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Abstract

Recent work has shown that adversarial examples can bypass machine learning-based threat
detectors relying on static analysis by applying minimal perturbations. To preserve ma-
licious functionality, previous attacks either apply trivial manipulations (e.g. padding),
potentially limiting their effectiveness, or require running computationally-demanding val-
idation steps to discard adversarial variants that do not correctly execute in sandbox
environments. While machine learning systems for detecting SQL injections have been
proposed in the literature, no attacks have been tested against the proposed solutions to
assess the effectiveness and robustness of these methods. In this thesis, we overcome these
limitations by developing RAMEn, a unifying framework that (i) can express attacks for
different domains, (ii) generalizes previous attacks against machine learning models, and
(iii) uses functions that preserve the functionality of manipulated objects. We provide
new attacks for both Windows malware and SQL injection detection scenarios by exploit-
ing the format used for representing these objects. To show the efficacy of RAMEn, we
provide experimental results of our strategies in both white-box and black-box settings.
The white-box attacks against Windows malware detectors show that it takes only the
2% of the input size of the target to evade detection with ease. To further speed up the
black-box attacks, we overcome the issues mentioned before by presenting a novel fam-
ily of black-box attacks that are both query-efficient and functionality-preserving, as they
rely on the injection of benign content, which will never be executed, either at the end of
the malicious file, or within some newly-created sections, encoded in an algorithm called
GAMMA. We also evaluate whether GAMMA transfers to other commercial antivirus so-
lutions, and surprisingly find that it can evade many commercial antivirus engines. For
evading SQLi detectors, we create WAF-A-MoLE, a mutational fuzzer that that exploits
random mutations of the input samples, keeping alive only the most promising ones. WAF-
A-MoLE is capable of defeating detectors built with different architectures by using the
novel practical manipulations we have proposed. To facilitate reproducibility and future
work, we open-source our framework and corresponding attack implementations. We con-
clude by discussing the limitations of current machine learning-based malware detectors,
along with potential mitigation strategies based on embedding domain knowledge coming
from subject-matter experts naturally into the learning process.
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Chapter 1

Introduction

M
achine learning techniques are becoming ubiquitous in the field of computer security.
Both academia and industry are investing time, money and human resources to apply

these statistical techniques to solve the daunting task of malware detection. In particular,
both Windows malware and SQL injections are significant threats in the wild, as witnessed
by thousands of malicious programs uploaded to VirusTotal every day [1], and the OWASP
top-10 document [2]. Modern approaches use machine learning to detect such threats at
scale, leveraging many different learning algorithms and feature sets [3–11].

While these techniques have shown promising threat-detection capabilities, they were not
originally designed to deal with non-stationary, adversarial problems in which attackers
can manipulate the input data to evade detection. The weakness of such approaches has
been widely shown in the last decade, in the active area of adversarial machine learning [12,
13]. This research field studies the security aspects of machine learning algorithms under
attacks, either staged at training or test time. In particular, in the context of learning-based
threat detectors, it has been shown that it is possible to optimize both adversarial malware
and adversarial SQL payloads carefully, against a target system to bypass it [14–24]. Many
of these attacks take place in black-box settings, where attackers have only query access to
the target model [18–21]. These attacks question the security of such systems, especially
when deployed as cloud services, as they can be queried by external attackers who can, in
turn, optimize their manipulations based on the feedback provided by the target system,
until evasion is achieved.

Unlike adversarial evasion attacks in other areas, such as image classification, manipulating
byte sequences corresponding to executable code, while simultaneously preserving their
behavior, is more challenging. In particular, each perturbation may lead to changes in
semantics, or the corruption of the underlying syntax/format, preventing the code from
executing altogether or achieving its intended goal. To address this problem, attackers can
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either choose to:

• apply invasive perturbations and use dynamic analysis methods, for instance emula-
tion, to ensure that functionality of the binary is not compromised [25,26], or

• focus their perturbation on areas of the files that do not impact functionality [14,15,
23,27,28]; e.g. by appending bytes or injecting new sections.

Naturally, this leads to a trade-off between strong yet time-consuming attacks on one
extreme, and weaker but more computationally-efficient attacks on the other.

In Section 1.1 we discuss the limitations of the state of the art. Then, in Section 1.2, we
highlight the reasons that sprung us to work on new techniques and a unifying formal-
ization. Finally, in 1.3 we summarize our contributions by outlining the structure of this
thesis.

1.1 Limitations of the state of the art

A formalization for generating adversarial examples has been proposed by Pierazzi et
al. [29]. They construct a strategy as a minimization problem, by imposing different kind
of constraints that shape the adversarial examples in terms of detectability, robustness to
preprocessing, possible side-effects, and more. Such a formalization, while timely and effec-
tive, presents some issues. In particular, the authors impose a plausability constraint that
should test if an adversarial sample would be or not spotted by a domain expert. While
this constraint can be included by design in many domains, like images or audios where
the attack has bounds, it is not clear how to port the same concept to security objects, and
how to include it inside the optimization process. Moreover, their framework proposes the
use an “oracle” that allows attackers to test the functionality of their adversarial examples.
This implies that, at each iteration, the sample must be validated. While this is easy to
achieve in some domains, for instance, in the image or audio domains, where perturbations
are bounded to a certain level of additive noise, it can be troublesome in others. E.g., in
the malware domain this step is equivalent to observe the behavior of adversarial exam-
ples inside a sandbox at each iteration of the optimization. The usage of a sandbox is
shared by different strategies proposed in the state of the art, both white-box and black-
box [17,25,26,30]. Not only this step is time-consuming and resource hungry, but it might
be skipped entirely with the use of practical manipulations, that is, manipulations that are
semantics-invariant by design.

Many attacks rely on padding [15, 16, 19, 26, 28] to generate adversarial malware, whose
application is trivial, and it is significant only if the payload consists of thousands of
bytes. Other attacks also slightly alter the structure of the file [19] using a Python library
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called LIEF [31] by adding sections and imports to the sample. Furthermore, the payload
injected with such transformations is not optimized, and no strategy in the state of the
art apply a constraint on the resulting file size. So, the adversarial payload might grow
unbounded, and it could be easily detected due to its giant file size. From an adversarial
machine learning perspective, the trade-off between detection rate and file size is essential,
since one of the goals of these studies is showing how little noise does it take to disrupt the
performance and preciseness of a victim classifier. It is indeed useful to state if an attack
is successful without considering any other metrics, e.g. the size of the perturbation, but
this would not help to understand the problem in its complexity. By finding such minimal
patterns, researchers can foretell not only possible attacking strategies but also propose
new defence mechanisms to protect such systems.

1.2 Motivations

As described above, applying manipulations to binary programs is more challenging than
altering, say, images, since even altering a single bit inside a program can corrupt its file
format, preventing the execution altogether, or entirely change the semantics.

With this background in mind, we started digging the details of the PE file format, and we
noticed that it contains many different places that can host an adversarial payload. Once we
found locations where adversaries can write, without disrupting the executables, we applied
a simple strategy to decrease the confidence attributed from the victim network [14].

Since we alter bytes, we report the result of the attack, in Figure 1.1, by showing how much
the modification of each byte alters the score. Each dashed red line represents a single
iteration of our algorithm, that is concluded after having modified the maximum number
of bytes (in this case, 58, as detailed in Section 3.2.1.1, page 28). The x-axis specifies
the total number of modification that are applied to the bytes inside the editable region.
So, after three iterations, the algorithms starts to consistently decrease the probability of
being recognized as malware, and during the fourth iteration the score is dropped under
the 0.1% probability.

We also have tried to understand why this target network behaves in this weird way, by
applying a technique used for explaining the output of machine learning algorithms, called
integrated gradients [32]. Without diving inside all mathematical details, this technique
use the gradient to estimate how much a particular feature had impacted the overall score
produced by the network. The results are shown in Figure 1.2. The blue color is used
for highlighting a contribution towards the benign class, while the red color is used for
the malicious class. Even though the DOS header does not contain any useful code or
meaningful information regarding the nature of a program, the network is attributing false
contribution to such locations. This results has two important take-away points: (i) this
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Figure 1.1: The attributed confidence to a input malware, by optimizing only 58 bytes
inside the DOS header.
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Figure 1.2: The feature importances attributed by MalConv to the initial part of the header
of a sample program.

perturbation is infinitesimally small w.r.t. the whole file size, comparable to the invisible
perturbation that is applied to images, and (ii) the semantics of the original sample is
preserved.

Motivated by the results of this preliminary work, we started investigating approaches that
would help attackers gain the upper hand in these scenarios.

1.3 Outline of this thesis

The next chapter, Chapter 2, gives the reader some background information, by briefly
discussing the central intuition behind machine learning and its use in threat detection,
and sets the stage for the following chapters, followed by a discussion of the techniques
already proposed in the state of the art.

Chapter 3 presents our new lightweight formalization, called RAMEn (Realizable Adversar-
ial Malware Examples), that can encode multiple evasion attacks without loss of generality.
Our framework leverages practical manipulations, i.e. perturbations that do not impact
the original functionality of input samples. The usage of such manipulations avoid the
imposition of further constraints, like the one discussed in Section 1.1, and they can be
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tuned during the optimization process. Since the application of such manipulations has a
cost, RAMEn includes the usage of a loss function of choice, allowing attackers to choose
how to penalize the injected noise. We showcase the expressiveness of RAMEn by creating
adversarial examples against Windows antivirus programs and SQL injection detectors.

We test the efficacy of these transformations in Chapter 4, considering both white-box
and black-box attacks against the detectors under analysis. For the white-box attacks, we
highlight that attackers only need, on average, a 2% of the window length of the target
end-to-end detector to compute fully functional and evasive adversarial malware. These
attacks also highlight how detectors trained with different dataset size and architecture
are still vulnerable to minimal perturbations. For the black-box attack, we develop two
different optimizers: a genetic algorithm and a mutational fuzzer. The first one is used
(i) inside GAMMA, that is, an algorithm that generates adversarial examples by injecting
content harvested from benign software inside the input malware, and (ii) for optimizing
each byte singularly inside the adversarial payload. The mutational fuzzer is used for
creating adversarial SQL injections, by randomly mutating them and keeping the best one
for the next round of mutations.

We conclude by explaining our final remarks and possibile future work in Chapter 5.
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Chapter 2

Background

N
owadays, we are assisting to the necessity of analyzing massive corpora of data in less
time, since systems are scaling up faster than before. For instance, in cybersecurity,

there is a need for filtering, detecting and dissecting new threats and techniques that
circulate on the Internet. These activities require instruments to help human analysts to
recognize malicious patterns into data. This is why, in the last few years, the broad area
of machine learning is becoming so relevant also in the security domain.

In this chapter we introduce the mechanics behind machine learning (Section 2.1, page 7).
Then we describe the application of machine learning in detecting threats (Section 2.2,
page 9). Finally, we describe the limits and dangers of using such a technology in adversarial
contexts (Section 2.3, page 14).

2.1 Machine Learning

Machine learning is a research field, across computer science and statistics, that studies
algorithms that learn from past observations, to foretell future outcomes. Such past knowl-
edge is expressed as a matrix of vectors representing each observation of the phenomenon
under study. In supervised learning, each observation is associated with a value. Such a
value is the output of the unknown input-output relation that ties it to the observation. By
stacking multiple observations, it is possible to compute a function that approximates such
a relation. Creating a machine learning algorithm is indeed useful when the function to be
learnt relies on patterns inside the data that are difficult to spot. For instance, creating
a function that recognizes faces in photos can be done by telling the algorithm where the
faces are, in each input picture. Then, after the training phase, the function’s parameters
are computed, and the approximate detector can be tested on unseen data.
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Let be X ⊆ Rd the set containing the observations in the form of a generic d-dimensional
vectors, and let be Y the set containing the values of the output. Each value y ∈ Y
can be a single real number in the case of regression problems, it can be either 0 or 1 in
binary classification problems, or even a vector for multi-classification problems where the
goal is to discriminate between multiple decisions, like animals or letters. By gathering all
observations and their outputs, we form the training set, that can be expressed as a set

of pairs (x(i), y(i))
N

i=1, where N is the total number of gathered samples. The aim of the
learning process is finding an approximation of the real function that given an observation
x(i) returns y(i). If we would possess all infinite points that define such a function, we
would be able to compute it. Since it is impossible to collect all these points, we need
to rely on a finite set of observations that are representative enough for the function
we want to learn. A way for producing such approximation function is minimizing the
error scored by the candidate approximation on the input samples. This can be done by
introducing a distance function that quantifies the error committed by the approximation
w.r.t. the real output, the loss function L : Y × Y → R+. Usually, the loss function is
a differentiable function, like the square loss L(f(x), y) = (f(x)− y)2, or the logistic loss
L(f(x), y) = −ylog(f(x)) − (1 − y)log(f(x)). Now that we have introduced a notion of
distance between the approximation and the real values of the function, given observations
inside a d-dimensional space expressed as a matrix X = Rd,X ∈ RN×d, and their output
expressed as a vector y = (y(0), ..., y(N)), we can compute the minimization as:

min
f∈H

N−1∑
i=0

L(f(x(i)),yi) (2.1)

where H is the space of functions we want to search (hyperplanes, polynomials, gaussians,
etc.). By minimizing this quantity, the function f adapts itself to the past observations.
This can be achieved by differentiating w.r.t. the parameters of f, and put the whole
quantity to 0. For instance, if the function we want to learn is a hyperplane with coefficients
w ∈ Rd, and the loss is the squared loss, we would have:

∇w
N∑
i=1

(wTx(i) − yi)2 = 0 (2.2)

The problem can be solved in closed form, and the best coefficient w∗ are computed. These
learning algorithms are useful for solving many difficult tasks, such as object detection, face
recognition, text to speech problems and more. Also, they can serve as a fundamental tool
for aiding security analysts in their job. For this reason, studying how to carve information
from objects related to cybersecurity is the first step for training clever classifiers that stop
threats in the wild.
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2.2 Detecting threats with Machine Learning

With the aid of statistics and pattern recognition, malware can be fought before it causes
harm. Machine learning algorithms can be trained with large corpora of data to create
models capable of understanding what is malicious and what is not. Since these techniques
find patterns in data, they might represent a key for understanding how threats evolve and
how to spot them without risking to infect millions of devices. In addition, these tools are
indeed helpful in filtering results or recognizing variants of the same threat without wasting
hours of human labour. There are already many companies that apply such techniques,
including statistical algorithm inside their products [33–36]. In this thesis, we consider
detectors that are trained to recognize two different families of threats: Windows malware
and SQL injections. Since the goal of this thesis is to show the effectiveness of our for-
malization (described in detail in Chapter 3), the choice of these two not-so-overlapping
families of threats highlights how much our work can express different domains, and we
use them as a showcase of the generality of our approach. Nevertheless, other threats can
be included in the future too, like Android malware applications, or traffic data analyzers.

2.2.1 Windows malware

Threat detectors, that leverage static analysis, work on the on-disk representation of Win-
dows programs. These are just a sequence of bytes following the Windows Portable Exe-
cutable (PE) [37]. This format is interpreted by the operating system, that takes care of
creating a process and loading various parts of the program at different virtual addresses.
Figure 2.1 shows various components of a program file:

DOS Header and Stub contain metadata for loading the executable inside a DOS en-
vironment, and a few instructions that print “This program cannot be run in DOS
mode”. These two components have been kept to maintain compatibility with older
Microsoft’s operating systems. From the perspective of a modern application, the
only relevant locations contained inside the DOS Header are (i) the magic number
MZ, a two-byte signature, and (ii) the four-byte integer at offset 0x3c, that works as
a pointer to the actual header. If one of these two values is altered for some reason,
the program is considered corrupted, and cannot be executed.

PE Header contains the magic number PE and the characteristics of the executable, such
as the target architecture that can run the program, the size of the header and the
attributes of the file.

Optional Header is not really optional, since it contains the information needed by the
operating system for loading the program. It also contains offsets that point to useful
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Figure 2.1: The Windows PE file format.
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structures, like the Import Table needed for resolving dependencies, and the Export
Table to make functions accessible by other programs, and more.

Section Table a list of entries that indicates the characteristics of each section of the
program, like the code section (.text), initialized data (.data), relocations (.reloc)
and more.

All programs that run natively on Windows are stored on disk by following this format,
malware included. This kind of software is created to accomplish not-ethical, or even
criminal, purposes, including stealing or destroying data, opening hidden accesses, farming
cryptocurrencies and more. For instance, ransomware encrypts all content of the victim
hard-drive, and then asks the user to pay for restoring their files back.

Two recent byte-based convolutional neural network models for malware detection use an
embedding layer to project the bytes in PE format into a higher-dimensional space. Then,
they apply one or more convolutional layers to learn relevant features that are fed to a
fully-connected layer for classification with a sigmoid function. In addition to these two
deep learning models, we also consider a traditional ML model using gradient boosting
decision trees on hand-engineered features, which we use as a baseline for purposes of
comparison and to understand transferability of attacks from byte-based models to models
with semantically-rich features.

Embedding 
! = #(%)

Byte values (0-255)

Padding bytes 
(set to 256)

'(
...

')
')*(
...

'+

Convolutional 
layer

Convolutional 
layer

Temporal 
max pooling

Fully 
connected

σ
,-
...

,.
,.*-

...

,/

0 % ≥ 0.5

! ∈ ℝ7×9

malware

benign

True

False

Figure 2.2: The architecture of MalConv.

MalConv: Proposed by Raff et al. [9], MalConv is a convolutional neural network model
that combines an eight-dimensional learnable embedding layer with one-dimensional gated
convolution. The striding and kernel size of the convolutional layer effectively means that
the convolutional layer iterates over non-overlapping windows of 500 bytes each, with a
total of 128 convolutional filters. A global max pooling is applied to the gated outputs
of the convolutional layer, resulting in a set of the 128 largest-activation features from
among all convolutional windows. The results of these operations are passed as input to a
fully-connected layer for classification. The architecture is depicted in Figure 2.2.
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DNN with Linear (DNN-Lin) and ReLU (DNN-ReLU) activations: Jeffrey
Johns [38] and Coull et al. [39] proposed a deep convolutional neural network that combines
a ten-dimensional, learnable embedding layer with a series of five interleaved convolutional
and max pooling layers. These are arranged hierarchically so that the original input size is
reduced by one quarter (1/4) at each level. The outputs of the final convolutional layer are
globally pooled to create a fixed-length feature vector that is sent to a fully-connected layer
for final classification. Since the convolutional layers are hierarchically arranged, locality
information among the learned features is preserved and compressed as it flows upwards
towards the final classification layer. The maximum length of this model is 100KB to
account for the deep architecture. Like MalConv, files exceeding this length are truncated
and shorter files are padded with a distinguished padding token. Several variations of this
architecture are evaluated in Section 4 (on page 46), including examining performance with
both linear and Rectified Linear Unit (ReLU) activations for the convolutional layers, as
well as performance when trained using the EMBER dataset and a proprietary dataset
containing more than 10x the number of training samples. An analysis of the model
by Coull et al. [39] demonstrates how the network attributes importance to meaningful
features inside the binary, such as the name of sections, the presence of the checksum, and
other structures.

Gradient Boosting Decision Tree (GBDT): Anderson et al. [8] train a GBDT [40]
on top of their open-source dataset called EMBER [8]. The model uses a set of 2,381 hand-
engineered features derived from static analysis of the binary using the LIEF PE parsing
library, including imports, byte-entropy histograms, header properties, and sections, which
generally represent the current state of the art in traditional ML-based malware detection.
Given its use of a diverse set of semantically-meaningful static features, it provides an
excellent baseline to compare the two above byte-based models against each other, and
help demonstrating the gap between the features learned by byte-based neural networks
and those created by subject-matter experts.

2.2.2 SQL Injections

Structured Query Language (SQL) is a language for interacting with database servers. That
is, the SQL standard describes commands that allow users to insert, update and delete
information from databases. An example of SQL query is shown in Listing 2.1. In this
example, we want to extract all names, surnames and birthdays of all users whose role is
admin.

SELECT name, surname, birthday

FROM users

WHERE role = "admin"

Listing 2.1: An example of SQL query
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When SQL queries are hazardously built by concatenating user inputs and literal strings,
an attacker can inject commands inside the resulting query. An example of a such bad
code is depicted in Listing 2.2.

$query = ’SELECT name, surname, birthday FROM USERS WHERE role = "admin" ’ .

’AND pwd = "’ . $_POST[’pwd’] . ’"’;

$result = query($connection, $query);

Listing 2.2: An example of buggy PHP code, containing a SQL injection vulnerability

These two PHP statements should construct a SQL query to search for admin users whose
password match the user input $ POST[’pwd’] (that is, a specific POST parameter). One
problem resides in how the SQL query is constructed: the input value is directly used
inside the command, without any sort of escaping/sanification (the other, huge, problem
is storing passwords in cleartext, but that is out of scope for this discussion). Hence, by
using an ad-hoc input, like 1" OR 1=1 #, as value for $ POST[’pwd’], the SQL query will
return private data of every user, since the right side of the OR is always true.

These kinds of attacks are the so-called SQL injections, and even if there are trivial ways
for avoiding them, they still appear in the wild [2]. One simple way for avoiding SQL
injections is to sanitize every client input, for instance, by employing prepared statements.
Inside a prepared statement, wildcard symbols let the engine know where parameters are.
Such placeholders are then replaced with automatically escaped values. An example is
shown in Listing 2.3. The bind param function replaces the symbol ? with the value
passed as second argument (that is, $ POST[’pwd’]), whose type is specified by the first
argument (in this case, s corresponds to the string type).

$stmt = $conn->prepare(’SELECT name, surname, birthday FROM USERS

WHERE role = "admin" AND pwd = ?’);

$stmt->bind_param("s", $_POST[’pwd’]);
$stmt->execute();

Listing 2.3: An example PHP code that uses prepared statement

To mitigate this kind of vulnerability it is possible to interpose a program, which can check
whether a query has been injected, and stops the malicious ones from causing harm when
passed to the DBMS. These tools are called Web Application Firewalls. Usually, these tools
work on top of deny-lists of malicious payloads that lead to data stealing, manipulation or
else. Since these lists are static, the attacker can slightly change the syntax for producing
a new unknown injection that evades the WAF. To gain advantage of such dynamical
environment, the use of machine learning algorithms can help in modeling functions that
adapt to this domain.

WAF-Brain: available on GitHub, and developed by a private company, WAF-Brain [41]
is a recurrent neural network that looks five continuous character in a string and it tries
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to guess the sixth. Since it has been trained on SQL injections, it tries to guess if such
substring is part or not of a malicious injection payload. For clarity, given the following
string OR ’1 it might guess that, after the digit, there will be the missing ’ character
that closes the string. Correctly predicting the following character means to have found a
match with the learned malicious payloads. This process is repeated for every block of five
characters forming the target query, and a final mean score is returned. The input layer is
a Gated Recurrent Unit (GRU) [42] made of five neurons, followed by two fully-connected
layers, i.e., a dropout layer followed by another fully connected layer. Finally, WAF-Brain
computes the average of all prediction errors over the input query and scores it as malicious
if the result is above a fixed threshold chosen a priori by the user. Since the threshold is
not given by the classifier itself, as all other details of the training and cross-validation
phases, we set it to 0.5, which is the standard threshold for classification tasks.

Token-based Classifiers: Token-based classifiers represent input queries as histograms
of symbols, namely tokens. A token is a portion of the input that corresponds to some
syntactic group, e.g., a keyword, comparison operators or literal values. We took inspiration
from the review written by Komiya et al. [43] and Joshi et al [11] and we developed a
tokenizer for producing the features vector to be used by these models. On top of that, we
implemented different models: (i) a Naive Bayes (NB) classifier, (ii) a random forest (RF)
classifier with an ensemble of 25 trees, (iii) a linear SVM (L-SVM), and a gaussian SVM
(G-SVM).

Graph-based Classifiers: Kar et al. [10] developed SQLiGoT, an SQL injection detec-
tor that represents a SQL query as a graph, both directed and undirected. Each node in
this graph is a token of the SQL language, plus all system reserved and user defined table
names, variables, procedures, views and column names. Moreover, the edges are weighted
uniformly or proportionally to the distances in terms of adjacency. The model is based
again on SVMs, and Kar et al. released the hyper-parameter they found on their dataset,
but since both C and γ depend on data, we had to train these models from scratch.

2.3 Adversarial Machine Learning

Since learning algorithms might be used in critical contexts, there is the necessity of study-
ing the limits and weaknesses of such detectors. Let us imagine a program whose aim is
recognizing the face of its owner, like the newest face detectors built in modern smart-
phones. Once verified, the smartphone operating system unlocks the phone, allowing the
user a total control over the device. In this very common and real-life scenario, there is the
need of a error-proof algorithm, since the user does not want their device to be accessed by
unknown strangers in the wild. The field of Adversarial Machine Learning [12,44] formal-
izes the presence of an attacker that wants to take advantages of weaknesses of learning
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algorithms to reach a particular accomplishment. We can divide these goals in five main
categories: poisoning, backdoors, model stealing, model inversion, membership, and evasion
attack. The latter one will be deeply discussed, since all work contained in this thesis are
extensions of such strategy.

Poisoning Attacks: If the attacker can manipulate the training set of a particular
model, they can inject data that alter the decision boundary itself [13,45,46]. For instance,
an online learning algorithm updates its knowledge w.r.t. the new input that it has to
classify, like anomaly detectors. These classifiers do not retain all past knowledge, since
they need to adapt to the future data that will be sent to the detector. Each time a sample
is misclassified, it is added inside the training set, while the oldest point is removed. Lastly,
the model is re-trained on this new set of points. Hence, the attacker may send samples
that lies near the decision boundary of the target, shifting it bit by bit. The ultimate
goal is the degradation of the target model, by spoiling its original functionality, by also
including the evasion of the system itself.

Backdoors Attacks: instead of messing with the decision boundary of the target
model, the attacker wants to implant a particular behavior inside the victim model, without
degrading the whole classifier [47–49]. This is achieved by attaching a pattern to the input
samples, and using poisoning techniques modify the decision boundary to be compliant to
the attacker’s need. An example is given by image detectors, whose backdoors are small
pattern of pixel inserted inside the image. The presence of such pattern is enough for
piloting the decision towards the desired class or score.

Model Stealing Attacks: training a classifier requires time and resources: depending
from the chosen architecture and the volume of data, the training phase might last days
or weeks, with extensive usage of expensive devices and GPUs. Just think about the
translation model offered by Google: it cannot be trained on standard machines, but it
would be indeed useful to be used locally. Also, by using this local model the users would
avoid paying for such a service. Under some preconditions, the attacker can compute a
replica of a remote detector, by only using the results of the queries they send to it [50].

Model Inversion and Membership Attacks: depending on the task, machine learn-
ing models might infer knowledge from sensitive data, like medical records [51, 52]. Also,
the presence of a particular point inside the corpora of data used at training time could
be another potential privacy leak, such as which faces have been used for training a face
detector, or else. In this scenario, the attacker wants to acquire such information, by either
reconstructing values of interests (i.e. medical records) or acquiring knowledge of what has
been used for training.
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Figure 2.3: An example of evasion attack.

2.3.1 Evasion Attacks

The attacker wants to create samples that are misclassified into a specific or generic class,
different from the real one. As an example, an image classifier that is fooled to believe that
a picture of a toucan is in fact a cat [13, 53–58], as shown by Figure 2.3, or creating vocal
commands that are interpreted erroneously by the victim model [59–61]. If human beings
would stare at such pictures or listen to these sounds, they will not complain about the
presence of such noise, since they will not notice it. The problem of evasion attacks arise
from the domain itself. For instance, perturbing the color of a few pixels by small amount
introduce a pattern inside the original image that it is very hard to spot. This is also
true for black and white images, with very low amount of noise. The semantics that we
attribute to such image is the same: we see a picture, that is a matrix of pixels arranged in
a particular way, and we match it with the most similar image we have in our mind: in this
case, a toucan. A machine learning algorithm works in a different way: it takes in input
the values of each pixel, it passes them through different matrix-multiplication operations,
and it finally gives an answer to the query we asked. The ad-hoc adversarial noise, which
has been carefully crafted, aims to alter the results of such operations to accomplish the
goal of the attacker. The process of creating such noise can be expressed mathematically
as an optimization problem:

max
δ

fl(x+ δ)− fk(x)

s.t. ‖ δ ‖p< ε, l 6= k
(2.3)

where δ is the noise added to the image, f is the target model, fl and fk express the
probability of belonging to a generic class l and the true class k respectively, and x is the
image we want to perturb, k is the true class of such sample. By maximizing this quantity,
we are asking to find a perturbation δ that, applied to the sample x, will maximize the
difference between the probability of a generic class l 6= k and the probability of the real
class k. As a consequence, since it is a difference, the maximum must be a positive number,
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and this can only be given by an higher score attributed to a different class. The strength of
the attack is controlled by a parameter, ε, that serves as an upper-bound to the p-norm of
the noise. Depending on the norm that is chosen for computing the attack, the computed
noise has different properties. The most powerful norm to use should be the `0 norm, that
counts how many pixels have been changed after the application of the noise. Bounding
this quantity means computing an adversarial example with the fewest changes possible.
The problem of such norm is posed by its non-differentiability, hence it complicates the
way samples can be generated.

Another example is the usage of the `∞, that returns the maximum value of the input
vector. This implies that, when bounded, the attacker can modify every pixel of the image
up to the bounding value ε. The attack perturbs basically each pixel of the image, but the
process is easier to deal with. The optimization problem expressed in Equation 2.3 is an
untargeted attack, since every class that satisfies the constraint fits the goal of the attacker.
If they want to produce an example that is classified as a specific class, the attacker carries
on a targeted attack, where we want to maximize the output of the chosen-a-priori class l,
different from the real class k. In this way, the output of the l-th class will be higher that
the score attributed for class k, successfully achieving the evasion with the desired class,
without changing the problem formalized in Equation 2.3.

2.3.2 Attacker Knowledge

Once the attacker has chosen the goal to pursue, they also need to devise an effective
strategy, depending on the knowledge they possess regarding the victim.

2.3.2.1 White-box attacks

The worst case scenario is posed by white-box attacks, where the attacker knows everything
about the target. They can compute adversarial examples by using fast and effective
algorithms that rely on the gradient of the model function [52,53,58,62]. The gradient of a
function ∇f is a direction that points to the maximum ascent of the function itself, when
evaluated on a point. By following that direction, the attacker can navigate the input
space to find the ones that suits the attacker’s needs.

2.3.2.2 Black-box attacks

White-box strategies can be applied if and only if the model function is differentiable
as well. This might not be true, and the attacker needs to switch to another approach
that is similar to techniques that involves less knowledge of the target. In general, the
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assumption of having perfect knowledge of the target is strong and sometimes difficult to
achieve. Many commercial machine learning models are closed-source, and they can be
only accessed by sending samples to them, and collecting a reply. In this scenario, the
attacker does not know the parameters of the model, so they can only leverage black-box
attacks. Since these models are closed-source, there is no certainty regarding which model
have been used, which information have been extracted from data and so on. Here, the
attacker can choose different paths, depending on the limited knowledge they have.

Surrogate Models: if the attacker knows a subset of the data that have been used
for training the target, they can re-create an approximation of such detector [62]. Since
the victim can be queried, the attacker labels their dataset with the answer of the remote
classifier. Once they have all answers, the attacker can train a differentiable model with
these data. With this surrogate model, the attacker can apply white-box attacks to evade
their own classifiers, and then they try to send the same adversarial examples to the target.
The intuition behind this attack is that, with similar data, models behave in a similar way.
Hence, adversarial examples that evade the surrogate, might evade the target as well.

Transfer Attacks: since training a surrogate is time consuming, and its performances
rely on the quality of the input data, the attacker can choose an open-source public model
that solves the same problem, compute white-box attacks on it, and test the adversarial
examples against the target [63–65]. Intuitively, a model that has been trained to compute
a similar answer might be also vulnerable to the same attacks, as if these models share
similar blind-spots, since they have been designed in a similar way.

Query Attacks: instead of constructing the whole strategy on top of other classifiers
or surrogates, the attacker directly exploits the knowledge embedded inside the response
of the query they send to the target [66, 67]. By keeping interrogating the target, the
attacker infers knowledge of the shape of the remote decision function. Each locally crafted
perturbation is evaluated by the remote detector, and the attacker keeps exploring the space
of adversarial examples in this way.

While it is easy to perturb an image or a sound, the real challenge lays in the perturbation
of more “fragile” objects. In particular, altering commands or programs is not trivial at all,
since the applied perturbations might break the sample. However, it would be indeed useful
to an attacker that wants to bypass security-related targets, such as antivirus programs
and threat detectors.

2.4 Related Work

After having introduced the key elements that characterize this thesis, we continue with an
overview of the state of the art that can shed some light over the research that is carried
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on in such fields of study.

Similar formalization: Pierazzi et al. [29] propose a general formalization for defining
the optimization of adversarial attacks inside the input space, spanning multiple domains
like image and speech recognition, and Android malware detection. They define sequences
of practical manipulations that must preserve the original semantics. These manipulations
need to be both imperceptible to manual inspection and resilient to pre-processing tech-
niques. The authors also make explicit the resulting side-effects generated by applying
such mutations to the original sample as a summation of vectors. The attacker optimizes
the sequences of practical manipulations that satisfy all constraints mentioned above by
exploring the space of mutations, imposed by such practical manipulations.

White-box adversarial attacks against malware detectors: Kolosnjaji et al. [15]
apply a gradient-based attack against MalConv, by appending bytes to the overlay. Since
MalConv is not fully differentiable, the attack takes place inside the embedding space. The
gradient allows the attacker to append bytes that most reduce the confidence of the input
malware. Experimental results show that the number of padding bytes needed to evade
ranges from 2 KB to 10 KB. Demetrio et al. [14] fine-tune the attack proposed by Kolosnjaji
et al. by generalizing the algorithm w.r.t. the location to apply the perturbations, and
showing that the same network can be bypassed by manipulating only 58 bytes inside the
DOS header of an executable.

Similarly, Kreuk et al. [16] applied the Fast Gradient Sign Method (FGSM) [68] to alter
not only padding but also slack bytes, that is, bytes inserted between sections to main-
tain alignment. However, they show that slack locations are not enough for crafting an
adversarial executable malware, and they need to include padding as well. The attack is
formulated again in the embedding space, but the real bytes are only computed after the
algorithm has found an evading sample.

Rosenberg et al. [20] attack a Recurrent Neural Network (RNN) using a black-box strat-
egy [62] by reconstructing the target classifier under attack. They fool the proposed RNN
by injecting fake API calls at run-time, wrapping the input malware inside another pro-
gram with the correct sequence of API that needs to be called for producing the sample.
While the wrapper they developed is interesting for proposing a different way for mutating
malware, neither code nor results have been publicly released by the authors.

Suciu et al. [28] explored a similar approach to Kreuk et al., by applying the FGSM, and
compute adversarial payloads to be inserted between sections (if there is available space)
and as padding. No code has been released yet for testing the attack.

Sharif et al. [69] apply random manipulations that replace instructions, inside the .text
section, with semantics-equivalent ones, or they displace the code inside another section,
with the use of jump instructions. At each iteration of the algorithm, the latest adversarial
example is used as a starting point for the new one. Once randomly perturbed, the new
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and the old versions are projected inside the embedding space, where the two points are
used for computing a direction. If this direction is parallel to the gradient of the function
in that point, then the sample is kept for the next iteration, otherwise it is discarded.
Unfortunately, no code has been released yet for testing their attack.

Black-box adversarial attacks against malware detectors: Castro et al. [17, 25]
propose two black-box optimizers to compute adversarial attacks. The former [17] applies
random mutations to the input sample, while the latter [25] uses a genetic algorithm for
searching the best sequences of mutations to apply. Both techniques leverage a sandbox
environment where, at each iteration, the adversarial malware are executed to ensure that
their functionality is preserved.

Anderson et al. [19] propose a reinforcement learning approach to decide the best sequence
of manipulation that leads to evasion. To test the effectiveness of the agent, they also test
the application of manipulations picked at random. Results show that the learned policy
perform slightly better than the random one. The authors do not report the resulting file
size of the adversarial malware: the reinforcement learning method contains actions that
enlarge the representation on disk, but it is not clear how and how much. The model they
used as a baseline is a primordial version of the EMBER classifier we have analyzed in this
work (see Chapter 4 for our experimental evaluation), trained on fewer samples.

Hu et al. [21] develop a Generative Adversarial Network (GAN) [70] whose aim is to
craft adversarial malware that bypass a target classifier. The network learns which API
imports should be added to the original sample. It is interesting that the algorithm ignores
the semantics of all objects that considers and it can create points that evade the target
classifier nonetheless. However, no real malware is crafted, as that attack only operates
inside the feature space. The result of the GAN serves only as a trace for the attacker, to
understand what should be changed inside its malware. In contrast, we create functioning
malware, as real samples are generated each time.

White-box attacks against other security-related detectors: Grosse et al. [71]
propose a white-box attack against DREBIN, an Android malware detector [72], by ap-
plying a Jacobian-based approach [55]. Using the gradient, the authors understand which
features needs to be added inside the application, in terms of modification of meta-data of
the program.

Chen et al. [73] propose a gradient attack against two Android malware detectors [72,74],
by introducing API calls and new pre-written code to dilute the contributions of other
features toward the negative class.

Pierazzi et al. [29] proposes a gradient-based attack against Android malware detectors [75]
that injects fractions of benign Android byte-code inside the malware program.

Black-box attacks against other security-related detectors: Xu et al. [30] propose
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a fully black-box attack scheme that relies on a genetic algorithm to produce adversarial
examples. They show that this approach is suitable for security application, as they success-
fully create functioning adversarial PDF malware that evade state-of-the-art PDF malware
detectors. On the other hand, since this method ignores the internal technical details of
the PDF format, the black-box optimization produces both functioning and also broken
PDF malware that are lately discarded by the evolution. As shown by the authors, this
is very time consuming, as the algorithm needs to learn which manipulations break the
original semantics and which not.

Laskov et al. [76] show a black-box attack against PDFRate [77], which is a PDF malware
detector. The authors simulate an adversary that have only partial information regarding
the classifier under attack. They reconstruct the victim model and they perform gradient
attacks against it, transferring them to the real one. The attack injects content inside the
PDF malware, successfully fooling both the surrogate and the target.

White-box attacks against in other domains: Biggio et al. [53] propose an iterative
gradient technique for computing adversarial examples against any kind of classifier. Since
the attacker must comply with certain constraints, at each iteration of the algorithm, the
partial results are projected inside the feasible region, that represents the domain of valid
adversarial examples.

Goodfellow et al. [54] propose the Fast Gradient Sign Method (FGSM), originally formu-
lated for computing adversarial examples against deep image classifiers. The technique
requires the computation of the gradient of the network w.r.t. the input, and its magni-
tude is bounded to the amount of perturbation that can be added by the adversary. To
this extent, the attacker only takes the sign of these values, multiplied by a parameter for
tuning the efficacy of such noise.

Papernot et al. [55] propose the Jacobian-based Saliency Map Attack (JSMA), that mod-
ifies one pixel at the time, maximizing the error at each step. Each pixel of the image is
weighted based on the importance computed from the gradient in that point, highlighting
which one must be modified to decrease the confidence.

Carlini and Wagner [58] propose an iterative approach whose core is a reconstruction
problem, with bounds imposed on the maximum amount of perturbations. They use of
different norms, whose application leads to different formalizations and results, as norms
have different effects on the adversarial perturbations.

Generic Black-box attacks in other domains: Papernot et al. [62] show that it is
possible to evade an unknown classifier by reconstructing a local surrogate model. The
attacker need to query the target classifier to construct a surrogate dataset that will be
used for training the model. The adversary computes the attack against the trained local
classifier and it tries to transfer the samples to the target as well. This is time consuming
as the attacker needs to send many queries to the target system, as all samples inside the
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surrogate dataset need to be labeled.

Chen et al. [78] propose the so-called Zeroth Order Optimization (ZOO), that estimate the
gradient of the victim classifier by sampling points around the input. This strategy reduce
the number of queries, as the search is local and only around a particular point.

Ilyas et al. [66] apply the Natural Evolution Strategy (NES) [79] to reduce the number of
queries that are needed to compute the black-box attack, by imposing a distribution over
the manipulation and use the ones that allow the algorithm to explore more.

Other malware machine-learning detectors: Saxe et al. [3] develop a deep neural
network which is trained on top of a feature extraction phase. The authors consider type-
agnostic features, such as imports, bytes and strings distributions along with metadata
taken from the headers, for a total of 1024 input variables.

Kolosnjaji et al. [4] propose to track which APIs are called by a malware, capturing the
execution trace using the Cuckoo sandbox,1 that is a dynamic analysis virtual environment
for testing malware.

Hardy et al. [5] statically extract which APIs are called by a program, and they train a
deep network over this representation.

David et al. [6] develop a network that learns new signatures from input malware, by
posing the issue as a reconstruction problem. The network infers a new representation of
the data, in an end-to-end fashion. These new signatures can be used as input for other
machine learning algorithms.

Incer et al. [7] try to tackle the issue of an adversarially robust classifier by imposing
monotonic constraints over the features used for the classification tasks.

Krčál et al. [80] propose a similar architecture as the one developed by Johns2 and Coull et
al. [39]: a deep convolutional neural network trained on raw bytes. Both architectures share
a first embedding layer, followed by convolutional layers with ReLU activation functions.
Krčál et al. use of more fully dense connected layers, with Scaled Exponential Linear Units
(SeLU) [81] activation functions.

Other SQL Injections machine-learning detectors: Ceccato et al. [?] propose
a clustering method for detecting SQL injection attacks against a victim service. The
algorithm learns from the queries that are processed inside the web application under
analysis, using an unsupervised one-class learning approach, namely K-medoids [82]. New
samples are compared to the closest medoid and flagged as malicious if their edit distance
w.r.t. the chosen medoid is higher than the diameter of the cluster.

Kar et al. [10] develop SQLiGoT, a support vector machine classifier (SVM) that expresses

1https://cuckoosandbox.org/
2https://www.camlis.org/2017/jeffreyjohns
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queries as graphs of tokens, whose edges represent the adjacency of SQL-tokens. This is
the classifier we used in our analysis.

Pinzon et al. [83] explore two directions: visualization and detection, achieved by a multi-
agent system called idMAS-SQL. To tackle the task of detecting SQL injection attacks,
the authors set up two different classifiers, namely a Neural Network and an SVM.

Makiou et al. [84] developed an hybrid approach that uses both machine learning techniques
and pattern matching against a known dataset of attacks. The learning algorithm used
for detecting injections is a Naive Bayes [85]. They look for 45 different tokens inside the
input query, chosen by domain experts.

Similarly, Joshi et al. [11] use a Naive Bayes classifier that, given a SQL query as input,
extracts syntactic tokens using spaces as separator. The algorithm produces a feature
vector that counts how many instances of a particular word occurs in the input query. The
vocabulary of all the possible observable tokens is set a priori.

Komiya et al. [43] propose a survey of different machine learning algorithms for SQL
injection attack detection.
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Chapter 3

Formalization and Attacking
Strategies

A
ttackers’ goal is the creation of adversarial examples, by adding well-crafted noise
to each sample and achieve evasion with high confidence. This chapter will introduce

(i) the mathematical framework used to encode all attacks (Section 3.1, page 24), (ii) the
mutations that are applied to the samples to produce adversarial examples (Section 3.2,
page 27), (iii) and how to implement the framework for white-box (Section 3.3, page 32)
and (iv) black-box (Section 3.4, page 34) attacks.

3.1 Formalization

Most classifiers process data through a feature extraction phase and the attack takes place
inside such a feature space. Since machine code and SQL commands are both encoded
as arbitrarily long strings of bytes, we define the set of all possible functioning samples
as Z ⊂ [0, 255]∗. We denote the prediction function with f : X → Y , and the feature
extractor with φ : Z → X , where X is the feature space, and Y is the output space of the
model.

The attacker can apply practical manipulations, i.e., transformations that alter the rep-
resentation of the input sample without disrupting the original functionality, by exploit-
ing redundancies offered by the format. We encode these manipulations as a function
h : Z × T → Z whose output is an object compliant to the format specifications and
with the same behavior of the input one, but with a different representation. Function h
takes in input a sample z ∈ Z and a vector t ∈ T , that represents the parameters of the
transformation. By optimizing the entries of this vector, attackers can tune the application
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of practical manipulations on a particular sample.

We denote Hz = {h(z, t), t ∈ T } the set of objects, e.g. programs or SQL queries, that
can be created by applying practical manipulations on z, the original sample. To measure
the distance from the benign class, we use a loss function L : Y × Y → R. This function
depends on the output of the prediction on a point f(φ(z)), where we want to compute the
error, and the label y of the class the attacker wants to approach: in our case, y represents
the benign class. The goal of the attacker is to minimize L(f(φ(h(z, t))), y). This amounts
to diminishing the probability of the modified program being recognized as malware.

We present RAMEn (Realizable Adversarial Malware Examples), a general framework
that reduces the problem of computing adversarial examples of malware to optimization
problems of the form:

min
t∈T

L(f(φ(h(z, t)), y) (3.1)

Depending on the differentiability of the components of RAMEn, the attacker can use
different strategies for solving the optimization problem.

Every function is differentiable: If all functions are differentiable, then the optimiza-
tion can be carried out inside the space of the parameters T by using the gradient descent
algorithm:

t(i+1) = t(i) + γ
∂L

∂t
(3.2)

where γ is the step-size of the gradient descent algorithm, that modulates how much the
space is explored. A use-case for Equation 3.2 is the production of adversarial examples
against end-to-end image detectors, where the target end-to-end model is differentiable,
and the practical manipulations consist of differentiable functions, like rotations.

Non-differentiable manipulations: If all functions but h are differentiable, then
the attacker can leverage a gradient descent technique for creating the next adversarial
examples and extract the best vector of coefficients by reconstruction:

z′ = z + γ
∂L

∂h
(3.3)

t(i+1) = arg min
t∈T

‖ z′ − h(z, t) ‖2 (3.4)

Non-differentiable feature extraction: Feature extractors are often non-differentiable
and/or not-invertible. When this is the case the attacker must carry out the optimization
inside the feature space, by solving a minimization problem as shown in Figure 3.1. Set
Vz = {φ(z′) : z′ ∈ Hz}, then the problem inside the feature space can be posed as:

x? ∈ arg min
x∈Vz

L(f(x), y) (3.5)
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Figure 3.1: The steps performed by RAMEn to produce adversarial examples.

whose solutions are feature vectors that satisfy the constraints inside the feature space.
Now, the attacker needs to find the best vector of parameters t? that, applied to z, generates
x?. This can be expressed as a reconstruction problem, in the form of a minimization:

t? ∈ arg min
t∈T

‖x? − φ(h(z, t))‖2 (3.6)

Non-differentiable model: If all functions are non-differentiable including the model
itself, e.g. random forest classifiers, the attacker can only consider the use of black-box
optimizer algorithms, since no gradient information is available.

Although our work share some common traits with the formalization proposed by Pierazzi
et al. [29], we highlight the main differences between the two approaches. They explicit the
effects of the application of manipulations to a sample, by decoupling the transformation
into two components: the translation inside the feature space and the projection inside
the set of feature space points that satisfy all constraints imposed by an attacker. Since
we apply practical manipulations that satisfy all constraints by design, we do not need to
project the points inside that set.

The use of non-differentiable feature extractor is a recurring pattern in security detectors,
also in the case of end-to-end models. By truncating and embedding, these networks
operate inside a non-differentiable feature extraction regime. In particular, the embedding
can be reversed only by using a look-up function that associates each embedding value to
the corresponding value inside the input space: this function is clearly non-differentiable.
For these reasons, we propose Algorithm 1 for solving Equation 3.1. At the beginning of
each iteration, the algorithm applies the practical manipulations to the input sample, and
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it maps them inside the feature space by applying φ, computing x (line 3). Such vector
is used as initialization for the minimization problem (line 4). The optimization is carried
on by searching for suitable candidates inside Vz, that is the set representing all possible
manipulated versions of the original sample. After having computed the best feature
representation for the candidate adversarial example, we invert both the feature mapping
and the application of practical manipulations by searching for a vector of parameters
t ∈ T that, applied to the original sample, is as close as possible to the optimized feature
vector x? (line 5). The whole algorithm is iterative, allowing maximum freedom to the

Algorithm 1: General version of RAMEn algorithm

Data: malware z, iterations N , target class label y
Result: t?, z?

1 t(0) ∈ T
2 for i in [0, N − 1]

3 x = φ(h(z, t(i)))
4 x? = arg minx′∈Vz L(f(x′), y) # initialize x′ with x at beginning

5 t(i+1) = arg mint∈T ‖ x? − φ(h(z, t)) ‖2
6 t? = t(N)

7 z? = h(z, t?)
8 return t?, z?

attacker. By specifying different strategies for solving the two minimization problems, the
attacker can customize RAMEn to their need.

3.2 Practical Manipulations

Now that we have presented the formalization, we focus our attention of transformations
that alter the representation of samples without affecting their original semantics. So,
we need to explore structural mutations for the Windows PE file format, and syntactical
manipulations for the SQL language.

3.2.1 Windows PE format manipulations

Since attackers want to camouflage malicious content without compromising its function-
ality, they need an effective way of perturbing the on-disk representation of a program. As
explained in Section 2.2.1 (on page 9), the operating system loads the executables, map-
ping the sections, with their respective permissions, into the process address space. To do
so, the Windows loader must find the components of the program inside the executable.
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Since attackers want to produce space for injecting an adversarial payload, they can alter
the representation to their advantage, for instance, by shifting content at their will. These
transformations can be used to create space inside the input binary, and hide all malicious
code from the target network. The payload is then optimized using the implementation
of RAMEn expressed in Algorithm 2 (on page 33), by specifying inside h how the content
is shifted or extended. A simplified graphical representation of the following strategies
is depicted in Figure 3.2. The colored areas highlight where the attacker are placing the
adversarial payload, and the length of the boxes indicates how the content is being shifted
by the applied noise.

3.2.1.1 DOS Header editing

The DOS header is kept for compatibility with older Microsoft’s operating systems. Since
the only two important fields are the magic number MZ, and the 4 byte-long integer at
offset 0x3c, all other bytes can be used by the attacker as a space for storing an adver-
sarial payload. Demetrio et al. [14] originally proposed a mutation applied between the
magic number and the real header offset, but the whole DOS header can be manipulated
without damaging the file structure. As already said, all bytes inside the range [0x02,
0x3c) are freely editable. We extend this range by adding also all bytes in the range
[0x40, PE-header location). The position of the PE header may vary from executable to
executable, but its offset is written inside the DOS header.

3.2.1.2 DOS Header Extension

The DOS header contains a pointer to the PE header of the program, and the bytes in-
between are used only by the loader of “ancient” DOS systems. The attacker can abuse
this pointer to their will, by substituting the original value with a higher one. This will
ensure that the Windows loader will try to parse the PE header in another location of
the file. To keep the structure intact, the attacker must also shift all content of the file
to match the introduced gap, keeping the alignment as expressed by the PE header. This
mutation has no effect at run-time since the introduced content is not used by the program.
The attacker has now more space at their disposal to use during the optimization of the
adversarial payload.

3.2.1.3 Content Shifting

Each section is retrieved by the Windows loader by using the physical offset, that is a
four byte-long unsigned integer specified inside each section entry. Each offset is aligned
to a value specified inside the header of the program: if these values do not match, the
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Figure 3.2: Graphical representation of the location perturbed by the different strategies.

executable will not be executed, and considered corrupted. While loading the program,
the operating system does not perform any check on the order of the sections inside the
file, and it could potentially map in memory the last section before the first one. The order
is imposed only in memory, specified by a 4 byte-long unsigned integer inside the section
entry. The attacker can edit the physical offsets of each section, by shuffling the content of
the file, with the only constraint imposed by section alignment. They can also add content
at their will, without breaking the functionality of the program. The latter is a way, for
the attacker, to carve space inside the executable, and insert adversarial noise there.

3.2.1.4 Section injections

The attacker can add new sections inside the binary, by adding a new section table entry
with a name, a set of characteristics that tells the loader how to deal with this new element
of the binary, and the content to inject.

3.2.1.5 Slack Space

To maintain the alignments inside the file structure, the compiler and the linker might
insert padding regions between sections. These bytes can be freely modified, since the
program ignores their existence, and small adversarial payloads can be inserted in such
space.
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3.2.1.6 Padding

Since all adversarial content is appended at the end of the file, no structure is altered. The
content that can be added can be extremely long, and it will not affect the functionality
of the program.

3.2.2 SQL queries manipulations

SQL queries are commands executed by Database Management Systems (DBMS). The SQL
standard provides many syntactical variations, with the same semantics, that attackers can
leverage. The following sections detail some of these semantic-preserving transformations.

3.2.2.1 Case Swapping

Since SQL is case insensitive, the semantics of a query is not affected by alterations in
the letter case, unless such characters are inside string literals. Hence, for instance, the
keyword Select and the keyword SeLEct have the same meaning.

3.2.2.2 Whitespace Substitution

This transformation relies on the equivalence between several alternative characters that
act as separators (whitespaces) between the query tokens. For instance, whitespaces include
\n (line feed), \r (carriage return) and \t (horizontal tab). Each of these characters can be
replaced by an arbitrary, non-empty sequence of the others without altering the semantics
of the query.

3.2.2.3 Inline comments

Comments of the form /* ... */ can be arbitrarily inserted between tokens of a query. For
instance, SELECT * from users and SELECT * from /* whatever */ users are equiv-
alent queries.

3.2.2.4 Comment Rewriting

Following the practical manipulation described before, any combination of characters that
are added inside a comment, with the exception of the sequence */ or any characters
that form that sequence, are ignore by the DBMS. Hence, inline comments can be filled
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Operator Example
Case Swapping CS(admin’ OR 1=1#)→ ADmIn’ oR 1=1#

Whitespace Substitution WS(admin’ OR 1=1#)→ admin’\n OR \t 1=1#

Comment Injection CI(admin’ OR 1=1#)→ admin’/**/OR 1=1#

Comment Rewriting CR(admin’/**/OR 1=1#)→ admin’/*abc*/OR 1=1#xyz

Integer Encoding IE(admin’ OR 1=1#)→ admin’ OR 0x1=1#

Operator Swapping OS(admin’ OR 1=1#)→ admin’ OR 1 LIKE 1#

Logical Invariant LI(admin’ OR 1=1#)→ admin’ OR 1=1 AND 2<>3#

Table 3.1: Examples of SQL practical manipulations.

with (almost) arbitrary strings of any length, without worrying about side-effects. For
instance, SELECT * from users /* return every user */ and SELECT * from users

/*alala*/ will produce the same results.

3.2.2.5 Integer Encoding

Numbers can be expressed in multiple ways, including alternative base representations. For
instance, the number 42 can be expressed in its hexadecimal representation CONV(’2A’,

16, 10). Also, numbers can be expressed as nested queries: (SELECT 42) is equivalent to
42.

3.2.2.6 Operator Swapping

Some operators can be replaced by others that behave in the same way. For instance, the
behavior of = (equality check) can be simulated by LIKE (pattern matching).

3.2.2.7 Logical Invariant

Each condition can be “expanded” by adding boolean expressions that are always evaluated
to true or false, called opaque predicates.
For instance, SELECT * from users WHERE a=1 AND 1=1 produces the very same result
of SELECT * from users WHERE a=1.

Table 3.1 provides a compact list, including a short, mnemonic definition, of the operators
described above. An example of perturbed SQL injection is shown in Figure 3.3. The
original query is twisted to a long sequence of tokens, but there is the certainty that the
original semantics is preserved when evaluated.
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1 SELECT * from users where usr=’admin’ OR 1=1#

2 SELECT * from users where usr=’admin’ OR 0X1=1 or 0x726!=0x726 OR 0x1Dd

not IN/*(seleCt 0X0)>c^Bj>N]*/ ((SeLeCT 476),(SELECT (SElEct 477)),0

X1de) oR 8308 noT lIkE 8308\x0c AnD truE OR ’FZ6/q’ LiKE ’fz6/qI’

anD TRUE anD ’>U’ != ’>uz’#t’%’03;Nd

3

Figure 3.3: Two different SQL queries that, when evaluated return the same result.

3.3 White box byte-optimization attacks

We start by implementing white-box attacks against malware classifiers. To provide an end-
to-end algorithm, we extend the algorithm proposed by Demetrio et al. [14] and Kolosnjaji
et al. [15], and we encode this strategy inside RAMEn. The attack addresses locations
inside the input program that are not considered at run-time, like the DOS header or
padding bytes. By optimizing bytes inside these regions, we obtain functioning adversarial
malware that evades detection. The first layer of our target networks is an embedding
layer, applied to impose a metric over the input bytes, acting as a feature extractor. These
networks are differentiable up to this layer, while no derivative can be computed w.r.t. the
real bytes of the input programs.

The networks have a fixed input size: all programs longer than a specific amount will be
cropped before passing to the embedding layer. Hence, we can encode φ as the composition
of the cropping and embedding functions of these networks. Since the strategy we use does
not need a loss function, but it is required inside RAMEn, we use the probability score
assigned by the network itself: L(f(φ(z)), y) = f(φ(z)).

Algorithm 2 implements the resolution of both problems stated in Equation 3.5 and 3.6,
by using a slightly modified version of the solver proposed by Kolosnjaji et al. [15]. We

use φ̂ to denote the function that encodes a single byte inside the feature space (used in
line 1), with also the addition of the padding symbol.

Firstly, the optimizer computes the gradient w.r.t. the input inside the embedding space
(line 5). The minus sign is applied since we are looking for the direction of the benign class,
associated with low values of the model function. As a consequence of the embedding, the
computed gradient is a matrix, and each entry is a vector inside the embedding space. The
algorithm ignores all locations that cannot be modified by applying a binary mask m on
the entries of the gradient (line 5), and it takes the indexes of the first γ non-zero sorted
entries (line 6).

The γ parameter is a step-size constant that controls how many bytes are perturbed at
each round, modulating how much the space is explored during the optimization. For each
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byte of the payload, the algorithm computes a line passing from the current value to be
replaced, and whose direction is imposed by the gradient in that point. The algorithm
proceeds by projecting all 256 embedded byte values on this direction, computing the
distance point-to-line and the alignment with such direction (line 9). The padding value
is not projected, as it can not be used as a replacement value.

The best byte replacement value is the one with the least non-zero distance, with positive
alignment to the defined direction (line 10).

Algorithm 2: Implementation of RAMEn used for optimizing and reconstructing
single bytes inside the input program.

Data: malware z, number of bytes to optimise γ, iterations N
Result: t?, z?

1 Ei = φ̂(i),∀i ∈ [0, 256]

2 t(0) ∈ T
3 for i in [0, N − 1]

4 X = φ(h(z, t(i)))
5 G = −∇Xf(X)�m
6 for k in argsort (‖ G ‖)0,...,γ−1 ∧Gk 6= 0
7 for j in [0, . . . , 255]
8 Sk,j = GT

k · (Ej −Xk)

9 X̃k,j =‖ Ej − (Xk + GkSk,j) ‖2
10 t

(i+1)
k = arg minj:Sk,j>0 X̃k,j

11 t? = t(N)

12 z? = h(z, t?)
13 return t?, z?

3.3.1 Implementing Byte Attacks within RAMEn

We formalize, by means of pseudo-code, both our novel practical manipulations, described
in Section 3.2 (on page 27). Algorithm 3 shows the implementation of the Partial DOS
attack, proposed by Demetrio el al. [14]. It takes the vector of parameters t and it copies
its content at the desired position inside the sample (line 2). The Full DOS variant,
shown in Algorithm 4 ensures that the parameters are enough for the application of the
transformation, the algorithm checks its length and fixes it to match the desired length
(line 4). After that, the algorithm proceeds with the rewriting of the initial bytes of the
DOS header (line 5), and the also the bytes that comes after the pointer to the PE header
and the PE header itself (line 6) The standard padding technique is expressed in Algorithm
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7, often used in the state of the art [15,16,28]. Algorithm 5 shows how to enlarge the DOS
header to add the adversarial payload, while Algorithm 6 shows how to incorporate the
payload before the first section.

For both the Extend and Shift algorithms, we need to insert a string of bytes in the desired
position (line 5 of both Algorithms 5 and 6), The first entry of the vector of parameters
specifies how many bytes the attacker would like to insert inside the sample (line 1 of both
Algorithms 5 and 6). Since such content must be a multiple of the alignment, this quantity
is accordingly increased by rounding towards the nearest multiple of the alignment itself.
The function d·e expresses the ceil function, that rounds the input number to the next
integer. With a little abuse of notation, we write 0x00∗align implying that the single byte
0x00 is concatenated with itself align times, and we use the symbol + for indicating the
concatenation of byte strings and byte values (line 5 of both Algorithms 5 and 6). After the
insertion, we fix the constraints imposed by the format, including fixing the offset of the PE
header for the Extend manipulation (line 6 of Algorithm 5), and the offset of the content
of each section (from line 7 to line 10 of both Algorithms 5 and 6). Lastly, the content of
the vector of parameters t is copied inside the sample (line 11 for Algorithm 6, and lines
11, 12 for Algorithm 5). In our experimental analysis, we set the desired payload length
to 512 bytes for the Extend attack, and 1024 for the Shift attack. During the attack, such
length is adjusted to match the file alignment of the sample to be perturbed. The vector
of parameters is padded with zeros if it is shorter than the computed alignment, adapting
itself to the desired length. The Extend technique avoids the re-writing of meaningful
locations, such as the MZ and the PE magic numbers, along with the four-byte offset that
points to the COFF header.

Algorithm 3: Implementation of h(z, t) for the Partial DOS practical manipu-
lation

Data: malware z, vector of parameters t
Result: z′

1 z′ = z
2 z′2,...,59 = t

3 return z′

3.4 Black-box Attacks with Practical Manipulations

We investigate also the application of our practical manipulation in black-box cases, where
the attacker do not know the model to attack. We describe the strategies we have imple-
mented for testing this scenario, focusing on transfer attacks and query attacks.
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Algorithm 4: Implementation of h(z, t) for the Full DOS practical manipulation

Data: malware z, vector of parameters t
Result: z′

1 off = z.pe offset
2 z′ = z
3 if |t| < off + 58
4 t = t+ 0x00 ∗ (off + 58− |t|)
5 z′2,...,59 = t0,...,57
6 z′64,...off−1 = t58,...,|t|−1
7 return z′

Algorithm 5: Implementation of h(z, t) for the Extend practical manipulation

Data: malware z, vector of parameters t
Result: z′

1 align = dt0/z.file alignment e ∗ z.file alignment
2 if |t| < align
3 t = t+ 0x00 ∗ (align− |t|)
4 off = z.pe offset
5 z′ = z0,...,off−1+ 0x00∗align+ zoff ,...,|z|−1
6 z′.pe offset = off +align
7 S = z′.get sections()
8 for s in S do
9 s.physical offset = align+ s.physical offset

10 end
11 z′2,...,59 = t0,...,57
12 z′64,...off−1 = t58,...,|t|−1
13 return z′
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Algorithm 6: Implementation of h(z, t) for the Shift practical manipulation

Data: malware z, vector of parameters t
Result: z′

1 align = dt0/z.file alignment e ∗ z.file alignment
2 if |t| < align
3 t = t+ 0x00 ∗ (align− |t|)
4 fs = z.get first section offset()
5 z′ = z0,...,fs−1+ 0x00∗align+ zfs,...,|z|−1
6 z′.pe offset = z′.pe offset + align
7 S = z′.get sections()
8 for s in S do
9 s.physical offset = align+ s.physical offset

10 end
11 z′fs,...,fs+(align−1) = t

12 return z′

Algorithm 7: Implementation of h(z, t) for the Padding practical manipulation

Data: malware z, vector of parameters t
Result: z′

1 z′ = z + t
2 return z′
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3.4.1 Transfer Attacks

The attacker can compute adversarial examples on a model they own, that acts as a
surrogate of the target, and they can try to evade detection by submitting such samples
to the victim. The surrogate model can be an approximation of the unavailable one, or
it can be a common classifier trained for solving the same task. We focus on the latter,
by optimizing attacks on the networks we consider for this work, and transferring them
against all others.

3.4.2 Query Attacks

The attacker can also target the victim system by exploiting the result of the prediction
step, without optimizing the attack on a surrogate model. By sending queries to the target
model, the attacker can infer how the victim behaves locally around a particular set of
samples they want to be misclassified.

3.4.2.1 Genetic algorithm strategy

We implement RAMEn with the use of a genetic black-box optimizer, the same used by
Demetrio et al. [23] for computing their attack. Since the genetic black-box optimizer
works with real numbers, we encoded our vector of parameters as t ∈ [0, 1]k, where k is the
number of values that will be perturbed. For instance, the Partial DOS attack sets k to 58.
Before applying the practical manipulation h, we need to multiply by 255 and rounding
to the nearest value the vector of parameters, since both Algorithm 5 and 6 consider each
entry of vectors t as bytes to be placed inside the sample.

We summarize the optimizer in Algorithm 8, where we have plugged the loss to minimize
as dictated by RAMEn. The d·c function rounds the argument’s entries to the nearest
integer. The pseudo-code follows the generic structure of genetic algorithms, where the
initial N points are randomly generated. This population is modified by inserting new
elements and keeping only the fittest, i.e. the one closest to the benign class, denoted by
y. The best solution is the one with minimal score. To explore the attack feature space,
the genetic algorithm performs three steps, mimicking the process of biological evolution:
selection, cross-over, and mutation.

Function selection extracts attack feature vectors, whose value of the objective function is
minimal, from the population that has been generated so far. Intuitively, these vectors are
the most promising for computing an adversarial example.

Function crossover breeds two selected vectors together, by mixing their values as they
were chromosomes. To clarify, a random point is chosen inside these vectors, and all values
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Algorithm 8: Pseudo-code of the genetic black-box optimizer.

Data: population size m, generations N
Result: t?, z?

1 P = m random points
2 F = {(Pi, L(f(φ(h(z, d255Pic))), y))}mi=1

3 i = 0
4 S = F
5 while i < N and not stagnating do
6 S = selection(S)
7 S = crossover(S)
8 S = mutate(S)
9 S = F ∪

⋃
t∈S{(t, L(f(φ(h(z, d255tc))), y))}

10 i = i+1

11 end
12 t? = min(S)
13 z? = h(z, t?)
14 return t?, z?

from that point on are exchanged between the two chosen vectors. This ensures the creation
of new elements, helping the algorithm exploring the space of solutions.

Lastly, function mutation applies a random mutation inside a selected feature vector, pro-
viding the altered vector with a unique trait that might help the evolution towards success-
ful adversarial examples. At each round, a set of new candidates is produced and evaluated.
Before moving to the next round, all new offsprings are added to the population. In this
way, the genetic process starts again, selecting the fittest candidate for survival, eventually
reaching a local minimum for the problem.

The algorithm terminates after N iterations, and the detector is queried exactly N ·(m+1)
times. Our strategy sets the constraint T over the whole amount of queries sent to the
detector, that is T = N(m+ 1), so the attacker must choose N accordingly. Also to avoid
waste of computations, if the value of the fitness stagnates, i.e. no other local minima are
found, for at least 5 generations, the process is halted.

Implementing GAMMA: As proposed in previous work [23], we implement GAMMA
(Genetic Adversarial Machine learning Malware Attack), a black-box attack strategy that
adds content taken from goodware samples. We decided to apply two different strategies:
padding and section injection. The content that is added to input malware samples is
directly taken from sections belonging to legit executables. Intuitively speaking, we believe
that the addition of content taken from benign programs would move the samples closer to
the benign class. Each dimension T is the content of a benign section, hence the attacker
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Figure 3.4: Scheme of GAMMA, by summing up the major steps of the process.

needs to decide how many pieces of goodware use during the optimization. The benign
content can be added in chunks of variable size, which helps relax the problem to the
continuous domain. We limit the usage of GAMMA to these two manipulations, but all
other practical manipulations could have been used.

For each payload, GAMMA generates adversarial malware that is passed to the input
detector, whose output is a probability of being malicious. The objective function is the
sum of the score mentioned before and a penalty term, controlled by an input regularization
parameter. After having sent T queries, GAMMA outputs the best adversarial malware
found so far. Since we are adding bytes, we crop the content of the i-th section by taking
only a fraction expressed by ti of the original content when we add the section to the
input malware. To clarify this concept, if ti = 0.4, the algorithm takes the 40% of the
content from the i-th section. This product is needed since not all sections share the same
length, and they must be penalized accordingly. The practical manipulation functions’s
implementation are shown in Algorithm 9 and Algorithm 10, as we rely on both padding
and section injection. Figure 3.4 shows the overall GAMMA strategy, highlighting all its
ingredients.

3.4.2.2 Genetic optimization of bytes

We take the attacks proposed in Section 3.3 (page 32) and instead of optimizing the values
using the gradient technique, we use the genetic optimizer described in Section 3.4.2.1
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Algorithm 9: Implementation of h(z, t) for GAMMA - padding

Data: malware z, vector of parameters t
Result: z′

1 z′ = z
2 for i in 0, ...|t| − 1 do
3 s = get section content(i)
4 s = crop(s, dti|s|c)
5 z′ = z′ + s

6 end
7 return z′

Algorithm 10: Implementation of h(z, t) for GAMMA - section injection

Data: malware z, vector of parameters t
Result: z′

1 z′ = z
2 for i in 0, ...|t| − 1 do
3 s = get section content(i)
4 s = crop(s, dti|s|c)
5 z′ = add section(z′, s)

6 end
7 return z′
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(page 37). In this way, the optimizer chooses a byte value for each entry of the vector of
manipulations t used for creating adversarial malware.

3.4.2.3 Mutational fuzzing

Another technique for computing adversarial examples in a black-box setting is fuzzing
the input and scoring the produced output. A fuzzer, in its simplest form, is a tool that
takes in input an object, and alters it by applying random manipulations. This technique
is useful for testing software with random inputs, trying to enhance the coverage of the
corresponding test suite.

To create better inputs, smarter fuzzers look at the response of the target to test. Depend-
ing on the success or the failure of a test, a fuzzer may decide to apply different strategies
for mutating the input. In this way, the randomness of the fuzzing creates multiple variants
of the original input object. Usually, a fuzzer is used for finding bugs in a program, and
once a bug is found the input is saved for further analysis.

Here, a fuzzer can be used as a black-box optimizer: it randomly mutates the sample,
and each mutated sample is scored with an objective function. Depending on the achieved
score, the fuzzer decides to discard or keep the input, and it proceeds until either it finds
a local minimum or maximum or it runs out of iterations. This methodology belongs to
the class of guided mutational fuzz testing [86, 87]. Figure 3.5 schematically depicts this
approach.

We use a fuzzer to generate adversarial examples, by applying practical manipulations
to the original sample until evasion is achieved. In particular, we compute adversarial
examples against Web Application Firewalls (WAFs) [22], using the manipulations we
have described in Section 3.2.2 (on page 30). Web Application Firewalls (WAFs) are
a prominent family of IDS, widely adopted [88] to protect ICT infrastructures. Their
detection algorithm applies to HTTP requests, where they look for possible exploitation
patterns, e.g., payloads carrying a SQL injection.

Pool

Priority queue

Fuzzer

Mutations

Figure 3.5: An outline of the mutational fuzz testing approach.
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Since WAFs work at application-level, they have to deal with highly expressive languages
such as SQL and HTML. Figure 3.3 shows two queries injected with two different pay-
loads, both starting with ’admin’ OR .... Notice that the two payloads are semantically
equivalent. As a matter of fact, both reduce the above query to SELECT * FROM users

WHERE name='admin' OR > #. . . where > is a tautology and . . . is a trail of commented
characters. Ideally a WAF should reject both these payloads. However, when classification
is based on a mere syntactical analysis, this might not happen. Hence, the goal of an
attacker amounts to looking for some malicious payload that is undetected by the WAF.

Algorithm 11: Core algorithm of WAF-A-MoLE.

Data: initial sample z, threshold T
Result: t∗, z∗

1 Q← create priority queue()
2 l← L(f(φ(z)), 0)
3 enqueue(Q,0, l)
4 while y ≥ T do
5 t← mutate(head(Q))
6 l← L(f(φ(h(z, t))), 0)
7 enqueue(Q, t, l)

8 end
9 t∗ ← head(Q)

10 z∗ ← h(z, t∗)
11 return t∗, z∗

A pseudo code implementation of the core evasion algorithm is shown in Algorithm 11.
The objective function to minimize is a loss function that computes the distance between
the computed score and the benign class, explicitly expressed with the value 0. We use a
priority queue Q (line 1) to store the intermediate results of the optimization process. At
the beginning of the procedure, the queue only contains 0, that is the vector that applies
no practical manipulations on the initial sample (line 3). At each iteration, the fuzzer
uses random practical manipulations to modify the head element of Q, i.e. the vector
of coefficients that generates the adversarial example with the lowest probability of being
detected (line 5). The mutated vector is inserted again inside the queue Q , along with
the new score computed by the detector after the application of the manipulations (line
7). After the last iteration, we extract the first element of the priority queue that is the
vector t containing the best mutations to apply to produce an adversarial example (line
9).

Mutation tree: The priority queue of Algorithm 11 contains a sequential represen-
tation of a mutation tree. Starting from a root element, i.e. the initial payload (z in
Algorithm 11), a mutation tree contains elements obtained through the application of
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Figure 3.6: A possible mutation tree of an initial payload.

some mutation operator. A possible instance of a mutation tree is shown in Figure 3.6.
Each edge is labeled with an identifier of the applied mutation operator. Also, each node
is labeled with a possible classification value (in percentage). The corresponding queue is
given by the sequence of the nodes in the mutation tree ordered by the associated classifica-
tion value. After applying a mutation (actually after a full mutation round), the payload is
evaluated and added to the priority queue, along with information about the payload that
generated it. Keeping all individuals in the initial population helps avoiding local minima:
when a payload is unable to create better payloads, the algorithm tries to backtrack on
old payloads to create a new branch on the mutation tree.

Efficiency: the main bottleneck of our algorithm is the classification step, since the
detector needs to apply its own feature extraction technique every time it scans a sample.
While the computing the probability score alone is fast, the feature extraction process
may require non-negligible string parsing operations. All mutation operators described in
Section 3.2.2 (on page 30) rely on efficient string parsing, based on regular expressions,
hence they do not contribute to a slow-down of the approach.

To mitigate the slowness of the feature extraction process, we precompute a subset of
possible mutations chosen at random, and we forward them to the classifier. We call
mutation round each of these batch generated candidates. Then, we run all classification
steps in parallel and we discharge the mutants that increase the classification value of their
parent. In this way we take advantage of the parallelization support of modern CPUs.

For memory efficiency, we only enqueue a mutant if it improves the classification value of
its parent. In this way we mitigate the potential, exponential blow-up of the mutation
tree. On the negative side, each branch of the mutation tree only evolves monotonically
which might result in the algorithm stagnating on local minima.
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3.5 Implementing existing white-box attacks within

RAMEn

Table 3.2 contains all specifications used for implementing the techniques proposed in the
previous literature within the RAMEn framework. Every strategy must define, how to

1. use the gradient,

2. move inside the space, and

3. reconstruct the sample in the original input space.

Both Kolosnjaji et al. [15] and Demetrio et al. [14] share the same methodology and same
algorithm, but applied to different locations. The formalization for these two strategies is
the same as the approach we introduced in Algorithm 2, but instead of taking only the
most influential γ entries, we run the optimization on the all non-zero entries taken into
account for the attack.

Kolosnjaji et al. [15] append content at the end of the input program, while Demetrio et
al. [14] fill a portion of the DOS header of the input program. Both strategies solve the
problem in Equation 3.5 by searching the closest embedding value parallel to the gradient
(closest positive in Table 3.2). This is done for each value that needs to be modified.
The problem in Equation 3.6 is solved by inverting the look-up operation performed by
the embedding layer (inverse look-up in Table 3.2). This operation can not fail, since the

Attack Proposed in Loss function
Practical
manipulations

Feature
space opt.

Reconstruction

Extend This thesis malware score
extend DOS
header

closest
positive

inverse look-up

Shift This thesis malware score
shift section
content

closest
positive

inverse look-up

Padding Kolosnjaji et al. [15] malware score padding
closest
positive

inverse look-up

Partial DOS Demetrio et al. [14] malware score
partial DOS
header

closest
positive

inverse look-up

FGSM
(iterative)

Kreuk et al. [27] classification loss
padding
+ slack space

FGSM closest

FGSM
(1 iteration)

Suciu et al. [28] classification loss
padding
+ slack space

FGSM closest

Equivalent
instructions

Sharif et al. [69] C&W loss
equivalent
instructions

random aligned mutation

Table 3.2: Implementing the white-box attacks of the state of the art, using RAMEn.
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search at the step before chooses only values that correspond to bytes inside the input
space.

Kreuk et al. [27] and Suciu et al. [28] apply the fast gradient sign method (FGSM) [54]
inside slack space, that is the unused space between sections, and within appended padding.
Then, at the end of all iterations of the algorithm, they project each embedded byte inside
the original space. To do so, for each location they take the corresponding closer byte
inside the embedding space (closest in Table 3.2).

Sharif et al. [69] apply random manipulations that change instructions inside the .text
section with semantics-equivalent ones, or they displace the code inside another section,
with the use of jump instructions. At each iteration of the algorithm, the latest adversarial
example is used as a starting point for the new one. Once randomly perturbed, the new
and the old versions are projected inside the embedding space, where the two points are
used for computing a direction. If this direction is parallel to the gradient of the function
in that point, the sample is kept for the next iteration, otherwise it is discarded. In this
case, the strategy does not optimize the sample inside the feature space, since each sample
is constructed by applying random transformation.

Except for the manipulations proposed by Sharif et al. [69], all strategies describe so far
can be found in the SecML library released alongside our paper [89].
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Chapter 4

Experimental Analysis

I
n this chapter we analyze the results of the attacks proposed in Section 3.3 and 3.4.
For each setting, we briefly introduce the hardware setup we used for carrying on the

experiments.

However, before delving inside the performances of the different attacks against the target
classifiers, we compute the Receiver Operating Characteristic (ROC) of the four models.
The score has been computed on the first version of the Ember dataset [8].

The left plot of Figure 4.1a highlights that the tree model outmatches the convolutional
networks. The letter inside the parenthesis of the legend specifies the dataset used for
training the classifier: e means Ember, while p implies the use of a larger proprietary
dataset. The red dashed line highlights the performance of each classifier at 1% False
Positive Rate. On the right, the detection thresholds of the classifiers, at 1% False Positive
Rate. This benefit might be connected to the manual feature engineering that is present
inside the tree model, instead of letting the network learn the relevant locations by itself.
The non-linearity imposed by ReLU activation functions does not impact the overall score,
implying that the problem might be linear after having applied convolution functions.
MalConv shows comparable results to the network with linear activation functions, and this
might be caused by over-fitting, since the dataset used for testing has a non-null intersection
with the one used for training the classifier. For each classifier, we compute the threshold
such that the classifier has a 1% False Positive Rate (FPR). We use these thresholds to
compute the Detection Rate (DR) for each attack in our experimental analysis. We report
in Table 4.1b all thresholds computed from using the results of the ROC. Since both
MalConv and GBDT were originally trained on the dataset used for computing the ROC,
they expose very low values of their detection thresholds.

In the following sections we will show all the results of the attacks we have developed and
tested. We first address the performance of white-box attacks in Section 4.1, by presenting
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DNN-Lin (E) 0.5192
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MalConv (E) 0.1955
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Figure 4.1: The Receiver Operating Characteristic curve (ROC) of the classifiers under
analysis, and the detection threshold at 1% FPR.

the efficacy of Algorithm 1 with all the practical manipulations described in Section 3.2. We
continue with black-box attacks in Section 4.2, by showing the effectiveness of GAMMA
(Section 4.2), where we (i) evaluate the models in presence and absence of the attack
(Section 4.2.1.2), (ii) offer a comparison of the performances in the presence or absence
of the scores computed by the victims (Section 4.2.1.3), (iii) analyze the time elapsed by
the strategy (Section 4.2.1.4), (iv) analyze how techniques like packing behave w.r.t. our
technique (Section 4.2.1.5), (v) conclude by presenting how GAMMA can deal also with
online remote antivirus programs (Section 4.2.1.6). After, we discuss the efficacy of the
attacks used in the white-box scenario, but applied with a genetic black-box optimizer
(Section 4.2.2), along with transfer attacks (Section 4.2.3). We conclude our experimental
analysis by presenting the results achieved by WAF-A-MoLE (Section 4.2.4.1), discussing
why it is able to generate adversarial examples and which model is less likely to be evaded.

4.1 White-box attack results

We computed the experiments on a Ubuntu 16.04.3 LTS server, with an Intel® Xeon®

E5-2630 CPU, with 64 GB of RAM. We also used a Windows 10 virtual machine during
the development of the practical manipulations described in Section 3.2 (on page 27). To
highlight the performance of our strategy, we encoded other attacks proposed in the state
of the art [27,28] and we ran them against the chosen targets.
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The network proposed by Coull et al. [39] has been trained with two different datasets.
The first one is Ember [8], which is an open-source dataset of already extracted features
and malware hashes, while the second is proprietary. The first dataset is smaller, counting
1.1 M samples, while the second is larger, counting 16.3 M files.

MalConv has been trained on Ember [8], like the tree model proposed by Anderson et al. [8].
The malware set we used for the empirical evaluation are the same used by Demetrio et
al. [14].

All strategies are available online as an extension of SecML [90], named SecML Mal-
ware [89].

We tested all differentiable models in our possession with the attacks formulated in Section
3.2 (Full DOS, Extend and Shift), the header attack [14], the padding attack [15], and an
iterative implementation of the fast gradient sign method (FGSM) that addresses both
padding and inter-section content [27].

Also, Suciu et al. [28] use the FGSM to compute adversarial payloads, and it can be
expressed by the first iteration of the attack proposed by Kreuk et al. [27].

The Partial DOS attack proposed by Demetrio et al. [14] alters only the first 58 bytes
contained in the DOS header, ignoring the first two bytes containing the magic number MZ
and the four-bytes-long offset located between 0x3c and 0x3f.

The Full DOS attack searches for the PE signature inside the sample, and it marks as
editable all bytes in between except the one discussed in Partial DOS. This amount may
vary from sample to sample: in our test dataset, it varies from 118 to 290 bytes. As
already said in Section 3.3.1, the Extend attack has a minimum shift of 512 rounded to
the nearest multiple of the file alignment specified by the sample: in our test set, it varies
between 512 and 4096 bytes. Summing up all ingredients, this strategy considers payloads
whose length varies between 630 and 4386 bytes.

Same treatment for the Shift attack, by adding 1024 bytes before the first section of the
sample, again aligned to the nearest multiple of the specified file alignment. This causes
the adversarial payload to have a length between 1024 and 4096 bytes.

The Padding attack appends bytes at the end of the file. We set a default payload size
of 10240 bytes, motivated by the results obtained by Kolosnjaji et al. [15]. The iterative
implementation of FGSM considers both padding and unused space between sections (slack
space). While the latter might changes from file to file due to alignment, we set the padding
size to 10240 bytes. We set the FGSM free-parameter ε to 0.1.

For all attacks, we chose a step size of 256 bytes optimized at each iteration. We show the
performance of each white-box techniques we described, targeting the different considered
models.
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4.1.1 Discussions of the results

Figure 4.2 shows the efficacy of white-box attacks. Each plot sums up the degradation
induced by a single specific strategy against the considered classifiers, trained on different
datasets (E is Ember, while P is proprietary). For computing the Detection Rate, we used
the threshold with 1% False Positive Rate. The number near the name of the classifier
represents the size of the adversarial payload w.r.t. the input window size. While the
Partial DOS technique is ineffective, the Full DOS attack contribute to lower the detection
rate of the networks proposed by Coull et al. [39]. This might be caused by spurious
correlations learnt by the network, and altering these values cause the classifier to lose
precision. As already pointed out by Demetrio et al. [14], MalConv has a blind spot
regarding all header attacks.

Both our novel strategies, Extend and Shift, show great performances against all networks.
Since these networks use different convolutional layers to learn local spatial information
(especially DNN-Lin and DNN-ReLU [39]), it is possible that these models recognize adja-
cent characters and two-or-three byte instructions, and more. Our novel strategies replace
a portion of the real header of the program, and it might be possible that the adversarial
payload interferes with these local patterns learned by the networks. The Extend attack,
for instance, covers the original position of the PE offset plus many field of the Optional
Header, like the checksum and the locations of directories such as the Import Table and
Export table. This content is preserved, since it is shifted, but it is no more present in
the position the network believed them to be. The Shift attack does the same, but with
the content of the first section, that is usually the one containing the code of the program.
Surprisingly, the Shift attack against MalConv is not as effective as it was against the other
networks. The reason might be once again the wrong feature importance that MalConv
attributes to certain bytes. Analyzing the norm of the gradient computed on the location
altered by the attack, we found that it is mostly zero, and the attack is unable to opti-
mize the payload. If the attention is focused on the header, the rest of the file has a low
impact on the final score. This can be glimpsed by looking at the Extend attack, which
manipulates an extended portion of bytes starting from the DOS header.

The Padding attack proposed by Kolosnjaji et al. [15], and the FGSM attack proposed by
Kreuk et al. [27] and Suciu et al. [28] fail to achieve evasion, since most of the manipulations
applied are cut off by the limited window size of the network itself. For instance, if a sample
is larger than 100 KB, then it can not be padded, and all strategies that rely on padding
fail. To achieve evasion, these attacks can only leverage the perturbation of the slack space,
but the number of bytes that is safe to be manipulated is too small. The strategy proposed
by Kreuk et al. performs better than the Partial DOS ; this is due to the editing of the
slack space. Also, this strategy is incapacitated by the inverse-mapping problem: they
compute the adversarial examples inside the feature space, and they project them back
only at the end of the algorithm. This means that the attack might be successful inside
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Figure 4.2: The results of white-box attacks, expressed as the mean Detection Rate at each
optimization step.
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the feature space, but not inside the input space, where there are a lot of constraints that
are ignored by the attack itself. Against MalConv, the Padding attack proves to be quite
effective, but it needs at most 10 KB to land successful attacks, as already highlighted by
Kolosnjaji et al. [15]. The adversarial payload must include as many bytes as possible to
counterbalance the high score carried by the ones contained inside the header.

Speaking of the size of the adversarial payload of our novel strategies, we report the mean
percentage size of the crafted noise w.r.t. to the input window of the target network near
every label of the legend of Figure 4.2. This network has a window size of 100 KB, and
each attack alter, on average, less than the 0.03% of that quantity (approximately, 3 KB).
Also, we can observe that both DNN-Lin and DNN-ReLU trained on the larger dataset are
less robust w.r.t. to their counterparts trained on Ember, and this pattern can be observed
in almost every white-box attack we showed.

4.2 Black-box attack results

We firstly cover the experiments for the genetic and GAMMA attack (discussed in Sec-
tion 3.4.2.1, on page 37) in Section 4.2.1, then we proceed by showing the results of both
query and transfer attacks based on black-box strategies in Section 4.2.2 and Section 4.2.3,
respectively. We conclude the analysis by showing the results of the fuzzing technique
(presented in Section 3.4.2.3, on page 41) in Section 4.2.4.

4.2.1 GAMMA black-box attack results

We ran our experiments against both EMBER and MalConv on a workstation equipped
with an Intel® Xeon® CPU E5-2670, with 48 CPU and 128 GB of RAM. The pre-trained
version of MalConv presents a slightly different architecture w.r.t. the original formulation:
1 MB of input size and padding value of 256 to avoid the shifting pre-processing part.
The network is implemented using PyTorch [91]. We developed the genetic optimizer of
GAMMA using DEAP [92]. We tested the attack using a population size N of 10 elements,
varying the number of generations G from 1 to 50. We used values for the regularization
parameter λ ∈ {10−i}9i=3. We randomly extract 75 .rdata sections from our goodware
dataset that will be used for adding content to the input malware, for a maximum of 2.5
MB, as discussed in Section 3.4.2.1. We willingly set this number high, as the optimizer will
find small payloads thanks to the sparsity imposed by the penalization term that behaves
as a `1 norm. All attacks have been implemented with SecML Malware [89].
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Figure 4.3: Receiver Operating Characteristic (ROC) curve of EMBER and MalConv on
30K samples.

4.2.1.1 Performance on test dataset in absence of attack

To evaluate the performance of both classifiers in the absence of attacks, we collected a set
of 15, 000 benign and 15, 000 malware samples. The malware samples were gathered from
VirusTotal [1]. The goodware samples were collected by downloading executable programs
from GitHub. The results are shown in Figure 4.3: the threshold chosen for EMBER is
0.8336, which corresponds to an False Positive Rate (FPR) of 0.039 and a True Positive
Rate (TPR) of 0.95. The threshold used for MalConv is 0.5, that lead to a FPR of 0.035
and a TPR of 0.69. The red dots inside the plot shows such values directly on the curve.
These results are comparable to the description given by the authors of EMBER [8], as
both detectors achieve just a slightly lower score w.r.t. what is reported in the paper. Still,
they can be both used as a baseline for our analysis.

4.2.1.2 Attack performances

We randomly sample 500 from the 15K malware set introduced in Section 4.2.1.1 to use
during the adversarial attacks, and this set includes 5.3% ransomware, 29% downloaders,
18% viruses, 7% backdoors, 29% grayware, 8% worms, plus other families with lower
percentage.

Figure 4.4 shows how both the detection rate and adversarial payloads size vary w.r.t.
the number of queries and the value of the regularization parameter. Each curve in the
plot has been produced by computing the mean detection rate and mean size for each
values of λ, repeated for different numbers of queries sent. As the value of λ decreases,
the algorithm finds more evasive samples with bigger payloads, since the penalty term is
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Figure 4.4: Padding and section injection attack performances for λ ∈ {10−i}9i=3, using 500
malware samples as input.

negligible while computing the objective function. On the other hand, by increasing the
value of λ the resulting attack feature vector become sparse, generating smaller but more
detectable adversarial example. In this case, the penalty term engulfs the score computed
by the classifier, which becomes irrelevant during the optimization. Another significant
effect is posed by the number of total queries used by the genetic optimizer: the more are
sent, the better the adversarial examples are in both detection rate and size. Intuitively, by
sending more queries, GAMMA can explore more solutions that are stealthy and evasive
at the same time, but such solutions could not be found at early stages of the optimization
process.

To prove the efficacy of our methodology, we report the results of the application of random
byte sequences of increasing length. This experiment highlights a slight descending trend,
but the optimized attack with benign content injection is way more effective than random
perturbations. The detection rate of EMBER is decreased more by the section-injection
attack than by padding. Since the first technique also introduces a section entry inside the
section table, the adversarial payload perturbs more features than those modified by the
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Soft-Label GAMMA
Q = 500

Hard-Label GAMMA
Q = 30

Hard-Label GAMMA
Q = 500

Padding EMBER MalConv EMBER MalConv EMBER MalConv
λ = 10−9 28%/941 KB 6%/927 KB

35%
945 KB

6%
835 KB

6%
835 KB

6%
835 KB

λ = 10−6 33%/413 KB 6%/511KB
λ = 10−3 52%/302 KB 63%/298 KB
Section
Injection

EMBER MalConv EMBER MalConv EMBER MalConv

λ = 10−9 14%/1227 KB 4%/935 KB
6%

835 KB
6%

835 KB
6%

835 KB
6%

835 KB
λ = 10−6 22%/643 KB 10% 487 KB
λ = 10−3 57%/356 KB 39%/359 KB

Table 4.1: Comparison of soft-label and hard-label attacks, with different number of queries
sent and values of λ.

padding attack.

4.2.1.3 Hard-label Attacks

Since GAMMA utilizes the score given by the classifier, it might not be suitable for an hard-
label attack, that is an attacker setting where the target only replies with binary scores,
hiding the real confidence. To guide the genetic algorithm, we penalize each detection by
using infinity as value, to discard samples that are still seen as malware. Otherwise, the
computed confidence is set to zero, and the regularization parameter is computed as usual.
Optimizing this new quantity means finding evasive samples as small as possible.

We show aggregate results in Table 4.1, highlighting the comparisons between the perfor-
mances of the soft-label and hard-label attacks. Each entry presents the mean detection
rate and the mean adversarial payload size for each detector, given a pair of number of
queries/regularization parameter used for computing the specified attack. We computed
four different values of λ in the set {10−(2i+1)}4i=1. Results suggest that, without the con-
fidence score, once one evasive payload is found, then its size is optimized iteration after
iteration of the genetic algorithm, regardless of the value of the regularization parameter λ.
This is caused by the settings we impose for our experiments: we used an infinite value to
discard each detected adversarial example, hence all remaining ones are used for optimizing
only the size. On the contrary, the number of queries serves itself as a regularizer, since too
few queries lead to larger adversarial payloads with low confidence, and numerous queries
led to small payload whose score is higher.
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4.2.1.4 Temporal analysis

From a temporal point of view, the complexity of GAMMA is dominated by the time
spent querying the detector. The following table shows the mean elapsed time needed to
compute one single query, for each attack and target.

EMBER MalConv
Padding 0.60 ± 0.24s 0.93 ± 0.33s
Section injection 0.60 ± 0.30s 0.86 ± 0.20s

Surprisingly, the sum of the time spent by the feature extraction phase and the prediction
of EMBER is less than the time needed by the neural network to process all bytes.

4.2.1.5 Packing effect

Since these classifiers leverage only static features, it is reasonable to ask ourselves whether
encoding the program content is already sufficient to evade detection, without applying all
techniques we have introduced in Section 3.2. Packing is a technique used to reduce the
size of an executable, by applying a compression, encryption or simply some encoding.
As the effect of a packer completely changes the program representation on disk, it has
been extensively used by malware authors in trying to hide and increase the difficulty of
reverse-engineering.

In this context, we apply the famous packer UPX [93] to 1000 malware and 1000 goodware
programs, and test the evasion rate for both MalConv and EMBER.

The effectiveness of applying UPX is shown in Figure 4.5. Each box-plot shows the dis-
tribution of the classifier confidence f(x) on the malicious class. If f(x) ≥ θ, being θ the
decision threshold (solid red line), the sample is classified as malware. Packing increases
the probability that a sample is classified as malware by both models. Both detectors at-
tribute a malicious score when the sample is packed, as it can be clearly seen by looking at
the box-plot of the packed goodware programs. Both detectors increase their score towards
the malware class, while there is only a little change in terms of mean and variance for
packed malware.

From these results, we believe that application of packing techniques is seen as a malicious
trait by detectors. This might be caused by the abundance of packed malware inside the
training set [8], opposed to the scarcity of packed goodware. As a result, models trained
on such data might possess a bias that makes them wrongly assume that a sample is
malicious only because it is packed. Also, given enough samples packed with a technique,
the learning algorithm should be able to capture the signature left by the packer itself inside
the packed program. For instance, the UPX packer creates two executable sections called
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Figure 4.5: Effect of UPX packing on EMBER (top) and MalConv (bottom).

UPX0 and UPX1, that contain the extraction code and the original compressed program.
We believe that evasion through packing techniques should more likely to be achieved by
unseen packers, i.e. custom solutions developed by malware authors themselves.

4.2.1.6 Evaluation on Commercial Products

We are interested in understanding the effect of our methodology evaluated on commercial
detectors. In this context, we are not interested in packing the input samples, as we believe
that these methods should detect a threat even if the difference between the two versions is
a small appended payload. The mutations we apply to our malware samples address only
the syntactical structure of each program, and we aim to evaluate here if the application
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of such transformation can pose a threat to other antivirus programs.

We expected that most of commercial solutions should not be affected by such attacks,
and we relied on the responses retrieved by VirusTotal [1], an online interface for many
threat detectors. Such a service offers an API that can be used for querying the system, by
uploading samples. We tested the performance of our attack by sending 200 malware sam-
ples, before and after attaching the adversarial payload to the sample, optimized against
the EMBER classifier. As a baseline, we performed a test using the same data with a
random payload of 50 KB attached. The following table shows how many malware are
detected as such by the antivirus programs hosted on VirusTotal (70 in total).

Malware Random Sect. Injection
VT 46.56 ± 12.40 40.80 ± 12.40 34.50 ± 12.63

On average, both the random and the adversarial attack can decrease the number of
detections, and the latter outperforms the former. It is clear that some of detectors,
hosted on the remote service, manifest a weakness against small perturbations as well as
the statistical algorithms we used for our analysis, even if the attack is not directly crafted
against them.

4.2.2 Black-box query attacks

The query attacks behave worse than their white-box counterparts, as shown in Figure 4.6.
We report the Detection Rate at each step of the black-box optimizer. For computing the
Detection Rate, we used the threshold with 1% False Positive Rate. The number near the
name of the classifier represents the size of the adversarial payload w.r.t. the mean file size
of out malware test set. We set the population size N = 10, and the number of generations
T = 300.

First, the Extend attack seems to have lost some of its potential. Recalling the strategy
expressed in Section 3.4 (on page 34), the black-box optimizer use a genetic algorithm
for finding the best bytes for lowering the confidence, and space is explored using local
manipulations. An higher number of manipulations might lead to more exploration of
such space, as seems to happen with the Shift attack. It is interesting to see that, since
these mutations origin from random perturbations, the DNN-Lin and DNN-ReLU trained
on the proprietary dataset show more robustness w.r.t. their counterparts, opposed to the
white-box results. This might be explained by robustness to random noise induced by the
high volume of data used for at training time. MalConv acts as a lower-bound for every
other classifier of this experimental analysis, as its scores are successfully lowered by every
black-box attacks (except the padding one).
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Figure 4.6: The black-box query attacks against all models.
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Since here we use a different threshold and a different setting than the experiments con-
ducted in Section 4.2 (on page 51), the performance of GAMMA are different. It is effective
against MalConv, but using such a low threshold for the GBDT, this attack is now not
effective against the tree model. Previously, we have considered the standard detection,
where the original threshold [8] is used (that is 0.82), and the addition of content taken
from .rdata, for a maximum of 2.5 MB. Here, we have considered content harvested from
.data sections for a maximum of 1 MB. We set the regularization parameter λ = 10−5

to match the results shown in Section 4.2. This strategy is ineffective against the other
networks since it leverage content appending, and, as discussed in Section 4.1 (on page
47), it is useless against the network proposed by Coull et al. [39].

4.2.3 Black-box Transfer Attacks

Analyzing the behavior of classifiers against black-box transfer attacks is crucial, since
attackers might optimize attacks against a model they own, and then they can try to
evade other systems in the wild. To this extent, we use the adversarial examples, which
we jokingly call EXEmples, crafted for the white-box attacks, and we test them against all
other models.

In general, these transfer attacks are not effective, as clearly highlighted by Figure 4.7,
but they still pose interesting results: the rows of each matrix show the model used for
computing the adversarial EXEmples, while the columns show the model used for testing
the transfer. The diagonal highlights the results of the white-box attack. For computing
the Detection Rate, we used the threshold with 1% False Positive Rate. Optimizing attacks
on DNN-Lin and DNN-ReLU has an impact on the performance of MalConv, especially the
Extend and the Full DOS attacks, while the contrary is not. Also, the DNN-ReLU model
seems the model that suffer most from transfer attacks, in terms of shifted confidence.

These attacks are not sufficient to subvert detection, but they highlight an interesting
trends between models. This result might be explained by the non-linearity imposed by
the ReLU activation functions, leading to many different local minima or maxima that are
exploited by transfer samples. This effect is less evident with the DNN-Lin models.

The GBDT model is not affected by any adversarial transfer attack. The byte-based
features used by the decision-tree algorithm are only a small subset of all characteristics
considered by the classifier, such as the API imports, metadata and more. These attacks
are not directly optimized against it, and the quantity of bytes that are altered is very little
compared to the whole file size. For sure, the adversarial payload has a minimal effect on
the byte-based features, but not enough to counterbalance all others.
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Figure 4.7: Comparisons of transfer attacks, expressed using the detection rate.
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C γ avg(A) σ

Token-based

Naive Bayes / / 54.2% 1.0%
Random Forest / / 87.3% 0.7%
Linear SVM 19.30 / 80.5% 1.4%
Gaussian SVM 278.25 0.013 93.1% 0.9%

SQLiGoT

Dir. Prop. 4.64 0.26 99.85% 0.07%
Undir. Prop. 2.15 0.71 99.10% 0.2%
Dir. Unprop. 2.15 0.26 99.74% 0.1%
Undir. Unprop. 2.15 0.26 98.89% 0.2%

Table 4.2: WAF training phase results.

4.2.4 Mutational Fuzzing Results

We perform benchmark experiments to assess the detection rates of the WAFs introduced
in Section 2.2.2. We trained them using a 5-fold cross-validation with 20,000 sane queries
and 20,000 injections, and we used 15% of the queries for the validation set, and we used
a portion of the test set for computing the benchmark in Table 4.3 (8000 benign and
injection queries). This dataset is open-source and freely available online [94]. For both
the token and graph based detectors, we coded our experiment using scikit-learn [95],
which is a Python library containing already implemented machine learning algorithms.
As regards the token-based classifiers, after the feature extraction phase the number of
samples dropped to 768 benign and 7,963 injection queries. The tokenization method is
basically an aggregation method: only a subset of all symbols are taken into account.
The dataset is unbalanced, as the variety of sane queries is outnumbered by the variety
of SQL injections. To address this issue, we set up scikit-learn accordingly, by using a
loss function that takes into account the class imbalance [96]. Table 4.2 shows the results
of the training phase where (i) C is the regularization parameter [97] that controls the
stability of the solution, (ii) γ is the kernel parameter (only for the gaussian SVM) [98,99],
and (iii) avg(A) and σ are the average and standard deviation of the accuracy computed
during the cross-validation phase over the validation set. The same compression happens
for the graph-based classifiers: the algorithms that used directed graph reduces the dataset
to 3216 benign and 12,659 injection queries, while the usage of undirected graph reduces
the dataset to 3268 benign and 12,682 injection queries.

Table 4.3 shows the results of our experiment. The code used for producing these ex-
periments is open-source [100] and available online. We evaluate the performance of each
classifier by accounting three different metrics: (i) accuracy, (ii) recall, and (iii) precision.
We denote the true positives as TP , true negatives as TN , false positives as FP and false
negatives as FN . Accuracy is computed as A = TP+TN

TP+TN+FP+FN
, recall is computed as
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A R P

ModSecurity CSR
Paranoia 1/2 86.10% 86.10% 100%
Paranoia 3/4 91.85% 91.85% 100%
Paranoia 5 96.46% 96.46% 100%

WAF-Brain RNN 98.27% 96.73 99.8%

Token-based

Naive Bayes 50.16% 98.71% 50.08%
Random forest 98.33% 98.33% 100%
Linear SVM 98.75% 98.76% 100%
Gaussian SVM 97.82% 97.82% 100%

SQLiGoT

Dir. Prop. 90.61% 97.30% 85.82%
Undir. Prop. 96.38% 97.31% 95.54%
Dir. Unprop. 90.52% 97.12% 85.80%
Undir. Unprop. 96.25% 97.05% 95.53%

Table 4.3: Benchmark table.

R = TP
TP+FN

and precision is computed as P = TP
TP+FP

.

Accuracy measures how many samples have been correctly classified, i.e., a sane query
classified as sane or an injected query classified as malicious. Recall measures how good
the classifier is at identifying samples from the relevant class, in this case the injection
payloads. Scoring a high recall value means that the classifier labeled most of the real
positives in the dataset as positives. Precision measures how many of the samples classified
as relevant are actually relevant.

Since the Naive Bayes algorithm tries to discriminate between input classes by considering
each variable independent one to another, it misses the real structure of the SQL syntax.
Hence, it cannot properly capture the complexity of the problem. All other classifiers may
be compared with different levels of paranoia offered by ModSecurity [101], showing their
effectiveness as WAFs. WAF-Brain results are comparable to what the author claims on
his GitHub repository.

The experiments were performed on a DigitalOcean [102] droplet VM with 6 CPUs and
16GB of RAM. For a baseline comparison we use an unguided mutational fuzzer. The un-
guided fuzzer randomly applies the mutation operators of Section 3.2 (page 27). Moreover,
we execute 100 instances of the unguided fuzzer on each classifier. Then, we compare a
single run of WAF-A-MoLE against the best payload generated by the 100 unguided in-
stances over time. Both WAF-A-MoLE and unguided fuzzers are configured to start from
the payload admin’ OR 1=1#, initially detected with 100% confidence by each classifier.
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4.2.4.1 Assessment results

Figure 4.8 and 4.9 show the evolution of the confidence score for each classifier. In each
plot, we compare the best sample obtained by WAF-A-MoLE (solid line) and the best
sample generated by all 100 processes of the unguided fuzzer (dashed line). The first group
of plots (4.8) show the evolution of the confidence scores against the number of mutation
rounds. The second group (Figure 4.9), shows the confidence score over the actual time
of computation. In particular, we show the first 10 seconds of computation. Since some
scores quickly degrade in the first milliseconds of computation, we report the x axis in log
scale. Our experiments highlight a few facts that we discuss below.

4.2.4.2 Feature choice matters

As explained in Section 2.2.2 (on page 12), all considered classifiers are based on syntactic
features. However, different feature set change the robustness of a classifier. For instance,
WAF-Brain quickly lost confidence when the payload mutated, because WAF-Brain is
trained from uninterpreted, fixed-length sequences of characters and our mutation oper-
ators can enlarge a payload beyond the adequacy of the length assumed by WAF-Brain.
Also, Token-based classifiers do not perform well against mutations. The reason is that
malicious and benign payloads overlap in the feature space.

All SQLiGoT versions showed to be robust against the unguided approach. These classi-
fiers use the SVM algorithm as some of the token based classifiers, but their feature set
imposes more structure inside the feature representation. Hence, random mutations have
a negligible probability to evade them. Instead, since WAF-A-MoLE relies on a guided
strategy, it can effectively craft adversarial examples, although more effort is needed.

4.2.4.3 Finding adversarial examples is non-trivial

SQLiGoT classifiers resist the unguided evaluation as it is unlikely that a mutation can
move the sample away from a plateau region where the confidence of being a SQL injection
is high. The main reasons are:

(i) SQLiGoT considered a large number of tokens (so reducing the collision problem that
affects other classifiers, since the compression factor applied by the feature extractor
is lower);

(ii) the structure of the feature vector is inherently redundant, i.e., each pair of adjacent
variables describe the same token;
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(iii) the models are regularized, hence the decision function is smoother between input
points and it manages to generalize over new samples.

4.2.4.4 WAF-A-MoLE effectively evades WAFs

Moving randomly in the input space is not an effective strategy. WAF-A-MoLE finds
adversarial samples by leveraging on hints given by classifier outputs. The guided approach
accomplishes what the unguided approach failed to, by moving points away from plateaus
and putting them in regions of low confidence of being recognized as SQL injection.

Moreover, among the SQLiGoT classifiers, the undirected unproportional is the most re-
silient variant. Recalling the definition of the algorithm [10], the feature extractor assigns
uniform weights to tokens in the same window instead of balancing the score w.r.t. the
distance of the current token. Hence, the classifier gains some invariance over the sequence
of extracted tokens, making it more robust to adversarial noise.
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Chapter 5

Conclusions and Future Work

A
ttacking strategies proposed in this thesis focus on static detectors, and it is un-
likely that the very same strategies can defeat dynamic classifiers too. This limitation

is posed by the nature of practical manipulation, that exploit syntactical alterations of
payloads. Extending these ideas to runtime events is not straightforward and will be the
subject of further work.

Another limitation of our current practical manipulations is their byte-based nature. An
interesting research direction would be to extend our manipulations to handle some struc-
tured information, that is, being able to alter sequence of bytes as “atomic groups”, using
some syntactic representation of the underlying file format, by leveraging C-like structure
descriptions consisting of fields of different sizes. For instance, a classifier may use data
taken from the Import Address Table, and byte-level modifications would not be enough
in that case. Another example is changing one or more machine instructions with differ-
ent, yet equivalent, instructions, constrained by the fact that the two byte sequences must
be of the same size and no jumps should occur in the middle of such instructions. The
latter, by itself, is an undecidable problem, in general, that could probably be addressed
in practice by using some heuristics. These manipulations are akin to binary rewriting
techniques [103], that allow altering the machine code of a binary, by adding, for instance,
new functionalities. In this thesis, we avoided applying such mutations since we wanted to
address only the structure of a program while keeping its code intact.

From a defender point of view, there are a few options for discarding or partially eliminat-
ing the adversarial noise we introduce inside samples, since our content-injection attacks
comply with the specific constraints posed by the format. For instance, the injected con-
tent does not interfere with file alignment, specified in the file header, or the sample will
be considered corrupted by the operating system. Also, as far as we know, all defen-
sive techniques that have been proposed in the state-of-the-artare related to the domain

67



of images [104–107], but none of them are robust to adversarial examples [58, 108, 109].
Also, none of those defensive techniques have been applied in the security domains we
have analyzed. Most defenses rely on the concept of adversarial retraining, that is includ-
ing adversarial examples inside the training pipeline and repeating the process of fitting
and computing attacks until convergence, or they apply gradient obfuscation techniques to
produce noisy decision boundaries, where gradients vary their direction abruptly.

However, some partial countermeasures can be applied. Samples produced by Partial DOS,
Full DOS, and Extend strategies (Section 3.2, page 27) can be easily sanitized by reverting
the DOS header and DOS stub to their “default” versions.

The Shift manipulation can be detected by looking at the physical offsets of the sections
inside samples, where the content has been moved inside the files. By inspecting such
content, the random-like adversarial noise may raise suspicion, and those parts can be
“stripped away” by overwriting them with, for instance, zeros.

All Padding techniques can be similarly detected by looking at where the last section ends.
Every byte after that is considered as an overlay, and it can be manually analyzed.

The Section injection attack can be detected by analyzing the number of sections included
inside a binary. Nevertheless, the attacker can also try to aggregate more benign content
into a single section and see how the attack performance varies.

Speaking of SQL payloads, WAF-A-MoLE might not be able to fully explore the space
by applying only random mutations. We did not try more sophisticated content injection
techniques since we already scored evasion.

The main contribution of this thesis is RAMEn, a lightweight formalization that encapsu-
lates all needs of attackers, with the practical manipulations applicable in the domain of
choice and with all constraints expressed as a penalty term inside the optimization process.

We defined and applied new practical manipulations, crafted for the Windows malware and
SQL injection detection domains. Such manipulations do not require a sandbox to validate
the results, since they are semantic-invariant by design. We took into account state-of-
the-art classifiers, presenting successful evasive adversarial examples against them, in both
white-box and black-box settings.

In the Windows malware domain, we introduced three new attacks: two of them focus
on exploiting the file format, by carving space inside programs to insert adversarial noise,
and other one assembles such noise with portions of benign programs. In the white-box
scenario, the amount of noise added to the original malware samples is below 2% of the
input size of the target network, and it can be considered imperceptible to the eyes of an
expert analyst. In the black-box scenario, we showed how the regularization parameter
added to the optimizer can modulate the size of the resulting adversarial attack, achieving
the constraint of minimality that we have imposed on it.
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We tested the performance of transfer attacks, showing how an attacker can take advantage
of using only surrogate models they own. Then, we showed how the white-box attacks can
be converted to black-box ones, by changing the optimizer used for altering the samples.

In the SQL domain, we showed how our mutational fuzzing approach can decrease the
confidence of state of the art SQL injection detectors.

We showed how all attacks proposed in the state of the art can be encoded in our formal-
ization without loss of generality, and implemented accordingly.

All Windows practical manipulations are available as a part of an open-source project
named SecML Malware [89], while the SQL ones are provided with the code of WAF-A-
MoLE [22,100].
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Ringrazio Ermanno, perché anche se ci conosciamo da poco riesco a percepire un’affinità
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