
ROSMonitoring: a Runtime Verification

Framework for ROS?

Angelo Ferrando1, Rafael C. Cardoso1, Michael Fisher1, Davide Ancona2, Luca
Franceschini2, and Viviana Mascardi2

1 Department of Computer Science, University of Liverpool, Liverpool, United
Kingdom {angelo.ferrando, rafael.cardoso, mfisher}@liverpool.ac.uk
2 Department of Computer Science, Bioengineering, Robotics and Systems

Engineering (DIBRIS), University of Genova, Genova, Italy
luca.franceschini@dibris.unige.it, {davide.ancona,

viviana.mascardi}@unige.it

Abstract. Recently, robotic applications have been seeing widespread
use across industry, often tackling safety-critical scenarios where soft-
ware reliability is paramount. These scenarios often have unpredictable
environments and, therefore, it is crucial to be able to provide assurances
about the system at runtime. In this paper, we introduce ROSMonitor-
ing, a framework to support Runtime Verification (RV) of robotic appli-
cations developed using the Robot Operating System (ROS). The main
advantages of ROSMonitoring compared to the state of the art are its
portability across multiple ROS distributions and its agnosticism w.r.t.
the specification formalism. We describe the architecture behind ROS-
Monitoring and show how it can be used in a traditional ROS example.
To better evaluate our approach, we apply it to a practical example using
a simulation of the Mars curiosity rover. Finally, we report the results of
some experiments to check how well our framework scales.

1 Introduction

There are many different techniques that can be used to provide reliability as-
surances for software applications. Formal verification allows us to verify the
correctness of a software application against some kind of formal logic specifica-
tion, for example Linear Temporal Logic (LTL [12]). Using formal verification,
the system can be analysed at design time (offline) and/or at runtime (online).

Verification at design time, such as model checking [13], exhaustively checks
the behaviour of a system. This is done by generating a formal model of it and
then performing a state space search looking for the satisfaction of the formal
properties in all possible executions.

Runtime verification (RV [10]) is a more lightweight approach which is usually
more suitable for examining “black box” software components. RV focuses on

? Work supported by the UK Research and Innovation Hubs for “Robotics and AI
in Hazardous Environments”: EP/R026092 (FAIR-SPACE), EP/R026173 (ORCA),
and EP/R026084 (RAIN).



2 A. Ferrando et al.

analysing only what the system produces while it is being executed and, because
of this, it can only conclude the satisfaction/violation of properties regarding the
current observed execution. Since RV does not need to exhaustively check the
system behaviour, it scales better to real systems, since it does not suffer from
state space explosion problems that can be commonly found in model checking.

There are many techniques and implementations of RV that use different for-
malisms, such as LTL [4] or finite automata over finite and infinite strings [11].
One of the most common approaches to perform RV of a system is through mon-
itoring, where monitors are used to check the system execution against formally
specified properties. This check can happen incrementally at runtime (online
RV), or over recorded executions such as log files (offline RV).

Even though many frameworks and libraries exist that support RV of soft-
ware systems developed across many different programming languages, there are
only a few suitable for monitoring robotic applications in ROS. One of the most
promising is ROSRV [9], a general-purpose runtime verification framework for
ROS. ROSRV uses the Monitoring-Oriented Programming (MOP [6]) paradigm.
However, one of the main drawbacks of ROSRV is that it has very limited porta-
bility, in fact, the latest version available at the time of writing can only be used
with the ROS Groovy Galapagos distribution, which stopped being supported
in 2014. This lack of portability in such dynamic and evolving context leaves
a significant gap, and it is one of the main motivations for developing our new
framework, called ROSMonitoring.

The ROSMonitoring RV is a general, formalism agnostic (i.e. does not depend
on using only a specific verification formalism to represent and check properties),
runtime monitoring framework that can be used with multiple ROS distributions
(tested in Melodic and Kinetic). It is designed for the automatic verification
of the communication between ROS nodes by monitoring topics and checking
against formal properties expressed using the user’s formalism of choice. Because
of this, ROSMonitoring can be applied to any kind of ROS-based robotic appli-
cation, with no limitation on how each communication endpoint is implemented.

2 ROSMonitoring

ROSMonitoring3 is a framework for runtime monitoring of ROS topics, and to do
so it creates monitors that are placed between ROS nodes to intercept messages
on relevant topics and check the events generated by these messages against
formally specified properties.

Our framework has three main components: (a) instrumentation, used for
automatically creating a monitor and inserting it in the middle of the commu-
nication among ROS nodes; (b) oracle, used for checking whether the events
that are observed by the monitor conform to some formal specification or not;
and (c) monitor, the implementation of the ROS monitor, it is responsible for
intercepting messages between nodes and communicating with the oracle.

3 https://github.com/autonomy-and-verification-uol/ROSMonitoring



ROSMonitoring 3

In Figure 1, we provide a high-level overview of ROSMonitoring. From left to
right: we create the monitor nodes and perform node instrumentation according
to a YAML configuration file customised by the user; as output we obtain the
new instrumented nodes (with the communication gaps), and the ROS monitor
implementation as a Python node; and we run ROS with the instrumented nodes
and the monitor nodes, which performs RV either online or offline, depending
on the configuration file used.

instrument

config.yaml

nodes

monitor.py

ROS

log.txt

oracle
spec

online

offline

Fig. 1: High-level overview of ROSMonitoring.

2.1 Instrumentation

First, let us consider a common publisher/subscriber example that can be found
in ROS tutorials. The example comprises two nodes communicating on a specific
topic. One node is called talker, and continuously publishes the message "hello"
in the topic chatter. The listener node subscribes to the chatter topic.

We use a YAML configuration file to guide the instrumentation process. ROS
users should be familiar with YAML, as it is also used for configuration there.
Within this file, users can set the number of needed monitors, and then for each
monitor can set the topics that have to be intercepted, including: the name of
the topic, the ROS message type that is expected in that topic, the type of
action that the monitor should perform, which side (publisher or subscriber) is
the monitor intercepting the message, and the names and launch path of the
nodes that are going to be remapped. After preferences have been configured in
config.yaml, the last step is to run the generator script to automatically generate
the monitors and instrument the required ROS launch files. By default, the
monitors so generated can perform two different actions when intercepting a
message: log, the monitor will simply log the observed events into the log file
specified in the monitor’s log attribute; and filter, the monitor will filter out all
the events inconsistent with the specification (requires an oracle).

For instance, in Listing 1 we have the configuration file for the chatter ex-
ample. Note that we need a unique id for each monitor, and that the monitors
always log the events received (thus, we also need to specify a log file for each
of them). In this example, the list of topics we want to intercept only contains
chatter. In general, we can have more topics that we want to monitor in our
application, and with this field we are able to add as many as necessary. It is
important that the ROS message type is exactly as it is specified in ROS (i.e.



4 A. Ferrando et al.

ROS is able to find the given message type), in this case it is the primitive ROS
message type String.

monitors:
- monitor:

id: monitor_0
log: ./log_0.txt
topics:

- name: chatter
type: std_msgs.msg.String
action: filter
side: publisher

- node: talker
path: /chatter/launch/chatter.launch

Listing 1: Configuration file for the chatter example.

By passing the path to the file that contains the launch code for the talker
node we can automatically instrument the node by remapping the chatter topic
to chatter mon. Note that this is done only for the specified side, the publisher
(talker) node in this example. The following is automatically added to the ap-
propriate section of the chatter.launch file:

<remap from=“chatter” to=“chatter mon”/>
Remapping topic names allows us to create a gap in communication. In this

example, the two nodes are now unable to communicate directly anymore, be-
cause the instrumented talker publishes on a different topic from the one sub-
scribed by the listener. We fill this gap by adding our monitor, which is auto-
matically generated during the instrumentation step. The monitor subscribes to
chatter mon and publishes to chatter. Then, the monitor has to decide if it wants
to propagate the message or not with the help of an oracle, further described in
Section 2.2.

There are some applications where this type of invasive monitoring is not
desired, such as when it is not required to intercept incorrect messages (e.g. in
offline RV), or when dealing with proprietary code. In such cases, we can omit
the last part of the configuration file (side, node, and path). By doing so, the
monitor no longer intercepts messages between ROS nodes, but it still has access
to the relevant messages and can log them or do another appropriate action.

2.2 Oracle

One of ROSMonitoring aims is to be highly reusable. The best way for achieving
this result is being formalism agnostic, and we obtain this by introducing the
notion of oracle. The oracle is an external component, which can be produced
by third-parties, containing the logic and implementation of a formalism.

oracle:
port: 8080
url: 127.0.0.1

Listing 2: Extra configuration lines for adding an oracle.



ROSMonitoring 5

The oracle must be listening on a specific URL (specified in the url attribute)
and port (specified in the port attribute). These attributes are specified in the
instrumentation configuration file. If we wanted to add an oracle to the previous
example from Listing 1, then we would add the snippet in Listing 2 between the
log and topics attributes.

In the offline scenario, the oracle is used for checking the log file produced by
the ROS monitor node. In the online scenario, each time an event is intercepted
by the ROS monitor, the latter is propagated to the oracle, which has to check it
and to reply with a verdict accordingly to the current satisfaction or violation of
some formal property (specified in the oracle side using the formalism supported
by the oracle). Upon the reception of this verdict, the ROS monitor decides what
to do with the event.

ROSMonitoring requires very few constraints for adding a new oracle. We
use JSON as data-interchange format for serialising the messages observed by
the ROS monitor. The ROS messages are first translated into their JSON repre-
sentation, which are then logged (offline case) or sent to the oracle (online case).
The oracle must be listening and ready to receive the JSON messages using the
WebSocket protocol. We chose WebSocket because of its real-time bi-directional
point to point communication between client and server, which does not require
a continue polling of the server. For demonstration purposes, we describe two
default oracles available.

Runtime Monitoring Language (RML) Oracle. This oracle supports RML4

for the specification of properties. RML is a rewriting-based and system agnos-
tic Domain Specific Language (DSL) for RV used for defining formal properties
and synthesising monitors from them; it is inspired by trace expressions [2],
a formalism adopted for RV in several contexts, such as Multi-Agent Systems
(MAS) [8], Object-Oriented programming [7], and Remote Patient Monitoring
(RPM) [3]. We chose RML because it imposes no restrictions on how events are
generated, and is completely system agnostic. Thanks to this, RML monitors
and specifications can be reused in many different contexts, and since RML is
based on the data-interchange format JSON for representing events, its syn-
thesised monitors can easily interoperate with other JSON compatible systems,
such as ROSMonitoring. The RML oracle is implemented in SWI-Prolog, along
with the event calculus on which the semantics of RML is based. Given an RML
specification, it is first compiled into its intermediate language representation
implemented in SWI-Prolog (trace expressions [2]), then the SWI-Prolog oracle
starts listening on a WebSocket for checking incoming JSON events intercepted
by the ROSMonitoring monitor.

Reelay Oracle. Reelay5 is a header-only C++ library and set of tools for
system-level verification and testing of real-time systems. Reelay implements
state-of-the-art runtime verification techniques to construct runtime monitors
that check temporal behaviours of the system against system-level requirements.

4 https://rmlatdibris.github.io/
5 https://doganulus.github.io/reelay/



6 A. Ferrando et al.

Reelay supports definition of temporal properties, extended with past operators,
such as LTL, MTL, and STL (Linear, Metric and Signal Temporal Logic respec-
tively). Since the Reelay library does not expect JSON messages as input to the
monitors, we integrated the latter inside a Python oracle implementation which
takes care of this message translation.

2.3 The ROS monitor

When the instrumentation program analyses our configuration file, in addition
to the resulting instrumentation launch files, it also produces the ROS monitor
code. Each monitor is automatically generated into a ROS node in Python,
which is a native language supported in ROS. By default, the monitor can log
or filter the intercepted messages accordingly to the configuration chosen in the
instrumentation step.

ROSMonitoring always logs the events generated by the messages in the
monitored topics. The best option if we are only concerned in logging messages
and not intercepting them, is to employ an external monitor (i.e. not interfering
with the messages).

There is an extra configuration attribute that can be set during instrumenta-
tion called warning. Warning is a flag that determines when the monitor should
publish a warning message containing as much information as possible about a
property that has been violated. This message is published on a special topic
called monitor error and has its own message type MonitorError.msg. Informa-
tion in this message includes: the topic that originated the event, the content of
the message that was intercepted in that topic, the property that was violated,
and the ROS time of when the message was intercepted.

The algorithm for automatically generating the monitors is fairly straight-
forward. We report the pseudo-code for the offline (Algorithm 1) and online
(Algorithm 2) monitors that would be generated for a chosen set of topics T1,
..., Tn. In the offline scenario, we first subscribe to the topics we want to keep
track of. Each time a message is received the callback in lines 6–9 is activated and
the ROS message is translated to JSON. This translation can be easily achieved
using the rospy message converter package. We assume that the oracle can read
JSON messages, a fairly common message format. Then, the converted message
is logged, ready to be used by an oracle when the system is offline.

Algorithm 1 Offline monitor generated for topics T1...Tn.
1: function offline monitor
2: for i = 1 to n do
3: create subscriber(Ti, receive msg)
4: end for
5: end function
6: function receive msg(ros msg)
7: json msg = convert ros msg to json(ros msg)
8: log(json msg)
9: end function

In Algorithm 2, we create a publisher for each topic (just chatter in our
example) and a subscriber for each instrumented version (chatter mon in our



ROSMonitoring 7

example). When the subscriber is created, we pass the corresponding publisher
that will be used to eventually republish the message. Then, we have two callback
functions that are activated when receiving messages. The first callback (lines
7–10) is called upon the reception of a ROS message on an instrumented topic.
Inside this callback, the ROS message is first translated to JSON and then
propagated to the oracle. On line 9 we also inform which callback has to be
called when the response from the oracle arrives (oracle msg).

Algorithm 2 Online monitor generated for topics T1...Tn.
1: function online monitor
2: for i = 1 to n do
3: pub Ti = create publisher(Ti)
4: create subscriber(Ti mon, receive msg, pub Ti)
5: end for
6: end function
7: function receive msg(ros msg, pub)
8: json msg = convert ros msg to json(ros msg)
9: send to oracle(json msg, oracle msg, pub)

10: end function
11: function oracle msg(res, pub)
12: verdict = extract verdict(res)
13: json msg = extract json msg(res)
14: ros msg = convert json to ros msg(json msg)
15: if verdict then
16: pub.publish(ros msg)
17: end if
18: log(json msg)
19: end function

The oracle msg callback (lines 11–19) extracts the verdict and the JSON
message from the oracle’s reply. Next, it converts the JSON message back to a
ROS message. This is needed if the oracle can change the contents of the message
in any way, such as when it is equipped to perform failure handling. Then, if the
verdict is valid we republish the message on the corresponding topic name.

After receiving the response from the oracle, the first thing the monitor does
is to check for the presence of the attribute ‘error’ inside the JSON answer. This
is used by the oracle for communicating the validity of the current event. In case
of error the event is logged and if the monitor is set to filter wrong messages
then it does not propagate the message. When the message is consistent, the
monitor simply logs the event and republishes it to the correct topic.

3 Evaluation

We evaluate ROSMonitoring through two separate experiments. First, we apply
it to a case study based on a simulation of the Mars curiosity rover. We use this
practical example to demonstrate the different features in our framework. In the
second experiment, we stress test the delay that can be introduced by adding
our monitors in the chatter example.



8 A. Ferrando et al.

3.1 Simulation: Mars Curiosity Rover

Curiosity is a rover sent by NASA to explore the surface of Mars. Its main
objectives include recording image data and collecting soil/rock data. Although
in the original mission the software used in Curiosity was not ROS-based, a ROS
version has been developed using official data and 3D models of Curiosity and
Mars terrain that were made available by NASA.

We applied our framework to the Curiosity case study by using the filter
action to intercept external messages sources (e.g. human or autonomous agent)
that violate our property. Due to space constraints and their simplicity, we do
not show examples based on the log action, but source code with these examples
are available in ROSMonitoring repository.

As an example of the filter action, consider an action library in ROS that
controls the wheels of the rover. Action libraries are similar to ROS services,
both can receive a request to perform some task and then generate a reply. The
difference in using action libraries is that the user can cancel the action, as well
as receive feedback about the task execution. ROSMonitoring can only monitor
messages that are sent through topics; however, in complex ROS applications it
is common to have external commands (e.g. human control for semi-teleoperated
movement, or an autonomous agent that sends high-level commands), and these
are usually received on a topic that an action client subscribes to.

In this setting, a human sends movement messages to the wheels control
topic. The content of the message includes: the speed of the wheels, the direction
for the rover to move (forward, backward, left, or right), and the distance that
it should move (for how long it should move before it stops). The configuration
file for this example is shown in Listing 3.

monitors:
- monitor:

id: monitor_0
log: ./log_0.txt
oracle:

port: 8080
url: 127.0.0.1

topics:
- name: wheels_control

type:
curiosity_mars_rover_description.msg.Move3
action: filter
warning: True
side: subscriber

- node: wheels_client
path: /curiosity/launch/wheels.launch

Listing 3: Configuration file for the first curiosity example.

Note that since the message is being published by a human (i.e. it is not com-
ing from a ROS node), we have to instrument the subscriber side in this example.
Our instrumentation does so by remapping wheels control to wheels control mon
in the launch file of the wheels client node.

Due to the gravity and rocky/difficult terrain in Mars, the Curiosity has to be
careful with its speed. Thus, when we intercept a message in the wheels control
topic, the message is sent to the oracle to verify the following property:



ROSMonitoring 9

left_speed matches {topic:'wheels_control ', direction:'left',
speed:val} with val <= 10;

right_speed matches {topic:'wheels_control ', direction:'right ',
speed:val} with val <= 10;

forward_speed matches {topic:'wheels_control ', direction:'forward ',
speed:val} with val <= 15;

backward_speed matches {topic:'wheels_control ',
direction:'backward ', speed:val} with val <= 15;

Main = (left_speed \/ right_speed \/ forward_speed \/

backward_speed)*;

That is, if the direction is left or right (i.e. a turn action) then the speed
can not be greater than 10, and if the direction is forward or backward then the
speed can not be greater then 15. These are arbitrary numbers that were defined
based on testing to prevent Curiosity from rolling over. If the verdict from the
oracle comes back as an error, then the message is discarded. Otherwise, the
message is propagated to the wheels control mon topic. This filtering monitor
correctly prevents any messages that could cause the rover to crash due to a
high speed turn.

3.2 Scalability

We stress test ROSMonitoring in a scenario with multiple nodes, multiple topics,
and different frequency of messages sent/received per second. The structure of
the nodes is very similar to the chatter example discussed previously; each node
publishes only on one topic and subscribes to the topics on which all the other
nodes publish. The goal of each node is to receive a preset number of messages,
once received the node can stop. The delay introduced by the presence of the
monitor(s) determines the monitor(s) overhead.

In our experiment we set the number of nodes to 10 and varied the frequency
rate (i.e. messages published per second). We chose three different values: 100,
500 and 1000 [Hz]; since we have 10 publishers which publish on only one topic
each, the total number of topics is 10. Thus, we can reach 1000, 5000 and 10000
messages published per second, respectively. Since we were interested in the
overhead introduced by the presence of the monitors, in all the experiments we
kept the property to be verified as fixed. More specifically, we chose a property
which analyses each event in constant time, and is always considered satisfied.
In Figure 2 we show the overhead introduced by the monitor(s) for the different
frequency rates; these results have been obtained using ROS Melodic (Version
1.14.3), on a machine with the following specification: Intel(R) Core(TM) i7-
7700HQ CPU @ 2.80GHz, 4 cores 8 threads, 16 GB RAM DDR4.

In the first case, having 10 nodes, 10 topics and a frequency of 100 [Hz], the
number of messages sent is 1000 [msg/sec]. For such a low number of messages,
the presence of one or multiple monitors is practically transparent to the system.
This means that the workload is low enough for the monitor(s) to keep up with
the message rate. By increasing the message rate we observe a performance
decrease introduced by the monitors. In the second case, with a frequency rate
of 500 [Hz], we can observe how with only 1 monitor the system becomes almost



10 A. Ferrando et al.

Fig. 2: Overhead introduced by the monitors.

4 times slower (∼270% overhead). This is due to the high number of messages
that the monitor has to intercept, 5000 [msg/sec]. The results we obtained for
this second case shows the importance of distributing the workload on multiple
monitors; in fact, we observe the monitors overhead dropping, reaching ∼9% with
10 monitors (1 monitor for each topic). Naturally, if the number of messages to
be handled is too high, even distributing the workload on multiple monitors can
not be enough, as we may observe in the third case when the frequency is set to
1000 [Hz] (10000 [msg/sec]).

It is interesting to note that the monitors are more influenced by the higher
number of messages to receive, rather than messages to send. The reason for
this can be found in the monitor implementation. For each received message, the
monitor propagates the information to an external oracle, through web sockets.
This communication is sequential in order to preserve the order of the messages
that the oracle has to analyse. Increasing the number of messages at this side
can cause bottleneck problems, and it is the main reason for the performance
decrease. On the other hand, increasing the number of messages to send (prop-
agate) to the other nodes has less influence on performance. We obtain this
result because, once the monitor receives the message back from the oracle, it
can propagate the latter in parallel exploiting the ROS API.

Besides analysing the monitor’s overhead, we evaluated how the presence of
monitors delay the communication. As in the overhead analysis, the distribution
of the workload on multiple monitors reduces the delay per message, but, when
the frequency of messages to intercept increases too much and the monitors
become bottlenecks for the communication, the messages start being queued
and this causes the increasing delay. We noticed that with a slow frequency (100
[Hz]) the delay is negligible (< 1 [ms]), and can be limited to few seconds (< 5
[sec]) with a high frequency (500 [Hz]). Frequencies higher than that can not be
realistically analysed by the monitors.

We also evaluated in our experiments the latency of the error messages. This
aspect is mandatory to determine the reaction time of the system in the presence
of errors. Also in this case, for reasonable frequencies the reaction time is low,



ROSMonitoring 11

but when the frequency is too high, the nodes would know about the occurrence
of an error with too much delay.

4 Related Work

ROSRV [9] shares some similarities with our framework. Both use monitors,
not just for passively observing the messages exchanged among the nodes, but
also for intercepting and possibly dealing with incorrect behaviours. The main
difference between ROSRV and ROSMonitoring is how they create and insert
the monitor in the system. More specifically, ROSRV achieves this by swapping
the ROS Master node with a new one, called RVMaster. By replacing the Master
node, all node communication has to pass through RVMaster; the latter then
establishes peer-to-peer communication by adding the monitor as the man-in-
the-middle. In ROSMonitoring we do not change the ROS Master node in any
way, instead, we add the monitor through node instrumentation.

In [1] the authors present DeRoS, a DSL for describing safety rules. DeRos
provides automatic code generation to integrate these rules with runtime mon-
itoring by generating a ROS safety monitoring node. The logic of the monitor
and its integration in ROS are merged. They use the specification to derive the
ROS monitor. Unfortunately, this causes a high coupling between the formalism
and ROS. In ROSMonitoring instead, the logic of the monitor is external to the
low-level integration of the ROS nodes.

Performance Level Profiles (PLP) [5] is an XML-based language for describ-
ing the expected properties of functional modules. They provide tools for the
automatic generation of code for runtime monitoring of the described proper-
ties. Their approach is very close to ours, and goes in the direction of a more
general purpose verification process for robotic systems. However, they focus
more on a performance checking viewpoint. As in ROSMonitoring, they gen-
erate monitors for ROS trying to decouple the monitor’s logic from the ROS
implementation. Their approach is flexible with respect to the target system
(does not have to be only ROS), but requires the specification formalism to be
fixed; on the contrary, in ROSMonitoring, the target system is fixed (ROS), but
the specification formalism can change.

5 Conclusion

In this paper we presented ROSMonitoring, a new framework for RV of robotic
applications in ROS. We showed how, starting from a set of ROS nodes, we can
build a ROS monitor node to intercept all the topics related to the properties we
want to verify. We described how we implemented ROSMonitoring and its main
differences with the state of the art tool ROSRV. The strength of ROSMonitoring
lies in its portability and being formalism agnostic, resulting in a framework that
is completely decoupled from ROS distribution and oracle implementation.

Future work includes a quantitative comparison against ROSRV, and apply-
ing our framework to more practical applications. An interesting extension of



12 A. Ferrando et al.

ROSMonitoring would be enriching the information exchanged with the oracle.
Instead of only communicating the verdict for a single event, it would be in-
teresting to add the global verdict on the trace. Then, it would be possible to
simplify the ROS monitor to automatically republish everything, because, if the
monitor knew that the property checked by the oracle has been already satisfied,
there is no point in propagating the messages to the oracle anymore.

References

1. Adam, S., Larsen, M., Jensen, K., Schultz, U.P.: Towards rule-based dynamic safety
monitoring for mobile robots. In: SIMPAR. Lecture Notes in Computer Science,
vol. 8810, pp. 207–218. Springer (2014)

2. Ancona, D., Ferrando, A., Mascardi, V.: Comparing trace expressions and linear
temporal logic for runtime verification. In: Theory and Practice of Formal Methods.
Lecture Notes in Computer Science, vol. 9660, pp. 47–64. Springer (2016)

3. Ancona, D., Ferrando, A., Mascardi, V.: Improving flexibility and dependability of
remote patient monitoring with agent-oriented approaches. IJAOSE 6(3/4), 402–
442 (2018)

4. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006: Foundations of Software Technol-
ogy and Theoretical Computer Science, 26th International Conference, Kolkata,
India, December 13-15, 2006, Proceedings. Lecture Notes in Computer Science,
vol. 4337, pp. 260–272. Springer (2006)

5. Brafman, R.I., Bar-Sinai, M., Ashkenazi, M.: Performance level profiles: A formal
language for describing the expected performance of functional modules. In: IROS.
pp. 1751–1756. IEEE (2016)

6. Chen, F., Roşu, G.: Towards monitoring-oriented programming: A paradigm com-
bining specification and implementation. In: Workshop on Runtime Verification
(RV’03). ENTCS, vol. 89(2), pp. 108 – 127 (2003)

7. Ferrando, A.: The early bird catches the worm: First verify, then monitor! Sci.
Comput. Program. 172, 160–179 (2019)

8. Ferrando, A., Dennis, L.A., Ancona, D., Fisher, M., Mascardi, V.: Verifying and
validating autonomous systems: Towards an integrated approach. In: RV. Lecture
Notes in Computer Science, vol. 11237, pp. 263–281. Springer (2018)

9. Huang, J., Erdogan, C., Zhang, Y., Moore, B.M., Luo, Q., Sundaresan, A., Rosu,
G.: ROSRV: runtime verification for robots. In: RV. Lecture Notes in Computer
Science, vol. 8734, pp. 247–254. Springer (2014)

10. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5), 293–303 (2009)

11. Pinisetty, S., Jéron, T., Tripakis, S., Falcone, Y., Marchand, H., Preoteasa, V.: Pre-
dictive runtime verification of timed properties. Journal of Systems and Software
132, 353–365 (2017)

12. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977. pp. 46–57. IEEE Computer Society (1977).
https://doi.org/10.1109/SFCS.1977.32

13. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10(2), 203–232 (2003)


