition
of a resonant and a nonresonant contribution [see Fig. 1(c)]:

σ2z̈j = σ2z̈ j,r + σ2z̈ j,nr (19)

with

σ2z̈ j,r =
∫ωj+ε

ωj−ε

Hzj (ω)
∣∣ ∣∣2S fj (ω) dω ≅ S fj (ωj)

∫ωj+ε

ωj−ε

Hzj (ω)
∣∣ ∣∣2dω

≅
πωj

4m2
j ξj

S fj (ωj) (20)

σ2z̈ j,nr =
∑mh

h=1

∫ωj−ε

0
Hz̈j (ω)
∣∣ ∣∣2S f j,h (ω) dω+

∫∞
ωj+ε

Hz̈j (ω)
∣∣ ∣∣2S f j,h (ω) dω

(21)

where ɛ is a small parameter. When the dominant peak of the PSD
function of the hth harmonic S f j,h is sufficiently narrow, or when the
FRF Hz̈j (ω) is approximately constant around ωh, then Eq. (21) can
be approximated by

σ2z̈ j,nr =
∑mh

h=1

σ2f j,h Hz̈j (ωh)
∣∣ ∣∣2(1+H

[
ωj − ε−ωh

]−H
[
ωj + ε−ωh

])

(22)

where σ2f j,h =
�∞
0 S f j,h (ω) dω = variance of the hth harmonic of the jth

modal load. The Heaviside function in Eq. (22) enforces that the non-
resonant response is only accounted for when ωh ∉ [ωj − ε; ωj + ε].

The following two corrections are now proposed.
• As |Hz̈j (ω)| is increasing towards ωj, assuming that Hz̈j (ω) is

constant for the relevant width of the peak in S f j,h [Hz̈j (ω) =
Hz̈j (ωh)], can result in an underestimation of the nonresonant re-
sponse. To address this issue, Eq. (22) is modified as follows:

σ2z̈ j,nr =
∑mh

h=1

σ2f j,h Hz̈j (ω
′
h)

∣∣ ∣∣2(1+H
[
ωj − ε−ωh

]−H
[
ωj + ε−ωh

])

(23)

with ω′
h = (1− ς)ωh + ςωj with ς ≥ 0 and ς ≪ 1 [see also

Fig. 2(a)]. This modification implies that Eq. (23) evaluates
the FRF Hz̈j (ω) at a frequency ω′

h that is 100 × ς% closer to ωj

than ωh, with |Hz̈j (ω
′
h)| ≥ |Hz̈j (ωh)|. A value of 0.2 is proposed

for ς. The effect of this parameter is further illustrated in section
“Numerical Verification: Single-Harmonic, Single-Mode.”

• In reality, the influence of the nonresonant response gradually
increases as ωh moves further away from ωj. To gradually
account for the nonresonant response, the Heaviside function
in Eqs. (22) and (23), can be replaced by a smooth approxima-
tion to the step function such as the logistic function or a Gauss-
ian PDF-inspired function. Based on the latter, the function
Wj(ωh) is proposed:

Wj(ωh) = 1− e−[(ωh−ωj)/a1ωj]4 (24)

Based on empirical numerical investigations, the following
value is proposed for a1:

a1 = 0.1(1+ h) (25)

The corresponding function Wj(ωh) is visualized in Fig. 3. The
dependence on h in Eq. (25) is introduced to expand the interval
around ωj where the resonant contribution dominates the response
[see also Figs. 2(b) and 3]. This is in line with the width of the
dominant spectrum of the harmonic load that increases with h.

(a) (b)

Fig. 2. Schematic illustration of the corrections described by (a) Eq. (23); and (b) Eq. (26).

0 0.5 1 1.5 2
0

0.5

1

Fig. 3. The functionWj(ωh) as proposed as a smooth alternative for the
Heaviside function H, for the fundamental (black) and second (gray)
harmonic of the walking load.
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Eq. (23) then reads

σ2z̈ j,nr =
∑mh

h=1

σ2f j,h Hz̈j (ω
′
h)

∣∣ ∣∣2Wj(ωh) (26)

The effect of Wj is further illustrated in section “Numerical
Verification: Single-Harmonic, Single-Mode.”

When the modes are well separated (Chopra 1995), the modal
dynamic responses may be assumed as uncorrelated and the stan-
dard deviation of the acceleration response is found following the
SRSS rule for modal combination (Chopra 1995):

σü(x, y) =
����������������∑mm

j=1

ϕ2
j (x, y)σ

2
z̈ j

√√√√ (27)

with (x, y) the physical coordinate of the desired output location on
the bridge deck. In case the modes cannot be considered as well
separated, an alternative for SRSS is provided by the complete qua-
dratic combination (CQC) modal combination rule that allows the
correlation among the modal responses to be accounted for (Chopra
1995). In its current form, the proposed method does not provide
the necessary inputs for the CQC method, therefore its application
is limited to widely spaced modes. This limitation is met by the ma-
jority of footbridges.

Numerical Verification: Single-Harmonic, Single-Mode

To provide numerical verification of the proposed expressions for
the PSD function of the modal load and the variance of the dynamic
response, a simple case is considered first. This simple case corre-
sponds to a footbridge with a length of lx= 100m and a width of
ly= 3m. The mode shape ϕj corresponds to the fundamental
mode of a simply supported beam, i.e., a half sine wave. The
modal mass mj is set to 50,000 kg. Different values are considered
for the natural frequency ωj and the modal damping ratio ξj, as dis-
cussed in the following paragraphs.

A pedestrian density of 0.5 persons/m2 is considered, corre-
sponding to a total of mp= 150 pedestrians on the footbridge. Fol-
lowing the speed–density relation defined by Bruno and Venuti
(2009), a mean walking speed �vs = 1.30m/s is found for a pedes-
trian density of 0.5 persons/m2. The distribution of step frequencies
is set to follow a Gaussian distribution ωs = N (�ωs, σωs ) (rad/s).
Different values are considered for the mean value of the step fre-
quencies �ωs, as discussed next in the following paragraphs. In this
section, only the fundamental harmonic of the walking load is

considered: ωh=ωs. The standard deviation of the step frequencies
is set to 0.18Hz (σωs = 0.18 × 2π), which is representative for un-
restricted traffic conditions (AFGC 2006). The amplitude of the
harmonic walking load �α�G is set equal to 0.4 × 700, corresponding
to the average value for the DLF of the fundamental harmonic of
the walking load and pedestrian weight, respectively (AFGC 2006).

The standard deviation of the acceleration levels is evaluated for
a wide range of ωh/ωj (ωh/ωj∈ [0.2, 4]) and modal damping ratios
(ξj ∈ [0.5, 10.0]%). Although the inherent structural damping ra-
tios are usually (well) below 3% for footbridges, effective damping
ratios up to 10% are considered here to also anticipate the effect of
passive HSI (Van Nimmen et al. 2017).

For each case, the PSD function of the modal load and the stan-
dard deviation of the dynamic response is estimated (1) numerically
based on a large number of msim= 104 MC simulations (following
the mathematical framework described in section “Structural Re-
sponse to Unrestricted Pedestrian Traffic”) and (2) by the simplified
expressions proposed in section “Spectral Approach”: Eq. (7) for
the modal load and Eqs. (27), (19), (20), and (26) for the estimation
of the dynamic response.

PSD Function of the Modal Load

Considering a sinusoidal mode shape and a single harmonic,
Eq. (17) becomes

S f j (ω) =
mp�α21 �G

2
1+ c21
( )
4

pωs (ω) (28)

The PSD function of the modal force is now verified for different
values of the COV (0≤ c1≤ 0.4), which is in this example fully at-
tributed to the variability of α1 (and, thus, assuming Gp = �G).
Fig. 4 compares the PSD function of the modal load as analytically
predicted using Eq. (28) to the PSD function of the modal load as
derived from the numerical simulations. These results show that the
influence of the COV of variation of αh G is not negligible, espe-
cially in the range [1.7, 2.1] Hz [Fig. 4(b)]. The maximal value of
the PSD function of the modal load for a COV equal to 0.4 is
found to be 14% greater than for a COV equal to 0. Fig. 4 also
shows that an excellent agreement is found between the analytical
predictions and the numerical simulations. Small differences be-
tween the analytical predictions and the numerical simulations
arise for larger values of the COV. These differences may result
from the fact that the normal distributions are no longer perfectly
normal as they are truncated to exclude negative nonphysical val-
ues of α1. In the following sections, the COV of αh G is set
equal to zero.

1 1.5 2 2.5 3
0

2

4

6
105

1.7 1.8 1.9 2 2.1
2

3

4

5

6
105

(a) (b)

Fig. 4. PSD function of the modal force (mp= 150) as analytically predicted (dashed) and numerically simulated (solid) for a COV c1 of
{0.0, 0.1, 0.2, 0.3, 0.4} (dark to light): (a) 1Hz up to 3Hz; and (b) zoom for 1.7Hz up to 2.1Hz.
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Structural Dynamic Response

First, focus is on the PSD function of the structural accelerations for
three distinguished values of ωh = {0.5, 1.0, 2.0} × ωj. For these
load cases, Fig. 5 shows the PSD function of the modal load to-
gether with the FRF of the footbridge, and the PSD of the resulting
structural accelerations. From Fig. 5(e) it is clear that for ωh=ωj,
the structural response is governed by the resonant contribution.
For ωh= 0.5ωj and ωh= 2.0ωj the structural response is governed
by the nonresonant contribution [Figs. 5(d and f)] and the shape
of Sü is similar to the shape of S fj . Since the FRF Hz̈j (ω) is not

perfectly flat around ωh but increasing towards ωj, the bell curve
of S fj reflected in Sü is skewed towards ωj, which is more pro-
nounced as ωh is closer to ωj.

Second, focus is on the standard deviation of the structural
response. Fig. 6 compares the numerically simulated results with
those predicted analytically first considering the resonant contribu-
tion only [σ2z̈j ≈ σ2z̈ j,r , Eq. (20)] and, next, considering both the
resonant and nonresonant contribution [σ2z̈j ≈ σ2z̈ j,r + σ2z̈ j,nr , Eqs. (27),
(19), (20), and (26)], and predicted according to Krenk (2012)
[Eq. (11)]. When the numerical simulations are compared with the

0 1 2 3
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6
105

10-6

10-5

10-4
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0 1 2 3
0
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10-4

10-3

0 1 2 3
0
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4

6
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10-6

10-5

10-4
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0
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0 1 2 3
0

0.05

0.1
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0.2
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1
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3

4

10-4

(a) (b) (c)

(d) (e) (f)

Fig. 5. For a pedestrian density of 0.5 pedestrians/m2 and a modal damping ratio of ξj = 2.0%, in terms of ωh/ωj: (top) the PSD of fj (dashed) and the
FRF of the footbridge (solid); and (bottom) the PSD of ü, with (a and d) ωh= 0.5ωj, (b and e) ωh=ωj, and (c and f) ωh= 2ωj.
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0
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0 0.2 0.4 0.6 0.8 1
0
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0
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(a) (b)

(c) (d)

Fig. 6. Comparison between the analytically predicted (curve) and numerically simulated (•) standard deviation of ü, in terms of ωh/ωj, for a pedes-
trian density of 0.5 pedestrians/m2 and for different values of the modal damping ratio (light to dark) ξj = {0.5, 2.0, 5.0, 10.0}% according to
σ2z̈j = σ2z̈ j,r (dashed) and σ2z̈j = σ2z̈ j,r + σ2z̈ j,nr (solid) and according to Krenk (Krenk 2012) [Eq. (11), dash-dotted]: (a) 0≤ωh/ωj≤ 4; (b) zoom 0.7≤
ωh/ωj≤ 1.3; (c) 0≤ωh/ωj≤ 1; and (d) zoom 1≤ωh/ωj≤ 4.
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predictions that only consider the resonant contribution, the following
observations are made.
• As expected, considering only the resonant contribution allows

for a good approximation of σü for ωh/ωj≃ 1. However, the
accuracy of this approximation decreases for increasing modal
damping ratios. For high modal damping ratios, Eq. (20) consis-
tently results in an overestimation of σü. For modal damping
ratios of 2% and 10%, Eq. (20) results in an overestimation of
approximately 7% and 36%, respectively. In view of engineer-
ing applications, this (mild) overestimation is considered
acceptable.

• Figs. 6(b and c) show that when only the resonant contribution
is accounted for, the structural response is underestimated the
further ωh is from ωj. Although these results show that for
very low damping ratios the nonresonant response is low in
comparison with the maximum resonant response, its (relative)
importance increases for increasing modal damping ratios.
Furthermore, the significance of nonresonant contributions
will also increase when multiple modes contribute to the overall
structural response.

• Fig. 6 shows that Krenk provides an excellent approximation of
the standard deviation of the response for resonant conditions
(ωh/ωj≈ 1), whereas it overestimates the standard deviation in
other cases. The results in this figure correspond to a COV of
the step frequency cs= 0.09. Tubino and Piccardo (2016)
showed that the quality of Krenk’s approximation decreases
for decreasing coefficients of variation.

• In addition, the following observations are made which are di-
rectly related to the dynamic behavior of a SDOF system:
• as ωh is further away from ωj, the structural response be-

comes independent of the modal damping ratio;
• for ωh/ωj≪ 1, the structural response converges to the quasi-

static response, and therefore, the structural acceleration re-
sponse converges to zero;

• for ωh/ωj≫ 1, the structural response converges to a value
which is inversely proportional to the modal mass.

• Finally, it is observed in Fig. 6 that the methodology pro-
posed here in Eqs. (27), (19), (20), and (26), allows one to

arrive at a good (and mildly conservative) estimate of σü
for any ωh/ωj.
Third, focus is on the two corrections for the nonresonant

contribution proposed in section “Multiharmonic Excitation,
Multimode Response.” Fig. 7 visualizes the influence of evaluating
the FRF Hz̈j (ω) at a frequency ω′

h that is 20% (ς = 0.2) closer to
ωj than ωh [see also Eq. (26)]. Figs. 7(a and c) show that if ς = 0
and, thus, the FRF Hz̈j (ω) is evaluated at ωh, the nonresonant con-
tribution is underestimated slightly. Considering ς = 0.2 allows
one to arrive at a good and mildly conservative estimate of the non-
resonant contribution. In turn, Fig. 8 visualizes the influence of the
termWj(ωh) [Eq. (26)] that enforces that there is no contribution of
the nonresonant response at ωh=ωj and that the influence of the
nonresonant response gradually increases as ωh moves further
away from ωj. Fig. 8 shows that if instead of Wj(ωh) the Heaviside
function is used [see Eq. (23)], an unnatural jump is observed in
the estimated standard deviation at the borders of the interval
[ωj− ɛ; ωj+ ɛ]. In this example ɛ is set to 0.1ωj. Regardless of
the value of ɛ, the unnatural jump remains and is associated with
a region where the structural response is overestimated (when
ɛ/ωj≈1) or underestimated (when ɛ/ωj≪1). Fig. 8 shows that this
can be avoided by the use of a proper smooth alternative of the
Heaviside function, as proposed in Eq. (26) by means of Wj(ωh).

Numerical Verification: Multiharmonic, Multimode

In this section, the proposed approach is challenged by means of
its application to a real footbridge, the Eeklo footbridge (Fig. 9),
where multiple modes contribute to the overall structural response.
In addition, by considering different load cases, its performance is
evaluated for load scenarios characterized by a different relative
importance of resonant and nonresonant contributions. To facilitate
interpretation, the results in this section are expressed in terms of
frequency n (Hz) instead of circular frequency ω (rad/s).

The Eeklo footbridge is a lightweight steel footbridge with a central
span of 42m and two side spans of 27m [Fig. 9(c)]. The bridge is sim-
ply supported with land abutments at the sides and two concrete piers

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5
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Fig. 7. Comparison between the analytically predicted (curve) and numerically simulated (•) standard deviation of ü, in terms of ωh/ωj, for a pedes-
trian density of 0.5 pedestrians/m2 and for a modal damping ratio ξj = 0.5% (light) and ξj = 5.0% (dark), with ς = 0 (dashed) and ς = 0.2 (solid) in
Eq. (26): (a) 0≤ωh/ωj≤ 4; (b) zoom 0.7≤ωh/ωj≤ 1.3; (c) zoom 0≤ωh/ωj≤ 1; and (d) zoom 1≤ωh/ωj≤ 4.
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Fig. 8. Comparison between the analytically predicted (curve) and numerically simulated (•) standard deviation of ü, in terms of ωh/ωj, for a pedes-
trian density of 0.5 pedestrians/m2 and for a modal damping ratio ξj = 0.5% (light) and ξj = 5.0% (dark), according to Eq. (23) (dashed) and Eq. (26)
(solid): (a) 0≤ωh/ωj≤ 4; and (b) zoom 0.7≤ωh/ωj≤ 1.3.

(a)

(c)

(b)

Fig. 9. (a) The Eeklo footbridge (image by K. Van Nimmen) with (b) cross section; and (c) plan view with the selected output locations at the center
of the central span (1) and the side span (2).

mode 1 mode 2 mode 3

mode 4

(a) (b) (c)

mode 5 mode 6

mode 7 mode 8

(d) (e)

(g) (h)

(f)

Fig. 10.Natural frequency, top and side view of mode 1 up to mode 8 of the Eeklo footbridge: (a) mode 1, 1.71Hz, lateral-torsional; (b) mode 2, 3.02
Hz, vertical bending; (c) mode 3, 3.30Hz, torsional; (d) mode 4, 3.43Hz, lateral-torsional; (e) mode 5, 5.75Hz, vertical bending; (f) mode 6, 5.80Hz,
lateral-torsional; (g) mode 7, 6.10Hz, lateral-torsional; and (h) mode 8, 6.47Hz, vertical bending.
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at the center span. The cross section of the bridge [Fig. 9(b)] consists
of two main beams with a height of 1.2m at a spacing of 3.4m. The
total bridge mass (121 t) is composed of 95 t for the bridge deck and
26 t for the concrete pillars. The reader is referred to Van Nimmen
et al. (2014) more information on the structural and dynamic charac-
teristics of the Eeklo footbridge. In this application, the first eight
modes are accounted for. The corresponding natural frequencies and
mode shapes are presented in Fig. 10. For illustration purposes, a
modal damping ratio of 0.5% is assumed for all modes.

The same pedestrian density, walking speed, and Gaussian dis-
tribution of step frequencies are considered as in section “Numer-
ical Verification: Single-Harmonic, Single-Mode”: a pedestrian

density of 0.5 persons/m2, corresponding to a total of mp= 136 pe-
destrians on the footbridge, a walking speed �vs of 1.30m/s and a
standard deviation of σns = 0.18Hz on the step frequencies. For il-
lustration purposes, different values are considered for the mean
value of the step frequencies �ns, as discussed in the following par-
agraphs. The weight of the pedestrians is set to �G = 700N (AFGC
2006; Walpole et al. 2012). The walking load is composed of two
harmonics, with �α1 = 0.4 and �α2 = 0.1 (AFGC 2006).

For each case, the PSD function of the modal loads and the
standard deviation of the structural dynamic response are estimated
(1) numerically based on a large number of msim= 104 MC simula-
tions (as described in section “Structural Response to Unrestricted
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Fig. 11. PSD function of the modal force (mp= 136) analytically predicted (solid, black) and numerically simulated (dashed, gray) for (a–h) modes
1–8 of the Eeklo footbridge, for �ns = 1.7Hz.
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Pedestrian Traffic”) and (2) by the simplified expressions proposed
in section “Spectral Approach”: Eq. (16) for the modal load and
Eqs. (27), (19), (20), and (26) for the estimation of the dynamic re-
sponse. As for the present application also torsional mode shapes
are involved, the distribution of the pedestrians along the width of
the bridge deck is relevant as well. To address this issue, straight walk-
ing trajectories are considered, with the lateral position of the pedestri-
ans y randomly distributed along the width of the bridge deck ly.

PSD Function of the Modal Load

Fig. 11 compares the PSD function of the modal load as predicted an-
alytically by Eq. (16) and as derived from the MC simulations for the
case where �ns = 1.7Hz. The following observations are made.
• The different modal loads are of the same order of magnitude.

(Small) Differences arise due to the nature of the mode shape,
where smaller amplitudes are found for torsional modes.

• For all modes, the contribution of the fundamental and the sec-
ond harmonic of the walking load to the modal load can be
clearly recognized. In addition, it is observed that the peak am-
plitude near �ns = 1.7Hz is 2 × 16 = 2 × (�α1/�α2)

2 times larger
than that near 2 × �ns = 3.4Hz, where the factor of 2 stems
from p1ωs (ω) = 2p2ωs (2ω) and, thus, p1ns (n) = 2p2ns (2n).

• Excellent agreement is obtained between the analytically pre-
dicted and the numerically simulated PSD function of the
modal load.

Structural Dynamic Response

Different values are assumed for the mean value of the step fre-
quencies: �ns = [1.3, 2.3]Hz, in all cases with σns = 0.18Hz. The
output is evaluated at two locations: at the center of the central
span and the side span, in both cases at the side of the parapet,
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Fig. 12. The PSD function of structural accelerations at the central span (gray) and at the side span (black), numerically simulated (solid) and an-
alytically predicted (dashed), for (a) �ns = 1.7Hz; (b) �ns = 2.1Hz; and the corresponding modal contributions of (c and d) mode 1; (e and f) mode 2;
and (g and h) mode 3.
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implying contributions of both bending and torsional modes
[Fig. 9(c)].

Figs. 12(a and b) present the PSD function of the structural ac-
celeration levels at the central and side span, for the case where
�ns = 1.7 and �ns = 2.1Hz, respectively. Figs. 12(c) up to 12(h) pre-
sent the corresponding modal contributions of the first three modes.
The comparison is made between the analytical predictions [cf.,
Eqs. (9) and (17)] and the numerical simulations. The following ob-
servations are made.
• For �ns = 1.7Hz [Fig. 12(a)], the PSD function of the structural

response at the central span is clearly characterized by the reso-
nant response of mode 1, 2, and 3, whereas the PSD function of
the structural response at the side span is clearly characterized
by the resonant response of mode 2 and 3.

• For �ns = 2.1Hz [Fig. 12(b)], the PSD function of the structural re-
sponse at the central span and side span is clearly characterized by
the resonant response of mode 1, 2, and 3, as well as by nonnegli-
gible nonresonant contributions around the fundamental (2.1Hz)
and second (4.2Hz) harmonic of the walking load.

• For �ns = 2.1Hz, the modal contributions partially overlap
[Figs. 12(d, f, and h)].

• There is a very good agreement between the numerically simu-
lated and the analytical predicted PSD function of the structural
acceleration levels.
Fig. 13(a) compares the standard deviation of the structural accel-

erations at the central and the side span in terms of the considered
mean value for the step frequencies, as analytically predicted and de-
rived from the numerical simulations for the range �ns = [1.3, 2.3]
Hz. The analytical predictions are made (1) considering the resonant
contributions only [Eq. (20)] and (2) considering both the resonant
and nonresonant contributions [Eqs. (27), (19), (20), and (26)].
Fig. 13(b) presents the corresponding modal contributions. When
in Fig. 13(a) the numerical simulations are compared with the analyt-
ical predictions based on the resonant contributions only, the follow-
ing observations are made.
• For 1.3 < �ns < 1.8Hz, excellent agreement is found between the

analytical predictions and the values obtained from the numeri-
cal simulations. In this range, the resonant contributions domi-
nate the structural response.

• For 1.8 < �ns < 2.3Hz, the analytical predictions underestimate
the structural response. In this case, the nonresonant contribu-
tions that are not accounted for in the analytical formulation
contribute significantly to the overall structural response.
Fig. 13(b) shows that the structural response is mainly governed

by the contributions of mode 1, 2, and 3 (at midspan) and mode 2
and 3 (at sidespan). Fig. 13(a) finally shows that, even though the
response of the different modes partially overlap, the proposed
spectral approach involving the SRSS combination rule allows

for a very good (and mildly conservative) estimate of the standard
deviation of the structural response by considering both resonant
and nonresonant contributions.

Conclusions

In this work, a spectral load model available in the literature for un-
restricted pedestrian traffic is extended to account for the multiple
harmonics of the walking load and for its application to arbitrary
mode shapes. Furthermore, a closed-form expression is proposed
to estimate the variance of the structural response taking into ac-
count both resonant and nonresonant contributions. The proposed
method furthermore allows the contribution of multiple modes to
be accounted for, on the condition that the modes are widely
spaced. This is a limitation that is met by the majority of foot-
bridges. Every step in the generalization process is verified numer-
ically using MC simulations, considering the variability of the
relevant load parameters. The numerical verification process first
considers the special case of single-harmonic excitation and single-
mode structural dynamic response. The results show that when the
mean value of the step frequencies is close to the natural frequency
of the mode, the resonant contribution provides a very good esti-
mate of the dynamic response. When this is not the case, the non-
resonant contribution becomes important as well, and its relevance
increases for increasing damping ratios. The results also show that
the proposed closed-form expression provides a very accurate esti-
mate of the total dynamic response. Next, the proposed approach is
verified for the prediction of a multiharmonic excitation and multi-
mode structural dynamic response, through the application to a real
footbridge with eight modes with a natural frequency between 1.5
and 6.5Hz. The results show that, for all modes, a perfect agreement
is obtained for the PSD function of the modal load. Furthermore, the
results show that the structural response is governed by resonant and
nonresonant contributions of multiple modes. Finally, it is shown
that, for all relevant load cases, the proposed methodology allows
one to arrive at a good and mildly conservative estimate of the
total structural dynamic response. Further research could involve ex-
perimental validation of the spectral approach, the proposal of a suit-
able combination rule to take into account modal correlation for
closely spaced modes, and the extension and verification of the spec-
tral load model to account for HHI.

Data Availability Statement

Some or all data, models, or code generated or used during the
study are available from the corresponding author by request
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Fig. 13. The standard deviation of ü at the central span (gray) and at the side span (black), in terms of �ns, for a pedestrian density of 0.5 pedestrians/
m2: (a) numerically simulated (•) and analytically predicted using only the resonant contribution (dashed) and both the resonant and nonresonant
contribution (solid); and (b, c) the contribution of mode 1 (°), mode 2 (×), mode 3 (△), mode 4 (▽), mode 5 (), mode 6 (⋄), mode 7 (+), and
mode 8 (*) at the central (b) and side (c) span.
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(available data: Matlab® code to reproduce the results in the sec-
tions involving “Numerical Verification”).
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Notation

The following symbols are used in this paper:
ch = coefficient of variation of αh G;
cs = coefficient of variation of the step frequency;

f, fj = external force and jth modal force;
�G = mean value of the weight of the pedestrians;
Gp = weight of the pth pedestrian;
h = index number of the harmonic component of the walking

load;
Hz̈j = FRF of the jth modal coordinate in terms of accelerations;
j = index number of the mode;
lx = dimension of the bridge deck along the longitudinal axis

(length);
ly = dimension of the bridge deck along the lateral axis

(width);
mh = number of harmonic components in the walking load;
mj = jth modal mass;
mm = number of modes;
mp = number of pedestrians;
nj = jth natural frequency;
p = index number of the pedestrian;

pωs = PDF of the step frequency;
S fj = PSD function of the jth modal force;
S f j,h = PSD function of the jth modal force associated with the

hth harmonic;
Sz̈j = PSD function of the jth modal accelerations;

u, ü = displacement and acceleration of the footbridge;
�vs = mean value of the walking speed of the pedestrians;
x = abscissa along the longitudinal axis of the bridge deck;
xp = abscissa along the longitudinal axis of the bridge deck of

the pth pedestrian;
y = abscissa along the lateral axis of the bridge deck;
yp = abscissa along the lateral axis of the bridge deck of the pth

pedestrian;
zj = jth modal coordinate;
�αh = mean value of the DLF of the hth harmonic of the walking

load;
αhp = DLF of the hth harmonic of the walking load of the pth

pedestrian;
ωh = mean value of the hth harmonic of the circular step

frequency;
ωj = jth natural circular frequency;
ωs = circular step frequency;
�ωs = mean value of the circular step frequency; and
ωsp = circular step frequency of the pth pedestrian.
ϕj = jth unity-normalized mode shape;
σωs = standard deviation of the circular step frequency;
σü = standard deviation of the acceleration response;
σ z̈j = standard deviation of the acceleration of the jth modal

coordinate;

σ z̈ j,R = resonant contribution to the standard deviation of the
acceleration of the jth modal coordinate;

σ z̈ j,NR = nonresonant contribution to the standard deviation of the
acceleration of the jth modal coordinate;

τp = arrival time of the pth pedestrian;
θh = phase angle of the hth harmonic;
θp = phase angle of the pth pedestrian; and
ξj = jth modal damping ratio.
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