Dipartimento di
Informatica, Bioingegneria,
Robotica e Ingegneria dei Sistemi

?; Universita
di Genova

Flexible coinduction

Francesco Dagnino

Theses Series DIBRIS-TH-2021-42






Ph.D. Thesis

Universita di Genova
Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi
Ph.D. Thesis in
Computer Science and System Engineering
Computer Science Curriculum

Flexible coinduction

by

Francesco Dagnino

October 2021



Ph.D. Thesis in Computer Science and System Engineering (S.S.D. INF/o1)
Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Universita di Genova

Candidate
Francesco Dagnino
francesco.dagnino@dibris.unige.qit

Title
Flexible coinduction

Advisors

Davide Ancona

DIBRIS, Universita di Genova
davide.ancona@unige.it

Elena Zucca
DIBRIS, Universita di Genova
elena.zucca@unige.it

External Reviewers

Ugo Dal Lago,

Dipartimento di Informatica - Scienzae Ingegneria, Universita di Bologna,
ugo.dallago@unibo.it

Ekaterina Komendantskaya,
School of Mathematics and Computer Science, Heriot-Watt University,
e.komendantskaya@hw.ac.uk

Tarmo Uustalu,

Department of Computer Science, Reykjavik University,
tarmo@ru.is

Location

DIBRIS, Univ. di Genova
Via Opera Pia, 13

I-16145 Genova, Italy

Submitted On
October 2021


mailto:francesco.dagnino@dibris.unige.it
mailto:davide.ancona@unige.it
mailto:elena.zucca@unige.it
mailto:ugo.dallago@unibo.it
mailto:e.komendantskaya@hw.ac.uk
mailto:tarmo@ru.is 

Abstract

Recursive definitions of predicates by means of inference rules are ubiquitous
in computer science. They are usually interpreted inductively or coinductively,
however there are situations where none of these two options provides the
expected meaning. In the thesis we propose a flexible form of coinductive
interpretation, based on the notion of corules, able to deal with such situations.

In the first part, we define such flexible coinductive interpretation as a
fixed point of the standard inference operator lying between the least and
the greatest one, and we provide several equivalent proof-theoretic semantics,
combining well-founded and non-well-founded derivations. This flexible in-
terpretation nicely subsumes standard inductive and coinductive ones and is
naturally associated with a proof principle, which smoothly extends the usual
coinduction principle.

In the second part, we focus on the problem of modelling infinite behaviour
by a big-step operational semantics, which is a paradigmatic example where
neither induction nor coinduction provide the desired interpretation. In order
to be independent from specific examples, we provide a general, but simple,
definition of what a big-step semantics is. Then, we extend it to include also
observations, describing the interaction with the environment, thus providing a
richer description of the behaviour of programs. In both settings, we show how
corules can be successfully adopted to model infinite behaviour, by providing
a construction extending a big-step semantics, which as usual only describes
finite computations, to a richer one including infinite computations as well.
Finally, relying on these constructions, we provide a proof technique to show
soundness of a predicate with respect to a big-step semantics.

In the third part, we face the problem of providing an algorithmic support
to corules. To this end, we consider the restriction of the flexible coinductive
interpretation to regular derivations, analysing again both proof-theoretic and
fixed point semantics and developing proof techniques. Furthermore, we show
that this flexible regular interpretation can be equivalently characterised in-
ductively by a cycle detection mechanism, thus obtaining a sound and complete
(abstract) (semi-)algorithm to check whether a judgement is derivable. Finally,
we apply such results to extend logic programming by coclauses, the analogous
of corules, defining declarative and operational semantics and proving that
the latter is sound and complete with respect to the regular declarative model,
thus obtaining a concrete support to flexible coinduction.
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Introduction

Inference systems are a versatile and widely used framework to define and
reason about possibly recursive predicates, such as small-step and big-step
operational semantics, type systems, sequent calculi and other proof systems.
The key feature of inference systems is that they express definitions by means
of (inference) rules, which are if-then clauses, making explicit the steps we can
and have to do to prove judgements.

They support both inductive and coinductive reasoning in a pretty natural
way: in inductive reasoning we are only allowed to use finite derivations,
while in the coinductive one we can prove judgements by arbitrary, finite or
infinite, derivations. Furthermore, in both cases we have proof principles, the
induction and the coinduction principle, to reason about defined judgements.

These two interpretations of a set of rules are very different from each
other. The inductive interpretation is the smallest one, as it is restricted only
to finite derivations, but, in return, it implicitly provides us with an (abstract)
algorithm', which looks for a finite derivation of a judgement; such an al-
gorithm is sound and complete with respect to derivable judgements. That is,
it may not terminate for judgements that do not have a finite derivation, but
it is guaranteed to successfully terminate, finding a finite derivation, for all
and only derivable judgments. Instead, the coinductive interpretation is the
largest one, as it allows any, finite or not, derivations, but there is no hope,
in general, to find an algorithm which successfully terminates for derivable
judgments. The reason, intuitively, is that there can be derivations requiring
infinitely many different judgements to be proved.

This strong dichotomy between inductive and coinductive interpretation
makes the framework of inference systems a bit rigid. Indeed, it allows us to
choose only between two possibilities, while there are cases where neither the
inductive nor the coinductive interpretation are able to provide the expected
meaning, as it lies between these two extremes. Let us illustrate this fact
by a paradigmatic example: the definition of big-step operational semantics
explicitly modelling divergence. We consider the standard call-by-value A-
calculus. The big-step judgement has shape e = v, meaning that expression e
evaluates to value v. Below are the standard rules for the big-step operational

1 Here and throughout the thesis, we use the word “algorithm” to indicate a procedure which
is not required to terminate.
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semantics:
eg=>Ax.e = v e[w/x]|=>v

V= erep="v
These rules clearly model only converging computations, namely, computa-
tions returning a value. To take into account divergence, we can add a special
result co and rules handling it:

e = e > Ax.e e =

€1 6 = X e1 eg = X

eg=>Ax.e ea=> v e[wn/x]=>

€1 6 = 00

The intuition behind these rules is that as soon as a premise diverges, the
conclusion should diverge as well. Now the question is the following: how
should we interpret the whole set of rules? Clearly, if we take the inductive
interpretation, we cannot derive any judgement for diverging expressions,
as this interpretation only allows finite derivations and there is no axiom
(rule with no premises) introducing divergence (c0). On the other hand, the
coinductive interpretation allows the derivation of too many judgements for
diverging expressions. For instance, if we consider autoapplication Q = w w,
with w = Ax.x x, then we have the following infinite derivation, which is
correct for any v, denoting either a value or oo:

w=>w W=D Q= vy

Q= vy

while the only expected judgement is 2 = co.

Hence, none of the two standard interpretations of inference systems is
capable to provide the intending meaning. In this thesis we tackle this problem,
introducing a generalisation of inference systems, providing more flexibility
when choosing the interpretation of the given set of rules. We call this approach
flexible coinduction as it allows us to refine the coinductive interpretation.

The key concept of the proposed generalisation are corules, which are special
rules that need to be provided together with standard rules, and are used to
tune their semantics. More precisely, they allow us to disregard some undesired
infinite derivations, thus obtaining an interpretation which is not necessarily
either the smallest (inductive) or the largest (coinductive) one. For instance,
in the above example, the coinductive interpretation is undetermined on di-
verging expressions (we can derive both correct and incorrect judgements);
but, as we will see, adding suitable corules we can remove all incorrect judge-
ments, thus obtaining the correct interpretation. An important property is that
standard inductive and coinductive interpretations are particular cases, that
is, they can be recovered by specific choices of corules, thus this framework
indeed generalises standard inference systems.

The thesis starts by studying inference systems with corules in their general
properties (Part I). Nicely, all standard notions and results about inference
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1.1 OUTLINE

systems (fixed point constructions, model-theoretic and proof-theoretic se-
mantics, their equivalence and associated proof techniques) smoothly extend
to this generalised setting, providing solid and fairly simple foundations to
flexible coinduction. After this general study, we deepen the analysis of flexible
coinduction in two directions: on one side, we address the above mentioned
paradigmatic example of big-step semantics modelling also infinite behaviour
(Part II), on the other one, we face the problem of providing a concrete al-
gorithmic support to flexible coinduction (Part III).

In the former direction, we show how corules can be successfully adopted to
define big-step semantics modelling also infinite behaviour. We consider first
semantic descriptions, like the one sketched above, where the behaviour of the
program is just described by its final result, if any, and oo in case of divergence.
Then, we extend the approach to more complex descriptions where, in addition
to the final result, we also have observations, modelling the interaction with
the environment (e. g., traces of events, memory usage, costs etc.). In this latter
case, considering also infinite behaviour is even more challenging, as we need
to model possibly infinite observable interactions. The key contribution is
that, rather than studying big-step semantics on example languages, we take
a general perspective, developing our definitions and results for an arbitrary
big-step semantics, abstracting from specific features of concrete instances.
The generality of our approach is witnessed by a broad class of examples.

In the latter direction, as previously noticed, even for the standard coinduct-
ive interpretation, in general, there is no complete algorithm which looks for
a derivation, so the same holds for our generalised framework, as it subsumes
standard coinduction. Therefore, to provide an algorithmic support to corules,
we need to consider a restriction of the general model. As it is customary in
standard coinduction, we consider the restriction to regular derivations, that is,
derivations involving only finitely many different judgements. All notions and
results discussed in the general setting can be smoothly adapted to the regular
setting, thus providing solid foundations also to flexible regular coinduction.
From the algorithmic perspective, the interesting result is that flexible regular
coinduction has an equivalent inductive characterisation, which, as previously
mentioned, provides us with a sound and complete (abstract) algorithm to
find a derivation. Building on this general analysis, we define an extension of
logic programming supporting flexible coinduction?, restricted to the regular
case, like standard coinductive logic programming, thus providing a concrete
executable support to our general framework.

Outline

PArRT I We present the framework of inference systems with corules, an
extension of standard inference systems supporting a flexible form of coin-
duction.

2 A prototype SWI-Prolog implementation is available at https://github.com/davideancona/
coLP-with-coclauses.
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6 INTRODUCTION

CHAPTER 2 We present background notions on standard inference sys-
tems in full detail: proof-theoretic and model-theoretic semantics, their
equivalence, and associated proof techniques.

CHAPTER 3 We present inference systems with corules and their general
properties, which smoothly extend standard results for inference systems.
We define a model-theoretic semantics in terms of fixed points, several
equivalent proof-theoretic semantics, and associated proof-techniques.

CHAPTER 4 We discuss related work and outline directions for future
work.

ParT II We study big-step operational semantics, analysing how it can be
used to model and reason about infinite behaviour of programs. To address this
problem, flexible coinduction can be successfully used to get precise semantic
models. From a methodological point of view, we do not work on specific
examples, but, rather, we take an abstract perspective. That is, we provide a
general definition of big-step semantics, which as usual only models finite
behaviour, then we define computations by means of a transition relation
driven by rules. Finally, we define constructions that extend a given big-
step semantics to take into account infinite behaviour as well, proving their
correctness against the previously introduced notion of computation. This
provides us with a self-contained coherent treatment of big-step semantics,
independent from other approaches.

CHAPTER 5 We focus on standard big-step semantics, defining various
constructions distinguishing stuck from diverging computations, where
corules play a crucial role. Further, relying on such constructions, we
express soundness of a predicate against a big-step semantics, and describe
a proof technique to show such property, proving its correctness.

CHAPTER 6 We extend the notion of big-step semantics of the previous
chapter, to take into account the observable behaviour of a program
during a computation, represented by an element of a given monoid
of finite observations. We then define a completion construction from
monoids to w-monoids, an algebraic structure used to model possibly
infinite observations. Finally, using corules, we extend a given big-step
semantics with observations to model infinite computations, with their
possibly infinite observable behaviour, as well.

CHAPTER 7 We discuss related work and outline directions for future
work.

ParT III We consider the restriction of coinduction to regular derivations,
extending results about flexible coinduction to this restricted setting. Then, we
apply these notions to define an extension of coinductive logic programming
supporting flexible coinduction.

CHAPTER 8 We study the regular interpretation of inference systems,
defining the proof-theoretic semantics, in terms of regular derivations,



1.2 RELATIONSHIP WITH PUBLISHED AND SUBMITTED PAPERS

the model-theoretic semantics, as an instance of the rational fixed point,
and an equivalent inductive characterisation. We discuss associated proof
techniques. Further, we extend all these results to inference systems with
corules, thus defining flexible regular coinduction.

CHAPTER 9  We present flexible coinductive logic programming, which
is the logic programming counterpart of inference systems with cor-
ules. We define its declarative and operational semantics, proving the
latter is sound and complete with respect to the regular restriction of the
declarative semantics.

CHAPTER 10 We discuss related work and outline directions for future
work.

1.2 Relationship with published and submitted
papers

The content of Part I, in particular Chapter 3, originates from a work published
at ESOP 2017 (Ancona, Dagnino, and Zucca, 2017b) and subsequently extended
by a paper on LMCS (Dagnino, 2019). Differently from these papers, which
are mainly focused on coaxioms, here we present directly the more general
framework of inference system with corules, as it is the one we need in the
rest of the thesis, and omit some technical results, which are not needed.?
The content of Part II originates from two papers published at OOPSLA
2017 (Ancona, Dagnino, and Zucca, 2017¢) and ECOOP 2018 (Ancona, Dagnino,
and Zucca, 2018), where we analyse examples of big-step semantics, showing
how corules can be successfully adopted to model also infinite behaviour. In
Part I we take a more abstract and systematic approach, outlined in an ICTCS
2018 paper (Dagnino, 2018) and developed in an ESOP 2020 paper (Dagnino
et al., 2020) and an SCP paper (Ancona et al,, 2020a), in a special issue of
ECOORP 20z0. That is, rather than considering specific examples, we provide a
general definition of big-step semantics, which as usual only considers finite
behaviour, and define constructions extending a given big-step semantics to
model infinite behaviour as well. With respect to the ESOP paper, Chapter 5
focuses more on big-step semantics in itself, rather than on the proof technique
for soundness, which is presented as an important application of the discussed
approach. Further, Chapter 5 considers a more general notion of big-step
semantics (cf. Definition 5.1), which is closer to concrete examples, and covers
a broader class of them. In addition, we define a construction based on corules,
which generalises examples in the OOPSLA paper. In the SCP paper, to prove
the correctness of the construction, we prove the equivalence of the resulting
big-step semantics with respect to a reference small-step semantics; differently,
in Chapter 6, we follow the approach of Chapter 5 and of the ESOP paper,
showing the correctness with respect to a transition system derived from
big-step rules. In this way, again the definition of big-step semantics with

3 We refer to the LMCS paper (Dagnino, 2019) for them.



INTRODUCTION

observations (cf. Definition 6.21) is more general, the approach is more uniform
and proofs become simpler. The comparison with a small-step semantics, which
can be found in the SCP paper, is omitted.

The content of Part I is taken from a paper submitted to LMCS (Dagnino,
2020), for Chapter 8, and from a paper presented at ICLP 2020 and published
in TPLP (Dagnino, Ancona, and Zucca, 2020), which extends a preliminary
work published in the post-proceedings of CoALP-Ty 2016 (Ancona, Dagnino,
and Zucca, 2017a), for Chapter 9. Related results, focused on object-oriented
programming, and not included in the thesis, can be found in papers presented
at ICTCS 2019 (Barbieri et al., 2019), ECOOP 2020 (Ancona et al., 2020b) and
FTfJP 2020 (Barbieri, Dagnino, and Zucca, 2020).

Notations

Given a set X, we denote by p(X) the power-set of X, that is, the set of all
subsets of X, and by g,,(X) the finite power-set of X, that is, the set of all finite
subsets of X. Given a function f : X — Y, we denote by fi : p(X) — ¢(Y) the
direct image of f, thatis, forall A C X, fi(A) = {y € Y | y = f(x) for some x €
A}, and by f* : p(Y) — ¢(X) the inverse image of f, that is, for all B C Y,
F'(B) = {x e X| f(x) € B},

Given a set X, we denote by X*, X, and X* = X* + X, respectively, the
sets of finite, infinite, and possibly infinite sequences of elements of X. Infinite
sequences on X, namely, elements of X, are often identified with functions of
type N — X. We write x:u for concatenation of x € X with u € X, u - v for
concatenation of u € X* with v € X, and ¢ for the empty sequence. We will
often omit : and - when clear form the context. Given a function f : X — Y,
we obtain functions f* : X* — Y*, f? : X“ — Y? and f* : X*° — Y®
defined by elementwise application of f. For u € X* and v € X, we say that
u is a prefix of v, if u - z = v for some z € X*.
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Inference systems

Inference systems are a widely used framework to define and reason about
several kinds of judgements by means of (inference) rules. Each rule specifies
an if-then condition, saying that a certain judgement holds provided that some
other judgements hold as well.

Inference systems support both inductive and coinductive reasoning in
a pretty natural way: in inductive reasoning we are only allowed to use fi-
nite derivations, while in the coinductive one we can prove judgements by
arbitrary, finite or infinite, derivations. Furthermore, in both cases we have
proof principles, the induction and the coinduction principles, to reason about
defined judgements.

As inference systems will be used throughout the whole thesis, in this
chapter we provide all the background notions needed in the rest of the thesis.
Section 2.1 introduces inference systems and defines their semantics in proof-
theoretic style. * Section 2.2 reports results about fixed points of functions on
complete lattices, we use in Section 2.3, to define a model-theoretic semantics
of inference systems, proving its equivalence with the proof-theoretic one. In
Section 2.4 we describe proof techniques, notably, the induction and coinduc-
tion principles, and, finally, in Section 2.5, we discuss iterative characterisation
of inductive and coinductive semantics of inference systems.

All results we present are pretty well-known, we refer to works by Aczel
(1977), Leroy and Grall (2009), and Sangiorgi (2011), however, especially the
proof-theoretic semantics is not discussed in a sufficiently rigorous way. Hence,
we provide all the necessary details about trees (cf. Section 2.1.1) to develop such
a proof-theoretic semantics, and carry out a new, as far as we know, proof of
equivalence between such proof-theoretic semantics and the model-theoretic
one, expressed in terms of fixed point. This proof relies on a general framework
to relate these two styles for defining semantics of inference systems, based
on an adjunction (cf. Section 2.3). This rigorous development will be essential
in next chapters to prove similar equivalence results for interpretations going
beyond standard induction and coinduction.

1 In this thesis by proof-theoretic semantics we mean the semantics of inference systems
expressed in terms of proof trees, as done by Leroy and Grall (2009).

11
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.1

INFERENCE SYSTEMS

Inference systems and proof trees

In this section we introduce inference systems and their inductive and coin-
ductive interpretation in proof-theoretic style (Aczel, 1977; Sangiorgi, 2011). Let
us assume a universe U, which is a set whose elements are called judgements,
ranged over by j.

DEFINITION 2.1: An inference rule, or simply a rule, is a pair (Pr, ¢) where
Pr € U is the set of premises and ¢ € U is the conclusion (a.k.a. consequence).
A rule with an empty set of premises is an axiom. An inference system I is a
set of rules.

Intuitively, a rule states an if-then condition on judgements: if the premises
hold, then the conclusion should hold as well, hence an axiom requires a judge-
ment to hold without any precondition. In the following, as it is customary,

-
we will often write a rule (Pr, ¢) using the fraction notation, that is, — . A

c
set of rules, that is, an inference system, defines a set of derivable judgements.
There are several ways to choose this set, but it has to satisfy some properties
with respect to the inference system:

DEFINITION 2.2 : Let 7 be an inference system and S C U a set of judge-
ments. We say that

o Sis I -closed if, for all rules (Pr,c) € I,if Pr C Sthen c € S,

o Sis I -consistent if, for all j € S, there is a rule (Pr, ¢) € I with ¢ = jand
PrcCSs,

+ Sisan I -interpretation if it is 7 -closed and 7 -consistent.

In the following we will omit the reference to the inference system when
clear from the context. Intuitively, rules can be used to derive judgements
from a set of given judgements. The definition of interpretation requires a
kind of “stability” condition with respect to rules: if S is an interpretation, all
judgements that can be derived from S are already in S (S is closed), and all
judgements in S can be derived by judgements in S (S is consistent).

REMARK: The definition of inference systems is purely semantic. This allows
us to develop the theory in an abstract way, independently from a specific
syntax.” However, typically an inference system consists of infinitely many
rules, so it is not possible to write down all rules in an extensional way.
Hence, as it is common practice, in the examples throughout this thesis we
describe inference systems by means of meta-rules or rule schemes. Meta-rules
describe all possible shapes that rules can assume, using some syntax with
(meta-)variables to range over base elements. Then, the concrete inference
system can be easily recovered by instantiating variables with all their possible
values.

2 Note that considering a specific syntax is quite straightforward, for instance as we do in
Chapter 9 in the context of logic programming.



1.

1

2.1 INFERENCE SYSTEMS AND PROOF TREES

Let us show some examples to illustrate this concept. We denote by Z the
set of integers and by Z* the set of finite lists (sequences) of integers. We
consider the definition of the predicate member(x, [), that holds if the element
x occurs in the list [. In this case the universe can be the set {member(x,[) | x €
7,1 € 7%}, so, for instance, judgements like member(1, ), member(3, 1:3:¢) or
member(1, 1:3:2:¢) are in the universe. Therefore, the definition of the judge-
ment member(x, [) through an inference system looks like the following:

member(x, [)

member(x, x:1) member(x, y:1)
where x,y € Z and | € Z*. Actual rules can be obtained from these schemes
by instantiating variables with all their possible values.

Another example is the judgement allPos([), that holds if all elements in [ are
strictly positive integers. The universe in this case can be {allPos(l) | | € Z*}
and the definition as inference system is the following:

allPos(l)
allPos(¢) allPos(x:I)
This example shows another important feature of meta-rules: side conditions.

>0

Beside the second meta-rule, we have specified a predicate (x > 0), that x
must satisfy. In general, side conditions are predicates on variables occurring
in the meta-rule, restricting the set of values on which variables range over,
thus reducing the set of instances of the meta-rule. They are extremely useful
to provide a finer control on instances of rule schemes, and without them
many definitions would be very difficult to express as inference systems. For
instance, the definition of allPos(!) without side conditions reported below
requires an additional judgement pos(x), that holds if x is strictly positive.
pos(x) pos(x) allPos(l)
pos(1) pos(x + 1) allPos(¢) allPos(x:I)
Until now, we have focused on how to write down definitions through

inference systems, relying on readers’ intuition that a given inference system
actually defines an intended predicate. In order to formally prove that such
definitions correctly capture their intended meaning, we need to define in a
rigorous way how an inference system can be interpreted. More precisely,
given an inference system 7, we have to assign to it an J -interpretation (see
Definition 2.2), which will be its semantics.

We first address this issue in a proof-theoretic style, that allows us to define
a very intuitive semantics of inference systems. This semantics is based on the
notion of proof tree or derivation, that is, a tree where every node is (labelled
by) the conclusion of a rule and its children nodes are (labelled by) the premises
of such rule. To make this definition precise, in the next section we introduce a
class of trees with the properties needed to define and reason about derivations.

A digression on trees

Here we report some definitions and results about trees. We essentially follow
the approach adopted by Courcelle (1983), Aczel, Adamek, and Velebil (2001),

13
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Q

/¢\d L:= {e,

b c
i / . ; b,c,d,
a bb. da, db,
/ }7\ /N , | bba, bbb, bbe, dac, dad, dbc}
a C C C

FIGURE 2.1 An example of tree on {a, b, c, d}.

Aczel et al. (2003), Moerdijk and Palmgren (2000), van den Berg and De Marchi
(2007), and Adamek et al. (2015), with some differences in the definition of tree,
due to the specific context where we use trees. We start by some preliminary
definitions.

Given a set A, we denote by A* the set of finite sequences on the alphabet
A. We denote by ¢ the empty sequence and, given «, § € A*, we denote by
juxtaposition a8 their concatenation. A tree language on a set A is a non-empty
and prefix-closed subset L C A*, that is, such that, for all @ € A* and x € A, if
ax € Lthen a € L. Hence, in particular, the empty sequence belongs to any
tree language.

DEFINITION 2.3 : A tree 7 on a set A is a pair (r,L) where L is a tree
language on A and r € A is the root of the tree. We set N(r) = L and r(z) = r.

Intuitively, a sequence a € L represents a node of the tree labelled by 7(a),
which is defined as follows:

(@) = {r(z’) a=c¢

x a = Px

Therefore, a tree 7 on A induces a partial function from A* to A whose domain
is a tree language. Differently from the literature® (Courcelle, 1983; Aczel et al.,
2003), Definition 2.3 forces trees to be unordered and, more importantly, it
ensures that there cannot be two sibling nodes with the same label. These
two additional requirements are reasonable in our setting, as we will use trees
to define derivations, where sibling nodes correspond to premises of a rule
which are a set, hence unordered and with no repetitions. Furthermore, these
requirements will turn out to be essential in the proof of the main result of
this section, namely, Theorem 2.4. In Figure 2.1 we report an example of tree
with labels in {a, b, ¢, d} represented according to our definition.

Given a tree 7 and a node a € N(r), we denote by 7|, the subtree of T rooted
at a, defined as the pair (r(@), {f € A* | «ff € N(r)}) and denote by SubTr(z)
the set of all subtrees of 7. We also define chl.(a) = {7}, | Ix € Af=ax,p €
N(7)} the set of children of « in 7 and dst(r) = chl,(¢) the set of direct subtrees
of 7, which are the children of the root of 7. Note that, for all « € N(7), we
have 7(a) = r(r),) and chl (a) = dst(r),). We will write 7" < 7 iff 7" € dst(r),
that is, 7’ is a direct subtree of 7. A tree t is well-founded iff the relation <

3 We refer to (Dagnino, 2019) for a detailed comparison.
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restricted to SubTr(z) is well-founded, namely, there are no infinite chains in <.

Intuitively, this means that in 7 there are no infinite paths. It is easy to check
that 7 is well-founded iff all 77 € dst(7) are well-founded.

In the following, assume a set A and denote by 74 the set of all trees on A. The
main theorem of this subsection (Theorem 2.4) is inspired by results presented
by Aczel et al. (2003) and Adamek et al. (2015), even though they need a
different definition of trees, since they are focused on different properties.* This
result is essential to provide the fixed point characterisation of the coinductive
interpretation of inference systems (cf. Theorem 2.24). We show that, starting
from a graph structure on a subset of A, for each node of the graph there is a
unique way to construct a tree on A coherent with the graph structure. In this
context a graph is a function g : X — @(X), modelling the adjacency function,

that is, X is the set of nodes and, for all x € X, g(x) is the set of adjacents of x.

THEOREM 2.4 : Letg: X — ¢(X) be a function and v : X — A be an
injective function. Then, there exists a unique function p : X — 74 such that
the following diagram commutes:

X Ta
(g,v)t l(dst,r)
prxidA
PX) X A——=p(Ta) X A

moreover, p is injective.

Proof: For all x € X, we define the set Ly , of paths of length n starting
from x and the set L, of all paths starting from x as follows:

Lx,O = {‘9}
L, = U Lx,n Lx,n+1 = U {U(y)a | ae Ly,n}
neN yeg(x)

Trivially we have, for all x € X, L, € A*. We show, by induction on n, that
iforallne N,xe X,a € A*anda € A ifaa € Ly pi1 thena € Ly .

Case: 0 Since aa € Ly 1, we have @ = ¢ € Ly, as needed.

Case:n + 1 Since aa € Ly ,+2, by definition of Ly 42, we have a = v(y)p,
for some y € g(x), and fa € L, 1. By induction hypothesis, we get
B € Ly n, then, by definition of Ly n41, we get @ = v(y)f € Ly nt1, as
needed.

This implies that L, is prefix-closed, thus a tree language, and so {x, L, ) is a
tree on A. We define p(x) = (x, Ly).

i To prove that the diagram commutes, we have to show that, for all x € X
and 7 € T4, r(p(x)) = v(x), which is true by construction of p, and 7 €
dst(p(x)) iff = = p(y) for some y € g(x). First of all, note that, for all y € g(x)

and o € A*, we have v(y)a € Ly iff e € L:if @ € L, then a € L, ,, for some

y,n»

4 They want to define a final coalgebra for suitable functors.

15
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:n € N, thus v(y)a € Ly n+1 C Ly, and, if v(y)a € Ly then v(y)a € Ly p+1,
for some n € NN, thus there is z € g(x) such that v(z) = v(y) and a €
L. n C L, but, since v is injective, we get z = y and so a € L,. From
: this fact we immediately get that p(y) € dst(p(x)), for all y € g(x). On
the other hand, if 7 € dst(p(x)), then 7 = p(x), , for some a € A, that is,
7 = (a,{a € A* | ax € Ly}). In particular, we have a € L, C Ly, hence
i a = v(y), for some y € g(x). Therefore, again thanks to the fact above, we get
T = (v(y), Ly) = p(y), as needed.

To prove uniqueness, consider a function q : X — 74 making the diagram
: commute. Then, r(q(x)) = v(x) = r(p(x)), hence we have only to show that
N(g(x)) = Ly. Therefore, we prove by induction on « € A* that, for all x € X,
a € N(g(x)) iff & € Ly.

Case: ¢ The thesis is trivial.

Case:aa We have aa € N(q(x)) iff « € N(q(x)la) and, since the diagram
commutes, hence q(x)lq = q(y), for some y € g(x), this is equivalent to
a = r(q(x),) = r(g(y)) = v(y) and & € N(q(y)), for some y € g(x). By
induction hypothesis, this is equivalent to a = v(y) and & € L, which is
equivalent to aa € L.

Finally, we note that p is injective: if p(x) = p(y) then v(x) = r(p(x)) =
: r(p(y)) = v(y), hence x = y because v is injective. O

2.1.2 A proof-theoretic semantics

In this section we define the semantics of inference systems in proof-theoretic
style. This means that we will assign to an inference system a set of judgements
for which we can construct an object that would be the witness of the “truth”
of the judgement. These objects are named proof trees or derivations and are

defined below:

DEFINITION 2.5 : Let 7 be an inference system, a proof tree (or deriva-
tion) in I is a tree 7 on U, such that, for each node a € N(r), we have

(n(chlz(a)), t(a)) € 1.

In other words, a proof tree in 1 is a tree 7 on the universe U, where, for
each node labelled by ¢ whose children nodes are labelled by Pr, the rule (Pr, c)
belongs to 7. Note that the fact that children of a node are unordered and
have distinct labels is essential to get a one-one correspondence with the set
of premises of a rule.

In the following, we will often represent proof trees using stacks of rules,
that is, if (Pr,c) € 7 and T = {r; | i € I} is a collection of trees such that

T

r(T) = Pr and r(;) = r(7j) implies i = j, then we denote by — the proof tree
c

7 = {c,N(7)) where

N(z) = {e} U rzNGm)

i€l
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We say that a tree 7 is a proof tree for a judgement j € U if it is a proof
tree rooted in j, that is, r(r) = j. With this terminology we can define two
interpretations of an inference system:

DEFINITION 2.6 : Let 7 be an inference system:

« the inductive interpretation of 1, denoted by p[[ I |, is the set of judgements
having a well-founded proof tree, and

« the coinductive interpretation of I, denoted by v[ 1], is the set of judge-
ments having an arbitrary (well-founded or not) proof tree.

We will write 7 +, jforj € p[Zl] and I +, jfor j € v[I]. Clearly,
by definition, p[[Z] € v[Z], but the converse is not necessarily true; indeed
when the two interpretations are equal we are in a special case with interesting
properties.

Let us now discuss the examples on lists considered at the beginning of this
section. Recall the definitions of judgements member(x, I) and allPos(]):

member(x, [) allPos(])

>0
member(x, x:I)  member(x, y:]) allPos(¢) allPos(x:l)x

where [ ranges over finite lists of integers and x, y on integers. We interpret
both inference systems inductively. The following are valid proof trees for
some judgements:

allPos(¢)
member(1, 1:¢) allPos(1:¢)
member(1, 2:1:¢) allPos(2:1:¢)

member(1, 1:2:1:¢) member(1, 1:2:1:¢) allPos(1:2:1:¢)

17

Note that the same judgement can have different proof trees, as for member(1, 1:2:1:¢).

This is due to the nature of meta-rules that are in some sense redundant: the
second rule is applicable also in cases where the first suffices. In order to
remove this redundancy, we can add a side condition to the second meta-rule,
to make the two meta-rules mutually exclusive: the needed side condition is
x # y. In this way, the second tree depicted above is not a proof tree since the
first step is not justified by any rule.

Let us now assume that / ranges over both finite and infinite lists of integers.
Now, what happens if we interpret both inference systems inductively? For
member(x, [) we exactly derive all expected judgements, since it suffices to
inspect finitely many elements of the list to check that x occurs in [. For
allPos(l), instead, we cannot deal with infinite lists using finite proof trees.
Intuitively, this is due to the fact that, to carry our a valid derivation, we need
to inspect all the elements of the list and, if these are infinitely many, we
cannot do it by a finite proof tree.

Therefore, to properly deal with infinite lists, in this case we need non-
well-founded derivations, like the following one for the infinite list repeating
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1and 2,

allPos(1:2:...)
allPos(2:1:2:...)
allPos(1:2:1:2: .. .)
which is constructed by applying infinitely many times the second (meta-)rule.

Indeed, the coinductive interpretation is the correct one for the judgement
allPos(]).

Now, what happens if we interpret the definition of member(x, [) coinduct-
ively? In this case we get a wrong semantics, because we can construct infinite
proof trees for incorrect judgements, like the following one:

member(0, 1:2:. . .)
member(0, 2:1:2: .. .)
member(0, 1:2:1:2: . . .)

This derivation is an infinite non-well-founded proof tree, since each step is
correctly justified by a rule, but it proves a judgement that should not hold.

Let us conclude this section by showing an example dealing with another
important non-well-founded structure: graphs. This is another case where
coinduction is needed in order to correctly define judgements. We represent
graphs by the adjacency function G : V — ¢(V), where V is the finite set
of nodes, that is, for each v € V, G(v) is the set of nodes adjacent to v. We
define the judgement distg(v, u, §), with § € N + {oo}, which should hold iff §
is the distance from v to u, that is, the least length of a path from v to u, or, in
other words, the least number of edges we have to traverse to go from v to
u. The judgement is defined by the following (meta-)rules, where we assume
min @) = oco:

(EMPTY)

distg(v, v, 0)

distg(vi, u,8;) ... distg(vy,u,6,) V£ u
distg(v, u, 1 + min{6y,...,8,}) G(v)={vi,..., v}

Since the definition follows the structure of the graph, the inductive in-
terpretation is not enough: it can only deal with acyclic graphs, because, in
presence of cycles, we have to deal with possibly infinite paths (e.g., a finite path
followed by a cycle), hence we cannot reach a base case (an axiom) in finitely
many steps. Therefore, the above rules have to be interpreted coinductively,
allowing non-well-founded derivations.

Consider the graph in Figure 2.2: we need infinite proofs to derive judge-
ments like distg(a, ¢, 2) or distg(b, ¢, 1), since both a and b are part of a cycle.
Note also that distg(c, v, ) is the only derivable judgement for all v € {a, b, d},
since there are no outgoing edges from c, hence instances of (anjy) have no
premises and so 1 + min{dj,...,5,} = 1 + min () = oco. Finally let us consider
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distg(a,c,2)  distg(c,c, 0) distg(d, ¢, )
distg(b, c, 1) distg(d, ¢, o0)
distg(a, c, 2)

—
@<~

P I

)

FIGURE 2.2 On the left side a concrete graph G with nodes {a, b, ¢, d}, and on the
right side the non-well-founded derivation of the judgement
distg(a, c, 2).

judgements of shape distg(d, c, §). A derivation scheme for these judgements
is the following:

distg(d, c, 6 — 2)
distg(d,c,6 — 1)
distg(d, c, 8)

Now, which value of § makes the proof correct? Surely for § = co the proof

is valid, because it becomes cyclic. Actually there is no other possible value,
because, going up in the proof tree, § should indefinitely decrease, and this
is not possible since § is a natural number and so it cannot go below zero.
Therefore, as expected, distg(d, ¢, co) is the only derivable judgement, meaning
that we cannot reach c starting from d.

Fixed points in complete lattices

In this section we recall basic definitions and results about complete lattices, a
key notion for next sections and chapters. We refer to (Davey and Priestley,
2002) for more details.

A partially ordered set, poset for short, is a pair (P, C), where P is a set and
E is a partial order, that is, a reflexive, antisymmetric and transitive relation
on P. Let (P,C) be a poset. A top element of P is an element z € P such that
x C z, for all x € P, and, dually, a bottom element is an element z € P such that
z E x, for all x € P. Both top and bottom elements are unique and denoted
by T and L, respectively. Furthermore, given a subset A C P, a least upper
bound (a.k.a. supremum or join) of A is an element z € P such that x C z, for
all x € A, and, for all z/ € P such that x C z’ for all x € A, z C z’. The least
upper bound of A is unique and we denote it by | | A. The greatest lower bound
(ak.a. infimum or meet), denoted by [ ] A, is defined dually as an element z € P
such that z C x, for all x € A, and, for all z’ € P such that z’ C x for all x € A,
z' £ z. We can now define complete lattices:

DEFINITION 2.7 : A poset (L,C) is a complete lattice if all subsets A C L
have a least upper bound | | A.

19
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The paradigmatic example of complete lattice is the power-set lattice of a
set X, (p(X), C), where the carrier set is the set of all subsets of X, the order
is set inclusion and the least upper bound is given by union.

From the definition, we immediately get that a complete lattice (L, C) has a
top element T = | | L, a bottom element L = | | and all subsets A C L have a
greatest lower bound [ JA = | |[{z € L | z € x, for all x € A}. In the following,
we will use infix notation for binary versions of join and meet operations. In
the power-set lattice (p(X), C) we have T = X, L = ) and, for all A C p(X)
(Ais a set of subsets of X), [ |A = A.

We now introduce the class of functions between posets we will be mainly
interested in: monotone functions, that is, functions preserving the order
structure.

DEFINITION 2.8 : Let (P,Cp) and (Q,Cp) be posets. A function F: P — Q
is monotone if, for all x,y € P, if x Cp y then F(x) Cp F(y).

A function F : P — P on a poset (P, C) identifies three subsets of elements
of P, which play a central role: let x € P be an element, we say that

X is a pre-fixed point of F if F(x) C x,
 x is a post-fixed point of F if x T F(x),
« xis a fixed point of F if x = F(x).

We will denote by pre(F), post(F) and fix(F) the sets of pre-fixed points, post-
fixed points and fixed points of F, respectively.

If F is a monotone function on a complete lattice (L, C), pre(F) and post(F)
have an important property: they are closed under arbitrary meets and arbit-
rary joins in L, respectively.

PROPOSITION 2.9 : Let (L,C) be a complete lattice and F : L — L a mono-
tone function:

1. if A C pre(F) then [ | A € pre(F), and
2. if A C post(F) then | | A € post(F).

. Proof: We prove the second point, the other one follows by duality. Assume
A C post(F), since for all x € A we have x E | | A, by monotonicity we get
: F(x) C F([| A). Then, since x € A C post(F), we have x C F(x), thus we get
: x C F(|| A) and this implies | | A C F(|| A), as needed. O

Monotone functions over a complete lattice enjoys a very importante prop-
erty: they have a least and a greatest fixed point. This result is known as
the Knaster-Tarski fixed point theorem (Tarski, 1955). We report the statement
below:

THEOREM 2.10 (Knaster-Tarski): Let (L,E) be a complete lattice and let
F : L — L be a monotone function. Then, F has both a least and a greatest
fixed point, denoted by yF and vF, respectively, and defined by

uF = |_| pre(F) VvF = LI post(F)
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Proof:  We prove the first point, the other follows by duality. Set z = [ | pre(F),
then, by Proposition 2.9 (1), we get F(z) E z. Then, by monotonicity, we have
F(F(z)) C F(z), that is, F(z) € pre(F), hence z = [ ] pre(F) C F(z). This shows
. that z is a fixed point of F. To prove it is the least one, just note that any fixed
point w is also pre-fixed, thus z E w, as needed. ]

In other words, the least pre-fixed point and the greatest post-fixed point
are fixed points, hence they are the least and the greatest one. As an immediate
consequence of this theorem, we get the following properties of yF and vF: let
x € L, then

(up) if F(x) C x then uF C x, and
(ve) if x C F(x) then x C vF.

We conclude this section by discussing an alternative, iterative, character-
isation of uF and vF, under additional assumptions on F. First of all, let us
introduce some basic definitions. A sequence (x;);eN, With x; € Lforalli € N,
is an increasing w-chain if, for all i € N, x; € x;,1, and it is a decreasing w-chain
if, for all i € IN, x;41 C x;. We are now interested in continuous functions in
the following sense:

DEFINITION 2.11: Let F: L — L be a function. We say that

« Fis upward w-continuous if, for any increasing w-chain (x;);en, we have
F(jenx1) = Ljen F(x:), and

« Fis downward w-continuous if, for any decreasing w-chain (x;);en, we
have F([];enxi) = T lien F(xi).

Sometimes, upward w-continuous functions are simply called continuous
and downward continuous functions are called cocontinuous, e.g., by Sangiorgi
(2011). An important property to note is the following:

PROPOSITION 2.12 : If F: L — L is upward or downward w-continuous,
then it is monotone.

Proof: We prove the thesis assuming F to be upward w-continuous, the
other case is analogous. Let x,y € L be such that x E y and define the
sequence (x;);eN as follows: xo = x and x; = y for all i > 0. Clearly (x;);en
! is an increasing w-chain and | |;cnx; = y. Then, we get F(x) = F(xo) C

Ll;en F(xi) = F(L;en) = F(y), as needed. O

Therefore, by Theorem 2.10, we get that w-continuous functions over a com-
plete lattice admit least and greatest fixed points, as they are also monotone.
However, for w-continuous functions, we can provide an iterative character-
isation of least and greatest fixed points. Given a function F : L — L, for any

21
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natural number n € N, let us define the function F" : L — L, the n-iteration of
F, by induction as follows:

Folx) =x
F""l(x) = F(F"(x))

for all x € L. Then, given an element x € L, the sequence (F"(x)),en is the
sequence of iterates of F on x, which has the following properties:

PROPOSITION 2.13 : Let F: L — L be a monotone function and x € L. The
following hold:

« if x € F(x) then (F"(x))nenN is an increasing w-chain, and

« if F(x) E x then (F"(x))nen is a decreasing w-chain.

: Proof: We prove only the first point, the other follows by duality. Assume
x C F(x), then, by induction on n, we prove that F*(x) C F"!(x).If n = 0
the thesis holds by hypothesis; otherwise, by induction hypothesis we know
that F"(x) C F"*!(x), hence, as F is monotone, we get F"*!(x) = F(F"(x)) C
i F(F™1(x)) = F""2(x), as needed. i

Finally, under continuity assumptions, we get the iterative characterisation
of least and greatest fixed points. This result is known as Kleene’s theorem.

THEOREM 2.14 (Kleene): Let F: L — L be a function. The following hold:

« if F is upward w-continuous then pF = | |, F™(L1);

« if F is downward w-continuous then vF =[], o5 F*(T).

Proof: We prove the first point, the other one follows by duality. Assume
F to be upward w-continuous, hence, by Proposition 2.12, it is monotone as
: well. Set z = | |,,en F™(L). Since L C F(L), by Proposition 2.13, the sequence
(F™(L))nen is increasing, then, by continuity, we get F(z) = | |,en F(F* (L)) =
L pen F™H(L) = LU [yen F™(L) = 2, that is, z is a fixed point of F. To
prove z is the least fixed point, by Theorem 2.10, we just have to prove that, for
: any w € pre(F), we have z C w. By induction on n, we show that F*(L) C w,
for all n € N, and this will imply the thesis. If n = 0, we trivially get
F%(1) = 1L C w. Then, by induction hypothesis, we have F"(_L) C w, hence,
i as F is monotone and w is pre-fixed, we get F**1(_L) = F(F"(L1)) C F(w) C w,
 as needed. |

2.3 Fixed point semantics

In this section we will describe the inductive and coinductive interpretations of
an inference system in terms of fixed points of monotone functions associated
with it. As a result, we will get an equivalent purely model-theoretic definition
of such interpretations, that is, a definition independent from the notion of
proof tree.



2.3 FIXED POINT SEMANTICS

Assume an inference system 7 on the universe U. We can associate with
I afunction Fr : p(U) — 9(U), called the inference operator and defined as
follows: :
Fr(X)={jeU | (Pr,j)c I, for some Pr C X}

This function maps a set of judgements X C U to the set of judgements that
can be derived from X by applying a rule in 7. This is the reason why it is
called inference operator, as it models the action of deriving new judgements
starting from given ones.

It is easy to see that properties of sets of judgements introduced in Defin-
ition 2.2 can be rephrased using the inference operator. Indeed, if X € U
is a set of judgements, then X is 7 -closed iff it is a pre-fixed point of Fr,
namely, F7(X) € X; X is 7 -consistent iff it is a post-fixed point of Fr, namely,
X € Fr(X), and X is an I -interpretation iff it is a fixed point of Fr, namely,
F7(X) = X. Hence, to construct interpretations of 7, we just have to construct
fixed points of Fy.

Since (p(U), C) is a complete lattice, the key property, that allows us to
construct fixed points of Fr, is the following:

PROPOSITION 2.15 : The function Fr : ¢o(U) — o(U) is monotone with
respect to set inclusion.

Indeed, by the Knaster-Tarski theorem (Theorem 2.10), we know Fr has
least and greatest fixed points, pFr and vFr, and they coincide with the least
pre-fixed point and the greatest post-fixed point, respectively. In other words,
UF7 is the least 7-closed set and vF7 is the greatest J -consistent set. In the
following we will show that these two fixed points coincide with the inductive
and the coinductive interpretation as defined in Definition 2.6, thus obtaining
a purely model-theoretic definition of these two interpretations of 7.

Rather than giving ad-hoc proofs, we present a general framework where
to express in a uniform and systematic way the equivalence between proof-
theoretic and model-theoretic semantics, and then state and prove such equi-
valence for the inductive and the coinductive interpretations.

Let 7¢; be the set of all trees on the universe U and let r : 7¢y — U be the
function that maps a tree to its root. Then, the direct image and the inverse
image along r are r; : 9(7¢;) = @(U), and r* : p(U) — 9(T4y), respectively.
The fundamental fact is that the functions r, and r* are related by an adjunction
r 4 r*, thatis, forall X C gy and Y C U, n(X) C Y iff X C r*(Y). In other
words, n behaves as an abstraction function (Cousot and Cousot, 1977), as it
forgets about trees. Intuitively, when acting on proof trees, rr maps a set of
proofs to the set of judgements they prove.

From the inference system J, we can define an inference operator on sets
of trees, called the tree inference operator, defined as follows:

Tr(Y)={r € Tgy | dst(r) C Y and {n(dst(r)),r(r)) € I}

This function behaves very much like Fr, indeed it maps a set of trees Y C Ty
to the set of trees that can be built starting from those in Y by applying a rule
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in 7. Basically, Fr can be regarded as an abstract version of T7, which is more
concrete because it keeps track of the trees used to derive the premises of the
applied rule. The next proposition makes this observation formal, by relying
on the adjunction r; 4 r*, which, as already mentioned, models the abstraction
from trees to judgements.

PROPOSITION216: noTr=Fronand Ty or* C r*o Fr.

Proof: Towards a proof of ry o Ty = Fr o r, note that, for all Y C 7¢,, if
it € n(T7(Y)), then n(dst(r)) € Y and {n(dst(r)),r(r)) € I, hence r(r) €
Fr(r(Y)), and this proves r o Ty C Fr o r. To get the other inclusion, if
¢ € Fr(n(Y)), then (Pr,c) € I, for some Pr C r(Y), hence, for all j € Pr,
: there is 7; € Y such that r(z;) = j. We choose a tree 7; for each j € Pr and
denote by Z the set of such trees. Then, 7 = z isatree and dst(r) = Z C Y,

hence 7 € T7(Y) and so ¢ = r(1) € n(T7(Y)), gs needed.

: Towards a proof of Ty o r* C r* o Fr, note that, for all X C U, if
: 7 € Tr(r*(X)), thendst(r) C r*(X)and (r(dst(r)), r(r)) € I,hence, r(dst(r)) C
X and so r(r) € Fr(X) and this implies 7 € r*(F7y(X)), as needed. |

From the adjunction r; 4 r* and the above proposition we immediately get
the following corollary:

COROLLARY 2.17: LetX C Tgyand Y C U, then

o if X C T7r(X) then n(X) C Fr(n(X)),

. if Tr(X) € X then Fr(n(X)) € n(X), and

« if F7(Y) C Y then T7(r*(Y)) C r*(Y).

In other words, the direct image r, maps pre-fixed, post-fixed and fixed
points of T to pre-fixed, post-fixed and fixed points of Fr, and the function r*
maps pre-fixed points of Fr to pre-fixed points of Tr.

Fixed points of Tr will play an important role to characterise the proof-

theoretic semantics of 7. In particular, as shown by the following lemma,
post-fixed points of Ty characterise proof trees in 7.

LEMMA 2.18 :  The following hold:

1. If X C Tr(X), then all 7 € X are proof trees in 1.

2. If ris a proof tree in 7, then SubTr(z) € T7(SubTr(7)).
Proof:

1. Let 7 € X, we have to show that, for all « € N(7), (n(chl,;(a)), 7(a)) € I.
We prove by induction on « that, for all @ € N(7), 7, € X.If « = ¢, then
7|, = T € X by hypothesis. If « = fj, then 7}, = (T|ﬁ)|j € dst(r|ﬂ) and,
by induction hypothesis, we have 7|, € X. Since X C T7(X), we have
dst(qﬁ) C X, as needed.
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To conclude, note that, for all @ € N(7), chl () = dst(r],) and 7(a) =

r(t), ), hence, since 7|, € X C Tr(X), as we have just proved, we have
(r(dst(zy,,)), r(z,)) € £, as needed.

2. Let 7’ € SubTr(r), then " = 7|, for some a € N(7). Since r is a proof
tree in I, we have (n(chl.(@)), 7(a)) € I, then, since 7(ar) = r(z),) and
chl;(ar) = dst(z),) € SubTr(r), we have 7|, € T7(SubTr(r)), as needed.

O

Note that, as a consequence, any fixed point of T; contains only proof trees.
Since (9(7¢), C) is a complete lattice, to ensure the existence of the least
and the greatest fixed points of Ty, we just have to prove it is monotone:

PROPOSITION 2.19 : The function T7 : p(7¢/) — 9(7¢/) is monotone with
respect to set inclusion.

Therefore, the least and the greatest fixed points of T exist and they play a
crucial role in the proof-theoretic definition of the inductive and the coinduct-
ive interpretations of 7, as the following results show.

LEMMA 2.20 : pTr is the set of well-founded proof trees in 7.

| Proof: Let W C Ty be the set of well-founded proof trees in 7. Recall that
7 < ' iff r € dst(z”), and this relation is well-founded on W, because all trees
: in W are well-founded. Therefore, we can prove W C uT7 by well-founded
induction on <. Let 7 € W and assume that t’ € uT7, for all 7’ € dst(r). Since
7 is a proof tree (see Definition 2.5), we know that (r(dst(z)), r(r)) € I and,
: by induction hypothesis, we know that dst(r) C uTr, hence, by definition of
Tr,wegett e Tr(uTr) = uTy, as needed.

On the other hand, to prove pT; € W, by Theorem 2.10 we just have to
i prove that Tz (W) € W. Let r € Tr(W), then, by definition of Tz, we have
(n(dst(r)), r(r)) € I and dst(r) C W, hence, in particular, all direct subtrees
of 7 are well-founded proof trees. Therefore, 7 is a well-founded proof tree
as well, thus 7 € W, as needed. O

LEMMA 2.21 : vT7 is the set of all (well-founded or not) proof trees in 7.

: Proof: Let Z C Tq; be the set of all proof trees in 7. We first prove the
inclusion vT7; C Z. Since vTy is a post-fixed point of T7, by Lemma 2.18 (1),
we get the inclusion. To prove the other inclusion Z C vT7, just note that, if
T € Z,then 7 is a proof tree, hence, by Lemma 2.18 (2), we get SubTr(z) is a post-
: fixed point of Tr. Therefore, by Theorem 2.10, we get 7 € SubTr(r) C vT7, as
: needed. O

Building on these lemmas, we can rephrase the proof-theoretic definition of
the inductive and the coinductive interpretations (Definition 2.6) as follows:

COROLLARY 2.22 : [ =r(pTr)and v[I] = n(vTr).
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We can now prove the two main results of this section, showing that the
inductive and the coinductive interpretations are fixed points of Fr. More
precisely, u[[ 1] coincides with the least fixed point of F7, while v[[ 1 ]| coincides
with the greatest fixed point of Fy.

We start from the inductive case. The result in this case is an immediate
consequence of the adjoint situation r; 4 r*, by the so called fusion rule (Davey
and Priestley, 2002). We give an explicit proof for sake of completeness.

THEOREM 2.23 : u[[I] = pFy.

Proof: By Corollary 2.22, we have u[[ 7] = rn(uTy). Since Tr(uTr) € uTy,
: by Corollary 2.17 we get Fr(n(uTr)) € n(uTr), hence, by Theorem 2.10, we
get uFr € n(uTr). To prove the other inclusion, since Fr(uFy) € uFr, by
Corollary 2.17 we get Tr(r*(uFz)) C r*(uFr), hence, by Theorem 2.10, we get
i uTr C r*(uFr). Then, by the adjunction r; 4 r*, we get n(uTr) C pFr, as
: needed. |

In the coinductive case, the proof is not immediate and it relies on The-
orem 2.4, as detailed below.

THEOREM 2.24 : V[I] = vFr.

Proof: By Corollary 2.22, we have v[Z] = n(vTy). Since vI7 C Tr(vTy),
by Corollary 2.17 we get r(vTr) C Fr(n(vTr)), hence, by Theorem 2.10, we
: get n(vTr) C vF7. To prove the other inclusion, we just have to show that,
given a set X C U such that X € Fr(X), each judgement j € X is the root of
a proof tree. Since X C Fr(X), X is consistent (Definition 2.2), that is, for each
: j € X, there is Pr; C X such that (Prj,j) € I. Hence, applying Theorem 2.4,
where g maps j to Pr;j and v is the restriction of the identity on U to X, we get
an injective function p : X — 7¢; which makes the diagram in Theorem 2.4
: commute. We have still to prove that p(j) is a proof tree. To this end, by
Lemma 2.18 (1), we just have to show that the set p/(X) = {p(j) | j€ X} isa
post-fixed point of T7. By commutativity of the diagram, we have dst(p(j)) =
 p(90)) € puX), f(p(i) = j and n(dst(p(j))) = Pr;, hence, as (Pr;,j) € I, we
- get p(j) € Tr(pi(X)), as needed. O

2.4 Reasoning by (co)induction

In this section we discuss proof principles associated with the inductive and
the coinductive interpretations of inference systems. Such proof principles
are an immediate consequence of the fixed point characterisation of these
interpretations provided in Theorem 2.23 and Theorem 2.24.

Let I be an inference system on the universe U. We are typically inter-
ested in comparing the chosen interpretation of 7, say [ 1 ], to a given set of
judgements S C U (specification). In particular, we focus on two properties:
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SOUNDNESs all derivable judgements belong to S, thatis, [/ ] € S,

COMPLETENEsSS all judgements in S are derivable, that is, S C [1].

In other words, if we look at S as a property of judgements, soundness tells
us that all derivable judgements satisfy S, while completeness tells us that all
judgements satisfying S are derivable.

The inductive interpretation p[[7 ]| comes with a proof principle for proving
soundness. Such principle is the induction principle, stated below:

PROPOSITION 2.25 (Induction principle): Let S C U be a set of judge-
ments. If S is 7 -closed, then p[[ 7] C S.

Proof: By Theorem 2.23 and Theorem 2.10, we have p[ 1] = pFr = () pre(Fr).

Since S is J-closed iff S € pre(Fr), we get the thesis. O

Spelling out the above principle, to prove that the inductive interpretation
is sound with respect to a specification S € U, we just have to prove that S
is I -closed, that is, by Definition 2.2, for each rule (Pr,c) € 7, if Pr C S then
c € S as well. In other words, we have to prove that S holds for ¢ assuming it
for all premises j € Pr. These assumptions are called induction hypotheses.

EXAMPLE 2.26 : Let us illustrate such principle by an example: recall from
Section 2.1 the inference system 7 ™" defining the judgement member(x, [),

which should hold when x belongs to the list I:

member(x, )

(M-H) (m-T)

member(x, x:1) member(x, y:[)

We want to prove the following soundness statement:
if 7™M -, member(x, [) then x belongs to [.

Equivalently, if we set member(x, ) € S™™ iff x belongs to [, the soundness
statement can be expressed by the inclusion p[[Z™™] € S™e™.

We prove it by induction on rules in 7™". We have two types of rules,
hence we distinguish two cases:

Case: (v-n) We have no assumptions, as the rule is an axiom, hence we have
just to prove that x belongs to x:I. But this is trivial, as x is the first element
of x:1.

Case: (v-t) We assume that x belongs to | and we have to prove that x belongs
to y:l. Again, this is trivial as x belongs to the tail of y:/ by assumption.

Dually, the coinductive interpretation v[ 1 ]| comes with a proof principle
for proving completeness. Such principle is the coinduction principle, stated
below:

PROPOSITION 2.27 (Coinduction principle): Let S € U be a set of judge-
ments. If S is J -consistent, then S C v[1].
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Proof: By Theorem 2.24 and Theorem 2.10, we have v[ I ]| = vFr = | post(Fr).
: Since S is J -consistent iff S € post(Fr), we get the thesis. O

Spelling out the above principle, to prove that the coinductive interpretation
is complete with respect to a specification S € U, we just have to prove that
S is I -consistent, that is, by Definition 2.2, for each j € S, there is a rule
(Pr,j) € I such that Pr C S.

EXAMPLE 2.28 : Let us illustrate such principle by an example: recall from

Section 2.1 the inference system 7 ~° defining the judgement allPos(l), which

should hold when [ is positive, that is, it contains only strictly positive elements
allPos(])

B) ————— ) — x>0
(a®) allPos(¢) (am) allPos(x:]) x

We want to prove the following completeness statement:
if I is positive, then 7>° I, allPos(1).

Equivalently, if we set allPos(l) € S~ iff | is positive, the completeness state-
ment can be expressed by the inclusion S>° C v[I].

We prove it by coinduction on rules in 7~°. Assume allPos(l) € S, then !
is positive, and distinguish two cases on [.

Case: 1 = ¢ The thesis follows by (a-x).

Case:1 = x:I” Since I is positive, we have x > 0 and I’ is positive, hence
allPos(I”) € 8% and then the thesis follows by rule (a-1).

Continuity and iteration by rules

At the end of Section 2.2 we have provided an iterative characterisation of
least and greatest fixed points of monotone functions. Since we have proved
that the inductive and the coinductive interpretations of an inference system
coincide with least and greatest fixed points, respectively, of the associated
inference operator, which is monotone, such iterative characterisation applies
also in this setting. More precisely, by Theorems 2.14, 2.23 and 2.24, we get
that, for any inference system 7 on a universe U, if the following hold:

- if Fy is upward w-continuous, then [ 7] = U,en F7(0), and

- if Fr is downward w-continuous, then v[ 7] = (N, en FF(U).

In this section we will show that there are inference systems for which the
inference operator is not (upward or downward) w-continuous and we will
provide sufficient conditions ensuring continuity:.

Let us start from upward continuity. First of all, we show an example of
inference system whose inference operator is not upward w-continuous.
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EXAMPLE 2.29 : Consider the universe ¢ = IN + {co} and the inference
system defined by the following rules:
n N

0 n+1 0
where n € N. For any k € N, we have FE((Z)) = {0,...,k — 1}, hence
Uken Ff.l (0) = N. However, due to the last rule, we also have F7(N) =
N U {co} # N, hence Fy, is not upward w-continuous. Note also that p[[7;] is
equal to N U {oo}, hence it differs from |y e FZ (0).

Here the problematic rule is the last one, because, having infinitely many
premises, it is applicable only after infinitely many iterations, thus breaking
the continuity condition. Actually, this fact is not incidental: the absence of
rules with infinitely many premises is sufficient to ensure upward w-continuity
of the inference operator. Formally, we have the following results.

DEFINITION 2.30 : An inference syste 1 is finitary if for all rules (Pr, c) €
71, Pris finite.

THEOREM 2.31: If T is finitary, then Fr is upward w-continuous.

Proof: Consider an increasing w-chain (X,),en of subsets of U and set
X = U, en Xn- Since Fy is monotone, we have | J, en F7r(X,) € Fr(X). On
the other hand, if ¢ € Fr(X), then, by definition, there is a rule (Pr,c) € T
such that Pr C X, namely, for all j € Pr, there is n; € N such that j € Xn;-
: Since Pr is finite by hypothesis, k = max{n; | j € Pr} is a natural number
and, since (X,)nen is increasing and n; < k for all j € Pr, we get Pr C X,
. hence ¢ € Fy(Xy). Therefore, we get F7(X) C U, ey Fr(Xy) and this implies
the thesis. O

COROLLARY 2.32 : If I is finitary, then

ulrl = Fr0)

nelN

Proof: Immediate by Theorems 2.14, 2.23 and 2.31 O

This is only a sufficient condition, that is, there are non-finitary inference
systems whose inference operator is upward w-continuous. Furthermore, as
we will see in Chapter 8, the inference operator of a finitary inference system
enjoys a much stronger continuity property, which will be essential in that
case.

We now focus on downward w-continuity. As above, we first provide an
example of an inference system whose inference operator is not downward
w-continuous.

EXAMPLE 2.33 : Consider the universe U4 = N + {0} and the inference

system defined by the following rules:
n

n
n+1 0
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where n € N. For any k € IN, we have FZ((L() ={keN |k > n}U{co}, hence

NkeN FZ((L[) = {oo}. However, we also have Fz,({c0}) = 0 # {co}, hence Fy,
is not downward w-continuous. Note also that v[1;] is equal to 0, hence it

differs from (NN F Z (Uu).

Here the problem is due to the fact that the element oo is the conclusion
of infinitely many rules (one for each natural number), which become all
inapplicable only after infinitely many iterations. Actually, this fact is not
incidental: the fact that each judgement is the conclusion of only finitely many
rules is sufficient to ensure downward w-continuity of the inference operator.
Formally, we have the following results.

DEFINITION 2.34 : An inference system J on U is cofinitary if, for all
Jj€ U, theset {Pr C U | (Pr,j) € I} is finite.

THEOREM 2.35 : If 7 is cofinitary, then Fy is downward w-continuous.

Proof: Consider a decreasing w-chain (X,,),en and set X = (),,en X Since
Fr is monotone, we have Fr(X) C (,en F7(Xn). On the other hand, sup-
pose ¢ € Fr(X,) foralln € N, and set A, = {II € U | (Il,c) € 1},
ing=sup{n e N |II C X,}, foreach IT € A, and n. = sup{nyy | IT € A.}.
If n. were a natural number, say m, then we would have nj; < m, for all
IT € A, and so IT ¢ X,,4+1, for each IT € A, because, if IT C X,,,4+1, then
i n; > m+ 1> m, which is not possible. Hence, n, is not a natural number,
that is, n, = co. Then, since A, is finite by hypothesis and n. is infinite, there
: exists IT € A, such that nj7 is infinite, hence, for all n € N, there is k,, > n
such that IT C X} . Because (X,),en is decreasing, for alln € N, as k, > n,
we have IT C Xj, € X,,. Therefore, IT C X and so ¢ € Fr(X), as needed. O

COROLLARY 2.36 : If T is cofinitary, then

VIl = () Fpu)

nelN

Proof: Immediate by Theorems 2.14, 2.24 and 2.35. O

Also in this case, this is only a sufficient condition, that is, there are non-

cofinitary inference systems whose inference operator is downward w-continuous.



Inference systems with corules

Inference systems are a widespread and versatile framework to define possibly
recursive judgements: they provide solid and fairly simple foundations for both
inductive and coinductive reasoning both in proof-theoretic and in model-
theoretic terms. More precisely, as we have seen, given a set of rules, one has
these two possibilities: either taking the smallest possible interpretation, that
is, the inductive one, or taking the largest possible interpretation, that is, the
coinductive one.

This strong dichotomy between inductive and coinductive interpretation
makes the framework a bit rigid, because it allows us to choose only between
two possibilities, while there is a variety of intermediate interpretations, lying
between the smallest and the largest ones, which cannot be selected. Further-
more, there are cases where neither the inductive nor the coinductive one are
able to provide the expected meaning of an inference system, because it is
indeed one of such intermediate interpretations.

Let us illustrate this issue on some simple examples dealing with judgements
on lists of integers. We start by considering simple variations of judgements
defined in Section 2.1. Let B = {T, F} be the set of truth values, consider the
judgements memberg(x, I, b) and allPosg(l, b) with b € B such that

« memberg(x, [, T) holds iff member(x, I) holds, and otherwise memberg(x, I, F)
holds

« allPosg(l, T) holds iff allPos(I) holds, and otherwise allPosg (!, F) holds.

We can define these judgements by means of the following inference systems:

memberg(x, [, b)

+
memberg(x, €, F) memberg(x, x:[, T) memberg(x, y:1, b) x#Y
[P Ib
‘< allPosg (1, b) >0
allPosg(e, T) allPosg(x:1, F) allPosg(x:1, b)

For both definitions, neither the inductive interpretation, nor the coinductive
one works well on infinite lists. For the judgement memberg (x, [, b), with the in-
ductive interpretation we cannot derive any judgement of shape memberg(x, [, F)
where [ is an infinite list and x does not belong to [, while with the coinduct-
ive interpretation we get both memberg(x, [, F) and memberg(x, I, T). For the
judgement allPosg(/, b), with the inductive interpretation we cannot derive
any judgement of shape allPosg(l, T) where [ is an infinite list containing
only positive elements, while with the coinductive interpretation we get both

31



32

INFERENCE SYSTEMS WITH CORULES

memberg(2, 1:1:1: ..., F) allPosg(1:1:1: ..., T) maxElem(1:1:1:...,1)

memberg (2, 1:1:1: ..., F) allPosg(1:1:1: ..., T) maxElem(1:1:1:...,1)
memberg (2, 1:1:1: ..., T) allPosg(1:1:1:...,F) maxElem(1:1:1:...,2)
memberg (2, 1:1:1: ..., T) allPosg(1:1:1:...,F) maxElem(1:1:1:...,2)

FIGURE 3.1 Some infinite derivations for judgements memberg(x, [, b), allPosg(l,)
and maxElem(l, x).

allPosp(l, T) and allPosg(l, ). Some examples of derivations of unexpected
judgements can be found in the bottom section of Figure 3.1.

We consider now another example, defining the predicate maxElem(l, x)
stating that x is the maximum of the list . The definition is given by the
following inference system

maxElem(l, y) e
_ ————— 7z = max{x,
maxElem(x:e, x) maxElem(x:l, z) 4

The inductive interpretation works well on finite lists, but does not allow to
derive any judgement on infinite lists, again, because, to compute a maximum,
we need to inspect the whole list. The coinductive interpretation still works
well on finite lists, but, again, we can derive too many judgements regarding
infinite lists: for instance, if [ = 1:1:1:. .. is the infinite list of 1s, as depicted in
Figure 3.1, we can derive both maxElem(l, 1), which is correct, and maxElem(!, 2),
that is clearly wrong, since 2 does not belong to I.

In all these examples, the inductive interpretation is too restrictive, as ex-
pected, while, more surprisingly, the coinductive one allows the derivation of
too many judgements. Hence, to get the intended semantics, we need a way to
select a middleway interpretation. In this chapter, we present a generalisation
of inference systems which makes this possible, relying on corules.

Corules are special rules that need to be provided together with standard
rules in order to tune their semantics. More precisely, they allow us to refine
the coinductive interpretation of standard rules, removing some undesired
judgements, thus obtaining an interpretation which is neither the smallest nor
the largest one. For instance, in all the above three examples, the coinductive
interpretation is undetermined on infinite lists (we can derive both correct
and incorrect judgements); but, as we will see, adding suitable corules we can
remove all incorrect judgements, thus obtaining the correct interpretation. An
important property is that standard inductive and coinductive interpretations
are particular cases, that is, they can be recovered by specific choices of corules,
thus justifying why this framework is said to be a generalisation of standard
inference systems.



3.1 A GENTLE INTRODUCTION: DEFINITIONS AND EXAMPLES

The notion of corules, originally introduced by Ancona, Dagnino, and Zucca
(2017b) and Dagnino (2019), has been inspired by some operational models
for programming languages supporting corecursion, e.g., (Ancona and Zucca,
2012, 2013; Ancona, 2013) and, in our intention, this generalisation of inference
systems will serve as an abstract framework for a better understanding and
formalisation of such operational models, as we have done in (Ancona et al.,
2020b; Dagnino, Ancona, and Zucca, 2020) and in the last chapter of this
thesis.

The rest of the chapter is organized as follows. Section 3.1 introduces corules
by several examples and define the interpretation generated by corules. Sec-
tion 3.2 defines the bounded fixed point in a lattice-theoretic setting and proves
that the interpretation generated by corules coincides with such fixed point of
the inference operator. Section 3.3 presents several equivalent proof-theoretic
characterisations of the interpretation generated by corules. Finally, Section 3.4
discuss proof techniques for corules and Section 3.5 show how to use such
techniques by some more involved examples.

A gentle introduction: definitions and examples

In this section we introduce our generalization of inference systems, discussing
it on some examples. Let us start from the fundamental definition:

DEFINITION 3.1 : An inference system with corules, or generalised inference
system, is a pair of inference systems (7, 7,), where elements of I are called
rules, while elements of 7, are called corules.

Pr
A corule (Pr,c¢) € I, will be also written as —, like standard rules, but

with a thicker line. Corules are very much like sctandard rules, but will be
used in a special way, to refine the coinductive interpretation of 7. Basically,
corules impose additional conditions that infinite derivations has to satisty,
thus providing a finer control on them.

Let us start with an introductory example concerning graphs, that are a
widely used non-well-founded data type. Recall that (cf. p.18) a graph G is
modelled by the adjacency function G : V — (V) , where V is the set of
nodes, that is, for each node v € V, G(v) is the set of nodes adjacent to v. We
define the judgement v —* N stating that N is the set of nodes reachable
from v, by the following rules and corules:

v >* Ny ... v oF Ni
— G(v) = {vi..... w} —
v ->* {v}UN U...UN v—o*

To be more concrete, we consider the graph drawn in Figure 3.2, whose
corresponding rules are reported in the same figure.

Let us ignore for a moment corules and reason about the standard interpret-
ations. It is clear that, if we interpret the system inductively, we will only prove
the judgement ¢ —* {c}, because it is the only axiom and other rules do not
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X\
a b c
~N~——
b—->*N a—*N
a—*{a}UN b—-*{b}UN ¢ —*{c}
a—*10 b—>*0 c—*0

FIGURE 3.2 Rules defining v »* N on a concrete graph

a —* {a, b} b —* {a, b} a—*{a,b,c} b —*{a,b,c}

b —* {a,b} a —* {a,b} b —*{a,b,c} a —* {a,b,c}
a —* {a, b} b —* {a, b} a—*{a,b,c} b—*{a,b,c}

FIGURE 3.3 Some infinite derivations of v —* N for the graph in Figure 3.2.

depend on it. In other words, the judgement v —* N, like other judgements
on graphs, cannot be defined inductively by structural recursion, since the
structure is not well-founded. In particular, the problem are cycles, where the
proof may be “trapped”, continuously unfolding the structure of the graph
without ever reaching a base case. Usual inductive approaches to visits on
graphs rely on some auxiliary structure, used to mark already visited nodes.
In this way, we avoid visiting twice the same node, thus breaking cycles and
solving this issue.

On the other hand, if we interpret the meta-rules coinductively (exclud-
ing again the corules), then we get the correct judgements a —* {a,b}
and b —* {a, b}, but we also get the wrong judgements a —* {a, b, c} and
b —* {a, b, c}, as shown by derivations in Figure 3.3.

As already said, corules allow us to impose additional conditions on deriva-
tions to be considered correct, thus providing us with a tool for disregarding
undesired derivations. More precisely, cf. Definition 3.2, we are allowed to
build arbitrary (well-founded or not) derivations, but using only judgements
that can be derived by a finite derivation using also corules. Hence, we can
use coinduction, namely, non-well-founded derivations, but we restrict it by
using corules.

For instance, considering derivations in Figure 3.3, the first two derivations,
proving the judgements a —* {a,b} and b —* {a, b}, are correct, because
they use only judgements having a finite derivation using also corules, as
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shown below.

a—>*0 b—-*0
b —* {b} a —>* {a}
a —>* {a,b} b —* {a,b}

On the other hand, the last two derivations in Figure 3.3, proving judgements
a —>* {a,b,c} and b —* {a,b, c}, have no finite proof tree using also corules,
because ¢ is not reachable from g, hence, they are not correct, as expected.

More generally, given an inference system with corules (7, Z,), we can
construct its semantics by the following two steps:

- first we take the inductive interpretation of I U I, p[[Z U I ], which is
the set of judgements having a finite proof tree in 7 U I,

« then, we take the coinductive interpretation of 7 restricted to rules with
conclusion in p[7 U I ].

In other words, we are allowed to use arbitrary (well-founded or not) deriv-
ations in 7, but built using only judgements in u[[7 U Z,]. Note that, since
well-founded proof trees in I are also well-founded proof trees in 7 U I, this
additional condition is non-trivial only for non-well-founded proof trees in 7,
because judgements occurring in a well-founded proof tree in 7 automatically
belong to p[[7 U Z,].

Formally, we have the following definition, where 7|x, for X C U, denotes
the inference system {(Pr,c) € I | c € X}:

DEFINITION 3.2 : The interpretation of an inference system with corules

<I7 -Z;:O> iS the set V[[I’ -Z-CO]] = V[[‘Z-“J[[IUICO]]]]'

In the following we will write (I, I,) +, jfor j € v[ 1, I,].

If we consider again the example of the graph in Figure 3.2, the semantics
is constructed as follows. In the first step, we obtain the following set of
judgements:

A={a—>*0,b >* 0,c >* 0,c =>* {c},a —™* {a},b —>* {b},
a—*{a,b},b —>* {a,b}}
which contains all the judgements having a finite proof tree using also corules.
For the second step, first of all we have to construct the inference system

1|10z, Whose rules are those of 7 (in Figure 3.2) with conclusion in A,
described above. Hence, they are the following:

b—>*N a—*N

_ N N
a—>*{a}UN“aé #

b—* {(bJUN * c =% {0}
These rules have to be interpreted coinductively, hence we get the following
set
B={c—*{c},a—*{a,b},b —>* {a,b}}
which is the expected semantics.
As another example, we consider the definition of the first-sets in a context-
free grammar. Let us represent a context-free grammar by its set of terminals
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T, its set of non-terminals N, and all the productions A == f; | ... | B, for
each non-terminal A € N. Recall that, for each @ € (TUN)*, we can define the
set first(a) = {o € T | a—* o for some ff € (T U N)*}. Informally, first(a) is
the set of the initial terminal symbols of the strings which can be derived from
a string « in 0 or more steps.

We define the judgement first(e, F) by the following inference system with
corules, where F C T.

— P — —AE€EN
first(oa, {o}) ? first(e, 0) first(A, 0)
first(A,F) A€eN first(A, F) first(a, F’) A€ N
first(Aa, F) A-»*e first(Aa, F U F’) A—*e
first(B1, F1) first(Bn, Fn)
ﬁl ! 'Bn 1 A::=ﬁ1|...|ﬁn

first(A,F;U---UF,)

The rules of the inference system correspond to the natural recursive defin-
ition of first-sets. Note, in particular, that in a string of shape Aq, if the non-
terminal A is nullable, that is, we can derive from it the empty string, then the
first-set of A should also include the first-set for a.

As in the previous example on graphs, the problem with this recursive
definition is that, since the non-terminals in a grammar can mutually refer
to each other, the predicate defined by the inductive interpretation can be
undefined, since it may never reach a base case. From another perspective, this
means that a naive recursive top-down implementation might not terminate.
For this reason, first-sets are typically computed by an imperative bottom-up
algorithm, or the top-down implementation is corrected by marking already
encountered non-terminals, analogously to what is done for visiting graphs.
Again as in the previous example, the coinductive interpretation may be
undetermined, allowing the derivation also of wrong judgements, whereas,
with the corules, we get the expected result.

Let us now consider some examples of judgements on arbitrary (finite or
infinite) lists of integers. Using corules, we can get the right semantics for the
examples discussed in the introduction of this chapter, namely, definitions for
judgements memberg(x, [, b), allPosg(l, b) and maxElem(l, x). We report below
the inference systems with corules defining these judgements.

memberg(x, €, F) memberg(x, x:[, T)
memberg(x, 1, b)
X#FyY
memberg(x, y:1, b) memberg(x, [, F)
x<0
allPosg(e, T) allPosg(x:l, F)

_allPosp(1,b)
allPosg(x:1, b) allPosg(l, T)
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maxElem(l, y)

z = max{x, _—
maxElem(x:é, x) maxElem(x:1, z) tx.y) maxElem(x:l, x)

As shown in Figure 3.1, the standard coinductive interpretation of rules allows
the derivation of too many judgements. Corules impose additional conditions
on infinite derivations to be considered valid: they can only use judgements
having a finite proof tree built using also corules. We can spell out these
additional conditions for these judgements as follows:

« memberg(x, [, b) can occur in an infinite derivation iff b = F,
« allPosg(l, b) can occur in an infinite derivation iff » = T, and

« maxElem(l, x) can occur in an infinite derivation iff x belongs to I.

Therefore, introducing corules, all infinite derivations in the bottom section of
Figure 3.1 are incorrect, because they use judgements that do not satisfy these
conditions. More generally, it can be proved that, through corules, we get the
expected semantics.

A similar example is given by the judgement elems(l, X), stating that X is
the carrier of the list I, that is, the set of all elements appearing in I. This
judgement can be defined using corules as follows:

elems(l, X)
elems(e, 0) elems(x:l, {x} U X) elems(l, 0)

If we ignore the corule and interpret the system coinductively, then we can
prove elems([, X) for any superset X of the carrier of 1, if [ is infinite. Corules
again allow us to filter out undesired derivations. For instance, for ] = 1:1:1: . ..
the infinite list of 1s, any judgement elems(l, X) with 1 € X can be derived.
Indeed, for any such judgement, we can construct an infinite proof tree by
applying infinitely many times the last rule. With corules, instead, we only
consider the infinite trees built by judgements having a finite proof tree using
also corules. This is only true for X = {1}.

In next sections, we will study properties of v[ 7, I, notably, we will
show that it is indeed a fixed point of the inference operator Fr as expected
(cf. Section 3.2), hence an interpretation of 7 according to Definition 2.2. Such
a fixed point will be constructed by taking the greatest consistent subset of the
inductive interpretation of 7 U I ,. Then, we will also provide several proof-
theoretic characterisations (cf. Section 3.3), making formal ideas described in
this section.

Fixed point semantics for corules

According to Definition 2.2, an interpretation of an inference system 7 on a
universe U is a closed and consistent subset of U, or equivalently, as described
in Section 2.3, a fixed point of the inference operator Fr associated with 7.
We aim at showing that this property holds for v[ 7, 7], hence it is indeed
an interpretation of 7.
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In this section, we will develop the theory needed for this result and some
important consequences. In order to construct the fixed point we need, as
done for the least and greatest fixed points in Chapter 2, we work in the
general framework of lattice theory (cf. Davey and Priestley, 2002), so that we
can highlight only the essential structure. More precisely, in Section 3.2.1 we
define the bounded fixed point, showing in Section 3.2.2 it corresponds to the
interpretation of an inference system with corules as defined in Definition 3.2,
and it subsumes both inductive and coinductive interpretations.

The bounded fixed point

Let us assume a complete lattice (L, C) and monotone functions F : L — L
and G : L — L. We refer to Section 2.2 for basic notions of lattice theory.

Let us introduce some notations: F LI G : L — L is the function defined by
x — F(x)U G(x), and, for all z € L, F, : L — L is the function defined by
x > F(x) M z. Further, we define the interior of F as the function intr : L — L
given by

intp(x) = I_I{z € post(F) | z C x}

In other words, intr(x) is the greatest post-fixed point of F below x. Functions
FUG, Fq,, for all z € L, and intp are all trivially monotone. Then we can define
the bounded fixed point of F generated by G as follows:

DEFINITION 3.3 (Bounded fixed point): The bounded fixed point of F gen-
erated by G, denoted by v[F, G], is defined by
v[F,G] = VFI‘Ip(FI_IG)

Expanding the above definition, using the Knaster-Tarski theorem (cf. The-
orem 2.10), we get the following corollary:

COROLLARY 3.4 : V[F, G| = intg(u(F U G)).
Therefore, the bounded fixed point is constructed in two steps:

« first, we take the least fixed point of F LI G, and
« then, we take the greatest post-fixed point of F below it.

As for standard least and greatest fixed points, from this observation we
immediately get the following property of the bounded fixed point: let x € L,
then

(vgp) ifx E F(x) and x C p(F U G), then x E v[F, G].

which is basically the same as (vP) (cf. p.21), but with the additional constraint,
named boundedness condition, requiring x to be below u(F U G).

We now have to check that the above definition is a good definition, that is,
we need to show that v[F, G] is indeed a fixed point of F. To this end, we rely
on the following fact:
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PROPOSITION 3.5 : Letz € L. If z is a pre-fixed point of F, then vF, is a
fixed point of F.

Proof: Let x = vF;, hence, by definition, we have x = F(x)Mz and so x C z.
i By Corollary 3.4 and Proposition 2.9 (2), we know that x is a post-fixed point
i of F. To check the other inequality, just note the following:

F(x)=F(xMz) xCz
C F(x) M F(z) F is monotone
CFx)MNz F(z)Cz
=x x fixed point of F,

i This result can also be obtained by applying the Knaster-Tarski theorem
(cf. Theorem 2.10) to the function F; _ obtained by restricting F to the sublattice
i L, ={y € L |y C z}. F_ is well-defined as F is monotone and z is pre-
: fixed. O

PROPOSITION 3.6 : V[F, G]is a fixed point of F.

Proof: Let z = u(F U G), hence we have F(z) C F(z) U G(z) = z. Hence, the
i thesis follows from Proposition 3.5. O

Note that, to get that the bounded fixed point is well-defined, it is essential
that the bound p(F U G) is a pre-fixed point of F, otherwise we are not guaran-
teed to obtain a fixed point of F. This is the reason why, in the first step of this
construction, we cannot just take pG as bound, because, in general, it is not
a pre-fixed point of F; for instance, if G maps any element to L (the bottom
element of L) and F maps any element to x # L, clearly uG = L # x = F(uG).
However, the first step is not enough, because, in general, y(F Ll G) is not a
fixed point of F: we need the two steps to obtain the expected result.

Note also that the definition of bounded fixed point is asymmetric, that is, we
take the greatest fixed point bounded from above by a least fixed point, rather
than the other way round. This is motivated by the fact that, as explained
in Section 3.1, we essentially need a greatest fixed point, but we want to
“constrain” it in some way . Investigating the dual construction is a matter of
further work.

We now discuss some properties of the bounded fixed point. In the following,
for all z € L, we denote by K, : L — L the constant function mapping any
x € L to z. This function is obviously monotone. We also write F; C F,, for F;
and F; function on L, when, for all x € L, Fi(x) C F(x).

PROPOSITION 3.7 : The following hold:

1 Ifz € Lis a fixed point of F, then v[F, K] = z.
2. Forall G, G, : L — L,if G| C Gy, then v[F, G;] C v[F, G,].
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Proof:

1. We have, by hypothesis, F(z) LU K,(z) = zUz = zand (FU K;)(x) C x
implies z E F(x) Uz = (F U K;)(x) E x, hence u(F U K;) = z. Then, by
Definition 3.3, we know that v[F, K, ] E z and, as z C F(z) by hypothesis,
we get z C v[F, K;] from Corollary 3.4, which proves the thesis.

2. Itis easy to check by (up) (cf. p21) that u(F LI G;) C p(F U G,), hence
we get the thesis by Corollary 3.4 and monotonicity of int. O

Therefore, by Proposition 3.6 we already know that v[F, G] is a fixed point
for any G : L — L and, on the other hand, Proposition 3.7 (1) says that all
fixed points of F can be generated as bounded fixed points. In other words,
considering v[F, —] as a function from the poset of monotone endofunctions
on L to L itself, Proposition 3.7 (1) implies that the range of this function is
exactly fix(F). Moreover, Proposition 3.7 (2) states that v[F, —] is a monotone
function.

An important fact is that least and greatest fixed points can be retrieved
as bounded fixed points for particular choices of G, as stated in the following
proposition.

PROPOSITION 3.8 : The following hold:

1. v|[F,Kt] = vF.

2. V[F,K ] =uF.
Proof:  Since v[F, K, ] and v[F, K7] are fixed points by Proposition 3.6, we
have uF C v[F,K,] and v[F, K7] C vF. Let z € L be a fixed point of F, then
i by Proposition 3.7 (1) we have z = v[F,K,]. Since L £ z C T, we have K, C
: K, C K+, hence, by Proposition 3.7 (2), we get v[F, K, | € v[F, K,] C v[F, K+].

This implies v[F, K, | E yF (when z = pF) and vF C v[F, K7] (when z = vF),
: hence we get the thesis. o

We now provide an iterative characterisation of the bounded fixed point,
following what described at the end of Section 2.2 for standard least and
greatest fixed points. We refer to that section for basic definitions (w-chains
and continuous functions).

PROPOSITION 3.9 : Letz € L be a pre-fixed point of F. Then
1. forall n € N, intg(z) = intp(F"(z)) and,
2. intp(z) = intp([ ],en F™(2))

Proof: Note that, since z is pre-fixed, the sequence (F"(z)),en is a descending
. w-chain, that is, for all n € N, we have F"*!(z) C F"(z), which implies that
F"(z) is a pre-fixed point of F, for all n € IN.
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1. We prove the statement by induction on n. The base case (n = 0) is
trivial. For the induction step, first note that, by definition of intp,
intp(F"(z)) is a post-fixed point, that is, intp(F*(z)) E F(intp(F"(2))),
and intg(F*(z)) T F"™(z), hence, by monotonicity of F, we get
F(intp(F"(z))) C F™*1(z). Now, by transitivity of C, we get intz(F"(z)) C
F"*1(z). Therefore, again by definition of intr, we conclude intz(F"(z)) C
intr(F"*!(z)). On the other hand, we have F"*1(z) C F"(z) and, by
monotonicity of intp, we get the other inequality, and this implies
intp(F"(z)) = intp(F"*!(2)). Finally, thanks to the induction hypothesis,
we get the thesis.

2. By Item 1, we have intg(z) T F"(z) for all n € N, hence intp(z) C
[Npen F'(2). Therefore, by definition of intp, we get intp(z)
C intp([ ],en F*(2)). On the other hand, we have [ ],cn F*(2) C z, hence,
by monotonicity of intr, we get the other inequality, and this implies
the thesis. ]

Another way to read the above proposition is that, given a pre-fixed point z €
L, we obtain the same greatest (post-)fixed point below z if we take as “bound”
any element F"(z) of the descending chain of n-iterations of F. Moreover,
Proposition 3.9 (2) says also that we obtain the same greatest (post-)fixed point
induced by z if we take as bound the limit (greatest lower bound) of that chain.
We conclude this section extending Theorem 2.14 to the bounded fixed point.

PROPOSITION 3.10 : Let z € L be a pre-fixed point of F, then, if F is down-
ward w-continuous, then intp(z) = [ ],cn F*(2).

Proof: ThesetL, = {x € L | x C z} is a complete lattice with top element
z and the restriction of F on L, is well-defined, since z is a pre-fixed point,
and downward w-continuous. Therefore, by Proposition 3.5, intp(z) is the
. greatest fixed point of F in L, hence, since F is downward w-continuous, we
get the thesis by Theorem 2.14. |

Note that the above proposition, like Theorem 2.14, requires an additional
condition of F, that is, it has to be continuous. Under this condition the above
result immediately applies to the bounded fixed point, providing us with an
iterative characterization of it.

COROLLARY3.11 : If F is downward w-continuous, then v[F,G] =
[Tnen F"(u(F LU G)).

Proof:  Since p(FUG) is a pre-fixed point of F and F is downward w-continuous,
. the thesis immediately follows from Proposition 3.10. ]

Corules as generator

In this part of the section we come back to inference systems and we show that
the interpretation of (7, 1) , as in Definition 3.2, is indeed an interpretation
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of 7, that is, a fixed point of the inference operator associated with 7. In
Section 3.1 we have described two steps to construct v[ 7, 7o |:

« First, we consider the inference system 7 U I, obtained putting together
rules and corules, and we take its inductive interpretation p[7 U 7]

+ Then, we take the coinductive interpretation of the inference system
obtained from 7 by keeping only rules with conclusion in u[[Z U 7],
that is, we have

vIL, Io] = vl Lozl

The definition of the bounded fixed point is the formulation of these two steps
in the general setting of complete lattices. Indeed, the inference operators
F I and F Too»

functions on the complete lattice (p(U), ), as shown by Proposition 2.15.

associated with rules and corules, respectively, are monotone

Then, the bounded fixed point of F; generated by Fr,_ is constructed as follows:

« First, we take the least fixed point of F; U F7_, which plays the role of
the bound for the next step.

« Then, we take the greatest (post-)fixed point of F; below such a bound.

To make this correspondence precise, the key property is the following:

PROPOSITION 3.12 : Let J be an inference system on the universe U and
consider X € U, then F(z,) = (Fr)nx.

Proof:  We have to show that, for S € U, (F7)nx(S) = Fz,)(S).

If j € (Fr)nx(S), then we have j € X and j € Fr(S), hence there is
: (Pr,j) € T suchthat Pr C S;therefore, by definition of 7|, we get (Pr, j) € I|x,
and this implies that j € Fz,)(S).
:  Conversely, if j € F(7,)(S), then there exists (Pr, j) € Z|x such that Pr C S.
: By definition of J|x, we have that (Pr, j) € I and j € X, therefore j € F7(S)
‘and j € X, thus j € (Fr)nx(S). O

Recall from Definition 3.3 and Corollary 3.4 that v[Fr, F1, | = v(Fr)ru(rur;,)s
namely, the greatest post-fixed point of F7 included in p(Fr U Fz, ). Then, we
have the following theorem:

THEOREM 313 : V[Z,I,] = v[Fr,Fr_].

: Proof: 1Itis easy to see that Fri,z7, = Fr U Fz_, hence, by Theorem 2.23, we
get u[[7 U I,]] = p(Fr U Fz,). Then, applying Theorem 2.24, Proposition 3.12
i and Definitions 3.1 and 3.3, we get

VL, L]l = VI rozayll = VIFDmuEr,, = vIFT Fr,]

O

As an immediate consequence of Corollary 3.11 and Theorem 3.13, we get
the following iterative characterisation of the interpretation of an inference
system with corules.
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COROLLARY 3.14 : If Fr is downward w-continuous, then

VT, Zoll = () Fp(ullT U Il
nelN

As already noticed, this iterative characterisation requires an additional
condition on the inference operator, which can be ensured by conditions on
rules (cf. Section 2.5).

We conclude this section by showing that the inductive and the coinductive
interpretations of 7 are particular cases of the interpretation generated by
corules, that is, they can be recovered by specific choices of corules. We denote
by 0 the empty inference system and by Jq; the inference system containing
exactly one axiom for each judgement j € U. Then we have the following
corollary:

COROLLARY 3.15 : Let 7 be an inference system on the universe U, then
the following hold:

L pllI]=v[T,0],
2. V[I] = vIZL, I¢].

Proof: The thesis follows from Theorem 3.13 and Proposition 3.8, noting
that, for all S C U, we have Fy(S) = 0 = Ko(S) and Fz,,(S) = U = K¢(S). O

Intuitively, when we construct the interpretation of (7, Z,) (cf. Defini-
tion 3.2), if we have no corules, that is, 7., = 0 (Item 1), then we keep only
those rules of 7 whose conclusion belongs to p[[1 ]|, hence we can derive all
and only judgements in u[[Z ]; on the other hand, if we have one coaxiom for
each judgement, that is, 7., = Z¢; (Item 2), we do not remove any rule from I
and so we get exactly its coinductive interpretation.

Proof trees for corules

In this section we formalize several proof-theoretic characterizations of the
semantics of inference systems with corules (cf. Definition 3.2). To carry out
the proof of equivalence, we rely on the fixed point characterisation of such
semantics presented in Section 3.2.2.

In the following assume an inference system 7 on the universe U and
recall that, given X C U, 1|x is the subset of 7 consisting only of those rules
with conclusion in X. The first proof-theoretic characterisation follows from
the general framework presented in Section 2.3 for standard inference sys-
tems. Indeed, the following corollary follows immediately from Theorem 2.24
and Proposition 3.12.

COROLLARY 316 : Let X C U, then v[Zx] = n(vTz,)) = v((Fr)nx)-

Then, to get the first proof-theoretic characterisation, we just have to de-
scribe proof trees in vT_r‘X, which can be done as follows:
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PROPOSITION3.17: LetX C U, thenrt € vT7y iff 7 is a proof tree in J
and, for all @ € N(7), () € X.

Proof: Letr € vT[‘X, then, by Lemma 2.21, 7 is a proof tree in J|x, hence,
by Definition 2.5, we have that, for all @ € N(7), (ri(chl (a)), 7(ar)) € 1|x. By
: definition of 7|x, we have 7)x C 7, hence 7 is a proof tree in 7, and 7(a) € X,
: as needed. |

In other words, vTy, is the set of the proof trees in 7 whose nodes all belong
to X.

The first proof-theoretic characterisation of the interpretation of an infer-
ence system with corules (7, I,) is a particular case of the above proposition:

COROLLARY 3.18 : Let (J,J,) be an inference system with corules. Then
the following are equivalent:

1 <Ia -Z.CO> |_V ]

2. there exists a proof tree 7 for j in 7 such that each node of 7 has a
well-founded proof tree in 7 U 7,

Proof: By Definition 3.2, we have v[[1, I, ]| = v[Z|4[ruz,1]l, hence, by Co-
: rollary 3.16 and Proposition 3.17, we get that (7, I,) +, j implies that there is
a proof tree 7 for j in I such that, for each node a € N(7), 7(a) € p[[ I U I,].
Therefore, by Theorem 2.23, we get that 7(«) has a well-founded proof tree
in 7 U I, as needed. O

APPROXIMATED PROOF TREES For the second proof-theoretic characteriz-
ation, we need to define approximated proof trees in an inference system with
corules.

DEFINITION 3.19 : Let (7, Z,) be an inference system with corules. For
all n € IN, the sets 7?;‘. ) of approximated proof trees of level n in (I, 1) is
defined by 7.7 ; \ = T7(uTruz,).

It is easy to check that, for all n € N, ‘72}’160> C pTrus,, that is, relying
on Lemma 2.20, approximated proof trees are well-founded proof trees in
I U I,. More precisely, an approximated proof tree is constructed starting
from well-founded proof trees in 7 U I, applying only rules from 7. In other
words, an approximated proof tree of level nin (7, Z,) is a well-founded
proof tree in I U I, where corules can only be used at depth greater than or
equal to n.

Another simple property of approximated proof trees is stated in the fol-

lowing proposition.

PROPOSITION3.20 : If 7 € 727”[ y & € N(r) and |a| = k < n, then
7, € Tn_k .

(£, 1)



3.3 PROOF TREES FOR CORULES 45

Proof: We proceed by induction on |«|. If @] = 0, then @ = ¢, hence
‘7, =1 € J7 . Assume || = k + 1, hence @ = pj, with f € N(r)
and |f| = k. Therefore, by induction hypothesis, 7|, € 72}_2» and, since
LTy, = (T|ﬁ)|A € dst(qﬁ) and ‘7?}‘}‘ y = T_r(‘]z;__’;_;), by definition of T7, we get
. lj »=Co »=Co

7), € dst(r),) C 72},_2)_)1, as needed. |

Relying on the relationship between Tr and F7 (cf. Proposition 2.16) and on
the equivalence between proof-theoretic and model-theoretic semantics in the
inductive case (cf. Theorem 2.23), we can derive the following theorem, provid-
ing an equivalent model-theoretic characterisation of judgements derivable
by approximated proof trees.

THEOREM 3.21: Let (I, I,) be an inference system with corules. For all
n € N, the following are equivalent:

L j e FRulT U L))
2. j has an approximated proof tree of level nin (I, I,)

thatis, (777 ;) = FR(ullT U I ]).

Proof: By Definition 3.19 and Proposition 2.16, we have r, (72’11 I >) =n(TF(uTruz,)) =
F(r(pTryz,); then, by Theorem 2.23, we get the thesis. |

Then, we immediately get the second proof-theoretic characterisation:

COROLLARY 3.22 : Let (I, 1,) be an inference system with corules. The
following are equivalent:

1L (L, Io) by j

2. there exists a proof tree 7 for j in 7 such that each node of 7 has an
approximated proof tree of level nin (7, 1) ,foralln € N.

: Proof: By Theorem 3.13, Proposition 3.9 (2), Corollary 3.16 and Proposi-
tion 3.17, we get that, (7, Z.,) \, jiff there exists a proof tree 7 for jin 7 such
that, for each node a € N(7), 7(a) € Nyen FF (7 U Zs]), that is, for all
n €N, r(a) € F}(u[Z U I,]), hence, by Theorem 3.21, we get the thesis. O

If the hypotheses of Corollary 3.11 are satisfied, namely, if the inference
operator Fr is downward w-continuous, then we get a simpler equivalent
proof-theoretic characterization.

COROLLARY 3.23: Let (J,Z,) be an inference system with corules where
F7 is downward «w-continuous. The following are equivalent:

L <[’];0> l_Vj

2. jhas an approximated proof tree of level nin (7, 1) ,foralln € N.
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Proof: By Corollary 3.11, we have v[7, I, ]| = Mpen Fr(Fruz,), then the
: thesis follows by Theorem 3.21. o

APPROXIMATING PROOF SEQUENCE In order to define the last proof-
theoretic characterization (Theorem 3.26), we need to introduce a richer struc-
ture on trees. For basic definitions about trees we refer to Section 2.1.1. Assume
a set A and consider the set of trees on A, denoted by 74. We define a family
of equivalence relations on 74, as detailed below. For all = € 74, we de-
note by |7], the n-truncation of 7, which is the tree (r(z),N,(r)) , where
Nn(7) is the subset of nodes of 7 at depth less than or equal to n, that is,
Nn(7t) = {a € N(7) | || < n}. Therefore, | 7], is the tree obtained by cutting r
at depth n. It is easy to see that | | 7], |x = |7 min{n,k} and N(7) = U, ey Na(7).
For all n € N, we define the relation ~, on 74 as follows:

T, T 7]y = 77

Intuitively, these equivalence relations model equality of trees up to a fixed
depth, that is, if © &, 7/, then 7 and 7’ share the same root and the same nodes
up to depth n. In other words, they approximate equality, that is, we have
r=7"iff,forallne N, r ~, 7’.

We now focus on sequences (7,)neN Of trees related by =, for increasing n,
that is, for all n € N, 7, =, 7,+1. When n grows, trees in the sequence share a
larger and larger portion of nodes, hence, in a sense, they tend to a limit tree.
This intuition is formalised by the following theorem.

THEOREM 3.24 : Let (7,),en be a sequence of trees, such that, for all n € N,
Tn ®p Tn+1. Then, there exists a unique tree 7 such that, foralln € N, 7, =, 7.

Proof:  First of all, note that, for all n € N, r(z) = r(z,). Then, let n € N,
: and prove by induction on k that, for all k > n, 7, ~, 7}. If k = n, this is
immediate. If k > n, then, by induction hypothesis, 7, ~, 7%, hence we have
to show that 7_; ~, 7¢. Since 751 ~k_1 Tk, we have | Tx_1lk-1 = L7xlr-1-
Then, since n < k — 1, we get Lzk—1ln = LLlmk-1lk-1ln = Ltk lk-11n = L7k Ins
: that is, 7x—1 =, 7%, as needed.

Let 7 be the tree defined by r(r) = r(1p) and N(7) = |J,;en Nn(7r). For all
: n € N, we know that r(r) = r(zp) = r(z,) and N,(7,) € N,(7), by definition,
hence, to conclude, we have only to check the other inclusion. If & € N, (7),
then |a| < nand @ € Ni(t¢), hence |a| < k and, if h = min{n, k}, « € Np(7%).
: From what we observed above, we get 7, ~}, 7%, hence a € Ny(1,) C N, (75),
as needed.

: Finally, to show uniqueness, let 7’ be a tree such that, for all n € N,
: v/ ~p, Ty, hence we get | 7’], = |ty]n = [7]n, thatis, 7’ ~, 7, foralln € N,
which implies 7" = 7, as needed. O

Given a sequence (7,)nen such that, for all n € N, 7, =, 7,11, we denote by
|l,,en 7n the unique 7 constructed by Theorem 3.24.
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It is well known that trees carry a complete metric space structure (Arnold
and Nivat, 1980; Courcelle, 1983) and, even if our notion of tree is slightly
different from that adopted in these works, we can recover the same metric
on our trees, using the equivalence relations introduced earlier. The metric is
defined as follows:

d(r,tr’)=2"" h=inf{lne N |71 #, '}

with inf @ = co and 27 = 0. It is easy to see that a sequence (7, ),en such that
Tn ®p Tn+1, like that considered in Theorem 3.24, is a Cauchy sequence in the
metric space; indeed, d(z,, 7,+1) < 27". Therefore, such sequences converge
also in the metric space, and the limit is the same. A deeper comparison
between this relation and the standard metric structure on trees will be matter
of further work.

We can now introduce the concept that will allow the last proof-theoretic
characterization.

DEFINITION 3.25 (Approximating proof sequence): Let (I,I,) be an
inference system with corules and j € U a judgement. An approximating proof
sequence for j is a sequence of proof trees (7,),en for j such that 7, € 7?_’; 7o)
and 7, ~, Th41, forall n € N.

Note also that all trees in an approximating proof sequence are well-founded
proof trees in 7 U 1. Intuitively, this notion represents the growth of a
proof for j in I approximated using corules. We now prove our last theorem,
characterizing v|[ 1, I, ]| in terms of approximating proof sequences.

THEOREM 3.26 : Let (J,Z,) be an inference system with corules. The
following are equivalent

1. <-Z.9 -Z;ZO> I_V J
2. j has an approximating proof sequence (t,)neN

Proof:  We prove 1 implies 2. We define trees 7; , for j € v[1, I, ] andn € N
: by induction on n, as detailed below. By Corollary 3.18, we know that every
judgement j € V[, I ] has a well-founded proof tree in 7 U 1, that is, a
. proof tree in 720[ L)
i Furthermore, since v[ 1, I, is a post-fixed point, for any j € v[ 1, I, ] we
can select a rule (Pr;, j) € I with Pr; C v[[1, I, ]|; hence 7j 4 can be defined
as follows:

rooted in j: we select one of these trees and call it 7).

{Tj’,n |]/ € Prj}

Tj,n+1 = F
Clearly, by construction, for all j € v[1, I,]l and for all n € N, r(zj,) = j
and 7, € 7?; To) We show by induction on n that, for all n € N and for all

L J € V|[I, Ico]]> Tjn ~n Tj,n+1-

Case:n = 0 By construction, we have (7o) = j = r(rj,1) and No(7j,0) =
{e} = No(7;,1), hence 7y = 7,1, as needed.
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Case:n > 0 We assume the thesis for n — 1 and prove it for n, hence we
have to show that 7; , =, 7j n+1. By construction, we have
{7.n-1 | J" € Prj} {7 | J" € Prj}
Tjn = F Tin+1 = -

By induction hypothesis, we know that 7y ,_; ~,—1 77, for all j* € Pr;.

Therefore we have

Nn(Tj,n) = {5} U U j’Nn—l(Tj',n—l)

N EPrj

={e}U [ ) /'Nua(zn)

j’EPrj
= Nn(Tj,n+1)

Therefore, since r(7; ,) = j = (7 »+1), we have the thesis.

We prove 2 implies 1. By hypothesis, j has an approximating proof sequence
(Tn)neN- We set 7 = | |,,en Tn and prove that 7 is a proof tree in 1 for j. By
Theorem 3.24, we have that 7, =, 7, for all n € N, hence, we get j = r(r) =
r(r). Consider « € N(()r) and set n = |a| + 1. By construction of 7, we
: have that « € N,(r,) and, for all j’ € U, aj’ € N(r) iff aj’ € N,(z,), since
laj’| = n, hence, ri(chl;(a)) = n(chl,, ()), as 7, =, 7. Since 7, € 7?1_ PRy
by Proposition 3.20, we get (7,)|, € ‘T Iy hence, by Definition 3.19, we
: have (r'(chl(fn)‘ (€)), (tn), (e)) € L. Therefore since chl,,) (¢) = chly, (a) =
chl;(a) and (1), (&) = Tn(a) = 7(a), we get (r(chl;(@)),7(a)) € 7, and this
i proves 7 is a proof tree. O

3.4 Reasoning with corules

In this section we discuss proof techniques for inference systems with corules.

Let (7, I,) be an inference system with corules on the universe U. As
discussed in Section 2.4, we are typically interested in comparing the inter-
pretation of (7, 7Z,) to a set of judgements S C U (specification), focusing
on soundness (V[1,1,] € S) and completeness (S C v[I,I,]) properties.
Proving both properties amounts to say that the inference system with corules
actually defines the given specification S.

COMPLETENESS PROOFs To show completeness, we rely on the fixed point
characterisation of v[[ 1, I,] (cf. Theorem 3.13), using the principle (vzP)
(cf. p.38) associated with the bounded fixed point. We rephrase (v P) (cf. p.38)
in the specific case of inference systems with corules as follows:

PROPOSITION 3.27 (Bounded coinduction principle): LetS € U be a set
of judgements. If the following hold

BOUNDEDNESS S C u[[J U Z,] and

CONSISTENCY S C Fr(S)
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then S C V[ 1, 1,].
We call this principle the bounded coinduction principle.

EXAMPLE 3.28 : Let us illustrate the technique on the inference system with
corules (7% 7% which defines the judgement allPosg(l, b). We report here

> ~co

the definition from Section 3.1, for the reader’s convenience.

) ——8M8M— F) —— <
(a-E) allPosg (&, T) (a-¥) allPosp (x:1, F) -
» allPosg (I, b) >0 (comn)
allPosp (x:1, b) allPosg (1, T)

Recall that a possibly infinite list of integers is said positive if it contains
only positive elments. Let us define the set of judgements S~° as follows:
allPosp (1, b) € S~ iff [ is positive and b = T or [ is not positive and b = F.

Completeness, S™° C v[7>°, 7.>°], can be stated as follows:

If [ is positive, then (7>°, 7>%) +, allPosg(l, T),

>~co

otherwise (7>°, 729 +, allPosg(l, F).

’>~co

The proof is by bounded coinduction, hence we have to prove the following:

BOUNDEDNESS if allPosg(l, b) € 87°, then 77° U I 7% +, allPosp(l, b),

coNsSISTENCY ifallPosg(l, b) € S>°, then there is arule (Pr, allPosg(l, b)) €
779 such that Pr ¢ S>°.

To prove boundedness, we have to show that, if allPosg(l, b) € S>°, then
allPosg (1, b) has a finite proof tree in 77° U Z_7°. This can be easily done,
as follows. If [ is positive, then b = T and allPosg(l, T) is derived by (co-a).

0..n — 1, hence we can reason by arithmetic induction on n. Indeed, for n = 0,
allPosp(l, ¥) is derived by (a-r), and, for n > 0, it is derived by (a-t) where the
premise is derivable by induction hypothesis.

To prove consistency, we proceed as follows. Assume allPosg(l,b) € S™°
and distinguish the following cases.

Case:1 = ¢ We have b = T and so the thesis follows by (a-r).
Case:1 = x:I” and x < 0 We have b = F and so the thesis follows by (a-¥).

Case:1 = x:I’ and x > 0 We have that [ is positive iff I’ is positive, hence
allPosg(l’, b) € 8% and so the thesis follows by (a-1).

SOUNDNESS PROOFS To show soundness, we exploit the refinement of
the definition of the interpretation of (7, Z,) provided in Proposition 3.9,
which gives us the inclusion v[ 7, Zo]| € (M,en F7(#[Z UZe]). Hence, to prove
soundness, thatis, v[Z, 7, ]| € S, we have to show that (), F7 ([T UZ]) €
S. This can be done in two ways:

« either we reason by contraposition, proving that judgements not in S do
not belong to F7(u[[Z U Z,]), for some n € N,
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« or we find a sequence of sets (S,,),en such that (,en Sn € S, and prove
that F7(u[Z U Z,]) € Sp, foralln € N.

The advantage of the second approach is that it can be proved by arithmetic
induction on n.

By the proof-theoretic characterisation in terms of approximated proof trees
given in Corollary 3.22, we can rephrase the above techniques as follows:

» either we reason by contraposition, proving that judgements not in S fail
to have an approximated proof tree of level n, for some n € N,

« or we find a sequence of sets (S,,),en such that (), Sn € S, and prove
that, for all n € N, if a judgement has an approximated proof tree of level
n, then it belongs to S,.

EXAMPLE 3.29 : Weillustrate the technique again on the example (79, 7>0) .
The soundness statement can be expressed as follows:

if (9,729 +, allPosg(l, b), then,

%~ Cco
if b = T, [ is positive, and if b = F, [ is not positive.

Given a possibly infinite list /, let us denote by |I| € N U {oo} the length
of [ and, for each n < |l|, by I(n) the n-th element of [. For all n € N, define
S0 as follows: allPosg(l, T) € S0 iff, for all k < min{n, |I|}, I(k) > 0, and
allPosp(l, ¥) € S, iff [ is not positive. It is easy to see that (),,n S ° € 89,
because [ is positive iff all its finite prefixes are positive. Assume (7 ~°, 77%) +,
allPosg (1, b). We can easily prove by induction on rules in 7~° U 70 that, if
I7°U1;°r, allPosg(l, F), then [ is not positive. There are only two relevant
cases: for rule (a-r), we have | = x:I” with x < 0, hence [ is not positive, and
for rule (a-1), we have I = x:I’ and I’ is not positive by induction hypothesis,
hence so is I. This implies that allPosg(l, F) € S;O, for all n € N, and, since
F;’_>o(,u[[f>° UZ2T) € pl[77° U 1207, we have the thesis.

Now, for b = T, we prove by arithmetic induction on n that, if allPosg (I, T) €
F2_o(ulZ7° U I3°]), then, for all k < min{n, |I|}, I(k) > 0.If n = 0, then
there is nothing to prove, as min{0, |/|} = 0 and there isno k < 0.If n > 0,
then there is a rule in 7 ~° with conclusion allPosg (I, T) whose premises are in

F;;(l,(p[[]'>0 U Z.2°). We split cases on such rule.

Case: (a-e) We have | = ¢, hence the thesis is trivial.

Case: (a-tr) We have [ = x:I” with x > 0 and, by induction hypothesis, we
know that, for all k < min{n — 1, |l’|}, (k) > 0. Then, if k < min{n, |/|} =
1+ min{n — 1, |l’|}, we have two cases: if k = 0, then I(k) = x > 0, and, if
k > 0, then I(k) = I'(k — 1), which is positive by the induction hypothesis.

Taming corules: advanced examples

In this section we will present some more examples of situations where corules
can help to define judgements. These more involved examples will serve to
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explain how to use corules, which kind of problems they can cope with, and
how complex the interaction between corules and standard rules can be. In
these examples, we use only corules with empty set of premises, namely, coax-
ioms, more examples going beyond coaxioms can be found in next chapters,
see e.g., Section 6.4.

A numerical example

It is well-known that real numbers in the closed interval [0, 1] can be repres-
ented by infinite sequences (d;);en., of digits, given some basis b > 2, that
is, d; € 0..b — 1, for all i € N, where N denotes the set of all positive
natural numbers. Indeed, (d;);en., represents the real number which is the
limit of the series Y52, b~'d; in the standard complete metric space of real
numbers with Euclidean distance (such a limit always exists by completeness,
because the associated sequence of partial sums is always a Cauchy sequence).
Such a representation is not unique for all rational numbers in [0, 1] (except
for the bounds 0 and 1) that can be represented by a finite sequence of digits
followed by an infinite sequence of 0s; for instance, with b = 10, 0.42 can
be represented either by the sequence 420, or by the sequence 419, where d
denotes the infinite sequence containing just the digit d.

For brevity, for r = (d;);en.,, [r] denotes };32, b~'d; (that is, the real number
represented by r). We want to define the judgement add(ry, 2, 7, ¢) which holds
iff [r1]] + [72] = [7] + ¢ with c an integer number; that is, add(r, 72, 7, ¢) holds
iff the addition of the two real numbers represented by the sequences r; and
rp yields the real number represented by the sequence r with carry c. We
will soon discover that, to get a complete definition for add, ¢ is required to
range over a proper superset of the set {0, 1}, differently from what one could
initially expect.

We define the predicate add by the inference system with corules (7249, 724
described below. Since we represent a real number in [0, 1] by an infinite se-
quence of digits, we can always decompose r as d:r, where d is the first digit
(corresponding to the exponent —1), and r is the rest of the sequence of digits.
Hence, in the definition below, r, 1, r; range over infinite sequences of digits,
dy, d, range over digits (between 0 and b — 1), c is an integer and + and mod
denote the integer division, and the remainder operator, respectively.

add(ry,ra,1,¢)
add(d;:r1, do:rs, (s mod b):r,s ~ b)

(apD) S:d1+d2+C

(co-ADD)=———— ¢ € {-1,0, 1,2}
add(rq,ra,7,¢)

As clearly emerges from the proof of completeness provided below, besides
the obvious values 0 and 1, the values —1 and 2 have to be considered for
the carry to ensure a complete definition of add because both add(0, 0,9, —1)
and add(9, 9, 0, 2) hold, and, hence, should be derivable; these two judgements
allow the derivation of an infinite number of other correct judgements, as, for
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instance, add(10, 10, 19, 0) and add(19, 19, 40, 0), respectively, as shown by the
following infinite derivations:

add(0,0,9, —1) add(9,9,0, 2)
add(0,0,9, —1) add(9,9,0, 2)
add(10, 10, 19, 0) add(19, 19, 40, 0)

We sketch a proof of correctness: for all infinite sequences of digits ry, r, and
r,and all ¢ € {-1,0,1,2}, (724, 7399y - add(ry, r2, 7, ¢) holds iff [ ] + [r2] =
[r] +c.

COMPLETENESS The completeness statement is as follows:

if [r1]] + [2] = [r] + ¢, then (7294, 7299 add(ry, 1, 7, €)

>~co

The proof is by bounded coinduction (cf. Proposition 3.27).

By (co-app) we trivially have that each judgement of shape add(ry, 7,7, ¢)
such that [r;] + [2] = [r] + ¢ belongs to p[72% U 729, because ¢ =
[71]l + [z = [r] and so =1 < ¢ < 2,as 0 < [[r'] < 1 for all sequence r’.

To show consistency, let us assume that [7/]|+[[r; ]| = [r'|+c” withr] = dy:ry,
ry =dyry, v’ =dir.Letussets = b-c’+d,and ¢ = s—d; —d,, thens mod b = d
and s + b = ¢’ because d < b, hence add(r;,r;,7’,¢’) is the conclusion of (app)
and, to conclude, we have to show that [r{] + [r2] =[] + c.

We first observe that by the properties of limits with respect to the usual
arithmetic operations, and by definition of [—]), for all infinite sequences r of
digits, if r = d:r’, then [r]] = b~'(d+[[r']); then, from the hypotheses we get the
equality dy +[[r1+do+[r2]] = d+[r]+b-c’, hence di +[[r1 | +da+ 721 = [r]+s,
and, therefore, [r1] + [r2] = [7] + ¢, as needed.

SOUNDNESS The soundness statement is as follows:

if (7299, 7299) v, add(r{, r;, r’,c’), then [r/] + [r;] = [r'] + ¢’

> ~co

Given an infinite sequence of digits r = (d;)ien.,, We denote by r[n] the
sequence d; . ..d,, with n > 0 (r[0] is the empty sequence), and we write

Yrin] for X b7 - d; (X r[0] = 0), hence [r] = lim,—w(3 r[n]). Let r; =
(d1,1)ieN.,> T2 = (d2,i)ien., and r = (d;)ien., be infinite sequences of digits,
hence r; = dy 1:r{, r; = dy1:ry and r = dy:r’. It is easy to see that, if, for all
neN, Yrin]l+ Xrn]l=2r[nl+c—cy-b7" for some ¢, € {-1,0,1,2},
then [ri]] + [r2]] = [7] + ¢; indeed, we have

[ri ] +Mrol-Mr]-c = nll_r)r(}o(z r1[n]+Z rz[n]—z r[n]—c) = lim —c,-b™' =0

n—oo

because cy, is limited, while b™" decreases exponentially to 0.

To prove soundness, then we just have to show that, for all n € N, if
add(ry, 2, 7, ¢) has an approximated proof tree of level n, then ) r1[n]+) r2[n] =
>r[n]l+c—b""-cp, for some ¢, € {—1,0,1, 2}. The proof is by induction on n.
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Case: 0 It is easy to prove by induction on the derivation in ’/?Ola da, i) that
c € {-1,0,1, 2}. Then, the thesis is trivial taking ¢, = c, because ; r;[0] +
S r[0]=0=Xr[0]+c—c-b°

Case:n + 1 The judgement is derived by rule (app), hence add(r{,r;,r’,c’)
has an approximated proof tree of level n, and d; = smod b, ¢ = s + b,
and s = dy 1 +dzq + ¢, thatis, dy; +dy1 + ¢’ = ¢ b+ d. By induction
hypothesis, we get >, r{[n] + X rj[n] = X r'[n] + ¢’ — ¢, - b™", for some
cn € {—1,0,1,2}, hence we have

Z riln+ 1]+ Z raln+1]=b"'dy +b7! Z riln]+ b dyy + b7 Z ry(n]
=b Y d+bc—c)+b! (Z r'[n] +c¢ - If"cn)
=bld+ Z r'[n] +c— b~ "¢,
= Z rln] +c - b~"Ve,

From the proof of soundness we observe that the fact that the carry is
forced by corules to belong to {—1,0, 1,2} is essential: it assures that the
sequence (b™"c,)nen converges to 0. Indeed, if we let ¢ range over Z, then
the inference system becomes unsound; for instance, it would be possible to
build the following infinite proof for add(a, 0,0, 1) where all nodes clearly have
a finite proof in T34y 7244 "and, hence, (7294, ]'Cidd) Fy add(5, 0,0, 1) would

co

hold, but [0] + [0] # [0] + 1:

Distances and shortest paths on weighted graphs

In Section 3.1, we have shown a first example concerning graphs, defining the
judgement v —* N, stating that N is the set of nodes reachable from v in
the graph. Essentially, the proposed definition performs a visit of the graph
following all possible, even infinite, paths. The same pattern can be adopted to
solve more complex problems. For instance, in this section we will deal with
distances between nodes in a weighted graph.

Let us introduce the notion of weights for graphs. Recall that (cf. p.18) we
modelled a graph G by its adjaciency function G : V. — ¢@(V), where Vis a
finite set of nodes. With this representation, the set of edges is the set E C VXV
defined by E = {(v,u) € VXV | u € G(v)}. We will often write vu for an
edge (v, u) € E. A weight function is a function w : E — IN. Here we consider
natural numbers as codomain, however we could have considered any other
set of non-negative numbers. Hence, a weighted graph is a graph G together
with a weight function w.

A path from v to v, in G is a sequence of nodes & = v, ... v, with n > 0,
such that, for all i € 1..n, v;_1v; € E. The empty path starting from the node v
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distg(a, e, 1)
distg(e, e, 0) distg(b, e, 1)
distg(a, e, 1)

distg(c, e, 1+ d1)

distg(a, e, §2)
Gz —
distg(e, d, 00) distg(b, d, 63)
distg(a, d, 62)

FIGURE 3.4 Infinite proof trees for dists(c, e, 1 + 1) and distg(a, d, 57)

to itself is the sequence v of length 1. In a weighted graph G, the weight of a
path a, denoted by w(a), is the sum of the weights of the edges determined
by «a, that is, w(v) = 0 and w(vuf) = w(v, u) + w(uf). Note that in general
the weight of a path « is different from its length, denoted by ||||, defined as
the number of edges (counting repetitions) determined by the path, that is,
|[v|| = 0 and ||vup|| = 1+ ||up||. The distance between nodes v and u is defined
as the minimum weight of a path connecting v to u, it is infinite if no such
path exists. Below we show the inference system with corules defining the
judgement distg(v, u, §) on a weighted graph, where § € N U {co}.

(p-E) ————= (co-p)=———— VvFu
dIStG(V, v, 0) diStG('V, u, 00)
distg(vy, 4, Oy) distg(vi, U, k) vEu
) T S E 2 G) = (s )

distG(v, u, ) 5 = inf{w(vv;) + 8 | i € 1.k}

In order to show that we cannot simply consider the coinductive interpretation
of the above inference system, and therefore we need corules, let us consider

the following weighted graph:
e b

2 1
d a c

If we interpreted the inference system coinductively, we could derive judge-
ments like distg(c, e, §) for any § € 1..6 or distg(a, d, §) for any § € N U {0},
as shown in Figure 3.4.

The issue here is the cycle that, having total weight equal to 0, allows us to
build cyclic proofs without increasing the value of §. Therefore, the coaxiom is
needed to filter out such proofs. Indeed, it is easy to see that it is not possible
to build a finite proof tree for the judgements proved in Figure 3.4 starting
from the coaxiom.
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Now we will sketch a proof of correctness. Let us denote by (7%, 7 dst
the inference system with corules defined above. Assume a weighted graph G
and, for all nodes v, u, in G, denote by 8(v, u) the distance from v to u, that is,
(v, u) = inf{w(a) | « is a path from v to u}. We can formulate the correct-
ness statement as follows: (74, 795t + dist(v, u, §) holds iff § = §(v, u). In
the following we say a judgement distg(v, u, ) is correct, if § = §(v, u).

COMPLETENESS The completeness statement is as follows:
(Z9st, 79ty b, distg(v, u, §(v, u)) holds, for all nodes v, u.

The proof is by bounded coinduction (cf. Proposition 3.27). Let us consider
a judgement distg(v, u, §) where § = §(v,u). If v = u, then § = 0 and so
the judgement is the consequence of (p-r), which has no premises. Suppose
v # u. It is easy to check that §(v, u) = inf{w(w') + (v, u) | v € G(v)},
hence, the judgement distg(v, u, §) is the consequence of (-s), with premises
distg(v', u, 6(v', u)), for all v/ € G(v).

In order to show the boundedness condition, we have to build a finite
proof tree for distg(v, u, §(v, u)) in 79t U 79, We generalise this statement as
follows: if there is no path from v to u, then 79t U 7dist u distg(v, u, 00), and,
for all paths a from v to u, 79t U 795 1, distg(v, u, w(a)). If there is no path
from vto u, then v # u, hence we can derive distg(v, u, ) by (co-b). In the other
case, consider a path o from v to u. We proceed by induction on the length of a.
If ||| = 0, then v = u and w(a) = 0, hence we can apply (v-5). I ||| = n + 1,
then « = v/ with ||[v/f]| = n, v € G(v) and w(a) = w(v') + w(v'f). By
induction hypothesis, we get that 79 U 795 +, distg(v', u, w(v'f)) holds,
then we get 79'U 795 v, distg(v, u, §) by applying (v-s) to distg(v', u, w(v'f))
and distg(v”, u, ), for each v’ € G(v) \ {v’}, which are derivable by (co-b).

SOUNDNESS The soundness statement is as follows:
if (79t 79ty 1 distg(v, u, §), then § = (v, w).

For all n € N, we denote by d,(v, u) the minimum weight of a path a of
length less than or equal to n from v to u, that is, §,(v, u) = inf{w(a) | ||| <
n, « is a path from v to u}. For all n € N, we have §,+1(v, ) = inf{w(v’) +
0n(V,u) | v € G(v)}.

It is easy to see that, if 5(v,u) < § < Su(v,u), foralln € N, then § =
6(v, u). Therefore, to check the thesis, we just have to prove that, for all
n € N, if distg(v, u, §) has an approximated proof tree of level n, then §(v, u) <
5 < 8,(v, w). It is easy to prove by induction on rules in 79t U 795t that, if
T9ty 19 v, distg(v, u, ), then 8(v,u) < 8. Since, if distg(v, u, §) has an
approximated proof tree of level n, then 79 U 73 + | dists(v, u, §) holds, we
have only to prove the second inequality, namely, § < §,(v, u). The proof is
by induction on n.

Case: 0 If v = u, then we have applied (v-x), hence § = 0 = §o(v, w). If v # u,
then 8y(v, u) = inf @ = o, hence § < (v, u).
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VEU
(¢-E) minPathg(v, v, v, 0) (p-x) minPathg(v, u, L,00) G(v) =10
(co-p) V£ U
minPathg(v, u, 1, 00)
minPathg(vy, u, a1, & ... minPathg(vg, u, ag, 0, v
(5-5) (v, u, a1, 61) (Ve u, a, Ok) 0 e 120

minPathg(v, u, va;, w(vv;) + ;) iarg min{w(vv )4 [hel. k)

FIGURE 3.5 Inference system with corules for minPathg(v, u, a, §).

Case:n + 1 If v = u, then we have applied (v-&), hence § = 0 = §,,+1(v, u). If
v # u, then we have applied (v-s), hence, for all v/ € G(v), distg(Vv', u, §,/)
has an approximated proof tree of level n and § = inf{w(vv') + 8,/ | v/ €
G(v)}. By induction hypothesis, we have, for all v/ € G(v), §,» < §,(V', u),
hence, since §,4+1(v, u) = inf{w(w’) + 5,(v', u) | v € G(v)}, we get the
thesis.

The notion of distance is tightly related to paths in a graph G. Actually,
from the above proofs, it is easy to see that a proof tree for a judgement
distg(v, u, §) explores all possible paths from v to u in the graph in order to
compute the distance. Therefore, in some sense, it also finds the shortest path
from v to u. Hence, with a slight variation of the inference system for the
distance, we can get an inference system for the judgement minPathg(v, u, , §)
stating that « is the shortest path from v to u with weight §. We add to paths
a special value L that represents the absence of paths between two nodes,
with the assumption that v = L. The definition is reported in Figure 3.5,
where arg min{xy, . . ., x, } denotes the index i € 1..n of the minimum among

X1y +.5Xp.

Mixing induction and coinduction

Even if an inference system can define together different types of judgements,
in the standard framework they are all interpreted in the same way, that is,
either all inductively or all coinductively. As a consequence, we cannot define
together judgements requiring different interpretations. Typically, this issue
is addressed by stratification: judgements and rules are divided in different
strata, each of them containing only judgements and rules requiring the same
interpretation, and the definition in each stratum can only depend on upper
strata, that is, no cyclic dependency is allowed. This is for instance the strategy
adopted by Simon et al. (2007) to define the semantis of co-logic programming.
Stratification of course is not always possible and, in fact, it is the same as
providing different definitions of each stratum.
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We have already seen (cf. Corollary 3.15) that an inductive inference sys-
tem corresponds to a generalised inference system with no corules, while a
coinductive one corresponds to the case where there is a coaxiom for each
judgement in the universe; however, between these two extremes, corules
offer many other possibilities, thus allowing for a finer control on the se-
mantics of the defined judgements. Since there exist cases where different
judgements need to be defined together, but require different interpretations,
see, e.g., examples by Simon et al. (2006, 2007), Ancona (2013), and Basold
and Komendantskaya (2016), corules may be employed to provide the correct
definition in terms of a single inference system with no stratification. However,
the interaction between corules and standard rules is not trivial at all, and, as
we will see, unexpected behaviours can happen; hence special care is required
to get from the inference system the intended meaning of judgements.

In order to see this, let us consider the judgement path,(¢), where ¢ is an
infinite (ordered) tree® over {0, 1}, represented as an infinite term of shape
tree(n, [), where n € {0, 1} is the root of the tree, and [ is the infinite list of its
direct subtrees. Then, path,(t) holds iff there exists a path in ¢, starting from
the root, containing just 0s. For instance, if t; and t, are the trees defined by
the syntactic equations

t; = tree(0, 1) I = ty:ty:y ty = tree(0, ) I, = tree(1, 1;):1,

then we expect path(t;) to hold, but not path,(z;).

To define path,, we introduce an auxiliary judgement isiny(!) testing whether
an infinite list [ of trees contains a tree ¢ such that path,(t) holds. Intuitively,
we expect path, and ising to be interpreted coinductively and inductively,
respectively; this reflects the fact that path, checks a property universally
quantified over an infinite sequence (a safety property in the terminology
of concurrent systems): all the elements of the path must be equal to 0; on
the contrary, ising checks a property existentially quantified over an infinite
sequence (a liveness property in the terminology of concurrent systems): the
list must contain a tree ¢ with a specific property (that is, pathy(¢) must hold).
Driven by this intuition, one could be tempted to define the following inference
system with corules for all judgements of shape pathy(t), and no corules for
judgements of shape ising(!):

ising(l) path,(t) ising([)
path,(tree(0, 1)) pathy() ising(£:1) ising(£:1)

Unfortunately, because of the mutual recursion between ising and path,, the
inference system above does not capture the intended behaviour: ising(l) is
derivable for every infinite list of trees I, even when [ does not contain a tree
t with an infinite path starting from its root containing just 0s. Indeed, the
coaxiom we added is not really restrictive, because it allows the predicate path,
to be coinductive, but, since ising directly depends on path,, it is allowed to be
coinductive as well.

1 For the purpose of this example, we only consider trees with infinite depth and branching.
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To overcome this problem, we can break the mutual dependency between
judgements, replacing the judgement isiny with the more general one isin, such
that isin(¢, [) holds iff the infinite list [ contains the tree ¢. Consequently, we
can define the following inference system with corules:

isin(t,1) pathy(t)
path(tree(0, [)) (cormmo) pathy(t) (-m) isin(t, t:1)

(pTHO)

isin(t, 1)
") Sin(t, ')

Now the semantics of the system corresponds to the intended one, since now
isin does not depend on path,, hence the corules do not influence the semantics
of isin, which remains inductive as expected. Nevertheless, the semantics is
well-defined without the need of stratifying the definitions into two separate
inference systems.

Using proof trees and the proof techniques provided in Section 3.4, we can
sketch a proof of correctness. Let (7P, L‘;ath°> be the inference system
with corules defined above and S be the set of judgements defined as
follows: path,(t) € SP*o iff  represents a tree with an infinite path of just 0s
starting from its root, and isin(t,]) € S Pathe iff | contains ¢. Then, the correctness
statement is as follows: (IPatho, 7P2Moy i iff j € SPathy yith j = path,(t) or
j =isin(t, ).

coMPLETENESS The proofis by bounded coinduction (Proposition 3.27). We
first show that the set SP*™ is a post-fixed point, that is, it is consistent w.r.t.
the inference rules. Indeed, if ¢ has an infinite path of 0s, then it has necessarily
shape tree(0, ), where | must contain a tree ¢’ with an infinite path of 0s.
Hence, path(t) is the consequence of (rrHo) With premises isin(t’, ) € SP2tho
and pathy(¢') € SP2™_If an infinite list contains a tree t, then it has necessarily
shape t":l where, either t = t’, and hence isin(t, t:1) is the consequence of (1n-m),
with no premises, or ¢ belongs to [, and hence isin(t, t":]) is the consequence of
(1n-1) with premise isin(t, [) € SPatho,

We now show boundedness, that is, if j € SP?™ then j has a finite proof
tree in 7 P30 U Iczatho. For the elements of shape path,(t) it suffices to directly
apply (co-rruo). For the elements of shape isin(,]) where t belongs to , the
thesis follows by a straightforward induction on the position of ¢ in .
SOUNDNESs We first observe that the only finite proof trees in 7 P2t U 722
that can be constructed for isin(¢,[) use only standard rules (in-u) and (1n-1),
hence (I patho’]'clgatho) F, isin(t, ) holds iff there exists a finite proof tree for
isin(t, [) in 7?2, Then, soundness for judgements of shape isin(t, [) follows by
a straightforward induction on rules in 7P,

For the elements of shape path,(t) we observe that any proof tree for path,(t)
in 7P must be infinite, because there are no axioms for path, and in (rrro)
path, is referred in the premises. Then, it is easy to check that, if path,(¢) has an
infinite proof tree, then it contains an infinite path containing just 0s. This is
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because such infinite derivation is built applying infinitely many times (rrmo),
which, each time, checks that the root is 0 and then access a direct subtree.






Discussion

Inference systems are a general and versatile framework to define possibly
recursive judgements, which is well-known and widely used. However, stand-
ard semantics of inference systems is, in a sense, rigid: either inductive (the
least one) or coinductive (the greatest one), but what can we do if we need
something in the middle? One may wonder whether this is a real issue, but
the examples we have provided in Chapter 3 and throughout this thesis show
that there are many interesting cases where we need an interpretation that
is neither the least nor the greatest one. This is the reason why we introduce
an extension of inference systems, enabling more flexible interpretations, to
support formal reasoning even in cases where standard (co)inductive semantics
is not enough.

The core of the proposed more general framework are corules, which are
special rules that, specified together with traditional rules, allow us to control
their interpretation. From a model-theoretic perspective, corules are used to
restrict the universe on which we take the greatest fixed point of the inference
operator associated with the inference system; while, from the proof-theoretic
perspective, corules impose additional conditions on (infinite) proof trees,
filtering out some of them.

In this part we formally describe inference systems and their generalisaiton
by corules, providing the formal tools used in the rest of the thesis. More in
detail, Chapter 2 describes standard inference systems and their semantics both
in model-theoretic and proof-theoretic terms. We provide all details on this
well-known notions as we have not found in literature a sufficiently complete
and rigorous treatement to develop our results. In particular, we frame standard
equivalemce results between model-theoretic and proof-theoretic approaches
in an abstract setting, relating trees and judgments by means of an adjunction.
This setting is then used throughout the thesis to express and prove all other
results of this kind.

In Chapter 3, we describe the generalisation of inference systems by corules.
At a first glance, corules are used to restrict the set of rules that have to be
interpreted coinductively, that is, the interpretation of an inference system with
corules (I, I.) is defined as the coinductive interpretation of the inference
system obtained by restricting 7 to rules with conclusion in p[7 U Z,]. To
prove this construction provides indeed an interpretation of 7, namely, a
fixed point of the associated inference operator, we first construct the needed
fixed point, the bounded fixed point, in the standard lattice-theoretic setting,
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which is a combination of least and greatest fixed point constructions, and
then prove that the interpretation of (J,Z.) is an instance of such a fixed
point. From a proof-theoretic perspective, we describe several proof-theoretic
characterisation of the interpretation of an inference system with corules,
based on a combination of well-founded and non-well-founded proof trees
and on approximated proof trees. Finally, relying on these model-theoretic
and proof-theoretic characterisation, we describe proof-techniques to reason
with corules and apply them on several examples.

Related work

As already mentioned, inference systems (Aczel, 1977; Leroy and Grall, 2009;
Sangiorgi, 2011) are a widely used framework to express possibly recursive
definitions of predicated by means of rules, providing rigorous, but fairly
simple, semantic foundations. Although inference systems have been intro-
duced to deal with inductive definitions, in the last two decades several authors
have focused on their coinductive interpretation.

Cousot and Cousot (1992) define divergence of programs by coinductive
interpretation of an inference system that extends the big-step operational
semantics. The same approach is followed by other authors, such as Hughes
and Moran (1995) and Leroy and Grall (2009). Leroy and Grall (2009) analyse
two kinds of coinductive big-step operational semantics for the call-by-value
A-calculus, and study their relationships with the small-step and denotational
semantics, and their suitability for compiler correctness proofs. Coinductive
big-step semantics is used as well to reason about cyclic objects stored in
memory by Milner and Tofte (1991) and Leroy and Rouaix (1998), and to prove
type soundness in Java-like languages by Ancona (2012, 2014). Coinductive
inference systems are also considered in the context of type analysis and
subtyping for object-oriented languages by Ancona and Lagorio (2009) and
Ancona and Corradi (2014).

On the programming language side, coinduction is adopted to provide prim-
itives helping the programmer dealing with infinite objects. Examples can be
found both in logic programming, such as works by Simon et al. (2006, 2007)
and Johann, Komendantskaya, and Komendantskiy (2015), and in functional
programming by Hagino (1987) and Bird and Wadler (1988). Recently, other
approaches have been proposed to support coinduction in programming lan-
guages in a more flexible way. We can find contributions in all most popular
paradigms: logic paradigm, by Ancona, 2013; Mantadelis, Rocha, and Moura,
2014, functional paradigm, by Jeannin, Kozen, and Silva (2013, 2017) and object-
oriented paradigm, by Ancona and Zucca (2012, 2013). As a consequence, these
proposals are more focused on operational aspects, and their corresponding
implementation issues. Our work originates from some of these operational
models, which are closely related to each other, namely, works by Ancona
and Zucca (2012, 2013) and Ancona (2013). Indeed, as just said, these models
introduce some flexibility when defining predicates and functions recursively



4.2 FUTURE WORK

on non-well-founded structures, and our first aim has been to provide a more
abstract view of these approaches.

One of the distinguishing features of the theory of inference systems is
that it does not consider any specific syntax, allowing a purely semantic ana-
lysis of rule-based definitions. On the other hand, in the literature, there are
several proposals of formal systems supporting induction and coinduction
which provide a syntactic approach to recursive definitions in general and
rule-based definitions in particular. Momigliano and Tiu (2003), Brotherston
(2005), Gacek, Miller, and Nadathur (2008), and Brotherston and Simpson
(2011) propose logical calculi with possibly recursive definitions of predicates
represented as equations that can be interpreted either inductively or coinduct-
ively. Doumane (2017) studies infinitary proof systems for logics supporting
recursive predicates by fixed point combinators, but only in a propositional
setting. Basold (2018) describes simple and dependent type theories with mixed
inductive-coinductive types again via fixed point combinators, thus support-
ing recursive definitions of predicates. Finally, another approach to support
coinduction in proof systems or type theories is by the later modality (Bizjak
et al.,, 2016; Basold, 2018; Basold, Komendantskaya, and Li, 2019), which ensures
soundness by guarding recursive references. Any of the above formal systems
can, in principle, be used to provide the syntactic counterpart of inference
systems. Furthermore, when both induction and coinduction are supported,
also flexible coinduction can, in principle, be encoded, since it is defined as a
combination of induction and coinduction.

Future work

There are several directions for further developments. A first compelling topic
is enhancing proof techniques for corules, trying to extend proof techniques
known for coinduction to this generalised framework. More specifically, the
notion of bounded coinduction is a combination of a standard coinductive proof
method (establishing a suitable post-fixed point) and a separate inclusion in a
domain determined by rules and corules. The coinductive part is amenable to
up-to techniques (Pous, 2007; Pous and Sangiorgi, 2012; Pous, 2016), which may
help to simplify proofs using bounded coinduction, and parametric coinduction
(Hur et al., 2013), which may be useful in formalisation in a proof assistant.
Another important goal is to provide the support for corules in a proof
assistant, such as Agda (The Agda Reference Manual) or Coq (The Coq Reference
Manual), to have a tool to mechanize and certify proofs. In dependent type
theories supporting inductive and coinductive types (Hagino, 1987; Abel et al.,
2013; Abel and Pientka, 2013; Basold, 2018), like the one at the basis of Agda,
we can implement predicates defined by inference systems with corules just
applying the definition: we can use a coinductive type, representing possibly
infinite proof trees, which internally uses an inductive type to require each
node to have finite proof tree with corules. We have analysed this possibility,
using Agda, in a master thesis (Ciccone, 2019). What would be interesting is
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to hide this construction, in such a way that the programmer has only to care
about specifying rules and corules, leaving everything else to the engine. We
are currently working on an Agda implementation of inference systems with
corules, where we have types modelling sets of rules and corules and then
a type construction taking an inference system with corules and producing
a type modelling its interpretation. This requires the user to write rules and
corules in a slightly unusual way, hence a futher development would be to
allow the user writing definitions in a more familiar syntax and then compile
it to produce Agda code.

Another question concerns the expressive power of this framework. Here
by expressive power we mean “how many” subsets of the universe we can
characterise. At the level considered in this thesis to develop the theory, this
question is not significant: indeed, any subset of the universe can be expressed
by an inference system consisting of one axiom for each judgement in such
set, for which all interpretations are equivalent. However, this sounds not very
useful, since, to define a subset, we use the subset itself. Actually, inference
systems, and hence inference systems with corules, are never used in the form
they are regarded in the development of the meta-theory, but, rather, they are
expressed using a finite set of meta-rules, leaving implicit the step from meta-
rules to plain rules, which, instead, are considered in the meta-theory. At this
level, the above question becomes meaningful. Hence, to investigate expressive
power in the appropriate setting, we should define what is an inference system
in terms of meta-rules. To this end, interesting starting points could be the
works by Momigliano and Tiu (2003) and Brotherston and Simpson (2011),
which discuss proof systems for first-order logics with a notion of inductive
and/or coinductive definitions.

Another source of inspiration to address the expressiveness issue could be
computability theory, in particular the arithmetical hierarchy, which provides
a tool to classify subsets of natural numbers depending on how much it is
difficult to check membership. Restricting to a countable universe and under
suitable conditions on inference rules, we conjecture that inductively definable
sets are those in X¢ (recursively enumerable sets), coinductively definable sets
are those in I1{, and sets definable by an inference system with corules are those
in I, namely, they are more “difficult” than the other two classes. Ancona
and Dovier (2015) have taken this perspective to characterise the coinductive
semantics of definite logic programs, which are a particular syntactic instance
of inference systems, showing that it is not recursively enumerable.

Another interesting direction is to investigate variants/improvements of the
model, to avoid unexpected behaviours like those discussed in Sections 3.5.3
and 7.2. The first possible improvement is to move from sets and subsets to
families and subfamilies. In this way it would be possible to design a model able
to force a corule to be applicable only to some judgements. This is particularly
useful when an inference system defines multiple judgements, for instance
the following one:

px) q46) 9(x) —
p(x) p(0) g+ 1) )
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where x € IN + {oo}. Here, as there is no corule for judgements of shape p(x),
we expect it to be provable only by finite derivations, hence the first rule
should be irrelevant and so p(x) should hold iff q(x) holds. Therefore, since
q(x) holds iff x = oo, because the only derivation is the following infinite one

q(oo)
q(c0)

we expect that only p(co) holds. However, in the current model, as all judge-
ments are treated the same way, this is not true, since we have the following

proof trees, which are correct for any x € N + {oo}:

p(x) 4(x)
p(x) p(x)

In other words, rules for p(x) are interpreted coinductively, even if there is no
explicit corule for p(x).
Another possible variant of the model is to make the connection between

rule and corules stronger. Roughly, at the moment the semantics is constructed
in two completely independent steps, hence corules can be freely applied even
to judgements that at the end are not in the constructed fixed point. This could
raise issues in some cases (cf. the example in Section 7.2) and we conjecture it
could be solved by slightly changing the fixed point construction.
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Infinite behaviour by big-step
semantics






Big-step semantics: an operational
perspective

The semantics of programming languages or software systems specifies, for
each program/system configuration, its final result, if any. In the case of non-
existence of a final result, there are two possibilities:

« either the computation stops with no final result, and there is no means
to compute further: stuck computation,

« or the computation never stops: non-termination.

There are two main styles to define operationally a semantic relation: the
small-step style (Plotkin, 1981, 2004), on top of a transition relation representing
single computation steps, or directly by a set of rules as in the big-step style
(Kahn, 1987). Within a small-step semantics it is straightforward to make the
distinction between stuck and non-terminating computations, while a typical
drawback of the big-step style is that they are not distinguished (no judgement
is derived in both cases). Actually, in big-step style, it is not even clear what a
computation is, because the only available notion we have is derivability of
judgements, which does not convey the dynamics of computation.

For this reason, even though big-step semantics is generally more abstract,
and sometimes more intuitive to design and therefore to debug and extend,
in the literature much more effort has been devoted to study the meta-theory
of small-step semantics, providing properties, and related proof techniques.
Notably, the soundness of a type system (typing prevents stuck computation)
can be proved by progress and subject reduction, also called type preservation,
(Wright and Felleisen, 1994). Note that soundness cannot even be expressed
with respect to a big-step semantics, since non-termination and stuckness are
confused, as they are both modelled by the absence of a final result.

Our quest in this chapter is to develop a meta-theory of big-step operational
semantics, to enable formal reasoning also on non-terminating computations.
More precisely we will address the following problems:

1. Defining, in a formal way, computations in a given arbitrary big-step
semantics.

2. According to this definition, providing constructions yielding an exten-
ded version of a given arbitrary big-step semantics, where the difference
between stuckness and non-termination is made explicit.
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3. Providing a general proof technique by identifying three sufficient condi-
tions on the original big-step rules to prove soundness of a predicate.

All these three points rely on the same fundamental cornerstone: a general
definition of big-step semantics. Such a definition captures the essential fea-
tures of a big-step semantics, independently from the particular language or
system.

To address Item 1, we rely on the intuition that every big-step semantics
implicitly defines an evaluation algorithm and we identify computations in the
big-step semantics with computations of such algorithm. Formally, we extend
the big-step semantics to model partial evaluations, representing intermediate
states of the evaluation process, and we formalise the evaluation algorithm
by a transition relation between such intermediate states. In this way, we can
easily distinguish stuck and non-terminating computations, showing that this
distinction is actually present, but hidden, in any big-step semantics. In a sense,
this definition makes explicit the operational nature of big-step semantics,
which is not so evident as for small-step one.

Constructions in Item 2 provide extended big-step semantics able to distin-
guish between stuck and non-terminating computations, as obtained by Item 1,
but abstracting away single computation steps. More in detail, starting from an
arbitrary big-step judgment ¢ = r that evaluates configurations ¢ into results
r, the first construction produces an enriched judgement ¢ =, r, where r; is
either a pair (t,r) consisting of a finite trace ¢t and a result r, or an infinite
trace o. Finite and infinite traces model the (finite or infinite) sequences of
all the configurations encountered during the evaluation. In this way, by in-
terpreting coinductively the rules of the extended semantics, an infinite trace
models divergence (whereas no result corresponds to stuck computation).
Furthermore, we will show that, by using coaxioms, we can get rid of traces,
modelling divergence just by a judgmeent ¢ = oo. The second construction is
in a sense dual. It is the general version of the well-known technique presented
in Exercise 3.5.16 by Pierce (2002) of adding a special result wrong explicitly
modelling stuck computations (whereas no result corresponds to divergence).
We will show that these constructions are correct, proving that they represent
the intended class of computations as defined in Item 1.

Item 3’s three sufficient conditions are local preservation, 3-progress, and
V-progress. For proving the result that the three conditions actually ensure
soundness, we crucially rely on the extended big-step semantics of Item 2,
since otherwise, as said above, we could not even express the property.

However, the three conditions deal only with the original rules of the given
big-step semantics. This means that, practically, in order to use the technique
there is no need to deal with the meta-theory (computations and extended
semantics), exactly as happens for the progress and subject reduction technique
for small-step semantics. This implies, in particular, that our approach does not
increase the original number of rules. Moreover, the sufficient conditions are
checked only on single rules, hence neither induction nor coinduction is needed.
In a sense, they make explicit elementary fragments of the soundness proof,
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which we carry out once and for all (cf. Theorems 5.38 and 5.41), embedding
such semantic-dependent fragments in a semantic-independent (co)inductive
proof. Even though this is not exploited in this thesis, this form of locality
enables modularity, in the sense that adding a new rule implies adding the
corresponding proof fragment only.

We support our approach by presenting several examples, demonstrating
that: on the one hand, soundness proofs can be easily rephrased in terms of
our technique, that is, by directly reasoning on big-step rules; on the other
hand, our technique is essential when the property to be checked (for instance,
well-typedness) is not preserved by intermediate computation steps, whereas it
holds for the final result. On a side note, our examples concern type systems,
but the meta-theory we present in this work holds for any predicate.

Actually, we can express two flavours of soundness, depending on whether
we make explicit stuckness or non-termination. In the former case we express
soundness-must, which is the notion of soundness we have considered so
far, preventing all stuck computations, while in the latter case we express
soundness-may, a weaker notion only ensuring the existence of a non-stuck
computation. Of course, this distinction is relevant only in presence of non-
determinism, otherwise the two notions coincide. We define a proof technique
for soundness-may as well, showing it is correct. In the end, it should be noted
that we define soundness with respect to a big-step semantics within a big-step
formulation, without resorting to a small-step style (indeed, the extended
semantics are themselves big-step).

The rest of the chapter is organised as follows. Section 5.1 provides a defini-
tion of big-step semantics. Section 5.2 introduces partial evaluation trees and a
transition relation between them, modelling the evaluation algorithm guided
by rules and defines computations in big-step semantics as possibly infinite
sequences of steps in such transition relation. In this way we get a reference se-
mantic model. Section 5.3 define two constructions extending a given big-step
semantics: one, based on traces, which explicitly models diverging computa-
tions and another, which explicitly models stuck computations. Section 5.4
defines a third construction, modelling divergence just as a special result, by
using appropriate corules. Section 5.5 shows how we can express two flavours
of soundness against big-step semantics and provide proof techniques to show
this property. Finally, Section 5.6 shows how to use the proof technique on
several examples.

Defining big-step semantics

As mentioned in the introduction, the corner stone of this chapter is a formal-
isation of “what a big-step semantics’is, that captures its essential features,
subsuming a large class of examples. This enables a general formal reasoning
on an arbitrary big-step semantics.

DEFINITION 5.1 : A big-step semantics is a triple (C, R, R) where:
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« Cis aset of configurations c.

+ Ris a set of results r. We define judgments j = c¢= r, meaning that
configuration c evaluates to result r. Set C(j) = ¢ and R(j) = r.

+ R is a set of (big-step) rules p of shape

JU - Jn

= also written in inline format: rule(j; . . . jn, ¢, 1)
c>r

where ji ...j,, with n > 0, is a sequence of premises. Set C(p) = ¢,
R(p) = rand, for i € 1..n, C(p, i) = C(j;) and R(p, i) = R(j;).

We will use the inline format, more concise and manageable, for the devel-
opment of the meta-theory, e.g., in constructions.

Big-step rules, as defined above, are very much like inference rules as in
Definition 2.1, but they carry slightly more structure with respect to them.
Notably, premises are a sequence rather than a set, that is, they are ordered and
there can be repeated premises. Such additional structure, however, does not
affect derivability, namely, the inference operator and so the interpretations of
such rules. Therefore, given a big-step semantics (C, R, R), slightly abusing
the notation, we denote by R the inference system obtained by forgetting such
additional structure, and define, as usual, the semantic relation as the inductive
interpretation of R. As usual (cf. Definition 2.6), we will write R +, c=r
when the judgment ¢ = r is derivable in R.

Even though the additional structure of big-step rules does not affect the
semantic relation they define, it is crucial to develop the meta-theory, allowing
abstract reasoning about an arbitrary big-step semantics. It will be used in all
results in this chapter: to define computations in big-step semantics, then to
provide constructions yelding extended semantics able to distinguish stuck and
diverging computations and, finally, to define proof techniques for soundness.
Indeed, as premises are a sequence, we know in which order configurations in
the premises should be evaluated.

In practice, the (infinite) set of rules R is described by a finite set of meta-
rules, each one with a finite number of premises. As a consequence, the number
of premises of rules is not only finite but bounded. Since we have no notion
of meta-rule, we model this feature (relevant in the following) as an explicit
assumption:

ASSUMPTION 5.1 (Bounded premises (BP)): For a big-step semantics (C, R, R),
there exists b € N such that, for each p = rule(j; . .. jn, ¢, 1), n < b.

We end this section by illustrating the above definitions and conditions on
a simple example: a A-calculus with constants for natural numbers, successor
and non-deterministic choice, shown in Figure 5.1. It is immediate to see this
example as an instance of Definition 5.1:

» Configurations and results are expressions, and values, respectively.*

1 In general, configurations may include additional components and results are not necessarily
particular configurations, see, e.g., Section 5.6.2.
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e == x|v|e e |succe|e ®e; expression
v u= n|Aix.e value

ege=>Axe ea=>v ewn/x]=v

(vaL) (arp)
V= e1e =V
e=n e =>v .
(succ) ——— (cHoicg) —— i=1,2
succe=n+1 e e=v

(vav) rule(e, v, v)

(arp) rule(e; = Ax.e e = vy e[ /x] = v, €1 €3, V)
(succ) rule(e= n, succe, n+1)

(cuorce) rule(e; = v, ey ® ey, v) i =1,2

FIGURE 5.1 Example of big-step semantics

« To have the set of (meta-)rules in our required shape, abbreviated in inline
format in the bottom section of the figure, we have only to assume an
order on premises of rule (are).

REMARK: The order of premises chosen for rule (are) in Figure 5.1 formalises
the evaluation strategy for an application e; e, where first (1) evaluates e;, then
(2) checks that the value of e is a A-abstraction, finally (3) evaluates e,. That
is, left-to-right evaluation with early error detection. Other strategies can be
obtained by choosing a different order or by adjusting big-step rules. Notably,
right-to-left evaluation (3)-(1)-(2) can be expressed by just swapping the first
two premises, that is:

(app-r) rule(e; = vy ey = Ax.e e[w/x] = v, e €3, V)

Left-to-right evaluation with late error detection (1)-(3)-(2) can be expressed
as follows:

(arp-Late) rule(e; = vy e = vy v = Ax.e e[V /x] = v, e e, V)

We can even opt for a non-deterministic approach by taking more than one
rule among (arr), (apr-r) and (are-ratr). As said above, these different choices
do not affect the semantic relation inductively defined by the inference system,
which is always the same. However, they will affect computations and thus the
extended semantics distinguishing stuck computation and non-termination.
Indeed, if the evaluation of e; and e; is stuck and non-terminating, respectively,
we should obtain a stuck computation with rule (arr) and non-termination
with rule (are-r); further, if e; evaluates to a natural constant and e, diverges,
we should obtain a stuck computation with rule (arr) and non-termination
with rule (app-rLaTE).

In summary, to see a typical big-step semantics as an instance of our defin-
ition, it is enough to identify configurations and results and to assume an
order (or more than one) on premises.
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Computations in big-step semantics

Intuitively, the evaluation of a configuration ¢ is a dynamic process and, as
such, it may either successfully terminate producing the final result, or get
stuck, or never terminate. However, a big-step semantics just tells us whether a
configuration c evaluates to a certain result r, without describing the dynamics
of such evaluation process. This is nice, because it allows us to abstract away
details about intermediate states in the evaluation process, but it makes quite
difficult to reason about concepts like non-termination and stuckness, since
they refer to computations and we do not even know what a computation is
in a big-step semantics.

In this section, we show that, given a big-step semantics as defined in
Definition 5.1, we can recover the dynamics of the evaluation, by defining
computations, which, in a sense, are implicit in a big-step specification. To
this end, we extend the big-step semantics, so that we can represent partial
(or incomplete) evaluations, modelling intermediate states of the evaluation
process. Then, we model the dynamics by a transition relation beween such
partial evaluations, hence, as usual, a computation will be a (possibly infinite)
sequence of transitions.

Let us assume a big-step semantics (C, R, R). As said above, the first step is
to extend such semantics to model partial evaluations. To this end, first of all,
we introduce a special result ?, so that a judgment ¢= ? (called incomplete,
whereas a judgment ¢ = r is complete) means that the evaluation of ¢ is not
completed yet. Set R, = R + {?} whose elements are ranged over by r,. We
now define an augmented set of rules R, to properly handle the new result ?:

DEFINITION 5.2 (Rules for partial evaluation): The set of rules R is ob-
tained from R by adding the following rules:

START RULES For each configuration c € C, define rule ax»(c) as

=7
PARTIAL RULES For eachrule p = rule(ji ... jn, ¢, r)in R, index i € 1..n,
and r, € Ry, define rule pev,(p, i, 1) as

jiooo. Ji-1 CUi)=r
c="7?

Intuitively, start rules allow us to begin the evaluation of any configuration,
while partial rules allow us to partially apply a rule from R to derive a partial
judgement. Note that the last premise of a partial rule can be either complete
(» € R) or incomplete (> = ?), in the latter case we also call it a ?-propagation
rule, since it propagates ? from premises to the conclusion.

It is important to observe that the construction described above yields a
triple (C, R;, R»), which is a big-step semantics according to Definition 5.1. In
Figure 5.2 we report rules added by the construction in Definition 5.2 to the
big-step semantics of the A-calculus in Figure 5.1.

Given a big-step semantics (C, R, R), using rules in R, we can build trees
called evaluation trees. Such trees are very much like proof trees for an inference
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e=>w e =W
e="7? succe=" e1Pe="7

i=1,2

e e=Alxe ee=>w eg=>Axe = evn/x]= v

e1ey="7 e1ey="7 e1e="

FIGURE 5.2 Rules for ? for the A-calculus in Figure 5.1.

system, as defined in Section 2.1 (cf. Definition 2.5), with the only difference
that evaluation trees are ordered trees, because premises of big-step rules are a
sequence. Roughly, an evaluation tree is an ordered tree with nodes labelled by
semantic judgements, such that for each node labelled by ¢ = r with sequence
of children ji, .. ., ju, there is a rule rule(j; . . . j,, ¢, r) in R.

An evaluation tree for (C, R;, R;) is called a partial evaluation tree, as it
can contain incomplete judgements. We say that a partial evaluation tree is
complete if it only contains complete judgments, it is incomplete otherwise.
Finite partial evaluation trees indeed model possibly incomplete evaluation
of configurations, namely, the intermediate states of the evaluation process,
because big-step rules can be partially applied. Hence, they are the funda-
mental building block, which will allow us to define computations in big-step
semantics.

In the next subsection we will give a formal definition of (partial) evaluation
trees, similar to the one used for proof trees (cf. Section 2.1.1). However, this
formal definition is only needed to state some results and to carry out proofs
in a rigorous way, and not to follow the rest of the chapter, hence the reader
not interested in formal details can skip it, relying on the above semiformal
definition.

The structure of partial evaluation trees

We give a formal account of (partial) evaluation trees, which is useful to state
and prove technical results in the next sections. This development is based on
the definition and properties of trees provided by Courcelle (1983), adjusted to
our specific setting.

Set IN. ¢ the set of positive natural numbers and £ a set of labels. An ordered
tree labelled in L is a partial function 7 : NX, — £ such that dom(r) is not
empty, and, for each &« € N%, and n € N, if an € dom(r) then & € dom(r)
and, for all k < n, ek € dom(r). Given an ordered tree 7 and @ € dom(r),
set br.(a) = sup{n € N | an € dom(r)} the branching of r at «, and 7|, the
subtree of 7 rooted at , that is, 7|, (f) = t(af), for all f € NZ . The root of T
is r(r) = 7(¢) and obviously we have 7 = 7). Finally, we write no-.
for the tree 7 defined by 7(¢) = x, and r(ia) = r;(a) for alli € 1..n.

This definition of tree is very much like the one introduced in Section 2.1.1,
and so notations are almost the same. There are, however, three main dif-
ferences: these trees are ordered, each node has only finitely many children,
and there can be two sibling nodes with the same label. These additional
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features are essential here to properly deal with big-step semantics. Since in
the following we will only deal with ordered trees, we will refer to them just
as trees.

Let us assume a big-step semantics (C, R, R). Assume also that labels in £
are semantic judgments ¢ = r, then we can define evaluation trees as follows:

DEFINITION 5.3 : Atreert: ]N:o — L is an evaluation tree in (C, R, R), if,

foreach ¢ € dom(r) with (@) = ¢= r, thereisrule(zr(al)...r(abr (a)), ¢, r) € R.

Note that, starting from an evaluation tree 7, we can construct a proof tree, as
defined in Definition 2.5, for the inference system denoted by R, by forgetting
the order on sibling nodes and removing duplicated children. Therefore, if 7 is
a finite evaluation tree with r(r) = ¢= r, then R +, ¢= r holds.

DEFINITION 5.4 : A partial evaluation tree in (C, R, R) is an evaluation tree

in (C, Ry, R>).

The following proposition assures two key properties of partial evaluation
trees. First, if there is some ?, then it is propagated to ancestor nodes. Second,
for each level of the tree there is at most one ?. We set || the length of & € INZ .

PROPOSITION 5.5 : Let 7 be a partial evaluation tree, then the following
hold:

1. for all an € dom(r), if R;(z(an)) = ? then Ry(t(a)) = 2.

2. for all n € N, there is at most one a € dom(r) with |a| = n such that

Ri(r(a)) = 2.

: Proof: To prove Item 1, we just have to note that the only rules having a
premise j with R;(j) = ? are ?-propagation rules, which also have conclusion
j" with Rx(j’) = ?; hence the thesis is immediate. To prove Item 2, we proceed
: by induction on n. For n = 0, there is only one a € N%, with |a| = 0 (the
empty sequence), hence the thesis is trivial. Consider &« = @’k € dom(r) with
la| = n+ 1. If Ry(r(a)) = ?, then, by Item 1, R;(7(2”)) = ?, and, by induction
: hypothesis, a’ is the only sequence of length n in dom(r) with this property.
Therefore, another node f € dom(r), with || = n+ 1 and Ry(z(f)) = ?, must
satisfy f = a’h for some h € N+ ; hence, since 7 is a partial evaluation tree,

: () and 7(p) are two premises of the same rule with ? as result, thus they
: must coincide, since all rules in R; have at most one premise with ?. O

COROLLARY 5.6 : Let 7 be a partial evaluation tree, then R;(r(r)) € R if and
only if 7 is complete.

We can define a relation? denoted by L, on trees labelled by possibly in-
complete judgements, as follows:

2 This is a slight variation of similar relations on trees considered by Courcelle (1983) and
Dagnino (2019).
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DEFINITION 5.7 : Let 7 and 7’ be trees labelled by possibly incomplete
semantic judgements. Define 7 C 7’ if and only if dom(r) € dom(z’) and, for
all « € dom(r), C(r(a)) = C(r'(a)) and R(7(a)) € R implies 7, = 77|,

Intuitively, 7 C 7’ means that 7’ can be obtained from 7 by adding new
branches or replacing some ?s with results. We use C for the strict version of
C. Note that, if 7 C 7/, then, for all « € ]N:O, /(@) is more defined than 7(«a),
because, either 7(«) is undefined, or 7(«) is incomplete and C(z(a)) = C(z'(«)),
or 7(a) = t’(a).

It is easy to check that C is a partial order and, if ¢ T 7’, then, for all
a € dom(r), 7, C 7’|,. The following proposition shows some, less trivial,

properties of C.
PROPOSITION 5.8 : The following properties hold:

1. forall trees r and 7/, if 7 C 7" and Ry(r(7)) € R, then 7 = ¢’

2. for each increasing sequence (7;);en of trees, there is a least upper bound

r=|]1p.

Proof:  Item1is immediate by definition of E. To prove Item 2, first note that,
since foralln € N, 7, C 7,,4q, forall « € ]N;O we have that, for all n € N, if
i () is defined, then, for all k > n, C(tr()) = C(z,(@)), and, if Ry (1, () € R,
then rx () = 7,(@). Hence, for all n € N, there are only three possibilities
i for 7,(a): it is either undefined, or equal to ¢ = ?, or equal to ¢ = r, where
the configuration is the same. Let us denote by k, the least index where
Tn(@) is most defined, hence, for all n > k,, we have that 7,(a) = 7 ().
: Then, consider a tree 7 defined by 7(a) = 7% (). It is easy to check that
dom(7) = U, ey dom(t,). We now check that, for all n € N, 7, C 7. For all
a € dom(z,), we have a € dom(7) and we distinguish two cases:

« if 7,(a) = c=7?, then k, > n, hence, since 7, C ¢, we get C(r()) =
C(r, (@) = Ctn(a)) = ¢

+ if tp(a) = ¢c= r, then k, < n, hence, since 7, C 7,, we get C(7(a)) =
C(tx, (a)) = C(tx(@)) = c, thus we have only to check that 7, = 7|,.
That is easy, because, for all # € dom(z, |, ), we have 7, () = tn(aff) =
¢’= r’, hence k,p > n, hence 7|, (f) = 7(aff) = Tkaﬁ(aﬂ) = 1,(ap), as
needed.

 This proves that 7 is an upper bound of the sequence, we have still to prove
that it is the least one. To this end, let 7’ be an upper bound of the sequence:
we have to show that ¢ C 7’. Since 7’ is an upper bound, for all n € N we
. have dom(r,) € dom(z’), hence dom(z) € dom(z’), and, especially, for all
a € N%, we have 7;, C 7’. Hence, for all « € dom(r), we have C(r(a)) =
: C(ty,, (@) = C(t'(@)), and, if Ry(r()) = r, since 7x, C 7 and ¢, C 7/, we
have 7%, le = Tl and 7y, e = 7’|,, hence 7, = 7’|, as needed. O
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Obviously, this relation restricts to partial evaluation trees and, more im-
portantly, the set of partial evaluation trees is closed with respect to least
upper bound for C, as the next proposition shows.

PROPOSITION 5.9 : For each increasing sequence (7, ),en of partial evalu-
ation trees, the least upper bound | | 7, is a partial evaluation tree as well.

Proof: Set t = | | 7, and recall from Proposition 5.8 (2) that 7(a) = ¢ (@),
where k, € N is the least index n where 7,,(«) is most defined. Note that, for
t all @ € dom(r), br,(a) is finite, since, by definition of 7, we have br,(a) =
sup{br;,(a) | n € N}, and this value is bounded because br;, () is the
number of premises of a rule, which is bounded by Assumption 5.1. Then,
since br, () is finite, there is an index n € N such that br,(«) = br,, (a) and, in
: particular, this holds for all n > kgpr, (). Set n = max{ky, ka1, - . ., Kabr, ()}
hence n > kg, (o) and 7 : n(a) = v(a) and 7,(ai) = 7(ai), foralli € 1..br().
Therefore, {(r(al)...t(abr (), r(a)) = {(tp(al)...(abr (a)), Tn(a)) €
: Ro, since 7, is a partial evaluation tree. Thus, by Definition 5.4, 7 is a partial
evaluation tree. O

As already mentioned, finite partial evaluation trees model possibly incom-
plete evaluations. Then, the relation C models refinement of the evaluation,
because if 7 C 7/, where 7 and 7’ are finite partial evaluation trees, 7’ is “more
detailed” than 7. In a sense, C on finite partial evaluation trees abstracts the
process of evaluation itself, as we will make precise in the next section.

What about infinite trees? Similarly to what we have discussed in the
introduction, there are many infinite partial evaluation trees which are difficult
to interpret. For instance, using rules in Figure 5.1 and Figure 5.2, we can
construct the following infinite tree for all v,, where Q = (Ax.x x) (Ax.x x):

Axxx=Axxx  Axxx=Ax.xx Q=(xx)[Ax.xx/x]=>w
Q=

Among all such trees there are some “good” ones, we call them well-formed.
Well-formed infinite partial evaluation trees arise as limits of strictly increasing
sequences of finite partial evaluation trees, hence, in a sense, they model the
limit of the evaluation process. namely, non-termination.

DEFINITION 5.10 : An infinite partial evaluation tree 7 is well-formed if,
for all n € N, there is @ € dom(r) such that |a| = n and R;(r(«)) = ?, and, for
all « € dom(r), if R(r(@)) € R, then 7|, is finite.

Informally, this means that a well-formed tree contains a unique infinite
path, which is entirely labelled by incomplete judgments, hence all its complete
subtrees are necessarily finite. Then, we can prove the following result:

PROPOSITION 5.11 :  The following properties hold:
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1. for each strictly increasing sequence (7,),en of finite partial evaluation
trees, the least upper bound | | 7, is infinite and well-formed,;

2. for each well-formed infinite partial evaluation tree 7, there is a strictly
increasing sequence (7,),eN of finite partial evaluation trees such that

T =|]7,.

: Proof: To prove point 1, set T = | | 7,,, then, by Proposition 5.9, we have that
T is a partial evaluation tree, hence we have only to check that it is infinite
and well-formed. Since the sequence is strictly increasing, we have that, for
tall n € N, there is h > n such that dom(z,,) € dom(z), namely, there is
a € dom(ty) such that @ ¢ dom(z,). This can be proved by induction on the
number of ? in 7, which is finite since 7, is finite, noting that, if dom(z,) =
i dom(7,,41), since 7, C 7,41, there is at least one node & € dom(z,) such that
Ry(tp(a)) = ? and Ry(rp4+1(a)) = r. Therefore, dom(zr) = |J,en dom(z,) is
infinite, that is, 7 is infinite. To show that 7 is well-formed, first recall that,
i for all @ € dom(7), k,, is the least n such that 7,(«) is most defined. Note that,
for all « € dom(r) such that 7(a) = ¢= r, since 7;, C 7 and 7% (o) = 7(),
we get, by definition of C, 7%, le = Tla> hence 7|, is finite. Then, we still have
: only to prove that, for each n € N, there is @ € dom(r) such that |a| = n and
Ry(r(a)) = ?. We proceed by induction on n. For n = 0, we have R;(r(7)) = 2,
since, otherwise, we would have R;(rrx,) = r, hence, by Proposition 5.8 (1), we
would get 75, = 7,41 Which is not possible, because the sequence is strictly
. increasing. Now, by induction hypothesis, we know there is @ € dom(r) such
that |a| = n and Ry(z(«)) = ?. By Proposition 5.5, for all § € dom(r) with
: B=a’hand a’ # a, we have Ry(7(f)) € R, because, if R,(7(f)) = ?, then also
Ry(r(a’)) = ? and this implies &’ = «, which is absurd, thus, for all such g, we
have 7 5 is finite, as we have just proved. Hence, we can focus on children of
a, splitting cases over br;(a). If br; () = 0, then a has no children and so ¢
. 1is finite, which is absurd. If & = br,(a) > 0, then, if R,(r(ah)) € R, since 7 is a
partial evaluation tree, we get Ry(t(ah’)) € R for all b’ < h, hence r is finite,
: which is absurd, thus R;(7(ah)) = ?, as needed. Therefore, 7 is well-formed
as needed.

: To prove point 2, for all n € N, consider the partial evaluation tree 7,
defined as follows: let a, € dom(r) be the node such that |a,| = n and
i Ry(t(ap)) = ? (which exists as 7 is well-formed and is unique thanks to
Proposition 5.5 (2)), then define 7,(8) = 7(f) for all f # a,p’, with f” € NT,
and undefined otherwise. We have 7, C 1,1, since, by Proposition 5.5 (1),
! Qp+1 = i for some i € N+ . Finally, by construction, we have 7 = | | 7, as
needed. O

This important result will be used in the next sections to prove correctness
of extended big-step semantics explicitly modelling divergence.
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The transition relation

As already mentioned, finite partial evaluation trees nicely model intermediate
states in the evaluation process of a configuration. We now make this precise
by defining a transition relation ——, between them, such that, starting
from the initial partial evaluation tree

5> We derive a sequence where,

intuitively, at each step we detail the evaluation. In this way, a sequence ending
with a complete tree (a tree containing no ?) models succesfully terminating
computation, whereas an infinite sequence (tending to an infinite partial
evaluation tree) models divergence, and a sequence reaching an incomplete
tree which cannot further move models a stuck computation.

The one-step transition relation —— , is inductively defined by the rules
in Figure 5.3. Transitions are actually defined between annotated partial eval-
uation trees, that is, partial evaluation tree where each node is explicitly
associated with the rule in R, used to derive it from its children. This ad-
ditional information is somehow redundant and only needed to make the
definition clearer, hence in the following we will omit such annotations. In the
figure, #p denotes the number of premises of p, and rz the root of 7. Finally,
~; is the equality up-to an index of rules, defined below:

DEFINITION 512 : Let p = rule(ji ... jn, ¢, r)and p’ = rule(ji ... j,,, c¢’, 1)
be rules in R. Then, for any index i € 1.. min(n, m), define p ~; p’ if and only
if

e c=c,
o forallk < i, ji =j,’<, and

- CGi) = CG).

Intuitively, this means that rules p and p’ model the same computation until
the i-th configuration included.

Intuitively, each transition step makes “less incomplete” the partial evalu-
ation tree. Notably, transition rules apply only to nodes labelled by incomplete
judgements (c = ?), whereas subtrees whose root is a complete judgement
(c= r) cannot move. In detail:

« If the last applied rule is ax;(c), we have to find a rule p with c in the con-
clusion and, if it has no premises we just return R(p) as result, otherwise
we start evaluating the first premise of such rule.

« Ifthe last applied rule is pev,(p, i, r), then all subtrees are complete, hence,
to continue the evaluation, we have to find another rule p’, having,
for each k € 1..i, as k-th premise the root of 7i. Then there are two
possibilities: if there is an i+1-th premise, we start evaluating it, otherwise,
we return R(p’) as result.

« If the last applied rule is a propagation rule pev,(p, i, ?), then we simply
propagate the step made by 7; (the last subtree).
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#p=0
(TR-1)  (@x() ) Clp)=c
c=7? R c=r ) _
R(p)=r
=7 #p >0
(TR-2)  (ax(c) S TR Genle1?) > Clp)=c
c=7 c ,
Clp,1)=c
p~ip
( ) T ... T T T R(p’,i)=r
TR-3) (pevo(p,i,r)) ") .
=7 R c=>r  #p =i
R(p") =1
’
T ... T ... =7 P ,,P
(TR-4)  (peva(p, i) —— 4 Gen(p i) —————— R(p’,i) =r
=7 R =7 /an ’
Clp,i+1)=c
1 .. Ti-1 Tj 1 ... Ti—1 Ti/ ,
(TR-5)  (pevs(p,i?) Py R Geva(p.ir)) R Ti RTi

FIGURE 5.3 Transition relation between partial evaluation trees.

Ax.x=? Ax.x= Ax.x
Ax.x)n=7 R Ax.x)n=7? R Axx)n=7?
Ax.x=>Ax.x n=? Ax.x=>Ax.x n=n
R Ax.x)n=7? R Ax.x)n=7?
Ax.x=>Ax.x n=>n n=? Ax.x=>Ax.x n=n n=n
R Axx)n=7? R Ax.x)n=7?

Axx=>Ax.x n=>n n=n

R Ax.x)n=n

FIGURE 5.4 The evaluation of (Ax.x) n using ——, for rules in Figure 5.1.

In Figure 5.4 we report an example of evaluation of a term according to rules
in Figure 5.1, using partial evaluation trees and —— ..

As mentioned above, the definition of ——, given in Figure 5.3 nicely
models as a transition system an interpreter driven by the big-step rules. In
other words, the one-step transition relation between finite partial evaluation
trees specifies an algorithm of incremental evaluation.? On the other hand, also
the partial order relation C (cf. Definition 5.7) models a refinement relation
between finite partial evauation trees, even if in a more abstract way. The next
proposition formally proves that these two descriptions agree, namely, C is
indeed an abstraction of —— .

PROPOSITION 5.13 :  Let 7 and 7’ be finite partial evaluation trees, then the
following hold:

1. if T—>RT/ then 7 C 7/, and

2. if T C ¢’ then T————>;‘<T’.

3 Non-determinism can only be caused by intrinsic non-determinism of the big-step semantics,
if any.
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Proof:  Point 1 can be easily proved by induction on the definition of ——.
: The proof of point 2 is by induction on 7’, denote by IH the induction
: hypothesis. This is possible as 7’ is finite by hypothesis. We can assume
Ry(r(r)) = ?, since in the other case, by Proposition 5.8 (1), we have 7 =
7/, hence the thesis is trivial. We can further assume R;(rz’) = ?, since, if

’ ’ ’ ’
o (S 4 , T T, ,
: v/ = ———— | then we always have 7" = &7 and
: c=>r c=7?
T C1r”. Now,ifr’ = 5 (base case), then, since dom(r) C dom(z’) and
: C= !
: C(r(r)) = C(rr’) by definition of C, we have r = 7’, hence the thesis is trivial.
. 7’ 7’
1T ...Tk T i .
Let us assume 7 = ———= and ¢’ = - L with, neces-
c>7? =7

sarily, k < i and ¢ = ¢’ by definition of C. We have 7, C 7,, for all
: h < k, and by Proposition 5.5 (2), at most 7x is incomplete, that is, for
tall h < k, 1 is complete, namely, Ry(rr,) € R, thus, by definition of E,

: we have 75, = 7.';1. Furthermore, since 7 C 7;, by IH, we get Tk_);eflé’
’ ’

: T

: 1 .

: hence T——>;T” = 1 " kK ¢ Wenow show, concluding the proof,

c="7?

by arithmetic induction on i — k, that r”—>;§r’. Ifi—k =0,hencei =k,
: we have 7”7 = 7/, hence the thesis is immediate. If i — k > 0, hence i > k,
: setting ¢’ = C(r(t]

+1))’ by IH, we get r— —>;§f,;+1; moreover, again
=7

by Proposition 5.5 (2), we have R(r7;) € R, hence we get

’ rnm ) ’ ’ ’
. 7 ... T C = ! T oo T Ten

T R =T

%

c=7? c>7?

*

Finally, by arithmetic induction hypothesis, we get f——%7’, asneeded. O

We conclude this section by showing that the transition relation —,
agrees with the semantic relation (inductively) defined by R, namely, the
semantic relation captures exactly successful terminating computations in

— g

THEOREM5.14 : R, c= riff > —— %7, wherer(t) = c=r.

c=

Proof: R+, c= rimplies . —— %7 where r(r) = ¢= r. By definition,

: =7
: if R F, ¢= rholds, then there is a finite evaluation tree 7 in R such that r(7) =
i ¢=r. Since R C R, by Definition 5.2, 7 is a (complete) partial evaluation

5 E 7, hence, by Proposition 5.13 (2), we get

. tree as well; furthermore,
: the thesis.
: —— %7 where r(t) = c= r implies R +, ¢= r. Since r(r) = c=r,

c=

L=
: by Corollary 5.6, 7 is complete, hence, it is an evaluation tree in R, thus
: R b, ¢= rholds. ]
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5.3 EXTENDED BIG-STEP SEMANTICS: TWO CONSTRUCTIONS

Extended big-step semantics: two constructions

In Section 5.2, we have just shown that, given a big-step semantics as in
Definition 5.1, it is possible to define computations in such semantics, by
deriving a transition relation which formally models the evaluation algorithm
guided by the rules. In this way, we are able to distinguish stuck and non-
terminating computations as in standard small-step semantics. This, in a sense,
shows that such a distinction is implicit in a big-step semantics.

In this section, we aim at showing that we can make such distinction explicit
directly by a big-step semantics, without introducing any transition relation
modelling single computation steps. To this end, we describe two constructions
that, starting from a big-step semantics, yield extended ones where non-
terminating and stuck computations are explicitly distinguished. These two
constructions are in some sense dual to each other, because one explicitly
models non-termination, while the other one explicitly models stuckness,
and they are based on well-know ideas: divergence is modelled by traces, as
suggested by Leroy and Grall (2009), while stuckness by an additional special
result, as proposed by Pierce (2002). The novel contribution is that, thanks to
the general definition of big-step semantics in Section 5.1 (cf. Definition 5.1), we
can provide general constructions working on an arbitrary big-step semantics,
rather than discussing specific examples, as it is customary in the literature.

In the following, we assume a big-step semantics (C, R, R).

Traces

The set of traces in the big-step semantics is the set C* of finite and infinite
sequences of configurations. Finite traces are ranged over by ¢, while infinite
traces by o.

The judgement of trace semantics has shape ¢ = r,, where r, € Trg =
(C* X R) + C?, that is, r, is either a pair (¢, r,) of a finite trace and a res-
ult, modelling a converging computation, or an infinite trace o, modelling
divergence. Intuitively, traces t keep track of all the configurations visited
during the evaluation, starting from c itself. To define the trace semantics, we
construct, starting from R, a new set of rules Ry, as follows:

DEFINITION 5.15 (Rules for traces): The set of rules Ry, consists of the
following rules:

FINITE TRACE RULES For each p = rule(j; ... ju, ¢, r) in R and finite
traces fy, ..., t, € C*, define rule trace(p, t1,...,t,) as
C(jl) S <t1,R01)> cee C(jn) St <tn’ R(jn»
ey (cty - by, 1)
INFINITE TRACE RULES Foreach p =rule(j;...jn, ¢, r)in R, index i €

1..n, finite traces t,..., ti_;1 € C*, and infinite trace o € C%, define rule
traceo(p, i, ty, ..., ti—1, 0) as follows:
C(j1) =u (1, RG1)) ... C(ji-1) = (tic1, R(i—1)) C(ji) =w 0

C=yy Cl - ti-10
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e1 =y (i, Ax.e) ey =y (b, Vo) e[ va/x] = (t, V)
e1 e = ((eg ex)titat, v)

(APP-TR)

1=y 0 e1 =y (H,Ax.€) e =y 0
(D1V-APP-2)

(DIV-APP-1)
e e, =y (€1 e2)0 e1 e, =y (e )10
e1 =u (t, Ax.e) ey =u (b, o) e[wn/x] =40

e1 e =y (1 &)t lo

(D1V-APP-3)

FIGURE 5.5 Trace semantics for application

Finite trace rules enrich big-step rules in R by finite traces, thus modelling
computations converging to a final result. On the other hand, infinite trace
rules handle non-termination, modelled by infinite traces: they propagate
divergence, that is, if a configuration in the premises of a rule in R diverges,
namely, it evaluates to an infinite trace, then the subsequent premises are
ignored and the configuration in the conclusion diverges as well. Note that
the triple (C, Trlg, Rir) is a big-step semantics according to Definition 5.1.

The standard inductive interpretation of big-step rules is not enough in
this setting: it can only derive judgements of shape ¢ =, (¢, r), because there
is no axiom introducing infinite traces, hence they cannot be derived by fi-
nite derivations. In other words, the inductive interpretation of R, can only
capture converging computations. To properly handle divergence, we have
to interpret rules coinductively, namely, allowing both finite and infinite de-
rivations. As usual (cf. Definition 2.6), we write Ry, F, ¢ =y 1, to say that
¢ =y Iy is coinductively derivable by rules in Ry.. It is important to note the
following proposition, stating that enabling infinite derivations does not affect
the semantics of converging computations.

LEMMA 5.16 : Ry by c =y (t, 1) iff Ry by c=4 (L, 7).

Proof: The right-to-left implication is trivial, because the inductive inter-
: pretation is always included in the coinductive one. The proof of the other
direction is by induction on the length of ¢, which is a finite trace. By hy-
pothesis, we know that ¢ =, (t, ) is derivable by a (possibly infinite) de-
: rivation and, by Definition 5.15, we know that the last applied rule p" has
shape trace(p, t1,...,1,), hence t = ct;--- t,. If |[t| = 1, then t = ¢, and so
n = 0, that is, p = rule(¢, ¢, r), because only non-empty traces are derivable,

: hence Ry +y ¢ = (t, 1) holds by p*". If |¢| > 0, then, for all i € 1..n, [t;] < |t],
: hence, by induction hypothesis, we get R +,, C(p, i) =+ (t;, R(p, 1)), and so
Ry Fu €= (t, r) holds by p". O

We show in Figure 5.5 the rules obtained by applying Definition 5.15, starting
from meta-rule (arr) of the example in Figure 5.1 (for the other meta-rules the
outcome is analogous).

For instance, set 2 = wow with w = Ax.xx, and oo the infinite trace
QuwwQww . .., it is easy to see that the judgment Q =, to can be derived
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by the following infinite derivation:*

0y (w,0) 0D (w0) Q= (xx)[w/x] =00

Q= Quwop = 0o

Note that only the judgment Q = o can be derived, that is, the trace
semantics of (2 is uniquely determined to be o, since the infinite derivation
forces the equation oo = Qwwog.

To check that the construction in Definition 5.15 is a correct extension of
the given big-step semantics, we have to show it is conservative, in the sense
that it does not affect the semantics of converging computations, as formally
stated below.

THEOREM 517 : Ry by c=¢ (t, 1) for some t € C*iff R+, c=>r.

Proof: By Lemma 5.16, we know that Ry, +, ¢ = (t, ) iff Ry by c=¢ (t, 7).
: Then, the thesis follows by proving Ry Fy ¢ = (t, 1), for some t € C*, iff
R+, ¢= r, by a straightforward induction on rules. O

We conclude this subsection by showing a coinductive proof principle as-
sociated with trace semantics, which allows us to prove that a predicate on
configurations ensures the existence of a non-terminating computation.

LEMMA 518 : LetS C Cbeaset. If, forall c € S, thereare p = rule(j; . . . jn, ¢,
and i € 1..n such that

1. forallk <i, R+, ji, and
2. C(jy) eS8
then, for all ¢ € S, there exists o € C® such that R, +, c = 0.

Proof:  First of all, for each ¢ € S, we construct a trace o, € C®, which
will be the candidate trace to prove the thesis. By hypothesis (Item 1), there
i is arule p, = rule(ji . .. ju.» ¢ 7c) and an index i. € 1..n. such that, for all
k < i, we have R +, ji.. Therefore, by Theorem 5.17, there are finite traces
1 AP S C* such that for all k < i, we have Ry, +, C(j) = (t], RGO
and, in addition (Item 2), we know that C(j; ) € S. Then, for each c € §, we
: can introduce a variable X, and define an equation X, = c-#;--- - tfc . 'Xc(ffc)'
The set of all such equations is a guarded system of equations, which thus
has a unique solution, namely, a function s : § — C® such that, for each
tceSwehaves(c)=c-t]----- t -s(C(jl.cc))."’

We now have to prove that, for all ¢ € S, we have Ry, +, ¢= s(¢). To
! this end, consider the set S’ = {(c,s(c)) | ¢ € S} U {{c,{t, 1)) | R Fv
c= (t,r)}, then the proof is by coinduction. Let {c,r,) € S’, then we
have to find a rule {j;...j,,c=un) € Ry such that, for all k € 1..n,

4 To help the reader, we add equivalent expressions with a grey background.
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- (CUjx) Tr(jk)) € S’. We have two cases:
L e ifn = s(c), then the needed rule is tracews (pe, ic, 17, - - -, 17 _y, S(C(j;))),
and

o if n, = (t, 1), then Ry +, c=y (t, r), by construction of S’, hence
¢ =y (t, r) is the conclusion of a finite trace rule, where all premises are
still derivable, thus in S’ by construction.

O

: a This argument can be made more precise using coalgebras (Rutten, 2000), in particular the
fact that S and C* carry, respectively, a coalgebra and a corecursive algebra (Capretta,
Uustalu, and Vene, 2009) structure for the functor X — C* x X.

5.3.2 Wrong

A well-known technique (Abadi and Cardelli, 1996; Pierce, 2002) to distinguish
between stuck and diverging computations, in a sense “dual” to the previ-
ous one, is to add a special result wrong, so that ¢c= wrong means that the
evaluation of ¢ goes stuck.

In this case, defining a general and “automatic” version of the construc-
tion, starting from an arbitrary big-step semantics (C, R, R), is a non-trivial
problem. Our solution is based on the equivalence on rules defined in Defini-
tion 5.12 (equality up to an index), which allows us to define when wrong can
be introduced.

The extended judgement has shape ¢ = r,, where r,, € R,, = R+ {wrong},
that is, it is either a result or an error. To define the extended semantics, we
construct, starting from R, an extended set of rules R, as follows:

DEFINITION 5.19 (Rules for wrong): The set of rules R, is obtained by
adding to R the following rules:

WRONG CONFIGURATION RULEs For each configuration ¢ € C such
that there is no rule p in R with C(p) = ¢, define rule wrong(c) as

c¢= wrong
WRONG RESULT RULES For each rule p = rule(j; . . . jn, ¢, r) in R, index
i € 1..n,and result v’ € R, if, for all rules p” such that p ~; p’, R(p’, i) # 1/,
then define rule wrong(p, i, r’) as
v - Jicn CG=r
¢= wrong

WRONG PROPAGATION RULEs These rules propagate wrong analogously
to those for divergence propagation: For each rule p = rule(j; . . . jn, ¢, 1)
in R and index i € 1..n, define rule prop(p, i, wrong) as

Ji - Ji-1 C(ji) = wrong
¢= wrong

Wrong configurations rules simply say that, if there is no rule for a given
configuration, then we can derive wrong. Wrong result rules, instead, derive
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ege=>n e= Ax.e
(WRONG-APP) —————— (WRONG-sUCC) ———————
e; €2 = wrong succ e= wrong
e; = wrong e; = Ax.e e; = wrong
(PROP-APP-1) ————— (PROP-APP-2)
€1 e = wrong €] e = wrong
e1=>Ax.e ea= v, e[w/x]= wrong e= wrong

(PROP-APP-3) (prOP-sUCC) ————————————
e 6 = wrong succe= wrong

FIGURE 5.6 Semantics with wrong for application and successor

wrong whenever the configuration in a premise of a rule reduces to a result
which is not admitted in such (and any equivalent) rule. We also call these
two kinds of rules wrong introduction rules, as they introduce wrong in the
conclusion without having it in the premises. Finally, wrong propagation rules
say that, if a configuration in a premise of some rule in R goes wrong, then
the subsequent premises are ignored and the configuration in the conclusion
goes wrong as well. Note that (C, Ry, Ryr) is a big-step semantics according
to Definition 5.1.

In this case, the standard inductive interpretation is enough to get the correct
semantics, because, intuitively, an error, if any, occurs after a finite number of
steps. Then, we write Ry +, ¢ = r,, when the judgment ¢ = r,, is inductively
derivable by rules in R,

We show in Figure 5.6 the meta-rules for wrong introduction and propaga-
tion constructed starting from those for application and successor in Figure 5.1.

For instance, rule (wronc-arr) is introduced since in the original semantics
there is rule (arr) with e; e; in the conclusion and e; in the first premise, but
there is no equivalent rule (that is, with e; e, in the conclusion and e; in the
first premise) such that the result in the first premise is n. Intuitively, this
means that n is a wrong result for the evaluation of the first argument of an
application.

Like the previous construction, the wrong construction is a correct extension
of R, namely, it is conservative.

THEOREM520: Ry b, c=>riff Ry, c=r.

. Proof: The right-to-left implication is trivial, as R C R, by Definition 5.19.
The proof of the other direction is by induction on rules in R,,,. The only
. relevant cases are rules in R, because rules in R,,; \ R allow only the derivation
of judgements of shape ¢ = wrong. Hence, the thesis is immediate. ]

Correctness of constructions

We now prove correctness of the trace and wrong constructions, by showing
they capture diverging and stuck computations, respectively, as defined by
the transition relation ——, introduced in Section 5.2.2. This provides us a
coherence result for our approach.
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First of all, note that both constructions correctly capture converging compu-
tations, because, if restricted to such computations, by Theorems 5.17 and 5.20,
the constructions are both equivalent to the original big-step semantics. Hence,
in the following, we focus only on diverging and stuck computations, respect-
ively.

CORRECTNESS OF Ry, Given a partial evaluation tree 7, we write T—%
meaning that there is an infinite sequence of —— 4 -steps starting from 7.
Then, the theorem we want to prove is the following:

w

THEOREM5.21: Ry, ¢=y 0, for some o € C, iff R

c=7 —
To prove this result, we need to relate evaluation trees (a.k.a. derivations) in
Ry to partial evaluation trees. To this end, we define a function u, : Trg — Ry,
which essentially forgets traces, as follows: u;((t,r)) = r and uy(c) = ?. We
can extend this function to judgements, mapping ¢ = 1, to ¢ =+ ur(ry), and
to rules, mapping trace(p, t, ..., ;) to p and trace(p, i, t1,. .., ti-1, o) to
pev,(p, i, ?). Finally, we get a function erase that transforms an evaluation tree
¥ in Ry, into a partial evaluation tree, defined by erase(r") = u; o 7V, that is,
we apply u to all judgements labeling a node in 7%, thus erasing traces. Since
u, transforms rules in Ry, into rules in R-, the function erase is correct and
satisfies the following equations between (decorated) trees.

tr tr tr tr
Tl . Tn erase (Tl ) ... erase (Tn)
erase | (trace(p, ty,....,tn)) ————————— = (p)
c=y (L, 1) c=r
U erase (rf) ... erase (rl.”)
erase | (traceco(p, i, ty, ..., tj_1, o)) = (pevy(p,i,?))
c=y 0o’ c=7?

Note that, by construction, erase (7) is infinite and well-formed iff 7" is
infinite, and erase (") is finite iff 7" is finite.

LEMMA 5.22 : If Ry F, ¢ =y 1y holds by an infinite evaluation tree 7", then
there is a sequence (7,)nen such that 7,—— 7,41 foralln € N, 7o =

c=7?’
and | | 7, = erase (V).

: Proof: Since 7" is infinite, erase (r"') = 7 is a well-formed infinite partial
i evaluation treee and, by Proposition 5.11 (2), there is a strictly increasing

: sequence (7,),en of finite partial evaluation trees such that | |7, = 7 and

Ty = . By Proposition 5.13 (2), since for all n € N we have 7, C 7/

: c=7? ntl
 we get 1, —

* ’ 3 ’ ’
RTns1s and, since 7, # 7, ,

: Hence, we can construct a sequence (7,),en such that 7y = Ty =

this sequence of steps is not empty.

: c=7
 Thy——> ¢ Tn+1 and | | 7, = 7, as needed. |
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w
: c=7 R
: Since Ry Fy ¢ =y 0 holds and o is infinite, by (a consequence of) Lemma 5.16,

Proof (Theorem 5.21): Ry F,, ¢ = t for some t € C* implies 5 —

. there is an infinite evaluation tree " in R, such that r(r") = ¢ =, 0. Then,
i by Lemma 5.22 we get the thesis.

= —— implies Ry, +,, ¢ = t for some t € C“. We first prove that,
c=7

L if ¢ is the root configuration of an infinite well-formed partial evaluation
tree, then Ry, +, ¢ =y o, for some o € C®. This follows from Lemma 5.18,
applied to the set S C C defined as follows: ¢ € S iff C(r(1)) = ¢, for some
! infinite well-formed partial evaluation tree 7. Let ¢ € S, then ¢ = C(r(r)) and
the last applied rule in 7 is pev,(p, i, ?), for some p = rule(j; . .. jn, ¢, r) in R.
Then, we have R +, ji, for all k < i and C(j;) = C(r(r),)) and 7|, is an infinite
: well-formed partial evaluation tree. Therefore, C(j;) € S, and so hypotheses
of Lemma 5.18 are satisfied. Now, by definition of —>%, there is an infinite

sequence (7,)neN such that o = 5 and, for all n € N, 7,—— 4 Tn+1,

: C= !
: hence, by Proposition 5.13 (1), we get 7, T 7,11. By Proposition 5.11 (1), we

: have that r = | | , is a well-formed infinite partial evaluation tree, hence
. the thesis follows from what we have just proved. O

CORRECTNESS OF Ry, We now show that the construcion in Section 5.3.2
correctly models stuck computation in ——,.

The proof relies on the following lemma. We say that a (finite) partial
evaluation tree 7 is irreducible if there is no 7’ such that T——>RT’, and it is
stuck if it is irreducible and R;(r(z)) = ?. Note that, by Proposition 5.8 (1) and
Proposition 5.13 (1), a complete partial evaluation tree 7 is irreducible.

LEMMA 5.23 : If 7 is a stuck partial evaluation tree with r(r) = ¢= ?, then
Ruwr Fu ¢ = wrong holds.

Proof: The proof is by induction on 7, splitting cases on the last applied
. rule. There are three cases:

Case: ax;(c) Since 7 is stuck, by definition of —— (cf. Figure 5.3 first
and second clauses), there is no rule p € R such that C(p) = c, hence
Rur ki ¢= wrong holds, by applying wrong(c).

Case: pevy(p,i,r) Suppose p = rule(j; ...jn, ¢, ') and i € 1..n, by hypo-
thesis, for all k < i, 7|, is a complete partial evaluation tree of ji, hence we
know that R +, ji holds. Since 7 is stuck, by definition of —— (cf. Fig-
ure 5.3 third and fourth clauses), there is no rule p’ ~; p with R(p’, i) = r,
hence wrong(p, i, r) € Ry,. By Theorem 5.20 we get Ry, +, ji, for all
k < i, hence applying wrong(p, i, r), we get Ry, +, ¢ = wrong.

Case: pevi(p, i, ?) Suppose p = rule(j; ...jn, ¢, ¥') and i € 1..n, by hypo-
thesis, for all k < i, 7}, is a complete partial evaluation tree of ji, hence

we know that R +, jx holds. Set ¢; = C(p, i), then, since 7 is stuck, by
definition of —— 4 (cf. Figure 5.3 last clause), the subtree 7|, is stuck as
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well and r(z|,) = ¢; = ?. By Theorem 5.20, we get Ry, F, ji, for all k < i,
and, by induction hypothesis, we get R, F, ¢; = wrong, hence, applying
rule prop(p, i, wrong), we get R, , ¢ = wrong.

THEOREM5.24 : Ry, b, ¢= wrong iff ——x7, where 7 is stuck.
c

=7

i Proof: R by c= wrong implies e —— %7 where 7 is stuck. We

prove that there is a stuck tree 7 with r(r) = ¢= ?, then the thesis follows
5 Cr.

: immediately from Proposition 5.13 (2), as we will trivially have =
: c

: The proof is by induction on rules in R,,,. It is enough to consider only rules
: with wrong in the conclusion, hence we have the following three cases:

Case: wrong(c) By Definition 5.19, there isno rule p € R such that C(p) = c,

hence 5 is stuck.

Case: wrong(p, i, r) By Definition 5.19, assuming p = rule(j; . . . ju, ¢, 1),
there is no rule p’ ~; p such that R(p’,i) = r; then, by Theorem 5.20,
for all k < i, R +, ji holds, hence there is a finite and complete partial
evaluation tree 73 with r(zy) = ji. Therefore, applying rule pev,(p, i, r)
tory,...,T;, we get a partial evaluation tree, which is stuck, by definition

of—>R.

Case: prop(p, i, wrong) Suppose p = rule(j; . . . ju, ¢, r) and ¢; = C(j;), then,
by induction hypothesis, we get that there is a stuck tree 7’ such that
r(r’) = ¢; = ?; then, by Theorem 5.20, for all k < i, R +, j holds, hence
there is a finite and complete partial evaluation tree 73 with r(zx) = ji.

Therefore, applying pev;(p,i,?) to i, ..., 7i—1, 7', we get a stuck tree.
—— %7 where 7 is stuck implies Ry, +, ¢= wrong. It follows
: c="7
: immediately from Lemma 5.23, since r(7) = ¢ = ? by hypothesis. O

5.4 Divergence by coaxioms

As we have described in Section 5.3.1, traces allow us to explicitly model
divergence, provided that we interpret rules coinductively: a configuration
diverges if it evaluates to an infinite trace. However, the resulting semantics is
somewhat redundant: traces keep track of all configurations visited during the
evaluation, while we are just interested in whether there is a final result or
non-termination, and a configuration may evaluate to many different infinite
traces, hence divergence is modelled in many ways. In this section we show
how coaxioms can be succesfully adopted to achieve a more abstract model of
divergence, removing this redundancy.

The key idea is to regard divergence just as a special result co, that, like
infinite traces (cf. Definition 5.15) and wrong (cf. Section 5.3.2), can only be
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FIGURE 5.7 Divergence propagation rules for application

propagated by big-step rules. To this end, we define yet another construction,
extending a given big-step semantics.

Let us assume a big-step semantics (C, R, R) . Then, the extended judgement
has shape ¢= r,, where r, € Rw = R + {0}, that is, it is either a result or
divergence. To define the extended semantics, we construct, starting from R,
a new set of rules R, as follows:

DEFINITION 5.25 (Rules for divergence): The set of rules R is obtained
by adding to R the following rules:

DIVERGENCE PROPAGATION RULES Foreachrule p = rule(j ... ju, ¢, 1)
in R and index i € 1..n, define rule prop(p, i, ) as

i Jis C(ji) = o0
c= o0

These additional rules propagate divergence, that is, if a configuration in
the premises of a rule in R diverges, then the subsequent premises are ignored
and the configuration in the conclusion diverges as well. This is very similar
to infinite trace rules, but here we do not need to construct traces to represent
divergence. Note that the triple (C, Rw, R) is a big-step semantics according
to Definition 5.1.

Now the question is: how do we interpret such rules? The standard inductive
interpretation of big-step rules, as for trace semantics, is not enough in this
setting, since there is no axiom introducing oo, hence it cannot be derived
by finite derivations. In other words, the inductive interpretation of R can
only capture converging computations, hence it is equivalent to the inductive
interpretation of R. On the other hand, differently from trace semantics, even
the coinductive interpretation cannot provide the expected semantics: it allows
the derivation of too many judgements. For instance, in Figure 5.7, we report
the divergence propagation rules obtained starting from meta-rule (arr) of
the example in Figure 5.1 (for other meta-rules the outcome is analogous);
then, using these rules (and the original ones in Figure 5.1), we can build the
following infinite derivation for Q, which is correct for any r., € Rw.

W= W=40 Q= (xx)|w/x] =y ro

Q= reo

Intuitively, we would like to allow infinite derivations only to derive diver-
gence, namely, judgments of shape ¢ = co. Inference systems with corules are

91



92

BIG-STEP SEMANTICS: AN OPERATIONAL PERSPECTIVE

precisely the tool enabling this kind of refinement. That is, in addition to diver-
gence propagation rules, we can add appropriate corules R, for divergence,
as defined below.

DEFINITION 5.26 (Coaxioms for divergence): The set of corules R, con-
sists of the following coaxioms:

COAXIOMS FOR DIVERGENCE for each configuration ¢ € C, define coax-

iom dive(c) as
c—= 00

As described in detail in Chapter 3, coaxioms impose additional conditions
on infinite derivations to be considered correct: a judgement ¢ = ry is deriv-
able in (R, Reo) iff it has an arbitrary (finite or infinite) derivation in R,
whose nodes all have a finite derivation in R U R, that is, using both rules
and corules. We will write (R0, Reo) Fyv ¢ = Foo When ¢ = 1, is derivable in
(Roo, Reo) -

In the above example, (Re, Reo) Fv 2= 7o holds iff 7, = o0, because
Q= r has no finite derivation in Re U R, for any r € R. In the case of the
trace construction (cf. Section 5.3.1), coaxioms are not needed as rules are
productive, because the trace in the conclusion is always strictly larger than
those in the premises, see Definition 5.15.

To check that the construction in Definition 5.25 and Definition 5.26 is a
correct extension of the given big-step semantics, as for trace semantics, we
have to show it is conservative, in the sense that it does not affect the semantics
of converging computations, as formally stated below.

THEOREM5.27 : (Reo,Reo) by c=2riff Rby c=r.

Proof: The right-to-left implication is trivial as R € R by Definition 5.25.
To get the other direction, note that if (Re,Re) Fy ¢= r then we have
PR URG u ¢= r. Hence, we prove by induction on rules in Re, U R, that,
if Roo URc Fy c= rthen R +, c= r. The cases of coaxiom div,(c) and
divergence propagation prop(p, i, ) are both empty, as the conclusion of
: such rules has shape ¢ = 0. The only relevant case is that of a rule p € R,
 for which the thesis follows immediately. ]

Inference systems with corules come with the bounded coinduction prin-
ciple. Thanks to such principle, we can define a coinductive proof principle,
which allows us to prove that a predicate on configurations ensures the exist-
ence of a non-terminating computation.

LEMMA 5.28: LetS C Cbeaset.If, forall c € S, thereare p = rule(j; . . . jn, ¢, 1)

in R and i € 1..n such that
1. forallk <i, R+, jk, and
2. C(j)eS
then, for all c € S, (Reo, Reo) Fv €= 0.



5.4 DIVERGENCE BY COAXIOMS

Proof:  Consider the set S = {(c,00) | c€ S} U {(c,r) | R+, c= r}, then
the proof is by bounded coinduction (cf. Proposition 3.27).

BOUNDEDNESS We have to show that, for all {c, 7o) € S”, Reo U Rco Fy
¢ = I holds. This is easy because, if o, = oo, then this holds by coaxiom
diveo(c), otherwise 7, € Rand R +, ¢= 1, hence this holds since
R C Roo € Reo U Reo.

CONSISTENCY We have to show that, for all {c, r.,) € S’, there is a rule

(i .. jn, €= ro) € R such that, for all k € 1..n, {C(jx), Rx(jx)) € S’.

There are two cases:

« If ro = oo, then by hypothesis (Item 1), we have a rule p =
rule(ji ...jn, ¢, ¥) € R and an index i € 1..n such that, for all

k <i, R+, ji and C(j;) € S. Then, the needed rule is prop(p, i, ).

+ If 7o € R, then, by construction of S’, we have R +, ¢= 7, hence,
there is a rule p = rule(ji . .. jn, ¢, 7o) € R C Roo, where, for all
k € 1..n, R +, ji holds, and so (C(ji), R(ji)) € S’.

The reader may have noticed that most definitions and results in this section
are very similar to those provided for trace semantics in Section 5.3.1. This is not
a coincidence, indeed, we now formally prove this semantics is an abstraction
of trace semantics.

Intuitively, if we are only interested in modelling convergence or divergence,
traces are useless, in the sense that it is only relevent to know whether the
trace is infinite or not and, in case it is finite, the final result. We can model
this intuition by a (surjective) function u : Trg — R simply forgetting traces,
that is, u({t, 7)) = r and u(c) = oo, with t € C* and ¢ € C®.

Then, we aim at proving the following result:

THEOREM5.29 : (R, Reo) by €= 1o iff Ry Fy ¢ =4 1y, fOr some r, such
that 7, = u(ry).

In a diagrammatic form, Theorem 5.29 says that the following diagram
commutes:

P(Tre) ————— 9(Rw)

where u) : P(Ry) = 9(Rw) is the direct image of u, [ : C — g)(TrR) is
defined by [[c]i = {n € Trlg | Re Fv =4 1v}, and [-]eo 1 C — 9(Rw) is
defined by [[c]lyr = {Foo € Roo | {Roor Reo) Fv €= Foo}-

Proof: The statement can be split in the following two points:

1. (Reo, Reo) by 2 riff Ry by ¢ = (¢, 1), for some t € C*, and
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2. (Roos Reo) Fy ¢ = o0 iff Ry, +y, ¢ =, 0, for some o € C?.

The first point follows immediately from Theorem 5.17 and Theorem 5.27, as
(Reo, Reo) by ¢= rand Ry Fy, ¢ = (t, 1) are both equivalent to R +, c= r.
: Then, we have only to prove the second point.

: The left-to-right implication follows applying Lemma 5.18 to the set So, =
{c € C| (ReosReo) Fy c= 00} If ¢ € Sy, then ¢ = oo is derived by a rule
: prop(p, i, o) for some p = rule(j; . .. ju, ¢, r)in R and i € 1..n, hence we have
(Roo, Reo) v jk» which implies R +, ji by Theorem 5.27, for all k < i, and
(Roos Reo) Fv C(ji) = o0, that is, C(j;) € S«, because these judgements are
: the premises of prop(p, i, ). Therefore, the hypotheses of Lemma 5.18 are
satisfied and we get, for all ¢ € S, Ry v ¢ = 0, for some o, € C®, hence
u(o,) = 0.

i Similarly, the right-to-left implication follows applying Lemma 5.28 to the
set Sy = {ce€ C| Ry +y c =y o for some o € C¥}. If ¢ € Sy, then, for some
o € C”, ¢ =y o is derived by a rule tracew(p, i, t1, ..., ti—1, 0’), for some p =
Crule(ji ... jn, ¢, r)inRandi € 1..n, hence we have Ry +, C(jx) =+ (tr, R(jx)),
which implies R +, ji by Theorem 5.17, for all k < i, and Ry, +, C(j;) =y 0”,
that is, C(j;) € Sy, because these judgements are the premises of the rule
! traceco(p, I, b1, . . -, ti—1, o). Therefore, the hypotheses of Lemma 5.28 are
satisfied and we get, for all ¢ € Sy, (Roos Reo) Fy ¢ = 0. O

As an immediate consequence of Theorem 5.29 and Theorem 5.21, we get
the following corollary, stating that the costruction given by Definitions 5.25
and 5.26 correctly models diverging computations:

COROLLARY 5.30 : (Rw,Reo) Fy ¢= o0 iff —

[
c=7? R
TOTAL SEMANTICS We now briefly describe how we can combine the
presented constructions in order to get a semantics modelling all computations
as defined in Section 5.2.2. In particular, we will use the wrong construction
to model stuck computations and the construction in this section to model
divergence, because they are more similar to each other.

Let us consider a big-step semantics (C, R, R) . We add to R two special
values to model stuckness and divergence, defining Ryt = R+ {wrong} + {co}.
Then, we have to add appropriate rules to handle these two special results:
the idea is to add “simultanously” rules from Definition 5.19 and from Defini-
tion 5.25, that is, we define Riot = Rur U Reo. Note that, since both R, and R,
extend R, we have R C Ryot. In addition, the triple (C, Riot, Riot) is a big-step
semantics according to Definition 5.1. Finally, to properly model divergence,
we have to add corules from Definition 5.26, so that infinite derivations are
only allowed to prove divergence.

Since, as we have noticed, all the presented constructions yield a big-step
semantics, starting from another one, we can also try to combine them “sequen-
tially”. Of course, there are two possibilities: either we first apply the wrong
construction or the divergence construction. Nicely, it is not difficult to check
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that all these possibilities yield the same big-step semantics (C, Riot, Riot) » as
depicted below:
<C’ R) R> ’$ <C’ RWra RWI’)

| T
(C, R, Roo> 'T <C, Rtota Rtot>

Thanks to the commutativity of the above diagram, we can exploit results
proved for the various constructions to get properties of this last construction,
as stated below.

PROPOSITION 5.31 : The following facts hold:
1. (Riots Reo) by e riff Ry c=r,
2. (Riot, Reo) Fv ¢ = wrong iff Ry, F, c= wrong,
3. (Riots Reo) Fy c= 0 iff (Reo, Reo) Fy ¢ = 0.

Proof:  All right-to-left implication are trivial, as R, Rur, Roo © Riot- The
. other implications follow from Theorems 5.20 and 5.27, relying on the above
i commutative diagram. O

COROLLARY5.32 : For any configuration ¢ € C, one of the following holds:

o either (Riot, Reo) Fyv ¢ = r, for some r € R,
e Or <72tota 72(:0> Fy €= 00,
o or (Riot, Reo) Fv ¢ = wrong.

! Proof: Straightforward from Proposition 5.31 and Theorems 5.21, 5.24 and 5.29,
> either converges to a tree, which is

. since the partial evaluation tree
: c=

either complete or stuck, or diverges. m]

Note that these three possibilities in general are not mutually exclusive, that
is, for instance, a configuration can both converge to a result and diverge. This
is due to the fact that big-step rules can define a non-deterministic behaviour.

Expressing and proving soundness

A predicate (for instance, a typing judgment) is sound when, informally, a pro-
gram satisfying such predicate (e.g., a well-typed program) cannot go wrong,
following Robin Milner’s slogan (Milner, 1978). In small-step style, as firstly
formulated by Wright and Felleisen (1994), this is naturally expressed as fol-
lows: well-typed programs never reduce to terms which neither are values, nor
can be further reduced (called stuck terms). The standard technique to ensure
soundness is by subject reduction (well-typedness is preserved by reduction)
and progress (a well-typed term is not stuck).
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In standard (inductive) big-step semantics, soundness, as described above,
cannot even be expressed, because diverging and stuck computations are not
distinguishable.

Constructions presented in the previous sections make this distinction
explicit, hence they allow us to reason about soundness with respect to a
big-step semantics. Then, in this section, we discuss how soundness can be
expressed and we will provide sufficient conditions. In other words, we provide
a proof technique to show the soundness of a predicate with respect to a big-
step semantics.

It is important to highlight the following about the presented approach to
soundness. First, even though type systems are the paradigmatic example, we
will consider a generic predicate on configurations, hence our approach could
be instantiated with other kinds of predicates. Second, depending on the kind
of construction considered, we can express different flavours of soundness,
which will have different proof techniques. Finally, and more importantly,
as mentioned in the introduction of the chapter, the extended semantics is
only needed to prove the correctness of the technique, whereas to apply the
technique for a given big-step semantics it is enough to reason on the original
rules.

Expressing soundness

In the following, we assume a big-step semantics (C, R, R) , and an indexed
sep for I
set of indexes, with ITC C C and ITR C R. A representative case is that, as in the

predicate on configurations and results, that is, a family IT = (I1C, ITF)

examples of Section 5.6, predicates on configurations and results are typing
judgments and the indexes are types; however, this setting is more general
and so the proof technique could be applied to other kinds of predicates.
When there is no ambiguity, we also denote by IT¢ and IT¥, respectively,
the corresponding predicates | J,; II¢ and |J,¢; ITR on C and R (e.g., to be
well-typed with an arbitrary type).

To discuss how to express soundness of IT, first of all note that, in the non-
deterministic case (that is, there is possibly more than one computation for
a configuration), we can distinguish two flavours of soundness, see, e.g., (De
Nicola and Hennessy, 1984):

SOUNDNESS-MUST (or simply soundness) no computation can be stuck
SOUNDNESS-MAY at least one computation is not stuck

Soundness-must is the standard soundness in small-step semantics, and can
be expressed by the wrong construction as follows:

SOUNDNESS-MUST If ¢ € ITC, then R, ¥, ¢= wrong

Instead, soundness-must cannot be expressed by the constructions making
divergence explicit, because stuck computations are not explicitly modelled.
In contrast, soundness-may can be expressed, for instance, by the divergence
construction as follows:
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SOUNDNESS-MAY If ¢ € IIC, then (Reor Reo) Fy €= I, fOr some 1 €
R

whereas cannot be expressed by the wrong construction, since diverging
computations are not modelled. Note that, instead, using the total semantics,
we can express both flavours of soundness, as it models both diverging and
stuck computations.

Of course soundness-must and soundness-may coincide in the deterministic
case. Finally, note that indexes (e.g., the specific types of configurations and
results) do not play any role in the above statements. However, they are
relevant in the notion of strong soundness, introduced by Wright and Felleisen
(1994). Strong soundness holds (in must or may flavour) if soundness holds
(in must or may flavour), and, moreover, configurations satisfying IT° (e.g.,
having a given type) produce results, if any, satisfying ITX (e.g., of the same
type). Note that soundness alone does not even guarantee to obtain a result
satisfying ITR (e.g., a well-typed result). The sufficient conditions introduced
in the following subsection actually ensure strong soundness.

In Section 5.5.2, we provide sufficient conditions for soundness-must, show-
ing that they ensure soundness as stated above (Theorem 5.38). Then, in
Section 5.5.3, we provide (weaker) sufficient conditions for soundness-may,
and show that they ensure soundness-may (Theorem 5.41).

Conditions ensuring soundness-must

The three conditions which ensure the soundness-must property are local
preservation, 3-progress, and V-progress. The names suggest that the former
plays the role of the type preservation (subject reduction) property, and the
latter two of the progress property in small-step semantics. However, as we will
see, the correspondence is only rough, since the reasoning here is different.
Considering the first condition more closely, we use the name preservation
rather than type preservation since, as already mentioned, the proof technique
can be applied to arbitrary predicates. More importantly, local means that the
condition is on single rules rather than on the semantic relation as a whole, as
standard subject reduction. The same holds for the other two conditions.

DEFINITION 5.33 (Local preservation (Lp)): Foreachp =rule(j; ... jn, ¢, 1)
inR,ifce ch, then there exists i1, ..., t, € I such that

1. forallk € 1..n,if, forall h < k, R v, jn and R(ji,) € IIR | then C(ji) € Hli,

135
and

2. if, forall k € 1..n, R +, ji and R(ji) € Hﬁc, thenr € HLR.

Thinking to the paradigmatic case where the indexes are types, to check
that this condition holds, for each rule p = rule(j; ... j,, ¢, r) where ¢, the
conclusion, has type 1, we have to find types 11, . . ., t,, which can be assigned
to (configurations and results in) the premises, and, when all the premises
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satisfy the chosen type, r, the result in the conclusion, must have type i, that is,
the same type of c. More precisely, we will proceed as follows: we start finding
type 11, and successively find the type i for (the configuration in) the k-th
premise assuming that all previous premises are derivable and their results
have the expected types, and, finally, we have to check that the final result r has
type ¢ assuming all premises are derivable and their results have the expected
type. Indeed, if all such previous premises are derivable, then the expected
type should be preserved by their results; if some premise is not derivable,
the considered rule is “useless”. For instance, considering (an instantiation
of) meta-rule (are) rule(e; = Ax.e e; = v, e[vy/x] = v, e €2, v) in Figure 5.1,
we prove that e[v,/x] has the type T of e; e; under the assumption that Ax.e
has type T — T, and v, has type T’ (see the proof example in Section 5.6.1
for more details). A counter-example to condition (1) is discussed at the
beginning of Section 5.6.3.

The following lemma states that local preservation actually implies preser-
vation of the semantic relation as a whole.

LEMMA 5.34 (Preservation): Let (C,R,R) and IT = (IIF, HlR>lEI satisfy
condition (LP). If R +, c= rand c € II, then r € ITX.

Proof: The proof is by a double induction. We denote by RH and IH the
first and the second induction hypothesis, respectively. The first induction
is on big-step rules. Consider a rule p = rule(ji .. . jn, ¢, r) with ¢ € IT°. We
: prove by complete arithmetic induction on k € 1..n that C(ji) € I, , for all
k € 1..n and for some i1, . ..,1, € I. By (LP), there are indexes iy,...,1, € I,
satisfying Items 1 and 2 of (LP) (cf. Definition 5.33). Let k € 1..n, then by IH
we know that C(j) € H[i, for all h < k. Then, by RH, we get that R(jj,) € Hffl.
: Hence, by (LP) (cf. Definition 5.33 (1)), we get C(jx) € II,,, as needed.

Now, since C(jx) € Hli, for all k € 1..n, as we have just proved, again
: by RH, we get that R(ji) € Hfi, for all k € 1..n. Then, by (1) (cf. Defini-

: tion 5.33 (2)), we conclude that r € ITR, as needed. m|

The following proposition is a form of local preservation where indexes (e.g.,
specific types) are not relevant, simpler to use in the proofs of Theorems 5.38
and 5.41.

PROPOSITION 5.35 : Let (C,R,R) and IT = (IIF, H1R>lel satisfy condition
(LP). For each rule p = rule(ji . . .jn, ¢, r) and k € 1..n, if ¢ € IT€ and, for all
h <k, R+, jn, then C(ji) € II¢.

Proof: By hypothesis we know that ¢ € ITC, for some ¢ € I, thus by condi-
: tion (LP), there are indexes 1y, ...,1, € I, satisfying Items 1 and 2 of (LP)
(cf. Definition 5.33). We show by complete arithmetic induction that, for all
k € 1.n, C(jr) € Hfl’;, which implies the thesis. Assume the thesis for all
: h < k, then, since by hypothesis we have R Fyu jn for all h < k, we get, by
induction hypothesis, C(j,) € Hli, for all h < k. By Lemma 5.34, we also
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get R(jn) € Hl}:, hence, by condition (LP) (cf. Definition 5.33 (1)), we get
. C(jk) € II{, as needed. i

The second condition, named 3-progress, ensures that, for configurations
satisfying IT (e.g., well-typed), we can start the evaluation, that is, the con-
struction of an evaluation tree.

DEFINITION 5.36 (3-progress (3p)): For each c € IT°, there exists a rule
p € R such that C(p) = c.

The third condition, named V-progress, ensures that, for configurations
satisfying IT (e.g., well-typed), we can continue the evaluation, that is, the
construction of the evaluation tree. This condition uses the equivalence on
rules introduced in Definition 5.12.

DEFINITION 5.37 (V-progress (Vp)): For eachrule p = rule(j; ... jn, ¢, 1),
if ¢ € TIC, then, for each k € 1..n, if, forall h < k, R Fujrand R+, C(ix) = 1/,
for some r’ € R, then there is a rule p’ ~; p such that R(p’, k) = r’.

We have to check, for each rule p = rule(j; . . . ju, ¢, 1), the following: if the
configuration c in the conclusion satisfies the predicate (e.g., is well-typed),
then, for each k € 1..n, if the configuration in the k-th premise evaluates to
some result 7’ (that is, R +, C(ji) = r’), then there is a rule (p itself or another
rule with the same configuration in the conclusion and the first k — 1 premises)
with such judgement as k-th premise. This check can be done under the as-
sumption that all the previous premises are derivable. For instance, consider
again (an instantiation of) the meta-rule (arr) rule(e; = Ax.e e; = vy e[ vy /x] = v, €1 €2, V).
Assuming that e; evaluates to some v;, we have to check that there is a rule
with first premise e; = vy, in practice, that v, is a A-abstraction; in general,
checking (Vp) for a (meta-)rule amounts to show that configurations in the
premises evaluate to results with the required shape (see also the proof example
in Section 5.6.1).

We now prove the claim of soundness-must expressed by means of the
wrong construction (cf. Section 5.3.2).

THEOREM 5.38 (Soundness-must): Let (C,R,R) and IT = (II",R,)
satisfy conditions (LP), (3p) and (V). If ¢ € ITC, then R, ¥, ¢c= wrong,.

1€l

Proof:  To prove the statement, we assume R, I, ¢= wrong and look for a
. contradiction. The proof is by induction on the derivation of ¢ = wrong. We
. split cases on the last applied rule in such derivation.

Case: wrong(c) By construction (cf. Definition 5.19), we know that there is
no rule p € R such that C(p) = ¢, and this violates condition (3p), since
¢ € IT, by hypothesis.

Case: wrong(p, i, r') Suppose p = rule(j; .. .jn, ¢, 1), hence i € 1..n, then,
by hypothesis, for all k < i, we have Ry, Fy jk, and Ry, Fy C(i) = 1/,
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and these judgments can also be derived in R by conservativity (cf. The-
orem 5.20). Furthermore, by construction (cf. Definition 5.19), we know
that there is no other rule p” ~; p such that R(p’, i) = r/, and this violates
condition (Vp), since ¢ € IT¢ by hypothesis.

Case: prop(p, i, wrong) Suppose p = rule(j;...jn, ¢, 1), hence i € 1..n,
then, by hypothesis, for all k < i, we have Ry F, jk, and these judgments
can also be derived in R by conservativity (cf. Theorem 5.20). Then, by
Proposition 5.35 (which requires condition (L)), since ¢ € IT, we have
C(j;) € IT€, hence we get the thesis by induction hypothesis, because
Ruwr Fu C(ji) = wrong holds by hypothesis.

O

Note that conditions (LP), (3r) and (VP), actually ensures strong soundness,
because, by Lemma 5.34, which is applicable since we assume (LP), we have
that converging computations preserve indexes of the predicate.

Conditions ensuring soundness-may

As discussed in Section 5.5.1, if we explicitly model divergence rather than
stuck computations, we can only express a weaker form of soundness: at
least one computation is not stuck (soundness-may). Actually, we will state
soundness-may in a different, but equivalent, way, which is simpler to prove,
that is, a configuration that does not converge, diverges.

As the reader can expect, to ensure this property weaker sufficient conditions
are enough: namely, condition (LP), and another condition, named may-
progress, defined below. We write R ¥, ¢= if ¢ does not converge (there is no
r such that R +, c=r).

DEFINITION 5.39 (May-progress (MAYP)): For each ¢ € IT€, there is a rule
p = rule(ji ... ju, ¢, r) such that, if there is a (first) k € 1..n such that R ¥, ji
and, for all h < k, R v, ji, then R ¥, C(ji) = .

This condition can be informally understood as follows: we have to show
that there is an either finite or infinite computation for c. If we find a rule where
all premises are derivable (there is no k), then there is a finite computation.
Otherwise, ¢ does not converge. In this case, we should find a rule where
the configuration in the first non-derivable premise k does not converge as
well. Indeed, by coinductive reasoning (use of Lemma 5.28), we obtain that
c diverges. The following proposition states that this condition is indeed a
weakening of (3p) and (Vp).

PROPOSITION 5.40 : Conditions 3-progress (3pr) and V-progress (V) im-
ply condition may-progress (MAYP).
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Proof: For each ¢ € C, let us define b, € N as max{#p | C(p) = c},

which is well-defined and finite by Assumption 5.1. For each rule p with
i C(p) = ¢, let us denote by nd(p) the index of the first premise of p which
is not derivable, if any, otherwise set nd(p) = b.. For each ¢ € IT € we first
prove the following fact: (%) for each rule p, with C(p) = c, there exists a
i rule p’ such that C(p’) = ¢, nd(p’) > nd(p) and, if nd(p’) < b, then, for all
r € R, R ¥, C(p’,nd(p")) = r. Note that the requirement in (x) is the same as
that of condition (MAYP). The proof is by complete arithmetic induction on
i h(p) = be+1—nd(p).If h(p) = 0, hence nd(p) = b, + 1, then the thesis follows
by taking p’ = p. Otherwise, we have two cases: if there is no r € R such

that R +, C(p,nd(p)) = r, then we have the thesis taking p’ = p; otherwise,
. by condition (VP), there is a rule p” ~pq(,) p such that R(p”,nd(p)) = r,

hence nd(p’’) > nd(p). Then, we have h(p”’) < h(p), hence we get the thesis
by induction hypothesis.

i Now, by condition (3p), there is a rule p with C(p) = ¢, and applying (x)
to p we get condition (MAYP). |

We now prove the claim of soundness-may expressed by means of the
divergence construction (cf. Section 5.4).

THEOREM 5.41 (Soundness-may): Let (C,R,R) and IT = (II, R, ¢ sat-

isfy conditions (LP) and (MAYP). If ¢ € ITC, then (Re, Reo) Fy ¢ = oo, for
some ro € Ry.

Proof:  First note that, thanks to Theorem 5.27, the statement is equivalent
. to the following:

If c e II€ and R ¥, c=, then (R, Reo) Fy ¢ = 0.

Then, the thesis follows by Lemma 5.28. We set S = {c € C | ¢ € IT® and R ¥y
c¢= }, and show that, for all ¢ € S, there are p = rule(j; . ..ju, ¢, r) and
. k € 1..n such that, for all h < k, R +,, j, and C(jx) € S.

. Consider ¢ € S, then, by (mAYP) (cf. Definition 5.39), there is p =
rule(ji . . . ju, ¢, 1). By definition of S, we have R ¥, ¢= , hence there exists
- a (first) k € 1..n + 1 such that R ¥, ji, since, otherwise, we would have
R+, ¢= r. Then, since k is the first index with such property, for all h < k,
we have R +, ji, hence, again by condition (MmAYP) (cf. Definition 5.39),
we have that R ¥, C(ji)= . Finally, since ¢ € IT Cand, for all h < k, we
: have R +, jn, by Proposition 5.35 we get C(ji) € II€, hence C(ji) € S, as
: needed. i

Note that conditions (LP) and (MAYP) actually ensure strong soundness,
because, by Lemma 5.34, which is applicable since we assume (Lp), we have
that converging computations preserve indexes of the predicate.
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T == Nat|Ty — T, types
B (0 =T . -
(r-var) 'rx:T () (r-consT) I'+n:Nat
r{T’/x}vre:T I'te:T'>T I'rey: T
(T-ABS) (T-aPP)
I'tAxe: T > T I'tee:T
I'+e: Nat I'te:T I'te:T
(T-svcc) ——— (T-CHOICE)
I' - succe: Nat I'ree®e: T

FIGURE 5.8 A-calculus: type system

Examples of soundness proofs

In this section, we show how to use the technique introduced in Section 5.5
to prove soundness of a type system with respect to a big-step semantics, by
several examples. We focus on the technique for soundness-must, as it is the
usual notion of soundness for type systems. Section 5.6.1 explains in detail
how a typical soundness proof can be rephrased in terms of our technique, by
reasoning directly on big-step rules. Section 5.6.2 shows a case where this is
advantageous, since the property to be checked is not preserved by intermediate
computation steps, whereas it holds for the whole computation. Section 5.6.3
considers a more sophisticated type system, with intersection and union types.
Section 5.6.4 shows another example where types are not preserved, whereas
soundness can be proved with our technique. This example is intended as a
preliminary step towards a more challenging case. Finally, Section 5.6.5 shows
that our technique can also deal with imperative features.

Simply-typed A-calculus with recursive types

As a first example, we take the A-calculus with natural constants, successor,
and non-deterministic choice introduced in Figure 5.1. We consider a stand-
ard simply-typed version with recursive types, obtained by interpreting the
production in Figure 5.8 coinductively. Introducing recursive types makes the
calculus non-normalising and permits to write interesting programs such as
Q (see Section 5.3.1).

The typing rules are recalled in Figure 5.8. Type environments, written I,
are finite maps from variables to types, and I'{ T/x} denotes the map which
returns T on x and coincides with I" elsewhere. We write+ e: Tfor O+ e: T.

Let (Ci, Ry, R1) be the big-step semantics described in Figure 5.1 (C; is the
set of expressions and R; is the set of values), and let Hl% ={eeCi|te: T}
and HlI; ={ve R |Fv: T}, where T is a type, defined in Figure 5.8, that is,
I 1? and IT 1}; are the sets of configurations and values of type T, respectively.
To prove the three conditions (LP), (3r) and (Vp) of Section 5.5.2, we need
lemmas of inversion, substitution and canonical forms, as in the standard
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technique for small-step semantics.

LEMMA 5.42 (Inversion): The following hold:
1. 't x:T,thenl'(x)=T.
2. fI'+tn:T,then T = Nat.
3 fT'rAx.e: T,thenT=T, » Toand I'{T/x} +e: To.
4. fI'rejey: T,thenl'te : T" > T,and '+ ey : T'.
5. fI'+ succe: T,then T =Natand I' + e: Nat.

6. fI're ®ey: T, thenl'+e : Twithie€l,2.

LEMMA 5.43 (Substitution): If I'{T’/x} + e: Tand I + ¢ : T’, then
T'rele'/x]:T.

LEMMA 5.44 (Canonical Forms): The following hold:
1. frv:T — T,thenv = Ax.e.

2. If F v:Nat,thenv = n.

THEOREM 5.45 (Soundness): The big-step semantics (Cy, R, Ry) and the
indexed predicate II1 satisfy the conditions (LP), (Ip) and (Vp) of Sec-
tion 5.5.2.

Proof:  Since the aim of this first example is to illustrate the proof technique,
i we provide a proof where we explain the reasoning in detail.

PROOF OF (LP): We should prove this condition for each (instantiation of
: meta-)rule in Figure 5.1.

Case: (apr) Assume that + ey e; : T holds. We have to find types for the
premises. We proceed as follows:

1. First premise: by Lemma 5.42 (4), - ¢y : T" — T.

2. Second premise: again by Lemma 5.42 (4), e, : T’ (without needing
the assumption + Ax.e: T" — T).

3. Third premise: - e[v,/x] : T should hold (assuming + Ax.e: T — T,
F v : T). Since + Ax.e : T — T, by Lemma 5.42 (3) we have
x:T"+e: T,soby Lemma 5.43 and + v, : T" we have F e[v,/x] : T.

Finally, we have to show + v : T, assuming + Ax.e : T — T,F v, : T’
and + v : T, which is trivial from the third assumption.

Case: (succ) Assume that + succ e : T holds. By Lemma 5.42 (5), T = Nat,
and + e : Nat, hence we find Nat as type for the premise. Moreover,
F n+ 1:Nat holds by rule (r-consT).

Case: (cuorce) Assume that + e; @ e; : T holds. By Lemma 5.42 (6), we have
Fe : T, withi € 1,2. Hence we find T as type for the premise. Finally,
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we have to show v : T, assuming + v : T, which is trivial.

Case: (var) Trivial by assumption.

PROOF OF (3p): We should prove that, for each configuration (here, ex-
pression e) such that + e : T holds for some T, there is a rule with this
: configuration in the conclusion. The expression e cannot be a variable, since
a variable cannot be typed in the empty environment. Application, successor,
choice, abstraction and constants appear as consequence in the big-step rules

(aprp), (succ), (CHOICE) and (vaL).

: PROOF OF (VP): We should prove this condition for each (instantiation of
i meta-)rule.

Case: (arp) Assumingt e e; : T,againby Lemmas.42 (4) wegett e; : T" — T.

1. First premise: if e; = v is derivable, then there should be a rule with
e1 e; in the conclusion and e; = v as first premise. Since we proved
(Lp), by preservation (Lemma 5.34) - v : T — T holds. Then, by
Lemma 5.44 (1), v has shape Ax.e, hence the required rule exists.
As noted at page 99, in practice checking (Vp) for a (meta-)rule
amounts to show that configurations in the premises evaluate to
results which have the required shape (to be a A-abstraction in this
case).

2. Second premise: if e; = Ax.e, and e; = v, then there should be a
rule with e; e, in the conclusion and e; = Ax.e, e; = v as first two
premises. This is trivial since the meta-variable v, can be freely
instantiated in the meta-rule.

3. Third premise: trivial as the previous one.

Case: (succ) Assuming + succe : T, again by Lemma 5.42 (5) we get
t e : Nat. If e= v is derivable, there should be a rule with succe
in the conclusion and e= v as first premise. Indeed, by preservation
(Lemma 5.34) and Lemma 5.44 (2), v has shape n.

Case: (crorce) Trivial since the meta-variable v can be freely instantiated.

Case: (var) Empty, because there are no premises.

O

An interesting remark is that, differently from the standard approach, there
is no induction in the proof: everything is by cases. This is a consequence of
the fact that, as discussed in Section 5.5.2, the three conditions are local, that
is, they are conditions on single rules. Induction is “hidden” once and for all in
the proof that those three conditions are sufficient to ensure soundness.

If we drop in Figure 5.1 rule (succ), then condition (3p) fails, since there is no
longer a rule for the well-typed configuration succ n. If we add the (roor) rule
F 00 : Nat, then condition (VP) fails for rule (arr), since 0 = 0 is derivable,
but there is no rule with 00 in the conclusion and 0 = 0 as first premise.
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e == x|e.f|lnewC(e,...,e,) | e.m(er,...,en) | Axs.e| (T)e expression
T == C]|I type

¢ == (E,e) configuration

v == [vs]°| Axs.e result (value)

(E,e;)=>v; Viel.n
(E,new C(eg,...,en))=[v,..., )¢

E(x)=wv (NEW)

(var) (E,x)=> v

<E, e) = [Vl, ey Vn]c f|elds(C) = T1 fl; LTy fn;
(E,e.fi) = V; i€l.n

(FIELD-ACCESS)

(e, &) = [vs]°
(E,e;)=v; Vi€el.n

(X1:V1, . . ., XpiVy, this:[vs]C e) = v
(INVK) mbody(C, m) = (x1 ... xy, &)
(E,eg.m(eg,...,en))=>v

(E, €g) = Axs.e
(E,e;)=>v; Yiel.n

“ ) (X1:V1y ooy XniVp, €) =V

TINVE (E,eg.m(eq,...,en)) =V
@ (wpenst) 2OV
(E, Axs.e) = Axs.e (E,(T)ey=wv

FIGURE 5.9 MINIFJ&A: syntax and big-step semantics

MINIF]J&A

In this example, the language is a subset of FJ&A (Bettini et al., 2018), a cal-
culus extending Featherweight Java (FJ) with A-abstractions and intersection
types, introduced in Java 8. To keep the example small, we do not consider
intersections and focus on one key typing feature: A-abstractions can only be
typed when occurring in a context requiring a given type (called the target
type). In a small-step semantics, this poses a problem: reduction can move
A-abstractions into arbitrary contexts, leading to intermediate terms which
would be ill-typed. To maintain subject reduction, Bettini et al. (2018) decorate
A-abstractions with their initial target type. In a big-step semantics, there is
no need of intermediate terms and annotations.

The syntax is given in the first part of Figure 5.9. We assume sets of variables
x, class names C, interface names |, J, field names f, and method names m.
Interfaces which have exactly one method (dubbed functional interfaces) can
be used as target types. Expressions are those of FJ, plus A-abstractions, and
types are class and interface names. In Axs.e we assume that xs is not empty
and e is not a A-abstraction. For simplicity, we only consider upcasts, which
have no runtime effect, but are important to allow the programmer to use
A-abstractions, as exemplified in discussing typing rules.

To be concise, the class table is abstractly modelled as follows:

105



106 BIG-STEP SEMANTICS: AN OPERATIONAL PERSPECTIVE

« fields(C) gives the sequence of field declarations T; f;;..T, f, ; for class C

« mtype(T, m) gives, for each method m in class or interface T, the pair
Ti ... T, — T’ consisting of the parameter types and return type

« mbody(C, m) gives, for each method m in class C, the pair (x; ... x,, e)
consisting of the parameters and body

« <:is the reflexive and transitive closure of the union of the extends and
implements relations

« Imtype(l) gives, for each functional interface I, mtype(l, m), where m is the
only method of I.

The big-step semantics is given in the last part of Figure 5.9. MIN1F]J&A
shows an example of instantiation of the framework where configurations
include an auxiliary structure, rather than being just language terms. In this
case, the structure is an environment E (a finite map from variables to values)
modelling the current stack frame. Furthermore, results are not particular
configurations: they are either objects, of shape [vs]¢, or A-abstractions.

Throughout this section xs and vs denote lists of variables and values,
respectively. Rules for F] constructs are straightforward. Note that, since we
only consider upcasts, casts have no runtime effect. Indeed, they are guaranteed
to succeed on well-typed expressions. Rule (1-invk) shows that, when the
receiver of a method is a A-abstraction, the method name is not significant at
runtime, and the effect is that the body of the function is evaluated as in the
usual application.

The type system is given in Figure 5.10. The following assumptions formalize
standard F] typing constraints on the class table.

(FJ1) Method bodies are well-typed with respect to method types:
« either mbody(C, m) and mtype(C, m) are both undefined

« or mbody(C,m) = {(x1...x,,e), mtype(C,m) = T;...T,, — T, and
xi:Tq, ..., xp: Ty, this:Cre: T.

(FJ2) Fields are inherited, no field hiding:
if T <: T’,andfields(T”) = T; f1; ... T, fu;, then fields(T) = Ty f1; ... T fim s,
m > n,and f; # f; fori # j.

(FJ3) Methods are inherited, no method overloading, invariant overriding:
if T <: T’, and mtype(T’, m) is defined, then mtype(T, m) = mtype(T’, m).

Besides the standard typing features of F], the MIN1FJ&A type system
ensures the following.

« A functional interface I can be assigned as type to a A-abstraction which
has the functional type of the method, see rule (r-2).

« A JA-abstraction should have a target type determined by the context
where the A-abstraction occurs. More precisely, as described by Gosling
et al. (2014, p. 602), a A-abstraction in our calculus can only occur as
return expression of a method or argument of constructor, method call
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Fvi:T; Vieln xpT{,....xp:T,re:T
(T-CONF) T; <: T/ Viel.n
F{xivi, ..., XV, e T !
I're:T
(1-vaR) ———— I'(x)=T (T-UPCAST) _Lretl
I'rx:T I'r(T)e:T

I're:cC fields(C) = Ty 15 ... T, fy;
I'ref:T; i€l.n

(T-FIELD-ACCESS)

I'-e:T; Viel.n
- fields(C) = Ti f1; ... Tt
(r NEW)Fl—newC(el,...,en) : C felds(C) N nn

Fre:T, Yic0.n ey not of shape Axs.e

- t To,m)=T,...T, > T
(r INVK)Fl—eo.m(el,...,en):T mtype(To, m) ! "

xi:Th,. ., xp: Ty ke T
I+ Axs.e: |

Imtype()=Ty... T, > T

Frvi:T) Yiel.n fields(C) = Ty fy; ... Ty fn;
'k [v,...,wm]¢:C T/ <:T; Viel.n

(T-OBJECT)

I'te: T  enot of shape Axs.e
T're:T" T<T

(T-suUB)

FIGURE 5.10 MIiINIFJ&A: type system

or cast. Then, in some contexts a A-abstraction cannot be typed, in our
calculus when occurring as receiver in field access or method invocation,
hence these cases should be prevented. This is implicit in rule (r-rrzro-
access), since the type of the receiver should be a class name, whereas it is
explicitly forbidden in rule (r-1nvx). For the same reason, a A-abstraction
cannot be the main expression to be evaluated.

« A A-abstraction with a given target type J should have type exactly J: a
subtype | of J is not enough. Consider, for instance, the following program:

interface J {}
interface I extends J { A m(A x); }
class C {
Cm(I y) { return new C().n(y); %}
Cn(Jy) { return new C(); }
}

and the main expression new C() .n(Ax.x). Here, the A-abstraction has
target type J, which is not a functional interface, hence the expression is
ill-typed in Java (the compiler has no functional type against which to
typecheck the A-abstraction). On the other hand, in the body of method
m, the parameter y of type | can be passed, as usual, to method n expecting
a supertype. For instance, the main expression new C() . m (Ax.x) is well-
typed, since the A-abstraction has target type I, and can be safely passed
to method n, since it is not used as function there. To formalise this
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behaviour, it is forbidden to apply subsumption to A-abstractions, see rule
(T-suB).

« However, A-abstractions occurring as results rather than in source code
(that is, in the environment and as fields of objects) are allowed to have
a subtype of the required type, see the explicit side condition in rules
(r-conr) and (r-osject). For instance, if C is a class with one field Jf, the
expression new C((I)Ax.x) is well-typed, whereas new C(Ax.x) is ill
typed, since rule (r-sus) cannot be applied to A-abstractions. When the
expression is evaluated, the result is [Ax.x]¢, which is well-typed.

As mentioned at the beginning, the obvious small-step semantics would pro-
duce not typable expressions. In the above example, we get

new C( (1)Ax.x) — new C(Ax.x) — [Ax.x]"

and new C(Ax.x) has no type, while new C( (1) Ax.x) and [Ax.x]" have type C.

As expected, to show soundness (Theorem 5.48) lemmas of inversion and
canonical forms are handy: they can be easily proved as usual. Instead, we do
not need a substitution lemma, since environments associate variables with
values.

LEMMA 5.46 (Inversion): The following hold:
1. IfI F (x:vy,..., XV, e) @ T, thent+ v; :<: T; foralli € 1..n and
xi:Tq, ., x: Ty e T.
2. T+ x: T, thenI'(x) <: T.

3 IfI'+te.f;: T,thenT + e: Candfields(C) = Ty fy; ... Ty fy; and T; <: T
where i € 1..n.

4. T +rnewC(ey,...,e,) : T,then C <: T and fields(C) = T fi; ... Ty fu;
andI'+e; : T; foralli € 1..n.

5. fI'+e.m(eq,...,e,) : T, then gy not of shape Axs.eand I' + ¢; : T; for
alli € 0..n and mtype(To,m)=T;... T, —» T’ with T" <: T.

6. f ' + Axs.e : T,then T = | and !mtype(l) = Ty...T, — T’ and
x: 11, .. .,x,l:T,, Fe:T.

7. T+ (T’)e: T,thenI'+e: T and T' <: T.
8 IfT'vr [vi,...,v,]°: T, then C <: T and fields(C) = T; fy; ... T, f,; and
I'tv;: T/ and T] <: T; foralli € 1..n.

LEMMA 5.47 (Canonical Forms): The following hold:

1. If+v:C thenv=[vs]®and D <: C.

2. If+ v: 1, then either v = [vs]¢ and C <: | or v = Axs.e and | is a functional
interface.
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We write I’ + e :<: TasshortforI'+ e: T’ and T’ <: T for some T’.In order
to state soundness, set (C,, Rz, Ry) the big-step semantics defined in Figure 5.9,
and let HZSE = {(g,e) € G |+ (E,e) :<: T} and HZI; ={veR|Fv:< T}
for T defined in Figure 5.9.

THEOREM 5.48 (Soundness): The big-step semantics (C,, Ry, R2) and the
indexed predicate I12 satisfy the conditions (rp), (3p) and (Vp) of Sec-
tion 5.5.2.

Proof: pProOF OF (LP): The proof is by cases on instantiations of meta-

rules. Considering a rule with typed conclusion (y;: ¥, . .

! implies F Vp :<: Tg forall £ € 1..p and ylzﬂ, .. .,yp:TlJ b e :<: T for some

LT

LT

Case: (var) Lemma5.46 (1) givest+ E(x) :<: T"and x:T”  x : T.Lemma 5.46 (2)

implies T’ <: T, so we conclude + E(x) :<: T by transitivity of <:.

Case: (rreip-access) Lemma 5.46 (3) applied to I' + e.f; : T implies '+ e: D

and fields(D) = Tifi;...Tfm; and T; <: T where i € 1..m. Since
(,e) = [v1,...,v,|%is a premise we assume I [vy, ..., v, :<: D, which
implies C <: D and fields(C) = T} f{; ... T, f,; and I' + v; :<: Tj’ for all
j € 1..n by Lemma 5.46 (8). From C <: D and assumption (FJ2) we have
m<nand T; = Tj’ and f; = f]’. for all j € 1..m. We conclude + v; :<: T.

Case: (vew) Lemma 5.46 (4) applied to I' + new C(ey, ..., e,) : T implies

C <: T and fields(C) = Tif;;... T,f,; and I' + ¢; : T; foralli € 1..n.
Since (E, e;) = v; is a premise we assume + v; :<: T; for alli € 1..n. Using
rule (r-osject) we derive F [vy, ..., v,]¢ :<: T.

Case: (invk) Lemma 5.46 (5) applied to I' + ey.m(ey,...,e,) : T implies

ey not of shape Axs.eand I + e; : T; for all i € 0..n and mtype(Ty, m) =
Ty...T, —» T with T’ <: T. Since (E, ;) = [vs'] is a premise we as-
sume + [vs']¢ :<: Ty, which implies C <: T, by Lemma 5.46 (8). Since
(E, e;) = v; is a premise we assume + v; :<: T; for all i € 1..n. We have
mtype(C,m) = Ty ... T, — T’ since mtype(Ty,m) = T;...T,, — T and

C <: Ty by assumption (F]3). By assumption (FJ1), x: T3, . . ., x: Ty, this:C F
e : T’'. Therefore, by rule (r-conr) and since T’ <: T, we can derive

F X1V, - .oy XV, this:[vs']C, e) i< T

Case: (A-ivvk) Lemma 5.46 (5) applied to I' + eg.m(ey, ..., e,) : T implies

o not of shape Axs.e’ and I' + e; : T; for all i € 0..n and mtype(Ty, m) =
Ty...T, — T with T’ <: T. Since (E, ¢y) = Axs.e is a premise we
assume + Axs.e :<: Ty, which implies | <: Ty and !mtype(l) = Ty ... T, —
T  and x:Ty, ..., x,: T, + € : T’ by Lemma 5.46 (6). Since (E, ;) = v; is
a premise we assume + v; :<: T; for all i € 1..n. Therefore we derive
F XV, ..o, XniVp, ) i< T

Case: (vrcast) Lemma 5.46 (7) appliedto I' + (T”)e: T implies I' + e :<: T.

From (E, e) = v we conclude + v :<: T.
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T == NatlTl — T2 | Tl/\TQ | T1VT2 type
I're:T I're:S I're:TAS I're:TAS
(AT) (NE) ———— (NE) —————
I're:TAS I're:T I'+re:S
I're: T I're:S
V) ———————— VI) ——m—————
I're:TVS I're:TVS

FIGURE 5.11 Intersection and union types: syntax and typing rules

: PROOF OF (Ipr): It is easy to verify that if + (g, e) :<: T, then there is a
rule in Figure 5.9, whose conclusion is (E, e), just because for every sytactic
construct there is a corresponding rule. The only non-trivial case is that of
: variables: if + (E, x) :<: T, then by Lemma 5.46 (1,2), x € domg, hence rule
(var) is applicable, as the side condition is satisfied.

PROOF OF (VP): Rule (rirrp-access) requires that (E, e) reduces to an object,
and this is assured by the typing rule (r-risip-access), which prescribes a
: class type for the expression e, together with the validity of condition (L)
(which assures type preservation by Lemma 5.34) and Lemma 5.47 (1). For a
well-typed method call ey.m(ey, . . ., e,) the configuration (E, €) can reduce
: either to an object or to a A-expression. In the first case we can apply rule
(ivvk) and in the second case rule (1-1nvvx). In both cases the typing assures
that the arguments are in the right number. The condition holds for the last
: premise of rule (invx) by the well-typing of the class table. The condition
holds for the last premise of rule (1-invx) by rule (r-2). m]

5.6.3 Intersection and union types

We enrich the type system of Figure 5.8 by adding intersection and union
type constructors and the corresponding typing rules, see Figure 5.11. As usual
we require an infinite number of arrows in each infinite path for the trees
representing types. Intersection types for the A-calculus have been widely
studied, e.g., by Barendregt, Dekkers, and Statman (2013). Union types naturally
model conditionals (Grudzinski, 2000) and non-deterministic choice (Dezani-
Ciancaglini, de’Liguoro, and Piperno, 1998).
The typing rules for the introduction and the elimination of intersection
and union are standard, except for the absence of the union elimination rule:
I'{T/x}vre:V I'{S/x}re:V I'te:TVS
& I'kele’/x]:V
As a matter of fact, rule (vE) is unsound for @. For example, let split the type

(v

Nat into Even and 0dd and add the expected typings for natural numbers. The
prefix addition + has type (Even — Even — Even) A (0dd — 0dd — Even)
and we derive

+1:0dd k2:Even

F1:EvenV 0dd F2:EvenV 0dd

x:Even F+x x:Even x:0dd F+ x x:Even
F(1®2):EvenV 0dd

F+(1®2)(1®2): Even
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We cannot assign the type Even to 3, which is a possible result, so strong
soundness is lost. In addition, in the small-step approach, we cannot assign
Even to the intermediate term + 1 2, so subject reduction fails. In the big-step
approach, there is no such intermediate term; however, condition (LP) fails
for the big-step rule for +. Indeed, considering the following instantiation of

the rule:
162=1 1622

Y o102 =3
and the type Even for the conclusion: we cannot assign this type to the final
result as required by (rp) (cf. Definition 5.33 (2)).

Intersection types allow to derive meaningful types also for expressions con-
taining variables applied to themselves, for example we can derive F Ax.x x :
(T — S)A T — S. With union types all non-deterministic choices between
typable expressions can be typed too, since we can derive I' - e; @ e; : T; V T
fromITvre :Tiand T + ey : Ty,

We now state standard lemmas for the type system, which are handy towards
the soundness proof. We first define the subtyping relation T < S as the smallest
preorder such that:

« S<T4 and S < T 1mp1y5§ T N Ty

e TASL<Tand TAS<LS;

e« T<TVvSandT<SVT.

It is easy to verify that T < Siff I', x:T + x : S for an arbitrary variable x, using
rules (AI), (AE) and (vI).

LEMMA 5.49 (Inversion): The following hold:

1. ¥I'+x:T,thenl'(x) < T.
2. fI'+n:T,thenNat < T.

3. fI'r Ax.e: T,thenI'{S;/x} re:V;fori € l.mand A\;¢c; ,(Si = Vi) <
T.

4. UT'rejep: T,thenl't e : S; > Viand '+ ey : S; fori € 1..m and
/\iel..mViST'

5. fI'+ succe: T,thenNat < Tand I' + e : Nat.

6. fI're ®e: T, thenl'te : Twithie€l,2.

LEMMA 5.50 (Substitution): If I'{T’/x} + e: Tand I + ¢ : T’, then
T'rele/x]:T.

LEMMA 5.51 (Canonical Forms): The following hold:

1. frv:T — T,thenv = Ax.e.

2. If F v:Nat,thenv = n.
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In order to state soundness, let HS% ={ee C; |Fe: T}and HS}; ={ve
Ry |[F v: T}, for T defined in Figure 5.11.

THEOREM 5.52 (Soundness): The big-step semantics (Cj, R, R;) and the
indexed predicate IT3 satisfy the conditions (Lp), (dp) and (VP) of Sec-
tion 5.5.2.

Proof sketch We prove conditions only for rule (arr), the other cases are similar
i (cf. proof of Theorem 5.45).

PROOF OF (LP): The proofis by cases on instantiations of meta-rules. For
: rule (arr) Lemma 5.49 (4) applied to + e; e; : T implies + ¢; : S; — V; and
Fe:Sforiel.mand Aje; Vi £ T. Now, from assumptions of (LP),
we get - Ax.e : §; — Viand + w, : S; for i € 1..m. Lemma 5.49 (3) implies
: x:S; F e:V;, so by Lemma 5.50 we have + e[v,/x] : V; for i € 1..m. We can
derive + e[v,/x] : T using rules (AD), (AE) and (vI).

PROOF OF (3pr): The proofis as in Theorem 5.45.

PROOF OF (Vp): The proof is by cases on instantiations of meta-rules. For
rule (are) Lemma 5.49 (4) applied to + e; e; : T implies + e; : S; — V; for
tiel.mIfe,=>vwegetrv:S; — V;forie 1.mby (L) and Lemma 5.34.
Lemma 5.51 (1) applied to + v : S; — V; implies v = Ax.e as needed. O

5.6.4 MINIF]Y

A well-known example in which proving soundness with respect to small-
step semantics is extremely challenging is the standard type system with
intersection and union types (Barbanera, Dezani-Ciancaglini, and de’Liguoro,
1995) w.r.t. the pure A-calculus with full reduction. Indeed, the standard subject
reduction technique fails®, since, for instance, we can derive the type

(T>T->VAS—>85->V)>U—->TVS) ->U->YV

for both Ax.Ay.Az.x ((At.t) (y 2)) ((At.t) (y z)) and Ax.Ay.Az.x (y z) (y z), but the
intermediate expressions Ax.Ay.Az.x ((At.t) (y 2)) (y z) and Ax.Ay.Az.x (y z) ((At.t) (y 2))
do not have this type.

As the example shows, the key problem is that rule (vE) can be applied
to expression e where the same subexpression e’ occurs more than once. In
the non-deterministic case, as shown by the example in the previous section,
this is unsound, since e’ can reduce to different values. In the deterministic
case, instead, this is sound, but cannot be proved by subject reduction. Since
using big-step semantics there are no intermediate steps to be typed, our ap-
proach seems very promising to investigate an alternative proof of soundness.
Whereas we leave this challenging problem to future work, here as first step
we describe a calculus with a much simpler version of the problematic feature.

5 For this reason, Barbanera, Dezani-Ciancaglini, and de’Liguoro (1995) prove soundness by an
ad-hoc technique, that is, by considering parallel reduction and an equivalent type system a
la Gentzen, which enjoys the cut elimination property.
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The calculus is a variant of FJV, introduced by Igarashi and Nagira (2007),
an extension of FJ (Igarashi, Pierce, and Wadler, 2001) with union types.
As discussed more extensively by Igarashi and Nagira (2007), this gives the
ability to define a supertype even after a class hierarchy is fixed, grouping
independently developed classes with similar interfaces. In fact, given some
types, their union type can be viewed as an interface type that “factors out”
their common features. With respect to FJV, we do not consider cast and
type-case constructs and, more importantly, in the typing rules we handle
differently union types, taking inspiration directly from rule (vE) of the A-
calculus. With this approach, we enhance the expressivity of the type system,
since it becomes possible to eliminate unions simultaneously for an arbitrary
number of arguments, including the receiver, in a method invocation, provided
that they are all equal to each other. We dub this calculus MINTF]JV.

Figure 5.12 gives the syntax, big-step semantics and typing rules of MiN1F]J".
The subtyping relation <: is the reflexive and transitive closure of the union
of the extends relation and the standard rules for union:

h<T T,<:T
T <T1 VT T,<T1 VT TmvT,<:T
The functions mtype, fields and mbody are defined as for M1N1F]J&A, apart

that here fields, method parameters and return types can be union types as
well, still assuming the conditions on the class table (FJ1), (F]2), and (F]3).

Clearly rule (r-v-er1m) is inspired by rule (vE), but restricted only to some
specific contexts, named (union) elimination contexts. Elimination contexts
are field access and method invocation, where the latter has n > 0 holes
corresponding to the receiver and (for simplicity the first) n — 1 parameters.
Thanks to this restriction, we are able to prove a standard inversion lemma,
which is not known for the general rule in the A-calculus.

Given an elimination context E, we denote by E[e] the expression obtained
by filling all holes of E by e.

This rule allows us to make the type system more “structural”, with respect
to FJ, similarly to what happens in FJV. Let us consider the following classes:

class C {
A f; Object g;
C update(A x) {...}
Bool eq(C x) {..}
}
class D {
A f;
D update(A x) {...}
Bool eq(D x) {...}
}

They share a common structure, but they are not related by inheritance (there
is no common superclass abstracting shared features), hence in standard F]
they cannot be handled uniformly. By means of (r-v-riin) this is possible: for
instance, we can write a wrapper class that, in a sense, provides the common
interface of C and D “ex-post”
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e == x|e.f]lnewC(e,...,e,) | e.m(ep,...,e,) expression
if e then e; else ey | true | false
v == newC(vy,...,v,) | true| false value
T == C|Bool|T11V T, type
E == [l.f1[1-mU],....[],e1,.--,e€n) elimination context

e=>new C(vy,...,v,) fields(C)=Tif1;...T,fn;
e.fi=v; i€el.n

(FIELD)

e=>v; Viel.n

(NEW)
newC(ey,...,ep) =>newC(v,..., V)

eg = new C(vs’)
es=>v; Viel.n

e[vi/xi1]...[vn/xn][new C(vs') /this]= v
(INVK) o .m(e ) >y mbody(C,m) = (x1 ... x,, €)
. 1s---5Cn

(TRUE) ———————— (FALSE)

true = true false= false
e=> true eg=>v e= false e =>v
(1F-1) - (1F-F) -
if ethene elsee,=v if ethene elseey= v
: — TI'(x)=T - ——— be{true, false
(rvam) mo7 W (B0 T ool { )

I're:C fields(C) = Ty fy; ... T, fn;
I+ e.fi : Ti i€l.n

(T-FLD)

I'e:T; Viel.n
- fields(C) = Ty f1; ... Ty, T3
(r NEW)Fl—neWC(el,...,en) : C felds(C) 1 nn

I'te:C I'te:T; Viel.n
(T-INVK) mtype(C,m)=T;...T, > T
I're.m(ey,...,ep): T

I're:Bool I'te : T I'rey: T I're: T ,
(T-1F) - (r-sup) —— T <: T
I'++ifethene elsee: T I're: T

I're:Vie1. mCi Ix:C;rE[x]: T Viel.m

x fresh
I'+Ele]:T

(T-V-ELIM)

FIGURE 5.12 MINIF]": syntax, big-step semantics and type system
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class CorD {

CVD el;

A getf() { this.el.f }

CorD update(A x) { new CorD(this.el.update(x)) }
}

Bodies of methods getf and update in class CorD are well-typed thanks to
rule (r-v-r1im), as shown by the following derivation for update, where I' =
x:A, this:CorD.

I',y:C+ y.update(x) : C I',y:D + y.update(x) : D
I'+ this.el: CVD Y Y Y Y

I'y:C+ y.update(x) : CVD I'y:D F y.update(x) : CV D

I'+ this.el.update(x) : CVD

I' + new CorD(this.el.update(x)) : CorD

The above example can be typed in FJV as well, even though with a different
technique.® On the other hand, with our more uniform approach inspired by
rule (vE), we can type examples where the same subexpression having a union
type occurs more than once, and soundness relies on the determinism of
evaluation, as in the example at the beginning of this section.

To illustrate this, let us consider an example. Consider the expression e =
if false thennewC(...) elsenewD(...), given the above class table. By
rule (t-1¥), the expression e has type CV D, and, by rule (r-v-rLium), the expression
e.eq(e) has type Bool, as shown by the following derivation:

Fe:CVD x:CF x.eq(x) : Bool x:DF x.eq(x) :Bool

Fe.eq(e) : Bool

This expression cannot be typed in FJV, because there is no way to eliminate
the union type assigned to e when it occurs as an argument.

Quite surprisingly, subject reduction fails for the expected small-step se-
mantics, even if there are no intersection types, which are the source, together
with the (vE) rules, of the problems in the A-calculus. Indeed, we have the
following small-step reduction:

e.eq(e) — newD(...).eq(e) — newD(...).eq(newD(...))

where the intermediate expression cannot be typed, because e has a union
type. This happens because intersection types are in a sense hidden in the class
table: the method eq occurs in two different classes with different types, hence,
roughly, we could assign it the intersection type (CC — Bool) A(DD — Bool).
As in previous examples, the soundness proof uses an inversion lemma and a
substitution lemma. The canonical forms lemma is trivial since the only values
of type C are objects (constructor calls with values as arguments) instances of
a subclass. In addition, we need a lemma (dubbed “key”) which assures that a
value typed by a union of classes can also be typed by one of these classes.
The proof of this lemma is straightforward, since values having class types
are just new constructors, as shown by canonical forms.
6 When the receiver of a method call has a union type, look-up (function mtype) is directly

performed and gives a set of method signatures; arguments should comply all parameter
types and the type of the call is the union of return types.
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LEMMA 5.53 (Substitution): If I'{T’/x} + e: Tand I + ¢ : T’, then
T'vele'/x]: T.
LEMMA 5.54 (Canonical forms): The following hold:

1. If '+ v:Bool, then v = trueor v = false.
2. fI'tv:C thenv=newD(vy,...,v,) and D <: C.

LEMMA 5.55 (Inversion): The following hold:
1. '+t x:T,thenT'(x) <: T.
2. Tre.f: T, thenl'+e: ;e ,,Ciand, foralli € 1..m, fields(C;) =
Tiifirs ... Tin, fin, 5 and f = fi, and T, <: T for some k; € 1..n;.
3. IfI'+newC(ey,...,e,) : T, then C <: T and fields(C) = Ty f1; ... T, fn;
and '+ ¢; : T; foralli € 1..n.
4. UT'reg.m(eq,...,ey) : T,thenI'F ey : \;¢; n Ci and, thereisp € 0..n
such that ey = ... = ¢, and, for all i € 1..m,
o mtype(C;,m)=T;;...T;, — T;, and
o forallk € 1..p,C; <: Ty, and
o forallk e p+1..n, I+ e : Ti, and
. Ti <: T.

5. fI'+ ifethene elsee : T,thenI' + e: BoolandI' + e; : T and
I're:T.

Proof sketch We prove only points 2 and 4.

2. The proof is by induction on the derivation of I" + e.f : T. For rule
(r-rup), we have I' + e : C, fields(C) = Ty f1; ... Tpfy;, fi=fand T; = T,
for some i € 1..n. For rule (r-sus), the thesis is immediate by induction
hypothesis. For rule (r-v-zuim), we have E = [[.f, [ F e : V;e1 1 Ci
and I', x:C; + E[x] : T, for all i € 1..m, then, by induction hypothesis,
foralli € 1.m, we get I', x:C; F x : V¢1._p, Dij and, forall j € 1..m;,
fields(Dij) = Tju1fjs - .. Tjn; fjn; 5 and T, <: T, for some k; € 1..n;.
Since I',x:C; + X : Vje1..m, Dij, we have C; <: ¢y, Dij, hence
C; <: Djj,, for some j; € 1..m;, by definition of subtyping. Then the
thesis follows easily by assumption (FJ2).

4. The proof is by induction on the derivation of I' - e¢y.m(ey, ..., e,) : T.
For rule (r-invk), we have I' + ) : Co, p = 0, mtype(Co,m) =Ty ... T, = T,
and, for all k € 1..n, I" + e : Tk. For rule (r-sus), the thesis is im-
mediate by induction hypothesis. For rule (r-v-r1im), we have E =
[1.m([],...,[], ep+1s- .., en), hence p is the number of holes in E and
e =...=ep,and "+ e : ;e ,, Ciand, foralli € 1.m,I", x:C; + E[x] :
T, with x fresh. By induction hypothesis, we know that, for all i € 1..m,
I x:Ci b x: \jer. m, Dij and there is p; € 1..n such that the first p; argu-
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ments of E[x] are equal to the receiver, namely x and this implies p; < p
because x is fresh. Let i € 1..m. Since I, x:C; + x : \/je1__m, Dij, we get
C; <: \/je1..mj D;j, thus C; <: D;j,, for some j; € 1..m;, by definition of
subtyping. Therefore, by induction hypothesis and assumption (FJ3),
we get mtype(C;,m) = Tj; ... T, — T and, for all k € 1..p;, D;j, <: T,
hence C; <: Ty, and, for all k € p; + 1..p, I, x:C; + x : Ti, hence
Ci <: Tijx and, for all k € p + 1..n, I', x:C; + ek : Tik, hence, because x
does not occur in e as it is fresh, by contraction we get I' + e : Tig,
and, finally, T; <: T.

O
LEMMA 556 (Key): IfI'+v:\ <;<,CithenI'+v:C; forsomei€l...n.

In order to state soundness, let (Cy4, Ry, R4) be the big-step semantics
defined in Figure 5.12 (C; is the set of expressions and Ry is the set of values),
and let H4§ ={ee Cy|Fe: T}and H4§ ={ve R, |rv: T} for T defined in
Figure 5.12. We need a last lemma to prove soundness:

LEMMA 557 (Determinism): If Ry +, e=v; and Ry F, e= v,, then
Vi = V.

| Proof: Straightforward induction on rules in R, because every syntactic
: construct has a unique big-step meta-rule. ]

THEOREM 5.58 (Soundness): The big-step semantics (Cy, Ry, R4) and the
indexed predicate II14 satisfy the conditions (Lp), (3p) and (Vp) of Sec-
tion 5.5.2.

Proof sketch We sketch the proof only of (1p) for rule (invx), other cases and
. conditions are similar to previous proofs.

: For rule (invx), Lemma 5.55 (4) applied to + ey.m(ey, ..., e,) : T implies
'+ € : Vie1..m Ci and, there is p € 0..n such that ¢y = ... = ¢, and, for all
i € 1..m, mtype(C;,m) = Tjy... Ty, — Tj,and for all k € 1..p, ¢; <: Ty,
and forall k € p+ 1..n,F ¢ : Tk, and T; <: T. Assuming + new C(vs) :
' Vie1..m Ci, by Lemma 5.56 and Lemma 5.54, we get C <: C; for some i € 1..m.
Since mtype(C;,m) = Tj1... Tin — T; and mbody(C,m) = {(x;...Xp,€), by
assumption (FJ3) and (FJ1), this:C,x1: i1, ..., xu:Tin + € : T;. Assume, for
tallk € 1.p,F Vi 2 Vjer m Ci and, for all k € p + 1..n, F vi : Ty, then, since
e = ... = ep, by Lemma 557, we get v = ... = v, = new C(vs), hence
F vk @ Tik, forall k € 1..p, because C <: C; <: Ty for all k € 1..p. Lemma 5.53
: gives + e[vi/x1]...[va/xu][new C(vs) /this] : T;. Finally, we can conclude
Fv: T by rule (r-sus), as T; <: T. O

5.6.5 Imperative F]

This last example shows how our technique behaves in an imperative setting.
In Figure 5.13 and Figure 5.14 we show a minimal imperative extension of
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e == x|e.flnewC(e,...,e,) | e.m(er,...,e,) | e.f=€’ |1 expressions
c u= (u,e configurations
rou= (1) results

1) =newC(iy,... 1)
fields(C) = Cy f1; ... Cp fr;
i€el.n

(w, ey = (', 1)
(p,e.fi)y = (W', 1)

(o)) —<IJ’ D= <‘u’ B (FLD)

(i) = (pispoy) Yieln FITH
e o ey o g M na(new €)1
H, 1>++-+5€n H lfresh

(NEW)

</J,', €i> = (/1,'+1, li> Vie0..n Ho = i
(1nvi) (pners el /xa] .. [in/xnllo/this) =0 (1) = new € ()
(p,eg.m(eq, ... en)) = (', 1) mbody(C, m) = (x1 ... X,, €)
M= fng
’ ’ 7 17 y(t)znewC(tl,...,tn)
(FLD-UP) )= 4o e = 1) fields(C) = Cy f1; ... Cp fr;

.=e’ 44 4
efize) = W) jern

FIGURE 5.13 Imperative FJ: syntax and big-step semantics

FJ. We assume a well-typed class table and we use the notations introduced
in Section 5.6.2. Expressions are enriched with field assignment and object
identifiers 1, which only occur in runtime expressions. A memory p maps object
identifiers to object states, which are expressions of shape new C(1q,...1,).
Results are configurations of shape (y, ). We denote by y, ;=] the memory
obtained from p by replacing by i’ the i-th field of the object state associated
with 1. The type assignment X~ maps object identifiers into types (class names).
We write X Fe:Cfor0; > + e: C.

As for the other examples, to prove soundness we need some standard
properties of the typing rules: inversion and substitution lemmas.

LEMMA 559 (Inversion): The following hold:

1L 2 - (u,e): Cthen I X F p(r) : (1) for all 1 € dom(pu) and X+ e: C
and dom(X) = dom(p).

2. IfI'; X+ x: C, then I'(x) <: C.

3 IfI; X+ e.f;:C thenT;X + e: Dand fields(D) = C;f;; ...C,f,; and
C; <: Cwhereie€ 1..n.

4. T2 FnewC(eyq,...,e,) : D, then C <: D and fields(C) = C; fi; ...Cp fp;
and ;X +e; :C;foralliel..n

5. If ;2 F eg.m(eq,...,ep) : C,then I'; X + e; : C; forall i € 0..n and
mtype(Cy, m) = C;...C, — Dwith D <: C.

6. fI'; X+ e.fi=¢’ : C,thenT;X + e: D and fields(D) = C; f;; ...C,fp; and
I''>reée :Cjand C; <: C.
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Xk op(): X()VYiedom(p) Xre:C

dom(X) = dom(y)

(T-CONTF)

X+ {u,e:C
- [ A =C
(TVAR)F;ZI—X:C ()
I'YXre:C fieldS(C)chfl;...Cnfn;
(T-FLD) —————

TXref:C i€ln

I'Xvre:C Viel.n .
(T-NEW) fields(C) = Cy f1; ... Cp fr;
I'; X FnewC(eq,...,e,) : C

I';’Xre:C; VieO.n
(T-INVK) mtype(Co,m) =C;...C, > C
I'’Xvre.m(eq,...,ep) : C

I'Xre:C
IXre ¢ fields(C) = C1 15 ... Cp fn;

(T-FLD-UP) — /.
I'’YXrefi=e’:C; 1€1l.n

I'NXre:C
(T-orp) ———— X(1)=C (T-sup) —— C<:C’
I';>Xvr1:C I;>Xvre:C’

FIGURE 5.14 Imperative FJ: typing rules

7. ;2 F e C, then X(1) <: C.

LEMMA 5.60 (Substitution): IfI'{C’/x};X +e:Cand ;X + ¢ : C’, then
I'; 2+ ele’/x]: C

Let (Cs,Rs,Rs) be the big-step semantics defined in Figure 5.13. We can

prove the soundness of the indexed predicate IT5 defined by: I"[5<CZ o =
{{u,€)) € Cs | X'+ {u, e) : C for some X’ s.t. X C X'} and 158 . . = Rs N I15C

(X,C) (Z,¢)°
The type assignment X’ is needed, since memory can grow during evaluation.

THEOREM 5.61 (Soundness): The big-step semantics (Cs, Rs,Rs) and the
indexed predicate IT5 satisfy the conditions (rLp), (3p) and (Vp) of Sec-
tion 5.5.2.

. Proof: We prove separately the three conditions

PROOF OF (LP): The proof is by cases on instantiations of meta-rules.

Case: (osy) Trivial from the hypothesis.

Case: (rrp) Lemma 5.59 (1) applied to X + (i, e.f;) : Cimplies X + p(1) : X(1)
for all 1 € dom(y) and X + e.f; : C and dom(X) = dom(y). Lemma 5.59 (3)
applied to X + e.f; : C implies X + e : D and fields(D) = C;f1; ...Cpfp;
and C; <: C where i € 1..n. Since (y, ) = (y’, 1) is a premise we assume
2+ (' 1) : Dwith ¥ € ¥'. Lemma 5.59 (1) and Lemma 5.59 (7) imply
2’(1) <: D. Lemma 5.59 (4) allows us to get p’(1) = new C’ (14, . . . ty) With
n<mandC <:Dand X’ r ; : C;. So we conclude X" + {(¢’,1;) : C by
rules (T-suB) and (T-CONF).
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Case: (vew) Lemma 5.59 (1) applied to X + (u, new C(ey, ..., e,)) : D implies
2k p() 2 2(0) for all 1t € dom(p) and X + new C(ey,...,€,) : D and
dom(X) = dom(u). Lemma 5.59 (4) applied to X + new C(ey,...,e,) : D
implies C <: D and fields(C) = C;f;; ...C,fy; and X + ¢; : C; foralli €
1..n. Since (y, ;) = (U;+1, ;) is a premise we assume X; + {lj41, 1) : C;
foralli € 1..nwith X C ¥; C --- C X},. Lemma 5.59 (1) and Lemma 5.59 (7)
imply X;(1;) <: C; for all i € 1..n. Using rules (r-o1p), (r-vew) and (r-sus)
we derive X, + new C(i,...,1,) : D. We then conclude X,,,1 : D +
({tn+1, 1) : D by rules (r-orp)and (r-cowr).

Case: (invk) Lemma 5.59 (1) applied to Xy + (uo, e9.m(eq,...,€e,)) : Cim-
plies X + po(t) : Xo(2) for all 1 € dom(pg) and Xy + eg.m(eyg,...,e,) : C
and dom(2y) = dom(y). Lemma 5.59 (5) appliedto X + eg.m(ey, ..., ey) :
C implies X; + ¢; : C; for all i € 0..n and mtype(Co,m) = C;...C, — D
with D <: C. Since (y;, ;) = (li+1,1;) iS a premise we assume X; +
(pis1,tiy = Cjforalli € 0.n with Xy € --- € X,. Lemma 5.59 (1)
gives X; + 1; : C; for all i € 0..n. The typing of the class table implies
x1:C1, - . ., Xp:Cp, this:Cy F e : D. Lemma 5.60 gives X, + ¢ : D where
e = elu/x1].. [tn/xu]lto/ this]. Using rules (r-sus) and (r-conr) we de-
rive X, b (ln+1, €)1 C.Since {pp41, €'Y = (p’, 1) is a premise we conclude
2R,y s Cwith X, € X7,

Case: (rrp-vr) Lemma 5.59 (1) applied to X + (p, e.f;=€’) : C implies X +
p(r) : 2(1) for all 1 € dom(p) and X + e.f;=¢’ : C and dom(X) = dom(p).
Lemma 5.59 (6) applied to X + e.f;=¢’ : C implies X + e : D and fields(D) =
Cifi;...Chfp; and X + € : C; and C; <: C. Since (y, ) = (¢’,1) and
(', e’y = (p”,V') are premises we assume X’ + (u’,1) : D and X" F
(u”’, 1) : C;, with X € X" € X”. Notice that (1) and ,u[’l’_l.:l,](L) have the

same types for all 1 by construction. We conclude X" + <,ufl’ =) 'y : Cy
PROOF OF (3pr): All the closed expressions appear as conclusions in the
: reduction rules.

PROOF OF (Vp): Since the only values are configurations with object iden-
tifiers it is easy to verify that the premises of the reduction rules are satisfied,
i being the conditions on memory and object identifiers assured by the typing
: rules. O



Bilg-step semantics with
observations

As discussed in Chapter 5, the behaviour of programs or software systems can
be described by the final results of computations. However, in many cases,
this provides only a partial description of such behaviour, because programs
and systems can also interact with the external environment. For instance, a
function call can terminate and return a value, as well as have output effects
during its execution. Hence, to provide a richer description of the behaviour
of programs and systems, we should take into account these interactions as
well, also seen as observations made during the computations.

In this chapter, we deal with (operational) semantic definitions covering
both results and observations. Often, such definitions are provided for finite
computations only. Notably, in big-step style, as discussed in detail in Chapter 5,
infinite computations are simply not modelled, hence diverging and stuck
terms are not distinguished. This becomes even more unsatisfactory if we
have observations, since non-terminating programs can exhibit a significant
observable behaviour interacting with the context, even though they do not
produce any final result, and we would like to be able to model such a situation.

As shown in Section 5.4, inference systems with corules can be successfully
adopted to express big-step semantics modelling diverging computations,
where corules play an essential role to control coinduction. Indeed, modeling
infinite behaviour by a purely coinductive interpretation of big-step rules
would lead to spurious results and undetermined observations, as discussed
by Leroy and Grall (2009), Ancona (2012, 2014), and Ancona, Dagnino, and
Zucca (2017c¢, 2018), whereas, by adding appropriate corules, we can correctly
get divergence (o0) as the only result, and a uniquely determined observation.
This approach has been adopted by Ancona, Dagnino, and Zucca (2017c, 2018)
to design big-step definitions including infinite behaviour for A-calculus and a
simple imperative Java-like language. However, in such works the designer
of the semantics is in charge of finding the appropriate corules, and this is a
non-trivial task.

In this chapter, as already done in Chapter 5 for semantics without ob-
servations, we show a construction that extends a given big-step semantics,
modeling finite computations, to include infinite behaviour as well, notably
generating appropriate corules. The construction consists of two steps:

1. Starting from a monoid O modeling finite observations (e.g., finite traces),
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we construct an w-monoid (O, O) also modeling infinite observations
(e.g., infinite traces). The latter structure is a variation of w-semigroup
(Perrin and Pin, 2004), including a mixed product composing a finite with
a possibly infinite observation, and an infinite product mapping an infinite
sequence of finite observations into a single (possibly infinite) one.

2. Starting from an inference system defining a big-step judgement ¢ = (r, o),
with ¢ configuration, r € Rresult, and o € O finite observation, we con-
struct an inference system with corules defining an extended big-step
judgment ¢ = (7w, 0co) With 7o € Ry = R+ {0} and 0 € O. The
construction generates additional rules for propagating divergence, as in
Section 5.4, and corules for introducing divergence in a controlled way,
obtained as instances of two patterns (co-unir) and (co-cen).

To show the effectiveness of our approach, we provide several instances of
the framework, with different kinds of (finite) observations. Depending on the
nature of such observations, instantiations of only (co-unit) or both should be
added to obtain the intended infinite behaviour.

Finally, we consider the issue of formally justifying that the construction is
correct. To this end, we extend the approach considered in Chapter 5 to take
into account observations: given a big step semantics, we define a labelled
transition relation, modelling the evaluation algorithm guided by rules, hence
we can model computations, as usual, by sequences of transition steps and then,
the observation produced by a computation is the possibly infinite product of
all the observations labelling single steps. Therefore, to prove correctness of our
construction, we just have to prove that the resulting semantics is equivalent
to that obtained from the labelled transition relation. This proof of equivalence
holds for deterministic semantics; issues arising in the non-deterministic case
and a possible solution are sketched in the Chapter 7.

The chapter is organised as follows. Section 6.1 informally introduces our
approach on a simple example. Section 6.2 describes the construction of w-
monoids, and Section 6.3 defines big-step semantics with observations, the
labelled transition relations modelling computation steps and the extension
of big-step semantics. Section 6.4 treats several significant examples and Sec-
tion 6.5 contains the proof of correctness.

An introductory example

AN EXAMPLE OF SEMANTICS WITH OBSERVATIONs We illustrate our
approach on an example discussed by Ancona, Dagnino, and Zucca (2018): a
call-by-value A-calculus with output.

The top section of Figure 6.1 contains the syntax. We assume infinite sets of
variables x and integer constants n. Results, namely values, are either integer
constants or A-abstractions. Beyond standard constructs, we add expressions
of shape out e, which output the result of the evaluation of e. Correspondingly,
observations are sequences of such outputs, and the semantics of an expression
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u= v|x|ee|oute expressions

u,v u= nlix.e values
0 = V...V, finite observations
e= (v,0)
(VAL) — (OUT) —_———
v= (v, ¢) oute= (v,0-v)

e1 = (Ax.e,01) €= (w,00) e[w/x]= (v,0)

(app)
ere=(v,01- 0y 0)

FIGURE 6.1 A-calculus with output: syntax and finite semantics

consists of both its final result and the whole observation produced during the
computation.

The bottom section contains big-step rules defining the operational se-
mantics of the language. As usual, the big-step judgement e = (v, o) directly
computes the semantics (result and observation) of the expression.

EXTENDING OBSERVATIONS First of all we enrich results by a special
element oo denoting divergence, and observations by considering infinite
output sequences:

Voo = V|00 results or divergence
0o #= 0|V ...V,... observations

The latter is an instance of a general construction, formally defined in Sec-
tion 6.2. Briefly, assuming that finite observations are a monoid (O, *, e),
with * (sequentially) combining two observations, and e the identity, also
called unit, modeling absence of observation, we construct an w-monoid
(0, Ox ), where O, models possibily infinite observations, with a mixed product
*™ 1 OX O — O combining a finite with a possibly infinite observation,
and an infinite product p : O“ — O mapping an infinite sequence of finite
observations into a possibly infinite observation. For details and a proper
definition, see Section 6.2.

In the example, the monoid is (Val*, -, ¢), and the construction just adds
infinite output sequences (Val is the set of values). Formally, we obtain the
w-monoid (Val*, Val®), where the mixed product is the concatenation of a finite
with a possibly infinite sequence, still denoted by -, and the infinite product
returns the concatenation of an infinite number of finite sequences.

123

EXTENDING BIG-STEP SEMANTICs We modify the judgement into e = (Veo, 0c0)

to include divergence and infinite observations. Correspondingly, we extend
the inference system, as will be formalized in Section 6.3. Here we informally
explain the extension using the example.

DIVERGENCE PROPAGATION We first present the easier part, which is
how to add rules for divergence propagation, shown in Figure 6.2.

These rules are not arbitrary: they are constructed in a systematic

manner starting from the original (meta-)rules. That is, for each original
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e = (09, 0co) e; = (Ax.e,0) ey = (00, 000)
(prv-app1)) —m8m8M8M8 (DIV-APP2)
e €2 = (09, 0uo) e; €= (0,0 * 0co)

e1 = (Ax.e,01) ey = (v, 05) e[vp/x] = (0, 0co)

(DIV-APP3)
e1 €2 => (00,01 " 03 * Oco)

e= (00, 00 )

DI1v-oUT) ————————————_
( ) out e= (00, 0x)

FIGURE 6.2 A-calculus with output: adding divergence propagation

Infinite proof tree for any Q = (Veo, 00 )

0= {w,e) w={w,e) W= (xx)[w/x] = Voo, 0c0)

Q=00= Voo, € € 00| = Oc0 )

Finite proof tree with corules for Q = v w = (o, ¢)

(CO-EMPTY ) =
Q= (o0,¢)

FIGURE 6.3 Proof trees for Q

meta-rule, we consider premises as ordered from left to right. For each
premise, say, the i-th, we add a meta-rule where the first i — 1 premises
are kept as they are (hence, the corresponding computations converge),
whereas the i-th premise requires the corresponding computation to
diverge. In the conclusion, we get co as result and the mixed product of
the observations in the premises (in the given order) as observation; only
the last observation is possibly infinite.

DIVERGENCE INTRODUCTION The rules in Figure 6.2 ensure that di-
vergent computations, if any, are correctly propagated. To discuss how
to correctly introduce divergent computations, consider, for instance, the
term Q = ww, where w = Ax.x x. We should derive Q= (o0, ¢), and
only this judgment, modeling that Q diverges without producing any
output. Similarly to what happens without observations (cf. Section 5.4),
no judgment can be derived for Q in the inductive interpretation of rules,
and, in the coinductive interpretation, an infinite proof tree exists for any
judgment Q = (V. 0w ), as shown in Figure 6.3, where we apply either
(arp), if Voo 1s @ value v, or (p1v-are3), if Ve = 0.

In summary, divergent terms have no result (are stuck) in the inductive
interpretation, and a fully non-deterministic result in the coinductive
interpretation. Our approach is to add appropriate corules, so that, as in
Section 5.4, we add constraints to filter out wrong judgments.

In the example, we add to the rules in Figure 6.1 and Figure 6.2 the
corules shown in Figure 6.4, which again are obtained in a systematic
manner.
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e= (v, 0)

(CO-EMPTY) = (co-ouT)
e= (00, ¢) oute= (00,0 V" 0c0)

FIGURE 6.4 A-calculus with output: adding corules

Notably, they are special cases of two patterns, named (co-unir) and
(co-cen), which handle two different cases of divergent computations.
Here we explain the role of these rules; they will be formally defined in
Section 6.3 (Definition 6.32).

The (co-unit) pattern handles the case where the computation produces
a finite* observation o. In this case, a purely coinductive approach obtains
any v, and any observation of shape o *™ 0, and the aim of the corule
is to only allow v, = 00 and 0, = e. In the example, we use the specific
name (co-emrry), since the unit is the empty sequence. In the Q2 case, 0 = ¢,
and, with (co-emrrv), we derive only the judgment Q = (oo, ¢). Indeed,
consider one of the proof trees in Figure 6.3, which have an infinite path.
For each node of such an infinite path? the corules should allow a finite
proof tree. If the path consists of infinitely many nodes Q = (v, 0s), for
some v and 0w, then the corules do not allow any finite proof tree for
this judgment, since they all have oo in the conclusion. If it consists of
infinite nodes Q = (0, 0 ), for some 0., then it is easy to see that only
for Q = (oo, ) there is a finite proof tree, shown in the bottom section
of Figure 6.3.

The (co-cEen) pattern, instead, handles the case where the computation
produces an infinite observation, since infinitely many elementary non-
unit observations are produced. In this case, a purely coinductive approach
obtains any ve; on the other side, the observation is uniquely determined
by this infinite sequence. Consider, for instance, the term O=6 (out @),
with & = Ax.(x(out x)), which is expected to diverge producing the
output sequence consisting of infinitely many occurrences of the value &.
In the top part of Figure 6.5 we show the infinite proof trees which can be
constructed for Q. Each of them forces the constraint oy, = & - 0o, Which
is solved only for 0c, = @...®.... Hence, the aim of the corule is, on
one hand, to force v, = 0o, and, on the other hand, to allow a finite proof
tree for any node in the infinite path. Since in this infinite path there are
infinite nodes producing an observation, it is enough to add a corule for
such nodes. In our running example, we use the specific name (co-out),
since the only original meta-rule producing a (non-unit) observation is
(ouT).

Exactly as in the Q case, the corules do not allow finite proof trees for
judgments of shape 2 = (v, 0,). On the other hand, they should allow a
finite proof tree for the judgment Q = (0, d,), which can be obtained
by corule (co-our), as shown in the bottom section of Figure 6.5.

1 More precisely, finitely generated by elementary observations, as defined in Definition 6.13.
2 For other nodes the condition is true since they have a finite proof tree using the rules.
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Infinite proof tree for 0= (Voos 00 ), €nforcing 0e = @ * 0co

0= (D, )

d=(0,e)  outd=(0,0) Q= @(outd) = (x(outx)[d/x] = (Veo, 0o)

Q=00utd)= (Veo, €D 0s = @ - 0s0 )

Finite proof tree with corules for Q= (0, Do) With oo = D ... D . . .

o= (0, €)

OZADE) Ut o (00,0 - 02 0m)

N

Q= (out d) = (00, 00)

FIGURE 6.5 Proof trees for 2

We conclude by explaining how meta-corules are added in a systematic
way.

« We always add a meta-coaxiom (co-unit) with conclusion e = (oo, e).

+ Assuming that in each meta-rule the observation in the conclusion
is the product o) * oy * o] * - -+ * 0, * 0}, where oy, ..., 0, are the
observations in the premises, and o, . .., 0}, are elementary obser-
vations produced by such meta-rule, we add, for each meta-rule and
i € 0..n where o] # e, a corresponding meta-corule with the first i —1
premises and conclusion e = (0, 0] * 01 * 0] * -+ % 0;_1 * 0]_; *™ 0co).
In the example, only (our) has a non-unit elementary observation,
therefore (co-our) is the only added meta-corule.

A formal account of this general construction is given in Section 6.3.

From finite to infinite observations

In this section, we formally define w-monoids. They are a variation of w-
semigroups used in algebraic language theory (Perrin and Pin, 2004). Further,
we introduce a completion construction from monoids to w-monoids and
finally, as a digression, we analyse its properties in categorical terms.

w-monoids

In this subsection we will define w-monoids. The definition is a straightforward
extension of that of w-semigroups, see, e.g., (Perrin and Pin, 2004), to take
into account the identity of the monoid. We start by recalling basic definitions
about monoids.
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DEFINITION 6.1 : A monoid is a triple (M, *,e) where M is a set, * :
M X M — M is an associative binary operation and e € M is an identity (a.k.a.
neutral element or unit), that is, we have x x e = x = e x x, for all x € M.

A monoid homomorphism from (M, #1, ep) into (N, sy, en) is a function
f + M — N such that f(x #p y) = f(x) *n f(y) and f(ey) = en.

As it is common practice, when there is no confusion, we will denote a
monoid (M, *,e) just by its underlying set M.

Given a set A, recall that A* is (the underlying set of ) a free monoid, where
the product is given by concatenation and the identity by the empty sequence.
This means that, if M is a monoid, then for every map f : A — M thereis a
unique monoid homomorphism f* : A* — M such that f#(a) = f(a), for all
a € A. In particular, starting from the identity idy; : M — M, we get the map
idjﬁw : M* — M, which interprets a sequence of elements of M as a unique

element, by iterating the operation * on the sequence. We abbreviate idjﬁw by
itas (for “iterator”), dropping the subscript when clear from the context.

To define w-monoids, we need to introduce for a monoid (M, *,e) arelation
on M®, used to state the infinite associative law, the distinguishing axiom of
w-semigroups and w-monoids. Given an infinite sequence ¢ € M®, a decompos-
ition of o is a sequence (u;);eN of non-empty finite sequences (u; € M*), such
that o can be obtained by flattening (u;);eN, thatis, ¢ = uguju, . . .. Then, for all
0,7 € M?, we will write o >« 7 iff there are a decomposition (u;);en of 0 and a
decomposition (v;);en of 7 such that for all i € N, it(u;) = it(v;). The relation
> can equivalently be characterised coinductively, as the greatest fixed point
of the monotone function P(R) = {{uo,vr) € M® X M® | u,v € M*, it(u) =
it(v), (o,7) € R} on the lattice of relations on M*, ordered by inclusion.

DEFINITION 6.2 (w-monoid): An w-monoid is a pair (M, X) of sets to-
gether with a function * : M XM — M, called finite product, a function
™ M XX — X, called mixed product, a function p : M® — X, called infin-
ite product, and a constant e € M, called identity (a.k.a. unit), satisfying the
following properties:

1. {M,+,e) is a monoid (cf. Definition 6.1),

2. *Misaleftaction: forallx,y e Mandz € X: x +™ (y+" 2z) = (x x y) +" z
ande*" z = z,

3. prespects the mixed product: forallx € Mand o € M, x+™p(c) = p(x0),

4. p satisfies the infinite associative law: for all o, 7 € M®, if o >« 7, then

p(a)=p(7).

An w-monoid homomorphism from (M,X) to (N,Y) is a pair of functions
f:M — Nandg:X — Y such that f is a monoid homomorphism and the
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following diagrams commute:

Mx X9 Nxy me L2 No
*TAXL j*zn\}y PM,Xl le,Y
x—7% .y x—% -y

EXAMPLE 6.3 : We list a few basic examples of w-monoids.

1. A main example is the pair (A*, A%) of finite sequences and possibly in-
finite sequences over an alphabet A. Finite and infinite products are given
by concatenation. The mixed product concatenates finite sequences (on
the left) with arbitrary sequences (on the right). There is no concatenation
with infinite sequences on the left.

2. As a special case of Item 1 (when A is a singleton set), (N, +, 0) extends
to the w-monoid (IN,IN + {oco}).

3. The monoid (N, v, 0) (where n; V ny is the join of n; and n, w.r.t. the
standard order) also extends to an w-monoid (IN,IN + {co}). Here, the
infinite product computes the supremum of values occuring in a sequence.

4. Let p(X) be the powerset of a set X, and ¢,,(X) the finite powerset, i.e.,
Po(X) = {S € X | S finite}. The monoid (g, (X), U, 0) extends to an
w-monoid, with the second component given by the (full) powerset p(X).

REMARK: The last requirement in Definition 6.2 cannot be derived from the
previous ones: take (Z, Z,,) where Z,, = Z.U {+00, 1}, where p computes the
sum of the elements of an infinite sequence o, returning _L if it is undetermined.
Then, the sum of 0 = 1: — 1:1: — 1:... is undetermined, hence p(c) = L.
However, for 7 = 0:0:0:. .., we have r < o and p(r) = 0 # L = p(0).

The following result, which will be proved using categorical tools in Sec-
tion 6.2.3, characterises free w-monoids generated by a set A.

PROPOSITION 6.4 (Free w-monoid): For every set A, w-monoid (M, X)

and map f : A — M, there is a unique w-monoid homomorphism (¥, fﬁ,) :
(A*, A®) — (M, X) such that f#(a) = f(a), for all a € A.

The map f‘f, in the above statement is given explicitly as the composition
= o B x)
where p is the infinite product of the w-monoid (M, X) and j is the identity on
infinite sequences, and maps a finite sequence u to ue®, with e the unit of M.
Analogously to the monoid case, we abbreviate (f # fi) by (it, it™) when
f = idy. The function it™ allows to interpret a possibly infinite sequence
of elements of M as a unique element of X, intuitively multiplying all the
elements of the sequence.
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6.2.2 Left continuous monoids and completion

We present now a construction which, given a monoid (M, *, e), produces an
w-monoid Co(M) = (M, M) called the completion of M. The idea behind the
completion is to construct the infinite product of a sequence o = (x;);en as
some kind of “limit” of the sequence of its finite approximations xy *- - - % x;, for
all i € IN. The completion we define is order-theoretic, and follows essentially
from the chain completion presented by Markowsky (1976).

The starting point of the construction is the observation that any monoid
carries an implicit (pre)order structure, which in a sense, is based on how
much information each element carries. Let (M, %,e) be a monoid and define
a binary relation <, on M as follows: for all x,y € M, x <, yiff y = x * z for
some z € M. It is easy to check that this relation is reflexive and transitive,
hence it is a preorder, and multiplication on the left preserves the relation,
that is, the left multiplication function m, : M — M, defined by m,(y) = x *y,
is monotone. Furthermore, the identity e is the least element with respect to
such preorder, that is, e <, x, for all x € M, and this implies that x <, x * v,
for all x, y € M; intuitively, the identity models “absence of information” and
multiplying means “adding information”. Finally, any monoid homomorphism
f : M — N is monotone with respect to such preorders on M and N.

EXAMPLE 6.5: Inthe monoid (A*,-, ¢) (finite sequences and concatenation),
the relation <, is the standard prefix order. In the monoids (N, +,0) and
(R, +,0) (natural and real numbers with addition), the relation <, is the
standard linear order, as in the monoid (NN, V,0) . In the monoid (N,-, 1)
(natural numbers with multiplication), the relation <, is the standard division
order. In the monoid (p(X),U, 0) (subsets of X with union), the relation <,
is the standard set inclusion.

Similarly, given an w-monoid (M, X), we can define a relation <,m from M
to X as follows: forall x € M and z € X, x <.n yiff y = x +™ z for some z € X.
Now, given a sequence o = (X, )nen, for all n € N we denote by o[n] the prefix®
Xo - .. Xp—1 of 0. Then, the sequence of partial products of o, (it(c[n]))nen, is
increasing with respect to <., because it(c[n]) <. it(c[n]) * x, = it(o[n + 1]).

DEFINITION 6.6 : Let (M,X) be an w-monoid and o = (x;,)nen € M.
A limit product of ¢ in X is an element z € X such that there is a sequence
(zn)nen Where zg = zand, foralln € N, z, € X and z,, = x,, *™ Zp41.

In other words, we can associate with o = (x,,),eN a system of equations
(Zn=xn*Zn+1)neN, Where (Z,,)nen is an infinite sequence of variables; then, the
sequence (z,,)nen of elements in X is a solution of such system of equations and
alimit product of ¢ is the value of the variable Z,. Note that, by construction, we
have z = xy * - - - x,_1 * zp, = it(co[n]) *™ z,,, for all n € N, hence it(c[n]) <. z,
that is, z is an upper bound of the sequence of partial products of o, or,
alternatively, each partial product of ¢ is a “finite” approximation of z.

3 Note that, when n = 0, o[n] = ¢.
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The interesting fact is that the infinite product of a sequence in an w-monoid
is always a limit product, as shown by the next proposition:

PROPOSITION 6.7 : Let (M, X) be an w-monoid and o € M“, then p(o) is
a limit product of ¢ in X.

Proof: Let o = (x;)ien and oy, = (xp+i)ien, for all n € N, hence oy = o, and,
: foralln € N, 0, = x,0,41. Then, setting z,, = p(o,,), we have z; = p(c) and,
i by Definition 6.2, z,, = p(ay,) = x5, *™ p(0n+1) = X *™ 2,41, as needed. m|

Therefore, these observations point out that, in order to construct an infinite
product of a sequence of elements in M, we can construct a (least) upper bound
of the sequence of partial products, and this is the strategy we will follow.

The completion construction deals with a special class of monoids defined
below. Given an increasing sequence (x,)neN in M, we denote by sup, . X
its supremum?, if any.

DEFINITION 6.8 (Left continuous monoids): A left continuous monoid is a
monoid (M, *,e) such that

+ <, is a partial order and
« for all x € M and increasing chain (y,)nen in M, x * sUp, Ny Yn =
sup,, (X * yn).

A continuous homomorphism from (M, sy, ep) to (N, *n,en) is a monoid
homomorphism f : (M, *y1, epr) — (N, *n, en) such that, for any increasing
sequence (xXp)neN in M, f(sup, ey Xn) = sup,en f(xn).

In other words, for a left continuous monoid (M, , e) , we require <, to
be antisymmetric, and, for all x € M, the left multiplication function m, to be
continuous, that is, to preserve suprema of increasing sequences, which are
unique as <, is antisymmetric.

The fact that <, is a partial order, that is, it satisfies the antisymmetric
property, can be characterised algebraically as follows:

PROPOSITION 6.9 : Let M be a monoid, <, is a partial order iff, for all
X,Y,z € M, x * y * z = x implies x * y = x.

Proof: The preorder <, is antisymmetric iff, for all w,x,y,z e M\, w = x*y
:and x = w * z implies x = w, iff, for all x,y,z € M, x = x * y * z implies
X=X *Y. ]

Therefore, every monoid satisfying the above condition, like those in Ex-
ample 6.3, can be endowed by a partial order, namely <., derived from its
binary operation, whose bottom element is the identity of the monoid. Note

4 This is not unique in general, as <, is not antisymmetric, but we will use this notation only
when the supremum is unique, namely, when < is a partial order.



6.2 FROM FINITE TO INFINITE OBSERVATIONS

that a side effect of the condition in Proposition 6.9 is that the only invertible
element is the identity, hence, for instance, the preorder <, on a group, such
as integers Z with the addition, is not a partial order. Finally, it is easy to
check that, in all the examples in Example 6.3, left multiplication functions are
continuous with respect ot <., hence they are left continuous monoids.

The reason why we define our construction on left continuous monoids is
that we want to look at infinite products as suprema of certain chains and so
the completion construction has to take into account existing suprema. For
instance, when completing the powerset p(X) of a set X (cf. Example 6.3), we
would like to obtain no new elements because all suprema already exist.

The completion construction below turns a left continuous monoid M into
an w-monoid Ce(M) = (M, M), where M, is presented as a quotient of the
set M®.

Assume a left continuous monoid (M, <., *,e) . We start by defining a
relation C on M®. Let 0 € M®, we write o[n] for the prefix of length n of o,
thatis,if o = (x;);en, theno[n] = x¢ . . . x,—1. We define the set S(o) C M as the
closure under suprema of increasing chain of the set P, = {it(c[n]) | n € N}.
More explicitly, since all non-stationary® increasing chains in P, are subchains
of (it(c[n]))nen, we can characterise S(o) as follows:

S(o) = {it(c[n]) | n € N} U {sup, o it(c[n])}

that is, S(o) is the set of products of all prefixes of o plus their supremum, if
any. Then, for all 0,7 € M®, we define

cCro VxesS(o).dyes(r).x <.y

This relation is a preorder. We denote by = the induced equivalence relation,
thatis,c=7iffcC rand 7 C o.

DEFINITION 6.10 (Completion): The completion of a left continuous mon-
oid (M, <,,*,e) is the w-monoid Co(M) = (M, M) where:

. MOO = Mw/E,
+ the mixed product *™ : M X My, — M is given by x +™ [7]= = [x7]=,
and

« the infinite product p : M® — M, is given by p(7) = [7]=.
The fact that Co(M) is indeed an w-monoid follows from the next lemma:

LEMMA 6.11: Let (M, <,,*,e) be aleft continuous monoid. The following

hold:

1. forallze Mand 0,7 € M?, if 0 = 7, then zo = z7,
2. forallo,7 € M?,if o s« 7 theno =7,
3. forall z;,zy € M, z1e® = z9e? iff z; = 2y,

5 A sequence (xp)neN is stationary when there is k € N such that x, = x foralln > k.
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4. for any left continuous monoid homomorphism f : M - N and 0,7 €
M?,if 0 = 7, then f“(0) = f*(1).

Proof:

1. We have to prove the two inequalities zo T z7 and z7 T zo; we prove
only the first, as the other is analogous.

Let x € S(z0), then x = sup; .n(it(u;)) for some increasing sequence
(u;); of prefixes of z : o, i.e., u; is a prefix of zo, for all i. Without loss of
generality, assume that (u;); does not contain the empty word (since it(e)
is the least element in M and the case where the supremum is the identity
is trivial) so each u; is of the form u; = zu;, with u; a prefix of 0. Then
sup;n(it(u;)) € S(o), thus, since o C 7, there is an increasing sequence
(v;); with each v; a prefix of 7, and sup, ¢ (it(u})) <. sup;n(it(v;)). So
we get

x = sup(it(u;))

ieN

= sup(it(zu}))
ieN

= sup(z * it(u}))
ieN

= z = sup(it(u;))

ieN
<, z # sup(it(v;))
ieN

= sup(it(zv;))

ieN
and since sup;en(it(zv;)) € S(z7) we get zo T z7, as needed.

2. Suppose o »< 7, with 0 = (x;);en and 7 = (y;);en, i.e., there are decom-
positions (u;);en and (v;);en of o and 7, respectively, such that, for all
i € N, it(y;) = it(v;). Towards a proof of ¢ E 7, let x € S(c). We have
two cases:

« If x = it(u) for some prefix u of ¢ and (u;);en is a decomposition of
o, then there is n € IN such that u is a prefix of &4 = ug . . . u,, hence
x = it(u) =, it(@). By hypothesis, we have it(i) = it(ug...u,) =
it(vg ... vn) € S(r) and this proves the thesis.

« If x = sup, \(it(o[i]), then note that, as (u;);en is a decomposition
of o, we have that, for all i € N, o[i] is a prefix of 4; = uy ... uy,
for some n; € N, hence it(c[i]) <. it(@;). By hypothesis, we get
it(@t;) = it(vg...vp,;) =« sup;en(it(z[i])), and this implies x <,
sup; n(it(z[i])) € S(7), as needed.

The other inequality 7 £ o follows from what we have just proved
because >« is symmetric.

3. Suppose z1e® = zze®. We prove z; <. zz and z; <. zj; this suffices,

because <, is antisymmetric. To this end, consider the prefix z; of z;e®.
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Since z1e“ T z;e® there is y € S(r) with z; = it(z;) <. y. It is easy to
see that either y = z, or y = e, since it maps every prefix of z;e® to
either one of those. If y = z,, we are done, as z; <, z;. If y = e, then
z1 <. e, and by antisymmetry of <,, since e <. z; by Definition 6.8,
we get z; = e and so we get z; = e <, z; again by Definition 6.8. From
what we have just proved and z,e®” C z,e® we then get z; <, z1, hence

z; = z; by antisymmetry.

4. Suppose f : M — N is a left continuous monoid homomorphism, o, 7 €
M?®, and o C 7. We need to prove f“(c) C f“(r). To this end, let x €
S(f“(0)). Then x = sup,; N (it(f*(u;))) for some increasing chain (u;);en
of prefixes of ¢. Since o C 7, there exists sup; n(it(v;)) € S(r), with
(vi)ien an increasing sequence of prefixes of 7, and sup; (\(it(u;)) <«
sup; n(it(vi)). Now, we obtain:

x = sup(it(f*(u;)))

ieN

sup(f (it(u;)))

ieN

f(sup(it(u;)))
ieN

<+ f(sup(it(vy)))

ieN

= sup(it(f*(v1)))

ielN

The second step holds since f is a monoid homomorphism, the third
since f is continuous.

O

EXAMPLE 6.12 : The w-monoid C(A*) is isomorphic to the (free) w-monoid
(A*, A%). In fact, the first three w-monoids in Example 6.3 arise as completions
of their underlying monoid, which is left continuous with respect to the natural
order <,. For the fourth (¢, (X)) this is the case if X is countable.

Finally, for an w-monoid (M, X) , consider the map lAX/I : M — X defined by
lﬁ(x) = p(xe®), where e® is the infinite sequence of e’s. Thanks to its defini-
tion, this map is well-behaved with respect to finite and mixed product, that is,
tii(x*y) = xxM L)Ag(y), and it is stable under homomorphisms of w-monoids, that
is, if (f, g) : (M, X) — (N,Y) is an w-monoid homomorphism, the following
diagram commutes:

ML>N

iy l ll%
X 2>y
Intuitively, lAX/I provides a way to embed M into X, however, in general, it is
not injective (it depends on the infinite product which can even be a constant

function). However, if M is left continuous and the w-monoid is the completion
Coo(M) = (M, M), then the map, denoted for short 131, becomes injective,
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thanks to Lemma 6.11 (3). Therefore, in the sequel of the chapter, we identify
M with its image in M., leaving the inclusion 1y implicit.

We conclude this subsection with the definition of a technical property of
w-monoids, stated for the completion in particular, which will be used to guide
the extension of big-step semantics presented in Section 6.3 (cf. Definition 6.35).
We note that the use of this property is quite subtle, and most of the extension
can be understood without it.

Let (M,x*,e) be a (left continuous) monoid. Given G C M, and Mg the
submonoid of M generated by G, a sequence o = (x;);eN in G is trivial if it
is eventually always the unit, that is, x; = e for all i > k for some k € IN.
Moreover, for z € M, we define the set F(z) of factors of z in Mg as follows:

F(z) = {x € Mg | z =y * x +" p(0) for some y € Mg and 0 € M}
We can now define the properties we need:
DEFINITION 6.13 : Let (M, *,e) be a (left continuous) monoid and G C M.

1. We say G has unique limits in M, if each non-trivial sequence o = (x;);eN

in G has a unique limit product.

2. We say an element z € M., is finitely generated by G if F(z) is non-empty
and finite.

We report below some properties useful in the following:

LEMMA 6.14 : Let o = (x;)ien € M{ a sequence such that z = p(o) is finitely
generated by G, and, for all n € N, u,, = xp . . . x,,. The following hold:

1. there exists n € N such that, for all k > n, z = p(ure®),

2. foralln € N, 0 = up0p,41 and p(o,41) is finitely generated.
. Proof:

1. Since z = p(o0) is finitely generated, there is n € IN such that, for all
k > n, it(u,) = it(uy), because otherwise we would have infinitely many
elements in F(z), that is absurd. Then, o = uge®, for all k > n trivially
holds from what we just observed, hence we have the thesis.

2. Let 0 = u,0,+1 and note that F(p(0,+1)) is not empty since the head of
on+1 belongs to it. Then, consider x € F(p(o,,+1)), by definition of factor
we have p(oy,41) = x” *x ™ p(0”’), hence (it(u,) * x") * x *™ p(c”’) = p(0),
that is, x € F(z). This proves that F(p(c,+1)) € F(z), hence F(p(0y,+1)) is
finite, and this proves the thesis.

6.2.3 Digression: completion from a categorical perspective

In this subsection, we analyse in categorical terms the completion presented in
the previous subsection. We will assume basic concepts from category theory,
referring, e.g., to the book by Mac Lane (1978).
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In the following, we denote by Mon the category of monoids and their
homomorphisms, and by w-Mon the category of w-monoids and their homo-
morphisms. There is an obvious forgetful functor U,.mon : @-Mon — Mon
which forgets the second component of w-monoids and w-monoid homo-
morphisms. First of all, we show that U, v, admits a left adjoint, that is, we
define a free construction of an w-monoid starting from a monoid.

Recall that, given a monoid (M, *, e) , > denotes the relation on M® defined
as follows: o >« 7 iff there are a decomposition (u;);en of ¢ and a decomposition
(vi)ien of 7 such that, for all i € N, it(u;) = it(v;). Such relation is trivially

*

reflexive and symmetric, and we denote by »* its transitive closure. The

following lemma shows some important properties of »<*.

LEMMA 6.15 : Let (M, *,e) be a monoid, then, for all 0,7 € M?, the follow-
ing hold:

1. forall x € M, if o »<* 7, then xo »<* x1

2. forallu € M*, uo »<* it(u):0

3. if f : M — N isamonoid homomorphism and o »<* 7, then f“ (o) ><* f*(7).

Proof:

1. We prove the thesis for p<, then it extends to ><* by a straightforward
induction. By hypothesis, there are a decomposition (u;);en of o and a
decomposition (v;);en of 7 such that, for all i € N, it(u;) = it(v;). Define
a decomposition (u;);en of xo and a decomposition (v});en of x7, where
uy = vy = x,u;,, =u;and v, = v;. Then, for all i € N, it(u]) = it(v})
as required.

2. We prove the thesis for », then it extends to ><* by a straightforward
induction. Suppose that ¢ = (x;);eN, then it is enough to consider
the decomposition (u;);en of uo and (v;);en of it(u):0, where uy = u,
vo = it(u) and ;41 = Vi1 = X4,

3. We prove the thesis for ><, then it extends to ><* by a straightforward
induction. By hypothesis, there are a decomposition (u;);en of o and
a decomposition (v;);en of 7 such that, for all i € N, it(u;) = it(v;).
Hence, (f*(u;))ien is a decomposition of f“(c) and (f*(v;))ieN is a
decomposition of f“(r). Since f is a monoid homomorphism, we get
that, for all i € N, it(f™*(u;)) = f(it(u;)) and it(f*(v;)) = f(it(v;)), hence
it(f*(u;)) = it(f*(v;)), and this implies f (o) >« f°(7).

Items 1 and 2 of Lemma 6.15 give us well-definedness of the following
construction.

DEFINITION 6.16 : Let (M, ,e) be a monoid. We define F,, yo,(M) to be
the w-monoid (M, M® /»<*) with
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« mixed product given by (x, [0].<x) > [x0].ex, and

« infinite product given by ¢ +— [0 ].*.

PROPOSITION 6.17 : The construction in Definition 6.16 extends to a functor
F-Mon : Mon — w-Mon, which is left adjoint to the forgetful functor U,,-uon.

waMon
— .
Mon 1 w-Mon
N~

Um-Mon

i Proof: It is enough to show that, for each monoid M, w-monoid (N, X), and
monoid homomorphism f : M — N, there is a unique function g : M? /><* — X
such that (f, g) is an w-monoid homomorphism from F,, yon(M) to (N, X).
: First of all, note that such a function has to satisfy g([o].<x) = pn.x(f*(0))
for all o € M, by definition of w-monoid homomorphism, and this shows
uniqueness. It remains to prove that g = py x - f¢ is well-defined on the
i quotient M® /><*, and that it is compatible with the mixed product. To-
wards a proof of the former point, we have to prove that, for all 0,7 € M“,
if o ><* 7, then py x(f“(0)) = pn.x(f?(r)). By Lemma 6.15 (3), we get
. f?(o) »* f“(r), and by the infinite associative law we get py, x(f“(0)) =
pn.x(f“(7)). Compatibility with the mixed product follows by

P x (f€(x0)) = pn.x (f(x)f“(0)) = f(x) +™ pn,x (f(9)).

Note that, since (A*,-,¢) is the free monoid over the set A, F,, yon(A*) is the
free w-monoid over the set A, just by composing the adjunctions. Therefore,
to prove Proposition 6.4, we just have to prove that F,, yon(A*) is isomorphic
(in w-Mon) to (A*, A®) , as done below.

: Proof (Proposition 6.4): Recall that the infinite product p of the @-monoid
(A*, A%®) acts by flatterning, that is, maps an infinite sequence (;);eN € (A*)?
to upuuz ... € A%, In other words, it can be defined corecursively by the
: following equations: p(e®) = € and p(e" - ((xu):0)) = x - p(u:0).

By Proposition 6.17, we know that there is a unique w-monoid homomorph-
ism (f, g) : Fi-mon(A*) — (A*, A%) such that f = id 4+, and we know that g
must act as p (on equivalence classes), because id}, = id(a*)~. We have to con-
: struct an inverse of g. We can corecursively define a function e : A~ — (A*)®
by the following equations: e(¢) = ¢“ and e(xa) = x:e(a). It is easy to
: check that (idax,e) is an w-monoid homomorphism from (A*, A®) to
Fy-mon(A*). Furthermore, it can be checked, by coinduction, that o > e(p(c)),
for all o € (A*)®, because, if ¢ = u:0’, we have e(p(c)) = u - e(p(c”)), and
i a = p(e(a)), for all @ € A®, because, if @ = ¢, p(e(¢)) = € and, if @ = x:a’,
p(e(a)) = x:p(e(a’)). Therefore, we have the thesis. |

We now present the completion of the previous subsection in categorical
terms, relating it to the free construction. Let us denote by LMon the category
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of left continuous monoids and continuous homomorphisms, which is trivially
a subcategory of Mon, as shown by the inclusion functor Iy, : LMon — Mon.
We define left continuous w-monoids as follows:

DEFINITION 6.18 (Left continuous w-monoid): An w-monoid (M, X) is
left continuous if

« M is left continuous and

« the infinite product p satisfies the continuous infinite associative law: for
all 0,7 € M?, if o = 1, then p(c) = p(7).

An w-monoid homomorphism (f,g) between left continuous w-monoids
is continuous if so is f.

We denote by w-LMon the category of left continuous w-monoids and con-
tinuous homomorphisms, which is trivially a subcategory of w-Mon, as wit-
nessed by the inclusion functor I, yon : @-LMon — «©-Mon, which is well-
defined by Lemma 6.11 (2). Furthermore, there is an obvious forgetful functor
Ugp-LMon : @w-LMon — LMon, which forgets the second component of left con-
tinuous w-monoids and continuous homomorphisms. It is easy to check that
the following diagram commutes:

Uw-Mon
Mon <—— w-Mon
ILMon Iw-LMon

LMon <=—— w-LMon

w-LMon
Note that, given a left-continuous monoid M, the w-monoid (M, M),
constructed in Definition 6.10, is actually a left continuous w-monoid. Hence,
we get the following key proposition.

PROPOSITION 6.19 : The construction in Definition 6.10 extends to a functor
F,-tmon : LMon — @-LMon, which is left adjoint to the forgetful functor U, won.
Feo-tmon
LMon S w-LMon

Uw-LMon

Proof: Itis enough to show that, for each left continuous monoid M, left con-
tinuous w-monoid (N, X) and continuous monoid homomorphism f : M — N,
there is a unique function g : M“ /= — X such that (f, g) is an w-monoid ho-
i momorphism from F,, | yon(M) = (M, M) to (N, X) (it is trivially continuous
as so is f).

: First of all, note that such a function has to satisfy g([c]=) = pn,x(f“(0))
: for all o € M®, by definition of w-monoid homomorphism, and this shows
uniqueness. It remains to prove that g = py x - f¢ is well-defined on the
quotient M /=, and that it is compatible with the mixed product. Towards
i a proof of the former point, we have to prove that, for all o,7 € M,
7, then py x(f“(0)) = pn.x(f?(r)). By Lemma 6.11 (4), we get

if o =
f“ (o) = f“(r), and by the continuous infinite associative law we get
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Cpnx(f?(0)) = pn.x(f“(r)). Compatibility with the mixed product follows

- by pn.x (f?(x0)) = pn.x(f(x) f“(0)) = f(x) +™ pn.x (f“(0)). m
COROLLARY 6.20 : We have the following diagram
waMon
—
Mon \l_/ w-Mon
Uw-Mon
ILMon Iw-LMon
waLMon
/—\
LMon 1 w-LMon
~—
U(z)-LMon
where the following hold:
* ILMon : Uw—LMon = Uw-Mon * Iw—LMona

o Ugy-mon * Foo-mon = Idwon and Uwon * F-tmon = Idimon,

« there is a surjective natural transformation (¢ur) : Foy-mon(ILmon(M)) —
Iw-LMon(Fw-LMon(M))-

: Proof: The first two items are trivial. The third one follows by defining @
as the component at I yon (M) of the counit of the adjunction F,-mon 4 Ugp-mons
. because we have Iyon(M) = Usy-mon(Lo-Lmon (Fo-Lmon(M))). o

Finally, we note that the completion C from left continuous monoids to
w-monoids is actually a functor, notably the composite of F,|wo, followed
bY Iis-Lmon-

6.3 Extending big-step semantics with observations

In this section, we start defining big-step semantics with observations (Defini-
tion 6.21) and, following the approach of Section 5.1, what are computations
in such a big-step semantics. Then, we will formally define the construc-
tion extending a big-step semantics with observations from finite to infinite
computations.

6.3.1 Definition

We start by providing a general formal definition of big-step semantics with
observations, following Definition 5.1.

DEFINITION 6.21 (Big-step semantics with observations): A big-step se-
mantics with observations is a tuple (C, R, O,R) where:

« Cis a set of configurations c,

o Risasetof resultsr,
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« O is a left continuous monoid of (finite) observations o, with (finite)
product = and identity e. We define judgments j = c¢= (r, 0), mean-
ing that configuration c evaluates to result r producing the observation
0. Set C(j) = ¢, R(j) = r and O(j) = o.

+ R is a set of (big-step) rules p of shape

Ji oo Jn
c=(r,00 % O(jp) * + - - % 0p—1 * O(jiy) * 0y)

also written in inline format: rule(j; . . . jn, 0g - . . On, ¢, ), Where ji .. . jn,

with n > 0, is a sequence of premises and oy ... 0, is a sequence of
elementary observations. Set C(p) = ¢, R(p) = r, O(p) = 0y * O(j;) *

- % 0,-10(jn) * op, for i € 1..n, C(p,i) = C(j;), R(p,i) = R(j;) and
O(p, i) = O(j;) and, for all i € 0..n, E(p, i) = o;.

We will use the inline format, more concise and manageable, for the devel-
opment of the meta-theory, e.g., in constructions.

As discussed for standard big-step semantics in Section 5.1, big-step rules
defined above are very much like inference rules in Definition 2.1. However,
they carry a richer structure. Notably, premises are a sequence, rather than a set,
hence, they are ordered and can be repeated, and the sequence of elementary
observations is made explicit. Again, such additional structure does not affect
derivability using these rules, but it is essential to develop the meta-theory
in this chapter, notably, to define computations and the construction. Indeed,
as premises are a sequence, we know in which order configurations in the
premises should be evaluated and, as the sequence of elementary observations
is explicit, we know when and which observation should be produced.

Therefore, given a big-step semantics with observations (C, R, O, R), slightly
abusing the notation, we denote by R the inference system obtained by for-
getting such additional structure, and define, as usual, the semantic relation
as the inductive interpretation of R. As customary, in the following we will
write R +, ¢= (r, 0) when the judgment ¢ = (r, 0) is inductively derivable
in R, namely, it has a finite derivation.

Again, as for standard big-step semantics, since in practice the (infinite) set of
rules R is described by a finite set of meta-rules, each one with a finite number
of premises, the number of premises of rules is not only finite but bounded.
We model this feature (relevant in the following) by an explicit assumption,
essentially equal to Assumption 5.1:

ASSUMPTION 6.1 (Bounded premises (BP)): For a big-step semantics with
observations (C, R, O,R) , there exists b € N such that

for each p = rule(ji .. .jn, 09 ... 0n, ¢, 1), n < b.

EXAMPLE 6.22 : The big-step semantics of A-calculus with output in Fig-
ure 6.1 is an instance of Definition 6.21 where

« configurations are expressions e,

« results are values v,
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+ observations are finite sequences of values v; . .. v,, with finite product
and identity given by concatenation and the empty sequence, respectively,

« rules are those of Figure 6.1 where we assume a left-to-right order on
premises and where we have omitted elementary observations equal to
the empty list. In the inline format, rules are the following:

(var) rule(e, &, v, v)
(arp) rule(e; = (Ax.e, 01) €3 = (v, 00) e[vo/x] = (v, 0), ccee, e ey, V)
(out) rule(e= (v, 01), €v, oute, v)

EXAMPLE 6.23 : As discussed on page 73, rule (arr) formalises for an ap-

plication e, e; left-to-right evaluation with early error detection. Right-to-left
evaluation can be expressed by just swapping the first two premises, that is:

(app-r1GHT) rule(e; = (W, 02) e = (Ax.e, 01) e[wn/x] = (v, 0), ccce, €1 €5, V)

Left-to-right evaluation with late error detection can be expressed as follows:

(arp-raTE) rule(e; = (vy, 01) e = (W, 02) V1 = {Ax.e, 03) e[Vo/x] = (v, 0), cccee, e ey, V)

Computations

As discussed in Chapter 5, the dynamics of the evaluation process is implicit
in big-step rules. This is also the case when we extend the definition by
observations, hence, in this section, following the approach of Section 5.2,
we make it explicit by defining computations for a big-step semantics with
observations.

We have defined computations for a standard big-step semantics (cf. Sec-
tion 5.2) by introducing a transition relation between partial evaluations that
formally models the evaluation algorithm implicitly associated with a big-step
semantics. Here, we extend this approach to big-step semantics with observa-
tions. Notably, the main difference is that in this setting the transition relation
will be labelled by an observation, which is the one emitted by this evaluation
step. In this way, a computation, that is, a (possibly infinite) sequence of steps,
will be naturally associated with a (possibly infinite) sequence of observations
that can be interpreted in the completion of the monoid of finite observations,
as we will formally explain.

First of all, note that a big-step semantics with observations (C, R, O, R)
trivially determines a big-step semantics as defined in Definition 5.1, by for-
getting elementary observations. More precisely, the resulting big-step se-
mantics is (C,R X O, R) , where a rule rule(j; . . . jn, ¢, {r, 0)) belongs to R iff
rule(j - - . jns 00 - - - On, €, 7) belongsto R and 0 = 0y* O(jy )% - =% 0,—1% O(j,) * 0p,
for some oy, ..., 0, € O. Hence, all definitions and results developed for stand-
ard big-step semantics can be applied to big-step semantics with observations
as well. In particular, we can use Definition 5.2 to extend big-step rules with
? and so construct partial evaluation trees (cf. Definition 5.4) for big-step se-
mantics with observations, thus modelling incomplete evaluations, and, finally,
use them to define the transition relation.
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[
:? 'R('D)

(LTR-1)  (axp(e)) p =rule(e, o, ¢, 1)
c

c={r,o0)

=7 Clp)=c Clp,1)=¢

[
(LTR-2)  (a0() =5 g (evi(p.1.2)
c= [

? =7? E@p0)=o0
’ ’ )
~i #p' =1
T ... Ti o ... P ,'f[)’ P , .
(LTR-3)  (pevs(p.ir) ® @) ——~ R(p’,i)=r, E(p’,i) =0
=7 c=(r', o) "N "
R(p") =7, Op) =0
pl~ip
T ... T o ... =7 S , .
(LTR-4)  (ews(p,i,n) e e R(p’,i)=r, E(p’,i) =0
) Clp',i+1)=¢
T .. Ti-1 T ] . 71 ...Ti_ll'il 0 ,
(LTR'5) (pevo(p, i,?) c—? R (pev?(p,z,m))T Ti_’RTi

FIGURE 6.6 Labelled transition relation between partial evaluation trees.

Figure 6.6 contains rules defining the labelled transition relation associated
with a big-step semantics with observations. As without observations, this
transition relation is defined on partial evaluation trees annotated by rules:
each node is associated with the rule in R> used to derive it from its children.
However, in this context the annotation is not redundant, because rules in R
carry more information (the elementary observations), and annotations will
be important also for the subsequent formal development.

Similarly to the transition relation for standard big-step semantics (cf. Fig-
ure 5.3), it relies on an equivalence relation on rules modelling equality up-to an
index, which, in this context, has to take into account elementary observations
as well:

DEFINITION 6.24 : Given rules in R
— l - H d 7 __ l -/ +/ ’ ’/ 4
p=rule(ji...jn, 0...0n, ¢, r)and p’ = rule(j; ... j,, 0)...0,, ¢, 1),

for any index i € 1.. min(n, m), define p ~; p’ if and only if

e c=¢,
o forallk < i, jx =j; and of = o}, and

. Cli) = CG).

Intuitively, this means that rules p and p’ model the same computation until
the i-th configuration included.

As without observations, each transition step makes “less incomplete” the
partial evaluation tree, but, differently, it produces an (elementary) observation
according to the selected rule. Notably, transition rules apply only to nodes
labelled by incomplete judgements (¢ = ?), whereas subtrees whose root is a
complete judgement (¢ = (r, 0)) cannot move. In detail:

« If the last applied rule is ax;(c), then we have to find a rule p with c in
the conclusion and, if it has no premises we just return (R(p), O(p)) as
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. id="? . id= (id, ¢)
id(out0)=? R id (out0)=? R id (out0)=7?
0=7
id= (id, ey ———
. id= (id,e) out0=7? ., out0=?
R id (out 0) = ? R id (out 0) = ?
0= (0,¢) 0=(0,¢)
id= (id,e) ——— id= (id,e) ——
. out0=7? 0 out 0= (0,0)
R id (out 0) = ? R id (out 0) = ?
0= (0, ¢)
id= (id,e) —— 0=?7?
. out 0= (0, 0)
R id (out0)=?
0= 0, ¢)
id=> (id,e) —————— 0=(0,¢)
. out 0= (0,0)
R id (out 0) = ?
0= (0, ¢)
id=(id,ey ——  0=(0,¢)
. out 0= (0,0)
R

id (out 0) = (0,0)

FIGURE 6.7 The evaluation of id (out 0), with id = Ax.x, using L’R for rules in
Figure 6.1.

result and producing as observation O(p)®, otherwise we start evaluating
the first premise of such rule, producing the first elementary observation
E(p,0).

« Ifthe last applied rule is pev,(p, i, r), then all subtrees are complete, hence,
to continue the evaluation, we have to find another rule p’, having,
for each k € 1..i, as k-th premise the root of 7i. Then there are two
possibilities: if there is an i + 1-th premise, then we start evaluating it,
otherwise we return (R(p’), O(p’)) as result, and, in both cases, we
produce the i-th elementary observation E(p’, i).

« If the last applied rule is a propagation rule pev,(p, i, ?), then we simply
propagate the step, and the produced observation, made by 7; (the last
subtree).

As usual, we extend —— , to sequences of observations, writing TLV;QT’,
with u € O*, when we can reach 7’ from 7 producing the sequence of obser-
vations u.

In Figure 6.7 we report an example of evaluation of a term according to
rules in Figure 6.1, using partial evaluation trees and ——..

As said above and as happens without observations, the definition of _i_)R
given in Figure 6.6 nicely models as a transition system an interpreter driven
by the big-step rules, specifying an algorithm of incremental evaluation, which

6 Note that, since p has no premises, O(p) is an elementary observation, that is, E(p, 0) = O(p).
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1 ... T
O | @o© =e O (p)—n =0
c=7? c=(r,o0)

1T ... T _
0 ((peV_v(p,i,r?))? ) = l_[ E(p,k - 1) * O(Tk)

kel..i

FIGURE 6.8 Inductive definition of O(7).

at each step produces an observation. We now show that the labelled trans-
ition relation ——, agrees with the semantic relation (inductively) defined
by R, namely, the semantic relation captures exactly successful terminating
computations in —— . To prove this result (Theorem 6.28), we need some
preliminary definitions and lemmas.

Figure 6.8 shows equations inductively defining the partial observation O(t)
of a finite (annotated) partial evaluation tree 7. Intuitively, O(r) represents
the observation produced by the partial evaluation modelled by 7. The next
lemma shows that partial observations grow when performing a computation
step by — .

LEMMA 6.25 : If TLRTI, then O(r’) = O(7) * o.

Proof:  The proof is by induction on the definition of —— .

Case: (Lrr-1) We have O(t) = e and O(z’) = o, hence the thesis holds.

Case: (1tr-2) We have O(1) = e and O(z") = E(p,0) = o, hence the thesis
holds.
Case: (rtr-3) We have O(1) = [1req ; E(p, k)% O(tx) and O(z”) = O(r(”)) =
(ITker. i E(p, k — 1) = O(zx)) = E(p, i), because all 7 are complete. Since
p ~; p’, we have E(p,k — 1) = E(p’,k — 1), for all k € 1..i, and, since
E(p, i) = o, we conclude O(z") = O() * o.
Case: (LTr-4)
Wehave O(7) = [1key..; E(p, k)xO(ti) and O(t”) = (ITxer..; E(p, k — 1) * O(7ic))*
E(p, i). Since p ~; p’, we have E(p,k — 1) = E(p’,k — 1), for all k € 1..i,
and, since E(p, i) = o, we conclude O(zr’) = O(r) * o.
Case: (LTr-5)
We have O(7) = [Tgey... E(p, K)<O(zi) and O(r") = (TTgey. i1 E(ps k — 1) % Oz )+
E(p,i — 1) * O(r/). By induction hypothesis, we get O(z/) = O(1;) * o,
hence we get the thesis.

LEMMA 6.26 : If T——-u——>;;1',, then O(z") = O(t) = it(u).

Proof:  Straightforward induction on u, using Lemma 6.25. ]
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LEMMA 6.27 : If 7 is a finite partial evaluation tree with C(r(z)) = ¢, then
Rulec= ?L)%T for some u € O* with it(u) = O(7).

Proof: The proof is by induction on the height of 7. We have three cases.

o Ifr = the thesis is trivial by taking u = ¢.

=7’
1 .. T . . .
o« Ifr = (peV?(p,i,Rg(r(Ti))))—? , with p = rule(ji .. .jn, 0p...0p, ¢, r) and
’ C= !

i € l.nand ¢t = C(jx) = C(r(rx)), for all k € 1..i, then by induction

hypothesis, we get 5 u—k>’7§rk, forall k € 1..i. For all k € 0..i let

Cp = !
us define
TO, = (axp(0)) > 7 Vo = €
1 ... Tk
(k>1) 7] = entpkrtrp) =3 Uk = Uk—10k_1Uk

By induction on k € 0..i, we can show that TO/L);{T];, forall k € 0..i.

For k = 0 the thesis is trivial, as v-¢. For k > 1, by induction hy-

pothesis, we get 7, _ZEL ,x 77 then, by applying (1rr-4) and, since

RTk-1°
Uk % . . . ’ Ok-1Uk 4 ,
—— & Tk, by iteratively applying (vrr-5), we get 7,  ————7%1,,

=7
hence 7, —gk——ﬁzr’, asneeded. THerefore, in particular we have 7, —U—ia;‘zri’
7, hence, to conclude, we have just to note that it(v;) = [1req. ; Ok—1 *
it(ug) and, as it(ux) = O(rx) for all k € 1..i, we get it(v;) = O(r;), as
needed.

1 ... Tph

c=(r,o0)

on . .
(LTR-3) OF (LTR-1), We have T’—>Rr and 7’ is incomplete and has the

o If 7 = , with p = rule(j ... ju, 00 ... 0p, ¢, r), then by rule

same height of 7, thus, by previous items we have Rulec= ?LV;QT’,
with it(u) = O(z”). By Lemma 6.25, we get O(r) = O(t’) * o, = it(uop),
as needed.

. : L— . . _
THEOREM 6.28 : R +, c¢= (r,o) iff =5 T RD with it(u) = o and

r(t) = c= (r, 0).

: Proof: The left-to-right implication follows by Lemma 6.27, because if R
¢ = (r, 0), by definition, there is a finite evaluation tree r with r(r) = ¢ = (r, 0),
hence O(r) = o.

i The right-to-left implication is immediate because it(u) = O(r) = o, by
Lemma 6.26 and, since r(r) = ¢= (r, 0), r is a correct finite derivation for
¢= (r,0), hence R +, ¢= (r, 0) holds. O
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6.3.3 Construction

We now turn to the extension of a big-step semantics with observations
(C,R, O,R), which, similarly to the construction in Section 5.4, consists in
the addition of rules for divergence propagation as well as corules to rule out
spurious results, as shown in the example in Section 6.1. Due to the presence of
observations, the choice of corules to add is less trivial than the case without
observations (cf. Definition 5.26). Indeed, depending on properties of R and
the observation monoid O, we will study two possible choices for corules to
be added—see the final construction in Definition 6.35.

First of all, we add a special result co modelling divergence and we consider
the w-monoid (O, O) , obtained by completion of O. Note that, since O is
left continuous, we have O € O.” Then, the extended judgement has shape
¢ = (o, Oco) Where 7o € Ry = R+ {00} and 0 € Oco.

We start by defining basic rules for divergence propagation.

DEFINITION 6.29 (Rules for divergence): The set of rules R is obtained
by adding to R the following rules:

DIVERGENCE PROPAGATION RULES Foreachp =rule(j;...j,, 0p...0p, C, 1)
in R, index i € 1..n and possibly infinite observation 0, € O, define
rule div(p, i, 0x) as
Jiooev i1 CGi) = (0, 0w)
¢ = (00, 09 * O(j1) * - - * 0j_3 * O(ji—1) * 0j—1 *™ 0co)

Intuitively, we consider the possibility that evaluation of C(j;) diverges, for
one of the premises j;, producing a possibly infinite observation os. In that
case, the subsequent premises should be ignored and the configuration c¢ in
the conclusion should diverge as well.

As already mentioned, choosing the appropriate set of corules, that is, a set
of corules providing the “expected” semantics, is not trivial at all. However,
there is a first basic property that any set of corules must satisfy to properly
model divergence: the resulting semantics must be conservative, that is, do not
change the semantics of finite computations.

We now describe a “syntactic” property of corules ensuring the resulting
semantics to be conservative.

DEFINITION 6.30 : A set C* of corules is called conservative if all of them

have shape
CI:<rgo’o(1>o> Cn:<rgo’o(r>lo>

¢ = {00, 00 )

We now show that, by adding a conservative set of corules to Re, we do
not affect the semantics of finite computations. The intuition behind such
a result is that a conservative set of corules allows infinite derivations only
for judgements modelling divergence. The important consequence is that, for
converging judgments, we can reason by standard inductive techniques on R.

7 More precisely, O can be injectively embedded in Oc.
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THEOREM 6.31 (Conservativity): For any conservative set of corules C%,
(Roo, CRY k) c= (1, 0) iff R Fu c=(r,0).

: Proof: The right-to-left implication is trivial as R C R, by Definition 6.29.
To get the other direction, note that if (Rw,,C®) F, c¢= (r,0) then we
! have R U CR Fu ¢= (r,0). Hence, we prove by induction on rules in
Re U CR that, if R U CKR by c= (r,0), then R +, ¢ = (r, 0). The cases of
coaxiom div,(c) and divergence propagation prop(p, i, o) are both empty, as
: the conclusion of such rules has shape ¢ = 0. The only relevant case is that
of arule p € R, for which the thesis follows immediately. O

We now define the two sets of corules we will consider throughout this
chapter.

DEFINITION 6.32 (Corule patterns): The set CX consists of the following
coaxioms:

(co-untt) for each configuration ¢ € C, define coaxiom co-unit(c) as

c= (00, e)
The set CgR consists of the following corules:
(co-cen) for each rule p = rule(j .. .jn, 0y ...0n, ¢, r)in R, index i € 0..n

such that o; # e, and possibly infinite observation 0, € O, define
co-gen(p, i, 0x) as

B

€= (00,00 * O(jy) * - - - * 0j_1 * O(j;) * 0; *™ 0c0)

The set Czé is defined as the union CX U C’gR.

Note that all the above defined sets of corules, namely, Cf, CgR and ng, are

conservative, hence Theorem 6.31 applies to the associated semantics.

EXAMPLE 6.33 : Due to the condition o; # e, for the A-calculus with output
(cf. Figure 6.1) the above definition associates no corule (co-cen) with (are),
whereas for (our) we obtain corule (co-our), see Figure 6.4.

The properties of the semantics extension strongly depend on how the w-
monoid Cs(0) = (O, O ) behaves with respect to the elementary observations
Eg produced in the semantics, defined by

Egr ={o€ O| E(p,i) = ofor some p € Rand i € 1..#p}

Further, we define Og as the submonoid of O generated by Eg. This submonoid
contains all the observations produced by finite computations, as stated in the
following lemma.

LEMMA 6.34 : If R+, c= (r,0), then o € Og.
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Proof: The proofis by induction on rulesin R. Let p = rule(jy . . . jn, 0p - - - Op,
be arule in R, then, by Definition 6.21, we have O(p) = (I];¢; , 0i-1 * OQj))*
op,. By induction hypothesis, we know that O(j;) € Og, for all i € 1..n, and,
. since o; € Eg, for all i € 0..n, by definition of Eg, we get the thesis, because
Og is closed under product of elements in Eg. ]

We are now ready to define the extension of big-step semantics, using the
constructions in Definitions 6.29 and 6.32.

DEFINITION 6.35 (Extending big-step semantics): The extension of a big-
step semantics with observations (C,R, O,R) is defined by the inference
system with corules (R, ng) if Eg has unique limits in O, otherwise by

(Reos CF).

In the above definition, if Eg has unique limits in O, we take both corule
patterns of Definition 6.32 and the construction is correct, as will be formally
shown in Section 6.5.2 (cf. Theorems 6.40 and 6.45). Indeed, given a com-
putation which produces infinitely many elementary non-unit observations,
pattern (co-cen) allows any limit product of this sequence (cf. Lemma 6.43),
hence the uniqueness of limits is needed to avoid spurious observations. The
property of unique limits holds in many significant examples, see the next
section, notably for the common case where observations are traces.

If this property does not hold, we can keep only pattern (co-uwnir) and, in
this way, the construction is correct for computations producing observations
which are finitely generated by Eg (cf. Theorems 6.41 and 6.42), as defined
above. This is satisfactory in many examples, see again the next section.

Examples of instantiation of the construction

In this section, we consider several examples, with different underlying mon-
oids of finite observations. For simplicity, we directly show the (possibly
simplified) meta-rules obtained by the construction, using the following con-
vention: non-bold for original meta-rules, bold black for added meta-(co)rules,
bold gray for extended meta-rules (merging original and added meta-rules).

I/O events

The first example, in Figure 6.9, is a slight extension of the A-calculus in
Section 6.1: besides out e, we add the construct in to read input values. Single
observations are no longer just values, but I/O events of shape either inwv
(value v has been read) or out v (value v has been output). The monoid of
finite observations is Z:‘O, where X5, = {inv,outv | v value}, that is, the
free monoid as in Section 6.1, but on top of a different alphabet. Hence the
w-monoid completion yields (X7

io’?

X3) » adding infinite sequences of events.
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e == v|x|ee|in|oute expressions
w,v == i|Ax.e values
0 == Hdnv]|outwv I/O events
o == 6;...0, finite observations
0o u= 0]061...0,... observations
D[] == Oel|outOo (divergence) propagation contexts
(vaLr) (ouT) <e’ Ul>:> <<v’ 0.2>’O>
<V, O->=> <<V, O->a£> <OUt e, O-1>=> <<V, 62>70'(OUt V))
(e1,01) = ({(Ax.e, 02), 01)
(e2,02) = ({v, 03), 02)
(e[v/x],03) = w
") Ginvo) = ((v.0). in v) (e1e.01) = 0107 - w

(e1,01) = ((Ax.e, ), 0)
(&3, 02) = (0, 0co) (o1v) (e,0) = (00, 0 )
P Dlel, 0) = (00, 000)

(DIV-APP2)
(e1 €2,01) = (0,0 - 0c)

(co-EmPTY) oo (co-1N)
(e,0) = (o0, ¢) {(in,vo) = (00, (in V) « 0co)

(e,01) = ({v, 02), 0)

(co-ouT)
(oute,01) = (00,0 (OUt V) 0x)

FIGURE 6.9 A-calculus with I/O: meta-(co)rules generated by the construction

The grammar also defines (divergence) propagation contexts D[ | (Ancona,
Dagnino, and Zucca, 2018) with one hole at fixed depth 1 to allow a more
concise presentation of the meta-rules added for divergence propagation (see
comments to rule (p1v) below).

Meta-rules (va1), (ouT), and (1n) are original meta-rules; (vai) and (out) are
analogous to those in Figure 6.1. However, here configurations have shape
(e, o) where o is an infinite sequence of values modeling the input stream. In
meta-rule (in), a value is read from such a stream, emitting the corresponding
elementary observation.

Meta-rule (arr) is the merge of two different meta-rules: the original one,
analogous to (arr) in Figure 6.1, and that added for divergence propagation from
the third premise, analogous to (p1v-are3) in Figure 6.2. To this aim, the meta-
variable w ranges over pairs of shape either ((v, o), 0) or (oo, 0. ); accordingly,
o’ - w denotes either {(v, o), 0’ - 0) or {0, 0" - 0w ). Meta-rule (p1v-arr2) is ana-
logous to that in Figure 6.2, added for divergence propagation from the second
premise of (arr). Thanks to propagation contexts, the remaining meta-rule
(o1v) represents those added for divergence propagation from the first premise
of both (arr) and (ovur), analogously to (p1v-arr1) and (prv-our) in Figure 6.2.

The meta-corules (co-smrry) and (co-out) are analogous to those in Fig-
ure 6.4, obtained as special cases of (co-unir) and (co-crw) defined in Section 6.3,
respectively, where the latter pattern is applied to meta-rule (our). The meta-
corule (co-1w) is obtained by applying the pattern (co-cew) to meta-rule (in).
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In this example, as in that of Section 6.1, by adding both the (co-unit) and
the (co-cen) patterns, as shown above, we get the expected semantics, that is,
the same defined by the associated transition relation. Notably, completeness
holds adding both patterns (Theorem 6.40), and soundness holds since the
monoid of finite observations has unique limits (Theorem 6.45).

I/O costs

In the next example, the language is the same, but here we observe the (time)
costs associated with each I/O operation. This could be easily generalized to
other constructs, e.g., considering also the costs for function application; how-
ever, by considering I/O operations only, we can show that our construction
leads to exactly the same meta-rules as the previous example, modulo the used
monoid of finite observations.

This monoidis (Rxg, +, 0) , that is, non-negative real numbers with addition.
The completion yields the w-monoid (Rsp, Rs¢ + {o0}) , that is, the only
additional infinite observation is oo, corresponding to diverging sums and with
the obvious behavior with respect to the mixed product.

The meta-rules in Figure 6.10 differ from those in Figure 6.9 mainly for the
employed w-monoids, and few other details. Namely, meta-variables ¢ and ¢
range over Ry (finite observations) and R + {co} (possibly infinite obser-
vations), and the semantics is parametric in the two functions cj, : Val = Ryg
and ¢yt : Val = R assigning costs to in and out operations, respectively,
depending on the input/output value. The meta-corule corresponding to the
pattern (co-unit) in Section 6.3 has been named (co-zrro). As in Figure 6.9,
we overload notation by adopting the same symbol (+ in this case) for both
finite and mixed product. In this case, the meta-variable w ranges over pairs
of shape either ({(v,0),c) or (oo, cw) ; accordingly, ¢’ + w denotes either
{v,0),c" +¢) or (co0,c’ + coo) .

As in the previous example, by adding both the (co-unit) and (co-cEn) pat-
terns we get the expected semantics. Completeness is again ensured by The-
orem 6.40. Soundness (Theorem 6.45) holds under the following assumption on
the cost functions: 0 < inf{c;n(Vv), cout(v) | v € Val,0 < ¢in(v),0 < cout(V)};
that is, non-zero costs for I/O operations cannot be arbitrarily close to zero.
This ensures that the set of elementary observations produced in the semantics
has unique limits. This is a reasonable assumption: it means that diverging pro-
grams performing infinitely many I/O operations with non-zero costs cannot
have a finite cost.

Executed branches

We consider a A-calculus with labelled conditional expressions and boolean
constants, and a semantics useful to reason about branch coverage. The syntax
is defined in the top section of Figure 6.11.
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(e,01) = (v, 02), ¢)

(vaL) (out

<V, O-> = <<V7 O->7 0> <OUt e, O-1> = <<V’ 62)7 c+ Cout(v)>
<€1, O—1> = <(/1x.e, UZ>7 cl>
(e2,09) = ((v,03), c2)
(e[v/x],03) = w
) G ve) = (v, o), con(V) (o) = atotw

(e1,01) = ((Ax.e,02), ¢)

(€2, 02) = (09, Ceo) (e,0) = (0, o)
(prv-arez) (e €3, 01) = (00, ¢+ Coo) (oxv) (Dle], o) = (0, o)
(co-zERrRo) —m—m—m—m—mmm (co-1N)
<e’ O.>:> <0090> <-in9 VO.>$ <009 c'in(v)+ coo>

(e’ Gl) = <<V7 O-2>’ C)

(co-ouT)
(out e, 01) = (00, ¢ + Cout(V) + Coo)

FIGURE 6.10 A-calculus with I/O costs: meta-(co)rules generated by the
construction

We assume each conditional expression e ?, e; : e; in a program to be
associated with a unique label a ranging over a countably infinite set A of
labels, so that a.true and a.false denote the unique addresses inside the
program of the then and else branches e; and e,, respectively.

Here finite observations are the sets of the addresses of the branches ex-
ecuted by a program, represented by the monoid (g, (Ap), U, D) , where
Ap, = {a.true,a.false | a € A}. The completion yields the «w-monoid
(90 (Apr), P(Apr)) (see Example 6.3 (4)), adding infinite subsets of A,,. Again,
in the meta-rules, the symbol U denotes both the finite and the mixed product.
The meta-variable w ranges over pairs of shape either (v, A) or (o0, As), and,
if W= (Voo, Ao ), then A U w denotes (Voo, AU Ax).

Similarly to meta-rule (arr), meta-rules (1¢-r) and (1¢-t) (name in gray bold)
are obtained by merging two different meta-rules: the original one for the
finite semantics of conditional expressions, and the meta-rule representing
those added for divergence propagation from the second premise.

For what concerns meta-corules, in this example we add only the (co-unir)
pattern, because adding (co-cen) would be unsound. Indeed, as already men-
tioned, the completion produces the full powerset p(Ay,), and the set of ele-
mentary observations has not unique limits. However, since every program
has a finite set of branches, it is easy to see that (even infinite) computations in
the associated transition system produce only observations which are finitely
generated by elementary observations, hence Theorem 6.41 gives completeness
of the big-step semantics. And, because we have only the (co-uniT) pattern, by
Theorem 6.42 the big-step semantics is sound.
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n= v|x|ee|e? e :e; expressions
u,v u= true| false|Ax.e values
D[] == Oe|O%e: e propagation contexts

e; = (Ax.e, A1)

ez = (v, A)
e[v/ix]|=>w
(var) Vﬂ(v,®> €1 egﬂAl UAZUW
e= (false, A) e= (true, A)
€)= W e =>w
( e?,e : e=>AU{a.falselUw ( ) e?,e :eo=>AU{atrue} Uw
e; = (Ax.e, A)
ez = (00, Aw) e= (00, Ax)
) = (AU ™) Dlel= (oo, Ac)
(CO-EMPTY) =
e= (00, 0)

FIGURE 6.11 A-calculus with conditional: meta-(co)rules generated by the
construction

Maximum heap size

In this last example we consider an imperative extension of the call-by-value
A-calculus with heap references which can be explicitly deallocated. The syntax
is in the top section of Figure 6.12.

Values are either references i or A-abstractions. The syntax includes expres-
sions of shape ref e creating a new reference initialized with the value of e, ! e
dereferencing the reference denoted by e, e;=e, updating the reference denoted
by e; with the value of e;, and free e deallocating the reference denoted by e.

In this case we are interested in observing the maximum size of the heap
used by a program: finite observations are modelled by the monoid (N, V,0) .
This monoid can be employed whenever observing the maximum number of
used resources, independently from the notion of resource (heap locations,
files, locks, etc.). The completion yields the w-monoid (IN,IN + {co}) (see
Example 6.3 (3)), whose infinite product computes the supremum of values in
a given sequence.

As before, the same symbol V denotes both the finite and the mixed product.
The meta-variable w ranges over pairs of shape either ((v, H), s) or (o0, w0 );
accordingly, s” V w denotes either ({(v, H),s’ V s) or (0,5’ V s).

Configurations have shape (e, H), where a heap H is a finite map from
references to values. Heap extension is denoted by H W {1 +— v} (where 1 is not
in the domain of H); |H| denotes the cardinality of the domain of H, i.e., its
size®. If the computation converges, then ((v, H), s) is returned (a value v, a
heap H, and a maximum size s); if it diverges, then a pair (o, s.,) is returned.

8 With the simplifying assumption that the size does not depend on the values in the heap.
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u= v|x|ee|refe|!le|e=e|freee expressions

v u= 1| Axee values
D[] == 0De|refo]|!O| freeo|O=e propagation contexts
(e, H1) = ({v, H>), s)
(vav) (

) e e H)y = (1 Ho @ {1 = v}y s v (1+ [F0])
) (e, H1) = ({1, Hz), s)

(e, Hy) = (v, Hz), sV [Hel)
<e77—[1> = <<L’ (]‘{2>,S>
(freee, H;) = (v, H3),s V |H;])

(e1, Hi) = ({1, Hz), s1) (e2, Ha) = (v, H;), 52)

(e1=ep, Hy) = (v, Ho W {1 > v}), 51 V 5 V [H3])
) (e1, Hy) = ((Ax.e, Hy), s1) (e2, Ho) = (v, H), 52) (e[v/x], Hz) = w

<€1 62,7‘{1> =5 VsV |(}'{3| vV w
(o1 H) = (W F0).5) (0P = (i) ()= (s)
(e1=ez, Hy) = (0,5 V 5eo) (Dle], H) = (0, 5x0)
(e1, Hi) = ({(Ax.e, Hy),s) (es, Ha) = (00, 500) (co-z2R0)
(e1 &g, H1) = (00, 8V $0) (e, H) = (00,0)

(v, HY = (v, H),0)

7’(2([) =V

(DEREF

Hy = Hz W {1 v}

(FREE)

(upD) Hz = Hy W {1 v'}

(pIV-UPD)

(DIV-APP2)

FIGURE 6.12 A-calculus with references: meta-(co)rules generated by the
construction

As in the previous example, the set of elementary observations produced in
the semantics has not unique limits. Hence, we keep only the meta-coaxiom
(co-zEro) corresponding to the pattern (co-unit) to avoid unsoundness. The
big-step semantics is sound by Theorem 6.42; however, as opposed to the
previous example, the infinitely generated observation® co is not obtained,
hence the semantics is not complete. However, by Theorem 6.41 the semantics is
complete for finitely generated observations; since the only infinitely generated
observation is oo, the only case where the big-step semantics does not return
any result is for programs that would require an infinite heap to run. This is
acceptable, as such programs are always doomed to crash.

Correctness of the construction

In this section we prove the correctness of the construction in Section 6.3.3.
To formulate and prove correctness, we use as reference semantics the one

defined in Section 6.3.2 through the labelled transition relation —— ,,, where

R’
the definition of both finite and infinite computations is straightforward.
Correctness then means that, starting from a big-step semantics (C, R, O, R) ,
through the construction we get an extended big-step semantics equivalent to

possibly infinite computations in ——.

9 Produced by diverging programs allocating infinitely many references, without deallocating
them.
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Throughout this section we assume a big-step semantics with observations
(C,R, O,R) , where the completion of O is Coo(0) = (O, Ow). First of all, we
introduce notations for the semantics derived by the transition relation —— 4:

« ¢ ~»g(r,0) means that there is a finite computation starting from c
producing the result r, with observation o, obtained interpreting the finite
sequence of observations of single steps. Formally, we define

¢ ~og(r, o) iff Lﬁef, R(r(7)) = r and it(u) = o for some u € O*

c=7

¢ ¢ wg(00, 0) means that there is an infinite computation starting from
¢, with possibly infinite observation o, obtained interpreting the infinite
sequence of observations of single steps. Formally, let us define PNy
where 7 is a finite partial evaluation tree and o € O, as the coinductive
interpretation of the following rule:

R 0 ’
T .RT

That is, T—j‘——>%, with o = (0;);eN, iff there is an infinite sequence (7;);eN

such that 7 = 7y and, for all i € N, Ti—Oi——> & Ti+1- Then, we define

¢ R (00, 0 ) Iff —— L% and it (o) = 0w for some o € O%.
c=7

The equivalence for finite computations is an easy consequence of Theor-
ems 6.28 and 6.31.

THEOREM 6.36 (Equivalence for finite computations): Let C* be a conser-
vative set of corules, then (Ru, CR) F, c= (r, 0) iff ¢ wsg(r, 0).

Proof: By Theorem 6.31, (R, CX) v, ¢ = (r, 0) isequivalenttoR +, c=> (r, 0)

and, by Theorem 6.28, this is equivalent to 5 —u——>%’[, for some u € O*,

. c>7?
i where r(t) = ¢c= (r, 0) and it(u) = o, hence we have the thesis. O

The correctness result for infinite computations requires an additional as-
sumption on big-step semantics: we assume that it is deterministic. Such an
assumption needs to be expressed, rather than globally on the semantic rela-
tion, at the level of individual rules, since the property should be preserved by
the construction, which handles single rules.

Determinism assumptions

Determinism is expressed at the level of single rules as follows:
ASSUMPTION 6.2 : For all

. . ’ =/ =/ ’ ’ ’ ’
p =rule(ji...jn, 00...0n, ¢, r)and p’ = rule(j] ... j,, o) ...0p,, ¢, 1)
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in R, with ¢ = ¢’ the following hold:
1. foralli € 1..min{n, m}, if, for all k < i, jx = ji, then p ~; p’, and
2. if, for all k € 1.. min{n, m}, jx = ji, then p = p’.

To explain how the above assumption actually models determinism, let us
consider the (meta-)rule for application in a A-calculus where configurations
are pairs (e, ) with p auxiliary structure, e.g., memory, modified by some
constructs, so that the evaluation order is relevant.

op) (e1, ) = ({Ax.e, 1), 01) {ez, p1) = (v, 2), 02) (e[v/x], p2) = {({u, '), 0)
(e1 e, 1) = ((u, '), 01 - 0 - € - 0)

(a

Note that, for a fixed (e, ez, ) in the conclusion, there are infinitely many rules

which can be obtained by instantiating the meta-variables. Assumption 6.2 (1)
imposes the following constraints, expressed in the meta-rule by using the
same meta-variable:

+ (i = 1) the configuration in the first premise is uniquely determined

+ (i = 2) the configuration in the second premise is uniquely determined
by the result of the first premise

« (i = 3) the configuration in the third premise is uniquely determined by
the results of the first two premises.

In (arr) all elementary observations are equal to e, but, in general, Assump-
tion 6.2 (1) requires each elementary observation to be uniquely determined by
previous premises as well. Finally, Assumption 6.2 (2) requires the final result
and observation to be uniquely determined by the results in the premises.
We prove now two lemmas, holding under Assumption 6.2, used in later
proofs. The first states that the big-step semantic relation is indeed determin-
istic, that is, any configuration has at most one final result and observation.
Note that, by conservativity (cf. Theorem 6.31), this ensures that any conser-
vative set of corules preserves determinism for finite computations. Another
source of non-determinism could be a conflict between convergence and di-
vergence, and the second lemma states that this is prevented as well.

LEMMA 6.37: IfR F, c=(r,01) and R +, ¢c= (13, 02), then r; = r; and
01 = 02.

. Proof: The proof is by induction on the derivation of ¢= (ry, 0;), and we
denote by RH the induction hypothesis. We know that ¢= (r1, 01) is de-
rived by rule p; = rule(j; . . . jn, 0g ... On, ¢, 11) and ¢ = (rz, 0) is derived by
i rule p; = rule(ji . . . jiu» 0y - .. O, €, 12). We prove, by complete arithmetic
induction, that, for all k € 1.. min{n, m}, jx = j,’c. Let k € 1.. min{n, m}, then,
: by induction hypothesis, we know that, for all h < k, j, = j}’l, hence, by
Assumption 6.2 (1), we get p; ~k pz and, in particular, C(jx) = C(j; ). Then,
by RH, we get R(jx) = R(j;) and O(jx) = O(j; ), that is, jx = j;.



6.5.2

6.5 CORRECTNESS OF THE CONSTRUCTION

Finally, since for all k € 1..min{n,m} we have jix = ji, by Assump-
: tion 6.2 (2) we get p; = py, hence r; = r; and 0; = 0. O

LEMMA 6.38 : If R +, c¢=(r,o0), then there is no 0, € O such that
Reo by €= (00, 000).

Proof: The proofis by induction on rules in R. Suppose ¢ = (r, o) is derived
i by p = rule(jy ... Jjn, 0p...0n, ¢, ). Assume now that R, F, ¢ = (0, 0c)
for some 0, € O, then we have applied a rule div(p’, i, o.,) where p’ =
rule(ji . .. jp» 0 - - . Opy» €, 1'). We prove, by complete arithmetic induction,
that, for all k € 1..min{i,n}, C(jx) = C(j). Let k € 1..min{i,n}, then,
i by induction hypothesis, we have, for all h < k, C(jp) = C(j;l), and, by
: Lemma 6.37, we get j, = j;. Thus, by Assumption 6.2 (1), we get p ~¢ p’ and,
 in particular, C(jx) = C(jp).

:  We have min{i,n} = i or min{i,n} = n, but in the latter case, since
we have just proved C(jx) = C(jp), for all k € 1..n, by Lemma 6.37 we
get jx = Jj;, hence, by Assumption 6.2 (2), we get p = p’; thus, we have
ii < m = n = min{i,n}, hence i = n. Therefore, in both cases we have
min{i,n} = i.

: Then, in particular, we have C(j;) = C(j/) and, by hypothesis, we have
Reo by C(jj) = (00, 0,), which is not possible by induction hypothesis, since
LR by i O

COROLLARY 6.39 : Let C* be a conservative set of corules. If (R, CX) I,
¢ = (r, 0), then there is n0 0 € Ow such that (R, CR) k), ¢ = (00, 0so).

Proof: By Theorem 6.31, we have R +, ¢= (r, 0) and, by Lemma 6.38, there

© 1510 00 € O suchthat Ry, F,, ¢ = (0, 0,) and, since (7300,CR) Fy ¢ = (00, 000)

implies Reo Fy ¢ = (00, 0c), We get the thesis. m|

Results for infinite computations

We now present the formal results about the correctness for infinite compu-
tations. As already mentioned, we assume the big-step semantics to satisfy
Assumption 6.2.

First we discuss completeness for infinite computations. The following the-

orem states completeness for CX, that is, the extension obtained by both the

eg?
(co-unit) and (co-Gen) patterns.
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THEOREM 6.40 (Completeness): If c vg (00, 0x), then (R, ng) Fy ¢ = (00, 0o ).

An additional completeness result characterizes infinite computations which
can be derived by restricting corules to the set CX of those of shape (co-uni).
Recall from Section 6.3 that Eg is the set of the elementary observations
produced in R, Og the submonoid of O generated by Eg, and observations
finitely generated (by Eg) are those with a non-empty and finite set of factors
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in Og (see Definition 6.13). Then, the following theorem states that all infinite
computations producing a finitely generated observation can be derived using
only (co-unNIT).

THEOREM 6.41 (Completeness for CR):  If ¢ ~»g (00, 05) and o, is finitely
generated by Eg, then (Reo, CR) F, ¢ = (0, 0c0).

We now discuss soundness results for the constructions in Definition 6.35.
Soundness always holds when restricting corules to the set CX, and in such
case, as stated above, completeness can be kept as well if the produced obser-
vations are finitely generated, see the example in Section 6.4.3.

THEOREM 6.42 (Soundness for CX): If (R, CX) +, ¢= (0, 0., then
4 ’V")R<°O, 000)-

Let us now consider the pattern (co-crn). We formally motivate that, as
shown by the examples of Section 6.4, in this case soundness requires unique
limits (cf. Definition 6.13).

Let us consider an (annotated) evaluation tree 7 in R, of the judgement
¢ = (00, 0), Which is necessarily infinite, as there are no axioms in R intro-
ducing oo (cf. Definition 6.29). We can associate with 7 the infinite sequence
o; of finite observations produced by such tree. Formally, setting ¢, = ¢,
for each level i of 7 there is a divergence propagation rule div(p;, k;, o'Z!)
with p; = rule(ji1 .- -Jin» 0i0--- Oin;» Ci» Ti)s ki € 1.n; and ol, = o050 *
(ITher. k-1 OUii,n) * 05 p) *™ 0'1, that is, setting 0%, = 0, 7 can be described
by a sequence (7;);en of trees such that

Ti,1 -« Tiki—1 Ti+l
i
¢ = <OO, ch)>

T0 =T  Tj = (divp; ki oldh)

where, for all h € 1..k; — 1, 7; , can be assumed finite by Theorem 6.31. We can
then define o, € O as the sequence (0,(i));en Where

o (i) = 05,0 * ( n O(ji,n) * Oi,h)

hEl..ki—l

Note that, for all i € N, o), = o,(i) *™ 0f!, 7; is an evaluation tree for
¢; = (00, ity and o, (k) = o.(i + k). Moreover, oy is a limit product of
o (cf. Definition 6.6), that is, there is a sequence (0™ ),eN such that, 0e, = 02
and, for all n € N, 0o = o.(n) *™ o4}, which implies 0w, = it(c,[n]) *™ 0.

Actually we have the following result.

LEMMA 6.43 : If (Re, ng) Fy ¢= (00, 0s) holds by an infinite evaluation
tree 7, o, is non-trivial and o[, is a limit product of o;, then (R, Cgé) Fy
c= (00, 00)).

This lemma shows why adding the pattern (co-ce~) could be not sound:
for each infinite evaluation tree 7 for a judgement ¢ = (0, 0.,), where o; is
non-trivial, we can derive ¢ = (oo, 0J,) for all limit products o, of o,. Hence,
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an easy sufficient condition to ensure soundness is to require such limit to be
unique.

By Lemma 6.34, given an infinite evaluation tree 7 of ¢ = (09, 0w ) in R,
o; belongs to O;‘Q’. Then, for soundness it is enough that Og (in fact, thanks to
the next proposition, Eg), has unique limits.

PROPOSITION 6.44 : Og has unique limits if and only if Eg has unique
limits.

THEOREM 6.45 (Soundness): If (R, ng) Fy ¢ = (09, 00 ) and Eg has unique

limits, then ¢ »»g {00, 00 ).

Proofs

In this subsection, we provide proofs of results for infinite computations
presented in the previos subsection.

coMPLETENESS The proofs of all our completeness result rely on the fol-
lowing coinductive proof principle, similar to Lemma 5.28, derived from the
bounded coinduction principle associated with inference systems with corules.

LEMMA 6.46 : Let S C C X O be a set. If, for all {c, o) € S, we have
1. Reo UCK Fu €= (09, 00), and

2. there are arule p = rule(jy ... jn, 0p...0p, ¢, ¥)in R, an index i € 1..n
and o/, € O, such that

00 = ([Tker..i=1 %1 * OGjk)) * 0i—1 ™ 0%,
o forallk <i, R+, jx and
« (CGi), o) €S,
then, for all (¢, 0s) € S, (Reo, CR) F, ¢=> (00, 000).
Proof:  Consider the set 8" = {(c,,00) | (¢, 00) € S} U {{c,r,0) |

R+, ¢= (r,0)}, then the proof is by bounded coinduction (cf. Proposi-
. tion 3.27).

BOUNDEDNESs We have to show that, for all {c, 7w, 0w0) € S, R UCR I,

€= (e, 0oy holds. This is easy because, if 1, = co, then this holds by
hypothesis (Item 1), otherwise o, € R, 0o € O and R +;, ¢ = (7o, 0co),
hence this holds since R € Roo € Reo U CK.

CONSISTENCY We have to show that, for all {c, re, 00y € S’, there
is a rule {(ji...jn, €= (oo, 00)) € Rw such that, for all k € 1..n,
(C(i), Ro(k), Ox(ji)) € S’. There are two cases:

o If ro = oo, then by hypothesis (Item 2), we have a rule p =
rule(ji ... jn, 0g...0p, ¢, ¥) € R,an index i € 1..n and o), € O
such that 0 = ([1xeq j—1 k-1 * O(ik)) * 0;—1 *™ 0L, for all k < i,
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R+, ji and (C(j;), 0,) € S. Then, the needed rule is div(p, i, of,).
« If ro € R, then, by construction of ', we have R, ¢= (7, 0w0),

hence there is a rule p = rule(jy . . . jp, 00 - - - Ony € Too) € R € Reos
where, forallk € 1..n, R +, ji holds, and so (C(jk), R(jk), O(jx)) € S".

O

We start by focusing on Theorem 6.40, the completeness result for the
set of corules Ceqé. First of all we have to characterise infinite computations
by — .

o
LEMMA 6.47 : If — ——, then 0 = uc¢’, for some u € O* and 0’ € O®
cC= !

such that

u T ... Ti1¢G=>7 o o’
————>;;(pev?(p, i) ;3 and
c="7?

w
c="7 =7 R

Proof: Let 0 = (0;);en, then there is an infinite sequence (7;);en such that

T = and T,‘L)RTI'H, for all i € N. By definition of —— 4, for

c=7
all i € N, since riLRT,-H, we have r(r;) = ¢=>? Forall i € N, let
br(z;) be the number of direct subtrees of 7;, then, by definition of —
: (br(r;))ien is an increasing sequence of natural numbers. By Assumption 6.1,
: such sequence is bounded, hence there is n € IN such that br(zx) = br(z,), for
all k > n. Let n € N be the least number with such property, and note that
n > 1and br(z,) > 1, because br(r;) = 1, since the step Toi)ﬂfl is done
using (vtr-2); further, since n is the least index with such property, we have
br(z,_-1) < br(zy,), hence we have

/ P o= ?
T T

Tn = (peva(p,i,?) 7
Then, for all k > n, the step Tko—k>RTk+1 is done applying (rTr-5), because
(vrr-1) and (vtr-3) imply 741 is complete, which is not possible as r(rx41) =
i ¢=?, and (vrr-2) and (vtr-4) imply br(zx41) > br(zy), which is not possible as
i br(tr+1) = br(zx) = br(zy,). Therefore, for all k > n, we have

’ ’ ’
T T T
Tk = (pevy(p, i) —————(——
c="
and 7/, —* 7/ and 7/, = Hence, if we set u = o 0
: ik RTi(k+1) 0 = o= 5 s = 0p...0p-1
: u o’
‘and ¢’ = (0p+k)keN, then we have ¢ = uo’, > RTn % and
: c=7
O_I
—)%, as needed. O

Ci=>?

To check Item 1 of Lemma 6.46, we need the following results:

LEMMA 6.48 : If TLRT,, with o # e, and C(r(7)) = ¢, then Roo U Cg; Fu
c= {00, O(1) * 0 %™ 0w ), for all 0x € Oc.
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Proof:  The proof is by induction on the definition of —.

71 .

c=> (r )
rule(ji ... jns 0p... 04, ¢, r)in R and 0 = 0, # e and R +, j;, for all
i € 1..n. By co-gen(p, n, 0s), which is in ng as o, # e, applied to
Jis -+« jn, We get Roo U ng Fu ¢= (00, 0" *™ 0,), but, by Lemma 6.25, we
have o’ = O(r’) = O(7) * o, as needed.

Case: (1tr-1),(1tr-3) We know that 7/ = () with p =

... =7

Case: (LTr-2),(tTr-4) We know that 7/ = (pev;(p.i+1.2) ,with p =

c=7?
rule(ji . .. jn, 00 ... 0p, ¢, 7),i € 0..n—1and 0 = 0; # eand R +, ji, for all
k € 1..i. By co-gen(p, i, 0 ), which is in Cg; as 0; # e, applied to jy, . . ., ji,
we get Roo U ng Fu €= (00,0" % 0; *™ 0w), With 0" = [lgey. ; 0k—1 *
O(jx) = O(t), as needed.

Case: (Ltr-5) Weknow thatr = (pGV7(p,i,?))w T = (peV_?(P,i,r‘y))w
c=7 c="7

and 7,— 2 ®Ti>» With p = rule(ji ... jn, 09 ...0n, ¢, ¥) and i € 1..n and

R+ jk, forall k € 1..i — 1. Let C(r;) = C(7]) = c¢;. By induction hypo-

thesis, we get Ro U Cf Fu € = (00, O(1;) * 0 %™ 0c), for all 0 € Ouo;

then, applying div(p, i, O(z;) * 0 %™ 04 ), which is in R, by definition, to

Jis e sjic1and ¢; = (00, O(17) * 0 *™ 00y, We get RooUCK g Fu ¢= (00,0" % O(;) * 0 5™ 0x),
with o' = (e, i1 01 * OGE)) * 0r-1. Since O(ie) = O(ze), for all

ke 1..i—1,weget o’ * O(r;) = O(1), as needed.

LEMMA 6.49 : If T—> , with C(r(f)) =cand o = 0y...0p0’, with op # e,
then R, U ng Fuc= (oo, O(1) * 0g * -+ - * of *™ |t°°(o")>.

Ok o’

Proof: Leto =o0p...0p0’andu =0y ...0k_1,thent : ;grl R T2
s with C(r(r)) = C(r(r1)) = C(r(r2)) = c. By Lemma 6.48, we have Re, U ng’ F

c= (00, O(1y) * o *™ it*(0”)) and, by Lemma 6.26, we get O(r;) = O(r) *
L it(v), hence we have O(1;) * o *™ it®(c’) = O(1) * it(vog) *™ it®(c’) =
O(t) =™ it*(o), as needed. O

w
R

To check Item 2 of Lemma 6.46, we rely on the following lemma:

LEMMA 6.50 : If L);%, then there is p = rule(jy . . . ju, 0y ... 0n, C, 1)

=7
inR,anindex i € 1 .n and o’ € 0? such that o = vo’ for some v € O* and

e Rbpyjr,forallke1.i—1,

N)
m —— g, and

« it7(0) = ([Tker..i-1 0k-1 * O(ik)) * 0i-1 *™ it¥(0”).
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Proof: Note that, by Lemma 6.47, we have o = vo’ and

v T ... T o o’
——RT = (pevs(p,?) ——pand7; = e
R 7 c=? R

w
c="7 ;=" R

with p = rule(ji .. .jn, 0p...0n, ¢, ¥)inR and i € 1..n and R +, ji, for all
i k € 1..i — 1, as 7} is complete. To conclude, note that, by Lemma 6.26, we
| have it(v) = O(r) = (TTger..i—1 0k-1 * O(7k)) * 0;_1, then, since O(z) = O(ji),
forallk € 1..i — 1, we get
it” (o) = it (vo’) = it(v) *™ it*(c”) = ( l_l 0k—1 * OGjg)) * 0;_1 *" it™(c”)
: kel..i—-1

O

We have now all the elements to prove completeness.

Proof (Theorem 6.40): The proof is by Lemma 6.46. Let S € C X O be the
i set {{c, 0n) € C X O | ¢ (00, 0s)} and consider {c, 0) € S, hence we
: know that

: c

o
5 —— and it¥(0) = 0w, for some o € O,
E

To check Item 1 of Lemma 6.46, we have to prove that R, U ng Fu
¢ = (00, 0) holds. We have two cases: if ¢ = e“, then we get the thesis
by (co-unrtr); if 0 = 0 ...0r0’, with o # e, then the thesis follows from
: Lemma 6.49.
©  Item 2 of Lemma 6.46 follows immediately by Lemma 6.50. O

We now prove our second completeness result, concerning the set of corules
CXR. To show this result, we rely on some key properties of finitely generated
observations (cf. Lemma 6.14) and on the next lemma, relating the transition
relation to the set of elementary observations Eg.

LEMMA 6.51: If TLRT', then o € Eg.

Proof:  The proof is by induction on the definition of —— . For clauses
: (LTR-1), (LTR-2), (LTR-3) and (vTr-4) the thesis is immediate as we have o = E(p, i)
: for some p € R and i € 1..#p. For clause (vtr-5), the thesis follows by
induction hypothesis. O

g .
LEMMA 652 : If ———>;‘z’, with ¢ = (0;)ieny and u; = 0y...0i_1,

c=>7?
for all i € N, then, for all i € N, there is k > i such that Re, U Cf Fu
¢ = (00, it™(ure®)).

Proof: By Lemma 6.47, we have 0 = vo’, with v # ¢, and

va 1 .-.Tn o _ '
TORT T Genlpn ) T T g and 7, = —%

c=7? =7

with p = rule(ji .. .jm, 0p...0m, ¢, r) in R and n € 1..m. The proof is by
complete arithmetic induction on the length of u;, namely oni € N. If u; is a
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prefix of v, then, by (co-un1t), we get Roo U CeR Fu cp = (00, it™(u’'e®)), with
i u’ = ¢. Otherwise, u; # v and v is a prefix of u;, say u; = vu, then o’ = uc”’
and u is strictly shorter than u;, as v is not empty. Therefore, by induction
hypothesis, we get R, U CR Fu Cn = (00,it™(u’e®)), where u is a prefix of
i u/, hence u; is a prefix of vu’.

: In both cases we have Ro, U CR Fu € = (00,it™(u’e®)), with u; a prefix
of vu’. Let 0 = it™(u’e?), then, applying div(p, n, o) to ji,...,jn—1 and
L Cp = (0, 00, We get Roo U CR Fu ¢ = (00, 00,), with o, = ([];e1. n—1 0i-1 *
0(j;)) * 0j—1 *™ 0w. Since, for all i € 1..n — 1, we have O(j;) = O(r;), and
O(t,) = e, we get o, = O(r”)*™Mit*(u’e?); then, by Lemma 6.26, as TLﬂ;QT/,
i we have O(r’) = it(v), thus o, = it®(vu’e®), which proves the thesis, as u;
is a prefix of vu’. |

The proof of Theorem 6.41 is essentially the same as the one of The-
orem 6.40: we apply Lemma 6.46, where Lemmas 6.14 and 6.49 assure Item 1,
and Lemma 6.50 assures Item 2.

Proof (Theorem 6.41): The proof is by Lemma 6.46. Let S € C X O be
i the set {{c, 0) € C X O | ¢ ™ g(00, 0) and 0 is finitely generated} and

: : o . .
: consider (¢, 0s) € S, hence we know that 5 ——g and it¥(0) = 0 is

: =
. finitely generated, for some o = (0;);en € OC“).

. To check Item 1 of Lemma 6.46, we have to prove that R, U CR Fy
¢ = (00, 0) holds. Let u; = 0y ... 0;, for all i € N. By Lemma 6.51, 0; € Eg
i for all i € N, hence, by Lemma 6.14 (1), there is n € N such that, for all
k > n, 0 = p(uge®) = it*(uge”®). By Lemma 6.52, there is h > n such that
Reo UCR Fu c= (00,it™(upe®)), hence we get the thesis as 0, = it™(ue®).
i Item 2 of Lemma 6.46 follows immediately by Lemma 6.50, because o = vo’
and p(o”’) is finitely generated by Lemma 6.14 (2). O

SOUNDNEsS First of all, we construct computations in —— , starting from

infinite evaluation trees in R.. More precisely, we show that, for any in-

finite evaluation tree 7 in Ry of ¢ = (0, 0 ), there is an infinite reduction
o o . . g .

—— Where o is equivalent to o, (see the definition introduced for

c=7
Lemma 6.43), as stated in the following lemma.

LEMMA 6.53 : If 7 is an infinite evaluation tree in R, of ¢ = (0, 0 ), then

> - %> for some o € O“ such that it*(o) = it* (o).
c=7
Proof: The infinite evaluation tree 7 can be described by a sequence (7;);eN
. defined as follows:

Ti,1 - - - Tik;—1 Tit+l

To =T  Tj = (@ups ki odh) f
Ci = <OO’ Ooo>

where, for alli € N, p; = rule(ji,1 - - - ji,n;» 0i0 - - - Oin;» Ci» 17) is a rule in R,
ki € 1..n; and o}, € O, and 0%, = 0. We define foralli e Nand h € 0..i a

161
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finite partial evaluation tree 7, as follows:

*
Th,1 -+ Thikp-1 Ti,h+1

*
Tl,i = (axp(c)) c. (h < l) T b = (div(pp, kp» oh"’l))

i =7 cp=7

We prove that, foralli € Nand h € 0..5, 7] h—>,RT "1y for some u; € o*

with it(u;) = o,(i). The proof is by 1nduct10n oni—h Ifi—h =0, that is,
h = i, then, by Lemma 6.27, we get Ti,i_’ye 1+1 p» with it(u;) = O(7; ).
: By definition we have O(7;+1,:) = 05,0 * ([1xe1. k;-1 OUik) * 0,k) = o7 (i). If
i i—h=k+ 1, then we have

*
T* . Th,1 -+ Thikp-1 Ti,h+1
inh = = (div(pp, kp. 05 ) = 2

since i — (h+ 1) = k, by induction hypothesis, we get T L);%Titrl, hag With
it(u;) = o,(i), hence, applying (rtr-5), we get T —>er+1 ,» as needed.

Let o be the flattening of (u;);en, that is, o = = UyUils . .., from what we
: have just proved we have 7y = =3 L% and since, foralli € N,
: c=7
s it(u;) = o.(i), we have o = o, and so it*(o) = p(o) = p(o;) = it®(o;), by
i the infinite associative law. O

To prove soundness of CX (cf. Theorem 6.42), we need some properties of
observations derivable in Ro, U CX.

LEMMA 654 : If R U CeR Fu €= (09, 0o), then

1. if R+, c= (r,0), then 0 € O and 0w <. o,

2. if r is an infinite evaluation tree in R, of ¢ = (o0, 0.}, then o5, = it (o [h]-
0 -e?), for some h € N and o € O such that o <, o,(h).

: Proof: We prove both items by induction on rules in Ro, U CX. There are
i only two relevant cases.

Case: co-unit(c) We have 0., = e, hence we get Item 1, as e <, o, and
Item 2, as e = it*(e?) = it* (o, [0] - e - e?).

Case: div(p, i, 0c0) Wehave p = rule(j; .. .jn, 0p...0n, ¢ 7),i € 1.1, 0o =
00 * ([Tker..i—1 OUik) * 0g) *™ 0%, and Re, U CR Fujk.forallk € 1..i -1,
and Re, U CR Fu C(ji) = (00, 0c). By Theorem 6.31, we get R +, ji, for
all k € 1..i — 1. We prove separately the two items:

1. Suppose ¢= (r, 0) is derived by p’ = rule(j; ... j;,, o) ... 0}, ¢, 1),

then, since R +, j,’c, for all k € 1..m, using Lemma 6.37 and Assump-
tion 6.2 we can prove i < m, oy = o), 0k = o, and jx = ji, for all
k € 1..i -1 and C(j;) = C(j;). We also know that R +, ji, hence, by
induction hypothesis, we get 0o, € O and 0 <. O(j;). Therefore,
000 = 0g* ([Tker..ic1 OUL) * 0p) * 0o =u 0p* ([Tker..m OG) *0) = o,
as needed.



6.5 CORRECTNESS OF THE CONSTRUCTION 163

2. Suppose ¢ = (0, 0},) has an infinite evaluation tree 7 in R, then
Ty oe. TI—1 T

T = (@divp/, L) ———————
= {00, 0co)

where p’ = rule(j; ... j;,, 05...0,,, ¢, 1), € 1.mand o}, = o) *
(ITker..1-1 OGp) * 0f) *™ 0. Since r(zg) = ji, forall k € 1.1 -1,

by Theorem 6.31 we have R -, ji, for all k € 1.. — 1. Again, using
Lemma 6.37 and Assumption 6.2, setting h = min{i, [}, we get oy =

05> 0k = 0p and jx = ji, forall k € 1..h — 1, and C(jp) = C(j; ). We
have three cases.

« Ifl < i, then, since 7; is an infinite evaluation tree of C(j)) = (o0, 0%),
we have Ro Fy C(j)) = (o0, o) and, since R +, ji, by Lemma 6.38,
we get a contradiction.

« If i < [, then, by Item 1, we have o, € O and 0 <. O(j)),
hence o = o * ([Txer. ;-1 OGY) * o) *™ 0 € O and 0w <.
0y * (ITker..1-1 OGy) * o) = 07(0), because i < I. Therefore, we
get 0o = it(€ 000 - €%°) = it*(0,[0] 0o - €“), With 00 <. 0,(0),
as needed.

. Ifi = [, then, since 7; is an infinite evaluation tree of C(jl’ )= (o0, 02),

by induction hypothesis we get 05, = it™ (o7, [h]-0-e) for some
h € N such that o <, o;,(h). Since 0w = 0) * ([1xe1. -1 OG}) *
0}) ™ 6% and 0, (0) = o) * (TTxer. i1 OGL) * 0)), We get 0 =
it*(07(0) - o, [h] - 0- ”) with o <, o, (h). By definition of o,
we have, for all i € N, o,(i) = 0,(i + 1), hence o.[i + 1] =
0.(0) - o4, [i]; therefore we get 0 = it™(o;[h+ 1] - 0-e”) and
0 =, o;(h + 1), as needed.

We can now prove the soundness result for CX (Theorem 6.42).

Proof (Theorem 6.42): By hypothesis, we know that ¢ = (0, 0,) has an
. infinite evaluation tree 7 in Re, and Re, U CeR Fu €= (00, 0) holds. By

Lemma 6.53, we have 5 Lﬁ and it*(o) = it*(o;), for some o € 0%,

that is, [0]= = [0, ]=. By Lemma 6.54 (2), we also know that o, = it*(ve®),
with v = o,[h] - 0 and o <, o;(h), for some h € N. Therefore, in order to get
the thesis, we just have to show that o, = ve®.

: We have vew C oy, since it(v) = it(o.[h]) * 0 <. it(o:[h]) * o,(h) =
it(07[n+1])- On the other hand, recall that o is a limit product of o, hence, for
alln € N, we have oy, = it(o;[n])*™ o, = it(o.[n])*™it*(c”) = it*(o,[n]-o’).
. Hence, since it*(ve®) = 0, = it®(o;[n] - ¢’), we have ve® = o,[n] - o/, for
all n € IN. Therefore, by definition of =, there is a prefix v’ of ve® such that
it(o;[n]) <. it(v’) and, since v’ is a prefix of ve®, it(v”) <. it(v). Hence, for
talln € N, it(o;[n]) <. it(v), thus the least upper bound of (it(o;[n]))nen, if
any, is below it(v), and this shows o, £ ve®, proving the thesis. |
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We now prove the two results concerning the set of corules ng.

LEMMA 6.55 : If 7 is a finite partial evaluation tree with C(r(r)) = ¢ and
O(1) # e, then R, U ng Fu ¢ = (00, O(1) *™ 0c), for all 0 € Oco.
71

ST )
:71 , Where either p, = p € R or
c=1

pr = pevo(p, i, R?O(r(ri))) and p = rule(jy...jn, 0p...0pn, ¢, ) and i € 0..n.
We know that either og # e, for some k € 0..i, or O(ty) # e, for some k € 1..1,
: because otherwise we would have O(t) = e, which is not possible. We distin-
guish these two cases. If ox # e for some k € 0..i, then, since we have O(r) =
0 * ([Ther. x O(zn) * o) * o, for some o € O, applying co-gen(p, k, 0 *™ 0c),
: which is defined as o # e, we get Reo U Cz; Fu ¢= (00, 0(7) *™ 0), as
needed. If O(ty) # e, for some k € 1..i, then, since by definition we have
O(t) = (I1ne1. k 0n-1 * O(1p)) * o, for some o € O, by induction hypothesis
we get Roo U ng Fu C(jk) = (00, O(tx) *™ (0 *™ 00)), hence we get the thesis
: applying rule div(p, k, O(zx) *™ (0 *™ 0x)). O

! Proof (Lemma 6.43): By hypothesis there is an infinite evaluation tree 7 in
Roo of ¢ = (0, 00 ), which can be described by a sequence (7;);en defined as
: follows:

Ti,1 -« - Tik;—1 Ti+l

To=7T  Tj = Wps ki o) ;
Ci = <OO, Ooo>

where, for alli € N, p; = rule(ji,1 ... Ji,n;» 0i,0--- Oin;» Ci» 17) is a rule in R,
ki € 1..n;, 0, € O, 0%, = 0w and 0, = o, (i) *™ 0lT1, for all i € N. Further-
more, for all i € N, we have, by Theorem 6.31, R -, ji x, forall k € 1..k; — 1,
hence we can assume 7; ; to be finite, and R, U Cf; Fu ¢ = (00, 0L,).

The proof is by Lemma 6.46. Define the set S C C X O as follows:

(C,000) € Siff ¢ = ¢; and 0 is a limit product of o,,, for some i € IN.
Consider {c;, 0oy € S, hence we know that (Rw,ng) Fy ¢ = {00, 0l),
as r(r;) = ¢ = (o0, 0%,) and 0 is a limit product of o,,, that is, there is a
: sequence (0 )pen such that 0., = 02 and, for all n € N, 8% = o/, (n) *™ 0%

To check Item 1 of Lemma 6.46, we have to show that R., U C’gg Fu

¢i = (09, 00) holds. Since o, is non-trivial, then o, is non-trivial as well,
: hence there is I € N such that o,,(l) # e. We prove that, for all k € 0..],
Reo U ng Fu Cipk = (00, ok ) holds, which implies Item 1 as 0o, = 02,. The
: proof is by induction on [ — k. If | — k = 0, that is, k = [, then consider

Ti+l,1 -« -+ TitLk;y—1

)

7’
Tipg = G2 ki BOUis ke, 1
i+l ? SKiyl ci+l$ 7

which is a finite partial evaluation tree and O(7/,,) = 0,,,(0) = o,(]) # e.

I _ I+1

Since 0, = o, (I)*™ okt = O(r/,,) =™ 0", by Lemma 6.55 we get Reo UC,Z; Fu
D Ciyl = (00, o(lx,), as needed. If ] — k = h + 1, then, by induction hypothesis, we
- have that Re, U ng by Cirks1 = (00, 0K 1) holds. Since 6k, = o7, (k) =™ 05,
i we get the thesis by applying div(p; k., ki+k, 0

Io<o+1)'

Item 2 of Lemma 6.46 immediately holds considering the rule p; and index
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. k; € 1..n;, because 0, = O'Ti(O)(A)}x) = 00 * (Hhel..ki—l O(ji.p) * 0j.p) *™ oL,

:and (cj41, 0L,) € S, as 0, is a limit product of o;,,,. O

: Proof (Proposition 6.44): Since Eg C Og, the left-to-right implication is
trivial. To prove the other direction, consider o € Of. We first show that there
D exists 0’ € ER such that o =< ¢’. Assume ¢ = (0;);en, then, by definition of
: Og, we have that 0; = 0; 1%+ %0 n, With 0; 1, ..., 0; n, € Eg, hence, defining
o’ as the flattening of the sequence (01 . .. 0;,»,)ieN, We have o > ¢’. Since
o is non-trivial, then ¢’ is non-trivial as well, because, if 0; # e, then there is
i k € 1..n; such that o; ;. # e. Then, it is easy to check that o is a limit product
of ¢ iff it is a limit product of ¢’, and this implies the thesis. ]

Proof (Theorem 6.45): Let 7 be the infinite evaluation tree of ¢ = (0, 0x)
: and 0; = (0;);en. We have two cases:

« if o, is trivial, that is, for all k > n, o = e, for some n € N, then we can
prove by induction on n that R, F CRc= (c0, 0,) holds (intuitively,
because we can cut 7 at depth n using (co-unir)), hence by Theorem 6.42
we get the thesis;

« if o; is non-trivial, then, since it*(o;) and o« are both limit products
of o; and Eg has unique limits, hence Og has unique limits as well by
Proposition 6.44, we have o, = it*(o;). By Lemma 6.53 we know there
is o € O® such that

9w . .
e ? > and it (o) = it*(o;), hence we get
4 M’)R<OO’ Ooo>, as needed.
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Discussion

The big-step style can be useful for abstracting details, directly deriving the im-
plementation of an interpreter, formally verifying compilers (Leroy and Grall,
2009), cost semantics, and soundness and completeness proofs for program
logics (Charguéraud, 2013). However, modeling divergence is a non-trivial
problem, even more when a non-terminating program can have a significant be-
haviour through observations. Indeed, standard, inductive, big-step semantics
is able only to capture finite computation, hence it cannot distinguish between
stuck and infinite computations.

In this part we address this problem, providing a systematic analysis of big-
step semantics from an operational perspective. The first, and fundamental,
methodological feature of our analysis is that we want to be independent from
particular languages, developing an abstract study of big-step semantics in
itself. Therefore, we provide a definition of what is, for us, a big-step semantics
with or without observations and then our results will be applicable, as we
show by several examples, to all concrete big-step semantics matching our
definition.

A second important building block of our approach is that we take seriously
the fact that big-step rules implicitly define an evaluation algorithm driven by
rules. Indeed, we make such intuition formal by showing that using rules we
can define a transition relation on incomplete derivations, abstractly modeling
such evaluation algorithm. In presence of observations, this transition relation
is labelled by observations produced by single transition steps, modeling their
observable effect. Relying on this transition relation, we are able to define
computations in the big-step semantics in the usual way, as possibly infinite se-
quences of transition steps; thus we can distinguish converging, diverging and
stuck computation, even if big-step rules only define convergence. This shows
that diverging and stuck computations are, in a sense, implicit in standard
big-step rules, and the transition relation makes them explicit.

Finally, the third feature of our approach is that we provide constructions
that, starting from a usual big-step semantics, produce an extended one where
the distinction between diverging and stuck computation is explicit. Such
constructions show that we can distinguish stuck and divergence directly by a
big-step semantics, without resorting to a transition relation: we rely on the
above described transition relation on incomplete derivations only to prove
that the constructions are correct.

Corules (cf. Chapter 3) are crucial when defining extended big-step se-
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mantics, explicitly modelling infinite computations. Indeed, in this case, stand-
ard induction is obviously not enough, while coinduction allows the derivation
of spurious judgements, hence corules provides us with the possibility of refin-
ing the coinductive interpretation to get the expected semantics. Indeed, these
constructions generalise concrete examples of big-step semantics modelling
infinite computations by corules provided by Ancona, Dagnino, and Zucca
(2017¢, 2018).

More in detail, Chapter 5 studies standard big-step semantics, while Chapter 6
takes into account the extension with observations. In Chapter 5, we provide
constructions explicitly modeling divergence (by traces and a special result
o0) and stuck computation (by a special result wrong, as described by Pierce
(2002)). Then, relying on such constructions, we show how to state soundness
of a predicate, that is, configurations satisfying the predicate cannot go wrong,
and we describe a proof technique to prove soundness, based on three sufficient
conditions on standard big-step rules, proving its correctness. In Chapter 6, in
addition to problems related to big-step semantics, we have to face another
issue: we need a way to abstractly model possibly infinite behaviour, namely,
observations produced by infinite computations. To this end, we consider an
algebraic structure, w-monoids, which provides all the needed ingredients:
notably, they have an infinite product, used to combine together the infinitely
many observations of an infinite sequence of labelled transition steps, and a
mixed product, used to combine finite and possibly infinite observations in
big-step rules.

Related work

The research presented in this part follows a stream of work dating back to
Cousot and Cousot (1992), who proposed a stratified approach, investigated
by Leroy and Grall (2009) as well, with a separate judgment for divergence,
defined coinductively. In this way, however, there is no unique formal defini-
tion of the behaviour of the modelled system and, furthermore, this cannot
be smoothly extended to semantics with observations as, depending on their
structure, even in a stratified definition there could be spurious judgements.
An alternative possibility, also investigated by Leroy and Grall (2009), is to
interpret coinductively the standard big-step rules (coevaluation). Unfortu-
nately, coevaluation is non-deterministic, allowing the derivation of spurious
judgements, and, thus, may fail to correctly capture the infinite behavior of
a configuration: a diverging term, such as €, evaluates to any value, hence
it cannot be properly distinguished from converging terms. Furthermore, in
coevaluation there are still configurations, such as (0 0), for which no judg-
ment can be derived, here because no judgment can be derived for the subterm
00; basically, this is due to the fact that divergence of a premise should be
propagated and this cannot be correctly handled by coevaluation as divergence
is not explicitly modelled.

Pretty big-step semantics by Charguéraud (2013) handles the issue of duplic-
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ation of meta-rules by a unified judgment with a unique set of (meta-)rules and
divergence modelled by a special value. Rules are interpreted coinductively,
hence they allow the derivation of spurious judgements, but, thanks to the use
of a special value for divergence and the particular structure of rules, they can
solve most of the issues of coevaluation. However, this particular structure of
rules is not as natural as usual big-step rules and, more importantly, it requires
the introduction of new specific syntactic forms representing intermediate
computation steps, as in small-step semantics, hence making the big-step
semantics less abstract. This may be a problem, for instance, when proving
soundness of a type system, as discussed in Chapter 5, as such intermediate
configurations may be ill-typed.

Poulsen and Mosses (2017) subsequently present flag-based big-step se-
mantics, which further streamlines the approach by combining it with the
M-SOS technique (modular structural operational semantics), thereby reducing
the number of (meta-)rules and premises, avoiding the need for intermediate
configurations. The key idea is to extend configurations and results by flags
explicitly modelling convergence and divergence, used to properly handle di-
vergence propagation. To model divergence, they interpret rules coinductively,
hence they allow the derivation of spurious judgements.

Differently from all the previously cited papers, which consider specific
examples, the work by Ager (2004) shares with us the aim of providing a
generic construction to model non-termination, basing on an arbitrary big-
step semantics. Ager considers a class of big-step semantics identified by
a specific shape of rules, and defines, in a small-step style, a proof-search
algorithm which follows the big-step rules; in this way, converging, diverging
and stuck computations are distinguished. This approach is somehow similar
to our transition relation on partial evaluation trees, even tough the transition
system we propose is directly defined on evaluation trees.

Ancona, Dagnino, and Zucca (2017c¢) firstly show that with corules one can
define a unified big-step judgment with a unique set of rules avoiding spurious
evaluations. This can be seen as constrained coevaluation. Indeed, corules add
constraints on the infinite derivations to filter out spurious results, so that,
for diverging terms, it is only possible to get co as result. This is extended to
include observations as traces by Ancona, Dagnino, and Zucca (2018). In this
case, the effect of spurious evaluations can be more detrimental; indeed, when
a diverging computation produces a finite observation o, coevaluation returns
any observation of shape 0*™ 0, and, thus, fails to correctly specify the effects
of a non-terminating computation, as discussed in Chapter 6. In comparison
to these works, here we provide a recipe for a fully systematic approach, and,
furthermore, we allow reasoning on a more general notion of observation: at
our knowledge, there is no other operational semantics framework able to
capture divergence in conjunction with a notion of observation not limited to
traces, as shown in Section 6.4.

Other proposals, by Owens et al. (2016) and Amin and Rompf (2017), are
inspired by definitional interpreters (Reynolds, 1972), based on a step-indexed
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approach (a.k.a"fuel’-based semantics) where computations are approximated
to some finite amount of steps (typically with a counter); in this way divergence
can be modeled by induction. Owens et al. (2016) investigates functional big-
step semantics for proving by induction compiler correctness. Amin and Rompf
(2017) explore inductive proof strategies for type soundness properties for the
polymorphic type systems F.., and equivalence with small-step semantics.
An inductive proof of type soundness for the big-step semantics of a Java-like
language is proposed by Ancona (2014).

Conditional coinduction is employed by Danielsson (2010) to combine in-
duction and coinduction in definitions of total parser combinators. Danielsson
(2012), inspired by Leroy and Grall (2009), relying on the coinductive partiality
monad, defines big-step semantics for A-calculi and virtual machines as total,
computable functions able to capture divergence.

Coinductive trace semantics in big-step style have been studied by Nakata
and Uustalu (2009, 2010a,b). Their investigation started with the semantics
of an imperative While language with no I/O (Nakata and Uustalu, 2009)
where traces are possibly infinite sequences of states; semantic rules are all
coinductive and define two mutually dependent judgments. Based on such a
semantics, they define a Hoare logic (Nakata and Uustalu, 2010a); differently
to our approach, weak bisimilarity between traces is required for proving
that programs exhibit equivalent observable behaviors. This is due to the fact
that “silent effects” (that is, non-observable internal steps) must be explicitly
represented to guarantee guardedness conditions which ensure productivity of
co-recursive definitions. This problem is overcome with corules in generalized
inference systems.

This semantics has been subsequently extended with interactive I/O (Nakata
and Uustalu, 2010b), by exploiting the notion of resumption monad: a tree
representing possible runs of a program to model its non-deterministic beha-
vior due to input values. Also in this case a big-step trace semantics is defined
with two mutually recursive coinductive judgments, and weak bisimilarity
is needed; however, the definition of the observational equivalence is more
involved, since it requires nesting inductive definitions in coinductive ones.
A generalised notion of resumption has been introduced later by Pir6ég and
Gibbons (2014) in a category-theoretic and coalgebraic context.

Nakata and Uustalu (2009, 2010a) equivalence of the big-step and small-step
semantics is proved; expressions and statements are distinct, and expressions
cannot diverge. This is another significant difference with the languages con-
sidered in this part; for instance, the semantics of out e becomes simpler if e
is forced to terminate, since the corresponding corule could be turned into a
coaxiom, removing the premise, as it always holds.

The resumption monad of Nakata and Uustalu (2010b) and the partiality
monad of Danielsson (2012) are inspired by the seminal work of Capretta
(2005) on the delay monad, where coinductive types are exploited to model
infinite computations by means of a type constructor for partial elements,
which allows the formal definition of convergence and divergence and a type-
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theoretic representation of general recursive functions; this type constructor
is proved to constitute a strong monad, upon which subsequent related papers
(Abel and Chapman, 2014; McBride, 2015; Chapman, Uustalu, and Veltri, 2019)
elaborated to define other monads for managing divergence. In particular,
McBride (2015) has proposed a more general approach based on a free monad
for which the delay monad is an instantiation obtained through a monad
morphism. All these proposals are based on the step-indexed approach.

More recently, interaction trees (ITrees) (Xia et al.,, 2020) have been presen-
ted as a coinductive variant of free monads with the main aim of defining the
denotational semantics for effectful and possibly nonterminating computa-
tions, to allow compositional reasoning for mutually recursive components
of an interactive system with fully mechanized proofs in Coq. Interaction
trees are coinductively defined trees which directly support a more general
fixpoint combinator which does need a step-indexed approach, as happens for
the general monad of McBride. A Tau constructor is introduced to represent a
silent step of computation, to express silently diverging computations without
violating Coq’s guardedness condition; as a consequence, generic definition of
weak bisimulation on ITrees is required to remove any finite number of Tau’s,
similarly as happens in the approach of Nakata and Uustalu.

Finally, the notion of w-monoid is a variation of the more standard w-
semigroups used in algebraic language theory (Perrin and Pin, 2004). Algebraic
structures with a similar aim are proposed more often in the context of type
systems, where the notion corresponding to observation is called effect. Such
effect systems are traditionally commutative, hence effects typically form a
bounded join semilattice, where the join is used to overapproximate differ-
ent execution branches. This allows general formulations to study common
properties, see, e.g., the work by Marino and Millstein (2009). More recently,
sequential effect systems have been proposed by Tate (2013), which take into
account evaluation order as in our case. However, differently from our obser-
vations, effects in type systems do not need to be “infinite”, since they model
static approximations.

Future work

There are several directions for further research. First of all, in the context of
big-step semantics with observations, we plan to explore refinements of the
proposed construction to go beyond the determinism assumption needed in
Section 6.5 to carry out the proof. Indeed, in presence of non-determinism, the
current corule patterns fail to provide the correct semantics. In the introductory
example of Section 6.1, extended with the non-deterministic choice &, consider
the expression Q. = w, (v, ® (out0), with w, = Ax.x (x ® out 0); clearly we
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have the following infinite derivation for any possibly infinite sequence 0c:

We = {We, €)

We = {We, €)
we ® (out 0) = (we, €) Q. = (00, 0x0)

Qe = (09, 0x0)
We expect to be able to derive the judgement only for 0., = ¢, but using corules
we can also prove, for instance, 2, = (0, 0), as follows:

0= (0, ¢)
out 0= 0,0)

Ve = (@, €) we ® (0ut0)=(0,0) (0@ (out0)) = (co,¢)

Qe = (00,0)

To avoid this, a possibility is to explicitly add in the judgment the partially
obtained observation, that is, the product of the observations of converging

premises. In this way, in the above example we could not derive 0 as ob-
servation, because in the infinite derivation all converging premises pro-
duce an empty sequence of values. Another possibility is to consider more
sophisticated semantics of corules, as mentioned in Section 4.2, to avoid the
fact that in finite derivations with corules we can use judgements, such as
0(0 & (out0)) = (o0, £), which are not derivable even in the coinductive in-
terpretation of rules.

Another interesting direction is to study other approaches to model diver-
gence in big-step semantics using our general meta-theory, that is, defining
yet other constructions, such as adding a counter and timeout, as done by
Owens et al. (2016) and Amin and Rompf (2017), or adding flags, as done by
Poulsen and Mosses (2017). This would provide a general account of these
approaches, allowing to study their properties in general, abstracting away
particular features of concrete languages. A further direction is to consider
other computational models such as probabilistic computations, which are
quite difficult to model in big-step style, as shown by Dal Lago and Zorzi
(2012). A possible starting point would be to adapt results for semantics with
observations, viewing probabilities as a special kind of observations.

Concerning proof techniques for soundness, we also plan to compare our
proof technique with the standard one for small-step semantics: if a predicate
satisfies progress and subject reduction with respect to a small-step semantics,
does it satisfy our soundness conditions with respect to an equivalent big-step
semantics? To formally prove such a statement, the first step will be to express
equivalence between small-step and big-step semantics, and such equivalence
has to be expressed at the level of big-step rules, as it needs to be extendible to
stuck and infinite computations. Note that, as a by-product, this will provide
us with a proof technique to show equivalence between small-step and big-
step semantics. Ancona et al. (2020a) make a first attempt to express such an
equivalence for a more restrictive class of big-step semantics. On the other
hand, the converse does not hold, as shown by the examples in Section 5.6.2
and Section 5.6.4.
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Furthermore, it would be interesting to extend such techniques for sound-
ness to big-step semantics with observation, taking inspiration from type and
effect systems (Marino and Millstein, 2009; Tate, 2013).

Last but not least, to support reasoning by our framework on concrete
examples, such as those in Sections 5.6 and 6.4, it is desirable to have a mech-
anisation of our meta-theory and related techniques. A necessary preliminary
step in this direction is to provide support for corules in proof assistants, such
as Agda or Coq, as discussed in Section 4.2.
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PART IIT

Flexible regular coinduction






Regular coinduction by inference
systems

As we have seen, inference systems are a powerful and fairly simple framework
to structure and reason about possibly recursive definitions of predicates. They
support both inductive and coinductive reasoning in a pretty natural way: in
inductive reasoning we are only allowed to use finite derivations, while in
the coinductive one we can prove judgements by arbitrary, finite or infinite,
derivations.

Allowing infinite derivations makes coinductive reasoning very powerful:
it makes it possible to derive judgements which require the proof of infinitely
many different judgements. For instance, consider the following inference
system used to prove that a stream (infinite sequence) contains only positive

elements:
allPos(s)
—— x>0
allPos(x:s)
To prove that the stream of all odd natural numbers contains only positive

elements, we can use the following infinite derivation:

allPos(5:7:9:...)
allPos(3:5:7:...)
allPos(1:3:5.. . .)

which is correct in coinductive reasoning and contains infinitely many different
judgements.

However, there are cases where, even though we need an infinite derivation,
this derivation requires only the proof of finitely many different judgements.
This is often the case when dealing with cyclic structures, such as graphs or
cyclic streams, since they are non-well-founded, but finitely representable. For
instance, if we want to prove that the stream of all 1’s contains only positive
elements, we can use the following derivation:

allPos(1:1:1:...)
allPos(1:1:1:...)
allPos(1:1:1:...)

which is infinite, but requires only the proof of allPos(1:1:1:. . .).
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Borrowing the terminology from trees (Courcelle, 1983), we call a deriva-
tion requiring the proof of finitely many different judgments regular (a.k.a.
rational), and we call regular coinduction (or regular reasoning) the approach
that allows only regular derivations.

Whereas inductive and coinductive reasoning have well-known semantic
foundations and proof principles, at our knowledge regular reasoning by
means of inference rules has not been explored at the same extent. The aim
of this chapter is to fill this gap, by providing solid foundations also to the
regular approach. Indeed, we believe that the regular approach provides a very
interesting middle way between induction and coinduction.

Indeed, inductive reasoning is restricted to finite derivations, but, in return,
we implicitly get an (abstract) algorithm? which looks for a derivation of a
judgement. Such an algorithm is sound and complete with respect to derivable
judgements. That is, it may not terminate for judgements that do not have
a finite derivation, but it is guaranteed to successfully terminate, finding a
finite derivation, for all and only derivable judgments. Instead, coinductive
reasoning allows also infinite derivations, but there is no hope, in general,
to find an algorithm which succesfully terminates for derivable judgments,
because, as we have seen, a derivation may require infinitely many different
judgements to be proved®.

Regular reasoning combines advantages of the two approaches: on one
hand, it is not restricted to finite derivations, going beyond limits of induction,
but, on the other hand, it still has, like induction, a finite nature, hence it
is possible to design an algorithm which finds a derivation for all and only
derivable judgments, as we will show in the following.

In detail, in this chapter we prove the following result about regular reas-
oning by inference systems. First, we provide an equivalent model-theoretic
characterization of judgements derivable by a regular proof tree, showing
it is an instance of the rational fixed point, defined by Adamek, Milius, and
Velebil (2006). This is important since it provides a purely semantic view of
regular coinduction. Moreover, from this we get a proof principle, the regular
coinduction principle, which can be used to prove completeness of a set of
inference rules against a set of correct judgements, that is, that all correct
judgements are derivable by a regular proof tree.

Then, we provide another equivalent inductive characterization of judge-
ments derivable by a regular proof tree. Following the structure of the opera-
tional model of coinductive logic programming (Simon et al., 2006; Ancona
and Dovier, 2015), but in the purely semantic setting of inference systems, we
enrich judgements by a finite set of circular hypotheses, used to keep track of

1 The terms regular and rational are synonyms. However we will mainly use the second one
for the model-theoretic approach, see Section 8.2.

2 In this chapter we use the word “algorithm” to indicate a procedure which is not required to
terminate.

3 This is just an intuitive explanation. This fact has been proved by Ancona and Dovier (2015)
for logic programs, which are a particular, syntactic, instance of general inference systems
considered in this chapter.
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already encountered judgements, so that, when the same judgement is found
again, it can be used as an axiom. This nicely formalizes, by an abstract con-
struction in the general setting of inference systems and a correctness proof
given once and for all, techniques used in different specific cases for dealing
with cyclic structures inductively, by detecting cycles to ensure termination.
Furthermore, this provides us with a sound and complete algorithm to find
a regular derivation for a judgment, if any. Finally, relying on the inductive
characterization, we define a proof technique to show soundness of a set of
inference rules against a set of correct judgements, that is, that all derivable
judgements are correct.

Moreover, we show that all these results can be smoothly extended to flexible
coinduction by inference systems with corules, as described in Chapter 3, thus
enabling flexible regular coinduction.

The rest of the chapter is organised as follows. In Section 8.1 we introduce
the regular interpretation in proof-theoretic terms. In Section 8.2 we define the
rational fixed point in a lattice-theoretic setting, and in Section 8.3 we prove
that the regular interpretation coincides with a rational fixed point. Section 8.4
provides the equivalent inductive characterization of the regular interpretation
and Section 8.5 discusses proof techniques for regular reasoning. In Section 8.6
we extend all the previously presented results to flexible coinduction.

Inference systems and regular derivations

In this section we introduce the regular interpretation of inference systems
illustrating it by some examples. For basic notions about inference systems
we refer to Chapter 2.

Le us assume a universe U and an inference system on U. Throughout this
chapter we will assume inference systems to be finitary (cf. Definition 2.30),
namely, all rules have a finite set of premises. Under this assumption, well-
founded proof trees are always finite and infinite proof trees are always non-
well-founded, hence we will use this simpler terminology.

In the coinductive interpretation (cf. Definition 2.6), we allow arbitrary proof
trees, hence we can derive judgements requiring infinitely many different
judgements to be proved. However, there are cases where we still need infinite
derivations, but only of finitely many judgements. This idea of an infinite proof
tree containing only finitely many different judgements nicely corresponds to
a well-known class of trees: regular trees (Courcelle, 1983). We say that a tree
is regular if it has a finite number of different subtrees. Then, we can define
another set of judgements:

DEFINITION 8.1 (Regular interpretation): The regular interpretation of an
inference system 7 is the set p[Z ]| of judgements having a regular proof tree.

In the following we will write I +, j for j € p[I]. To ensure that the regu-
lar interpretation is well-defined, that is, it is an 7 -interpretation (cf. Defini-
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tion 2.2), we have to check it is both 7 -closed and 7 -consistent, or, equivalently,
a fixed point of Fr. We refer to Section 8.3 for this proof.

Let us illustrate regular proof trees by an example. Recall the last example
in Section 2.1.2 (cf. p.18) , defining the judgement distg(v, u, ), where G is a
graph, v and u are nodes in G and § € IN U {co}, stating that the distance
from vto uin Gis §. As already done, we represent a graph by the adjacency
function G : V — p(V), where V is the finite set of nodes. We report below
the (meta-)rules, where we assume min () = co:

(EMPTY)

distg(v, v, 0)

distg(vi, u,8;) ... distg(vn,u,6,) Vv#u
distg(v, u, 1 + min{6y,...,8,}) Gv) ={vi,..., v}

ADJ)

As already discussed in Section 2.1.2, the inductive interpretation is not
enough as it cannot deal with cycles, hence, we need infinite derivations, but,
since the set of nodes is finite, to compute the distance we need only finitely
many judgements (one judgement for each node), thus regular derivations
should be enough. Indeed, the infinite derivation shown in Figure 2.2, is actually
regular.

As we said, standard inductive and coinductive interpretations are fixed
points of the inference operator. In the next few sections, we will show that
this is the case also for the regular interpretation.

The rational fixed point

In this section we define the rational fixed point in a lattice-theoretic setting,
which will be the basis for the fixed point characterisation of the regular
interpretation. The construction we present in Definition 8.3 and Theorem 8.4
is an instance of analogous constructions developed by Adamek, Milius, and
Velebil (2006) and Milius, Pattinson, and Wifimann (2016, 2019) in a more
general category-theoretic setting. We rephrase these notions and results in
the lattice-theoretic setting, since this is enough for the aim of this chapter and
definitions and proofs are simpler and understandable by a wider audience.

For basic definitions on complete lattices we refer to Section 2.2. Assume
a complete lattice (L,C) . An element x € L is compact if, for all A C L such
that x € | | A, there is a finite subset B C A such that x C | | B. We denote by
C(L) the set of compact elements in L. It is easy to check that C(L) is closed
under binary joins, that is, if x,y € L are compact, then x U y is compact as
well. The paradigmatic example of complete lattice is the power-set p(X) of
a set X, namely, the set of all subsets of X ordered by set inclusion. In the
power-set lattice (p(X), C) , compact elements are finite subsets of X.

An algebraic lattice is a complete lattice (L, E) where each x € L is the
join of all compact elements below it, thatis, x = | [{y € C(L) | y E x}.
In other words, an algebraic lattice is generated by the set of its compact



8.2 THE RATIONAL FIXED POINT

elements, since each element can be decomposed as a (possibly infinite) join
of compact elements. The power-set lattice is algebraic, since each element
can be decomposed as a union of singletons, which are obviously compact.

In previous chapters we have considered monotone functions over complete
lattices, as monotonicity was enough to construct least and greatest fixed
points. Here, we are interested in a different class of functions, called finitary
functions, defined below. A subset A C L is directed if, for all x, y € A, there is
z€Asuchthatx Czandy C z.

DEFINITION 8.2 : A function F : L — Lis finitary if it preserves least upper
bounds of all directed subsets of L, that is, for each directed subset A C L,

F(L1A) = LI F(A).

A finitary function is also monotone: if x C y then the set {x, y} is directed
and its join is y, hence we get F(y) = F(x) U F(y), that is, F(x) C F(y). As a
consequence, the Knaster-Tarski theorem (cf. Theorem 2.10) applies also to
finitary functions, which hence admit least and greatest fixed points. We will
show that for a finitary function over an algebraic lattice we can construct an-
other fixed point lying between the least and the greatest one. In the following
we assume an algebraic lattice (L,C).

DEFINITION 8.3: Let F: L — L be a finitary function. The rational fixed
point of F, denoted by pF, is the join of all compact post-fixed points of F, that
is, if Rp = {x € C(L) | x C F(x)},

PF:uRF

Note that, since both compact elements and post-fixed points are closed
under binary joins, we have that, for all x,y € Rr, x Uy € Rp, but, in general,
pF is not compact, because it is the join of an infinite set.

The following theorem ensures that the rational fixed point is well-defined,
that is, it is indeed a fixed point. Such result is a consequence of a general
category-theoretic analysis (Adamek, Milius, and Velebil, 2006), we rephrase
the proof in our more specific setting as it is much simpler.

THEOREM 8.4 : Let F: L — L be a finitary function, then pF is a fixed
point of F.

Proof:  Since pF is defined as the least upper bound of a set of post-fixed
. points, it is post-fixed as well. Hence, we have only to check that F(pF) C pF.
First, since L is algebraic we have F(pF) = | |[{x € C(L) | x E F(pF)},
hence it is enough to prove that, for all x € C(L) such that x E F(pF), we
i have x C pF. Consider x € C(L) such that x T F(pF). Note that Ry is a
directed set, indeed, if X C Ry is finite, then | | X € Rp, hence, since F is
finitary, we have F(pF) = F(|| Rr) = || F(RF). Therefore, x C | | F(RF) and,
i since x is compact, there is a finite subset W C R such that x C | | F(W).
Set w = | | W, since F is monotone, we get x C | | (W) E F(| | W) = F(w).
By definition, w € Rf, namely, it is compact and post-fixed, hence we get
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x Uw E F(w) E F(x U w), since F is monotone. Finally, x Ll w is compact,
: as it is the join of compact elements, hence x LI w € Rp, and this implies
i x E x LU w C pF, as needed. O

As for least and greatest fixed points, as an immediate consequence of
Definition 8.3, we get a proof principle to show that an element is below pF.

PROPOSITION 8.5: LetF:L — L be a finitary function and z € L, then, if
there is a set X € C(L) such that

o forall x € X, x C F(x), and
« zC X,
then z C pF.

Proof: If these conditions hold, then we have X C Rp, hencez C | | X C
|_| Rp = pF. O

Fixed point semantics for regular coinduction

In this section, we prove that the regular interpretation p[[1 || of a (finitary)
inference system 7 (cf. Definition 8.1) coincides with the rational fixed point
of the inference operator Fy. Rather than giving an ad-hoc proof, we exploit
the general framework presented in Section 2.3, extending results for least and
greatest fixed point to the rational one. Assume a finitary inference system J
on the universe U.

First of all, we have to express more formally the proof-theoretic semantics.
We refer to Sections 2.1 and 2.1.1 for formal definitions of trees and proof trees.
Recall from these sections that, given a tree 7 on the set A, N(r) C A* is the
set of nodes of 7 and r(7) € A is the root of 7. Further, SubTr(7) is the set of all
subtrees of 7 and dst(r) C SubTr(7) is the set of direct subtrees of 7. Therefore,
a tree 7 is regular iff SubTr(7) is finite.

From Section 2.3, recall also that r : 7¢; — U is the function mapping a tree
to its root, and r : P(7a) — 9(A) and r* : p(A) — 9(74) are the direct image
and the inverse image functions, respectively. There is an obvious adjunction
nHr

We have already proved that, when 7 is finitary, the inference operator Fr
is not only monotone, but upward w-continuous (cf. Theorem 2.31). However,
both the inference operator Fr and the tree inference operator Ty, when 1 is
finitary, have a much stronger property: they are finitary (cf. Definition 8.2),
that is, preserve least upper bounds of all directed sets.

PROPOSITION 8.6 : If I is finitary, then Fy and T are finitary.

Proof: 'We do the proof for Tr. Let X C ¢(U) be a directed subset. Since Tz
: is monotone, we have | T7,(X) € Tr(lJ X), hence we have only to check the
. other inclusion. If 7 € T7(|J X), dst(r) € [J X and, since dst(7) is finite, as it is
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in bijection with a set of premises, which must be finite as 7 is finitary, there is
a finite subset Y C X such that dst(r) € |J Y. Then, since X is directed, there
i is A€ X suchthat | JY C A, thusdst(r) € A,and so 7 € Tr(A) € U T7(X),
 as needed. O

Thanks to Proposition 8.6 and Theorem 8.4, and because power-set lattices
are algebraic, we know that rational fixed points pF; and pT are both well-
defined. As happens for the least and greatest fixed points of T, which coincide
with the well-founded and arbitrary proof trees, respectively (Lemmas 2.20
and 2.21), we show that the rational fixed point of T; coincides with the set
of regular proof trees. To this end, we have the following characterization of
post-fixed points of T7.

LEMMA 8.7 : Let X C 74, be a set of trees on U. If X C Tr(X), then
X = U SubTr(7)

TeX

Proof: We start from the left-to-right implication. The inclusion C is trivial,
. since T € SubTr(r) for any tree 7. To prove the other inclusion, set 7 € X, we
have to show that, for all « € N(7), 7, € X. The proof is by induction on a.
If & is empty, then 7, = 7 € X by hypothesis. If = fj, then 7}, = (T|ﬁ)|j
and 7|, € X by induction hypothesis. Since X C T7(X), we have (7| ﬂ)lj €
dst(z),) C X, as needed. m|

LEMMA 8.8 : pTry is the set of regular proof trees in 7.

Proof: Let 7 be a regular tree, then SubTr(7) is finite and, by Lemma 2.18 (2),
it is a post-fixed point of Tr. Hence, 7 € SubTr(r) C pT7, by Proposition 8.5,
. as needed.

: Let now X C 7 be a finite post-fixed point of Tr, then we just have to
show that all r € X are regular proof trees. Let 7 € X, by Lemma 2.18 (1), 7
! is a proof tree and, by Lemma 8.7, we have SubTr(r) C X, hence SubTr(r) is
finite, that is, 7 is regular, as needed. m|

Thanks to Lemma 8.8 and Definition 8.1, we can express the definition of the
regular interpretation by the equality p[Z] = n(pT7r).

Then, similarly to results for least and greatest fixed points (cf. Theorems 2.23
and 2.24), the theorem we have to prove is the following:

THEOREM 8.9 : p[Z] =n(pTr) = pFr.

The proof follows the same strategy of the one for the greatest fixed point
and the coinductive interpretation, which relied on Theorem 2.4, stating a
general property of trees. Therefore, we need to show a similar property for
regular trees. To this end, assume a set A and denote by R4 the set of regular
trees on A. Note that functions dst : 74 — ¢(74) and r : 74 — A, mapping a
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tree to its direct subtrees and to its root, respectively, restrict to R 4, because
subtrees of a regular tree are regular as well. Basically, we show that, starting
from a graph structure on a finite subset of A, for each node of the graph there
is a unique way to construct a tree coherent with the graph structure, which
is also regular. In this context a graph is a function g : X — ¢(X), modelling
the adjaciency function, that is, X is the set of nodes and, for all x € X, g(x) is
the set of adjacients of x.

THEOREM8.10 : Letg : X — ¢(X) be a function, with X finite, and
v: X — A be an injective function. Then, there exists a unique function
p : X — R4 such that the following diagram commutes:

X p

Ra
<9,v>l j (dst,r)
pixidA
PX) X A——=p(Ra) X A

Proof: By Theorem 2.4, we know that there is a unique functionp : X — 74
: such that (dst,r) - p = (p) X id4) - {9, v), and this function is injective. Hence,
we have only to show that p corestricts to R 4, that is, p(x) is regular, for all
x € X. We prove, by induction on « € N(p(x)), that, for all @ € N(p(x)), there
 exists y € X such that p(x) = p(y).

Case:¢ We have p(x), = p(x), as needed.
Case: fa We have p(x), sa = (p(x), ﬁ) and, by induction hypothesis, there

is z € X such that p(x)l = p(2). Therefore we have p(x), = p(z), €
dst(p(z)), hence, since the diagram commutes, there is y € g(z) C X such
that p(z),, = p(y), as needed.

Therefore, for all x € X, SubTr(p(x)) € pi(X), which is finite as X is finite,
i hence p(x) is regular. O

~ We can now prove Theorem 8.9.

: Proof (Theorem 8.9): By Lemma 8.8 we get p[Z] = r(pT7). Recall that
in p(7¢¢), compact elements are finite subsets, hence the set of all compact
elements is 9., (7). Then, by definition of the rational fixed point and since
. r preserves arbitrary unions (it is a left adjoint), we get n(pT7) = U{n(X) |
X € 9,(Ty) and X C T7(X)}. Hence, if X € 9,(T¢) and X C T7(X), n(X)
is obviously finite and, by Corollary 2.17, it is also a post-fixed point of Fy.
: Therefore, by definition of the rational fixed point, we get r(X) C pFr, and
: this proves r(pTr) C pFr.

: To conclude the proof, we show that pFy C r(pT7). To this end, we just
: have to prove that, given a finite set X € ¢, () such that X C F7(X),
each judgement j € X has a regular proof tree. Since X C Fr(X), X is
consistent (Definition 2.2), that is, for each j € X, there is Pr; C X such
that (Pr;, j) € I. Hence, applying Theorem 8.10, where g maps j to Pr; and
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v is the restriction of the identity on U to X, we get an injective function
p : X — Rqy, which makes the diagram in Theorem 8.10 commute. We have
: still to prove that p(j) is a proof tree. To this end, by Lemma 2.18 (1), we just
have to show that the set p/(X) = {p(j) | j € X} is a post-fixed point of T7. By
commutativity of the diagram, we have dst(p(j)) = p1(g(j)) € pi(X), r(p(j)) = j
: and n(dst(p(j))) = Prj, hence, as (Prj,j) € I, we get p(j) € Tr(pi(X)), as
: needed. i

8.4 An inductive characterization

Although the regular interpretation is essentially coinductive, as it allows non-
well-founded derivations, it has an intrinsic finite nature, because it requires
proof trees to be regular, that is, to have only finitely many subtrees. Given
this finiteness, a natural question is the following: is it possible to finitely find
a derivation for a judgement belonging to the regular interpretation? In this
section we show this is the case, by providing an inductive characterization of
the regular interpretation.

The idea behind such an inductive characterisation is simple. Regular trees
are basically cyclic structures. Usually, to deal with cyclic structures induct-
ively, we need to use auxiliary structures to detect cycles, to ensure termination.
For instance, in order to perform a visit of a graph, we detect cycles by marking
already encountered nodes. The inductive characterization described below
models such cycle detection mechanism in an abstract and canonical way, in
the general setting of inference systems. The idea is the following: during the
proof, we keep track of already encountered judgements and, if we find again
the same judgement, we can use it as an axiom.

This approach is intuitively correct, since in a regular proof tree there are
only finitely many subtrees, hence infinite paths must contain repeated judge-
ments, and this mechanism is designed precisely to detect such repetitions.

We now formally define the construction and prove its correctness. Let 7
be a finitary inference system on the universe U. We consider judgements
of shape H » j where H C U is a finite set of judgements, called circular
hypotheses, and j € U is a judgement. Then, we have the following definition.

DEFINITION 8.11: The inference system 7 consists of the following rules:

HuUu{j}»ji ... HU{j}»j
- jEH (UNFOLD) {]} 4l - {J} Jn <{jl,---ajn}aj>€I
Hbj Hw»j

()

Therefore, in the system 1 O we have the same rules as in 7, that, however,
extend the set of circular hypotheses by adding the conclusion of the rule as
an hypothesis in the premises. Furthermore, 7 has also an additional axiom
that allows application of circular hypotheses.

The correctness of the construction in Definition 8.1 is expressed by the
fact that a judgement j has a regular proof tree in 7 if and only if it has a finite
derivation in 7 © without circular hypotheses, as formally stated by the next
theorem.
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THEOREM 812 : I© by O jiff I+, j.

We prove a more general version of the theorem. First of all, if X C U,
we denote by Jgx the system obtained from 7 by adding an axiom for each
element of X, hence we have Fz,, (Y) = F7(Y) UX, for all Y C U. Then, the
left-to-right implication of Theorem 8.12 is an immediate consequence of the
following lemma:

LEMMA 8.13: If7° by Hejthen Tgg v, j.

Proof: The proof is by induction on rules in 7. There are two types of
: rules, hence we distinguish two cases:

(up) we have j € H, hence (0, j) € Igpy, thus gy +, j.

(unrorp) we have arule ({ji,...,jn},j) € I and, by induction hypothesis,
we get Topu(jy +p Ji, for all i € 1..n. Since p[Zgru(;y ]l is a rational fixed
point (Theorem 8.9), for all i € 1..n, there is a finite set X; such that
Ji € Xi © Frop, (Xi) = Fr,(Xi) U {j}. Set X = UL, X, then X is finite,
X C Fr,(X) U {j}, as Fr,,, is monotone, and j € F7(X), because, by
construction, {ji,...,j,} € X. Thus, we get X U {j} C Fr_,(X) U {j} =
Fr,,(X), because j € Fr(X) C Fr,,(X), hence X U {j} is a post-fixed
point of Fz,,,, since it is monotone. Therefore, since X U {j} is post-fixed
and finite, by Proposition 8.5 and Theorem 8.9, we get Jgy F J. O

The proof of the other implication relies on a family of auxiliary functions
indexed over finite subsets of U. For each H € ¢, (U), the function try takes
a finite graph g : X — (X)), with X € ¢, (U), a judgement j € X and a subset
S € X and returns a tree whose nodes are judgements of shape H’ » j’. This
function is recursively defined as follows:

_ je HUS
HUS»>j J

trH(g’jl’S U {]}) s trH(g’ij U {]})
HUS»>j
The function try enjoys the following properties:

trH(g’j’ S) =

ngUS’g(j):{jl""?jn}

PROPOSITION 8.14 : Forall H € 9,(U), g : X — p(X) with X € ¢, (U),
jeXand S C X, try(g,j,S) is defined.

! Proof: Denote by ¢(S) the cardinality of the set X \ (H U S). We prove that,
foralln € Nand S C X, if ¢(S) = n then try(g, j, S) is defined. The proof is
: by induction on n.

BASE Ifc(S) =n =0,thenX € HUS, hence j € HUS hence try(g, j, S) =

HuS»j'
INDUCTION If¢(S) = n+ 1,if j € H U S then try(g,j,S) is defined
as before; otherwise, we have j ¢ H U S and, if g(j) = {j1,..-.jk}s
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then, for all i € 1..n, trg(g,j;,S U {j}) = 7; by induction hypothesis,

as ¢(S U {j}) = nsince j ¢ S, hence try(g,j,S) = % , as
>]

needed. O

PROPOSITION 8.15: Forall H € p,(U), g : X — p(X) with X € ¢,(U),
jeXandS C X, if (g(j’),j’) € I, forall j € X \ H, then trg(g, j, S) is a finite
proof tree for HU S > jin T©.

Proof: The proof is a straightforward induction on the definition of try. O

We can now prove the following lemma, which concludes the proof of
Theorem 8.12.

LEMMA 8.16 : If Igp +, j then I° by Hej

. Proof: If j € pl[Zen], since p[Zen]l = pFr,, (Theorem 8.9), we have that
there exists a finite set X C U such that j € X C Fr,(X) = Fr(X)U H.
Then, for each j* € X \ H, there is Pry C X such that (Pry,j’) € 1. Define
1 g: X — 9(X)by g(j') = Pry,if j’ € X\ H, and g(j') = 0 otherwise. Therefore,
by Proposition 8.14, try(g, j, @) is defined and, by Proposition 8.15, it is a finite
proof tree for Hv jin 7, hence we get 7 F, H > j, as needed. m|

We conclude the section by discussing a more operational aspect of Defini-
tion 8.11. In this definition, we aimed at being as liberal as possible, hence the
two types of rules are not mutually exclusive: for a judgement H» j with j € H
we can either apply the circular hypothesis or use a rule from 7. Since here
we are only interested in derivability, this aspect is not so relevant, however,
it becomes more interesting from an algorithmic perspective. Indeed, we can
consider an alternative definition, where we allow the second type of rule only
if j ¢ H; in other words, we apply circular hypotheses as soon as we can.

In this way we would have less valid proof trees in 7, but the set of
derivable judgements remains the same. Indeed, Lemma 8.13 ensures soundness
also of the deterministic version, because any proof tree in the deterministic
version is also a proof tree in the non-deterministic one. On the other hand,
Lemma 8.16 ensures completeness of the deterministic version; indeed, the
functions try build a proof tree in the deterministic version, since they perform
the additional check j ¢ H to apply rules from 7.

Regular reasoning

In this section we discuss proof techniques for regular reasoning, which can
be defined thanks to the results proved in Section 8.3 and Section 8.4.

Let 7 be a finitary inference system on the universe U. As discussed in
Sections 2.4 and 3.4, we are typically interested in comparing the regular
interpretation of I to a set of judgements S C U (specification), focusing on
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soundness (p[Z] € S) and completeness (S C p[[I]) properties. Proving both
properties amounts to say that the inference system actually defines the given
specification S.

For completeness proofs, we rely on the fixed point characterization of p[[ 1 ]|
(Theorem 8.9). Indeed, since p[[ I ]| = pF7, we get a proof principle, rephrasing
Proposition 8.5 as follows:

PROPOSITION 8.17 (Regular coinduction): Let S C U be a set of judge-
ments. If, for all j € S, there is a finite set X € U such that j € X C Fr(X),
then, S C p[[7].

Proof: Immediate from Proposition 8.5. O

This looks very much like the usual coinduction principle, but it additionally
requires X to be finite. The condition X C F7(X) is equivalent to rquiring X
to be I -consistent (cf. Definition 2.2).

EXAMPLE 8.18 : To show how proofs by regular coinduction work, as first
example we consider the introductory one: the definition of the judgement
allPos(s), where s is a stream of natural numbers, which, intuitively, should
hold when s positive, that is, contains only positive elements. We report here
the inference system 7 ~° defining this predicate:

allPos(s)

Y x>0
allPos(x:s)

The specification S>° is the set of judgements allPos(s), where s is rational,
meaning that it has finitely many different substreams, and positive. Then, the
completeness statement is the following:

If s is rational and positive, then 7~ +, allPos(s).

To prove the result, let s be a rational stream containing only positive elements

and set X = {allPos(s’) | s = x1:...:x,:s"}. Clearly, X is finite, because s is
rational, and allPos(s) € X, hence we have only to prove that it is consistent.
Let allPos(s’) € X;, then s’ = x:s”, thus s = x1:...:x,:x:8”, and so x > 0,

because it is an element of s, and allPos(s”’) € X, by definition of X, and this
proves that X; is post-fixed. Therefore, by the regular coinduction principle
we get the thesis.

Let us now focus on the soundness property. If we interpreted 7 inductively,
we would prove soundness by induction on rules, but in the regular case this
technique is not available, since it is unsound. However, in Theorem 8.12, we
proved that j € p[[7] if and only if @ > j is derivable in 7 ©, which is interpreted
inductively. Therefore, we can exploit the induction principle associated with
T© to prove soundness, as the following proposition states:

PROPOSITION 8.19 : Let S C U be a set of judgements, then, if there is a
family (Sy)reg,, (1) such that Sy € U and Sy € S, and, for all H € ¢,(U),
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« HC Sy,and
« for all rules (Pr, j) € 1, if Pr C Syuy;) then j € Sy,

then p[Z] € S.

Proof: By induction on 7 °, we immediately get that 7% u Hv jimplies
j € Sy. Therefore, if j € p[I ], by Theorem 8.12, we have I° Fu 0> j, hence
1jeSpCS. m|

In other words, given a specification S C U, to prove soundness we have
first to generalize the specification to a family of specifications, indexed over
finite sets of judgements, in order to take into account circular hypotheses.
Then, we reason by induction on rules in the equivalent inductive system (see
Definition 8.11) and, since Sy C S, we get soundness.

EXAMPLE 8.20 : We illustrate the technique again on the definition of
allPos(s). The soundness statement is the following:

If 77° k, allPos(s), then s is rational and positive.

The first step is to generalize the specification to a family (S;;°), indexed over
finite subsets of judgements H.

with x; > 0, for all i € 1..n, and allPos(s") € H.

It is easy to see that 350 C 8>%and, forall H € ¢, (U),H C S;IO, by definition
of S;;°. Hence, we have only to check that (S;°) is closed with respect to the
rule, as formulated in Proposition 8.19.

Let us assume allPos(s) € SE,O, with H” = H U {allPos(x:s)}. We have the
following cases:

« If s is rational and positive, this is true for x:s as well, because x > 0 by

hypothesis.

e Ifs =x1:...:xy:s" withx; > 0, for all i € 1..n, and allPos(s”) € H’, then,
if allPos(s’) € H, since x:s = x:x1: .. .:x,:s" and x > 0, we have the thesis;
if s’ = x:s then x:s = x:xq: . . . :xp,:x:s, thus it is rational and positive, as
x > 0.

We now consider a more complex example: the definition of the distance in
a graph (see page 180), proving it is sound and complete with respect to the
expected meaning.

EXAMPLE 8.21 : For the reader’s convenience, we report here the rules
defining this judgement:

distg(vi, u,61) ... distg(vn,u,8,) v#u

(EMPTY) ADJ)

distg(v, v, 0)

distg(v, u, 1 + min{5y,...,8,}) Gv)={v,..., v}
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We denote by 79 the above inference system. We recall for the reader’s
convenicence a few definitions we need in the proof. Let us assume a graph
G:V — (V). An edge in G is a pair (v, u) such that u € G(v), often written
vu. We denote by E the set of edges in G. A path from v, to u, in G is a
non-empty finite sequence of nodes a = v ... v, with n > 0, such that, for
alli € 1..n, vi.;v; € E. The empty path starting from the node v to itself
is the sequence v. If ¢ is a path in G, then we denote by ||| the length of
a, that is, the number of edges in @, and we write v € o when the node v
occurs in a, that is, the path a traverses v. The distance from a node v to a
node u, denoted by (v, u), is the least length of a path from v to u, that is,
d(v, u) = inf{||e|| | « is a path from v to u}, hence, if there is no path from v
to u, (v, u) = inf O = co. We say a path a = vy ... v, is simple if it visits every
node at most once, that is, v; = v; implies i = j, for all i, j € 0..n. Note that the
empty path is trivially simple. It is also important to note that §(v, u) is the
least length of a simple path from v to u. Then, the specification S is the
set of judgements distg(v, u, §) with § = §(v, u).

We can now state that the definition of distg(v, u, §) is sound and complete
with respect to the specification S%,

Jdist Fp distg(v, u, 8) iff 6 = 5(v, u).

COMPLETENESS PROOF The proofis by regular coinduction. Let us consider
a judgement distg(v, u, 5(v, u)). Let R, C V be the set of nodes reachable from
v, and define X,, = {distg(+v’, 4, 5(v', u)) | v' € R,}, which is clearly finite and
distg(v, u, 8(v, u)) € X,, because v is reachable from itself. Hence, we have
only to prove that X, is post-fixed. Let v/ € R,, then we have to find a rule
with conclusion distg(Vv’, 4, §,/,,) and whose premises are in X,. We have two
cases:

o If v/ = u, then §(v', u) = 0 and so we have the thesis by rule (gmrv).

o If v/ # u, then we have §(v/, u) = 1 +inf{5(v”, u) | v/ € G(v')}, hence,
since G(v') C R,, all the premises distg(v"’, u, §(v"’, u)), for v/’ € G(v’),
belong to X,, as needed.

SOUNDNESS PROOF To apply Proposition 8.19, we generalize the specific-
ation S to a family (S&™), indexed over finite sets of judgements, defined
below.

() distg(v, u, ) € SU iff there is a set of paths P and a function
f P — NU {co} such that

1. for all ¢ € P, either @ goes from v to uand f(a) = 0, or
goes from v to v’ and distg(v', u, f(a)) € H;

2. for each simple path f from v to u, there is & € P such that
p=ap’
3. 0 = inf{||«|| + f(a) | « € P}.
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First, we have to check that Sgi“ C S9st Let distg(v, u,8) € SgiSt, then, by
Item 3 of (%), § = inf{||a||+ f(a) | « € P}, for some set of paths P and function
f : P — N U {oo}. Since H is empty, by Item 1 of (x), we have that, for all
a € P, o is a path from v to u and f(«) = 0, hence §(v, u) < ||| + f(a) for all
a € P and so 8(v, u) < 8. To prove the other inequality, let § be a simple path
from v to u, then, by Item 2 of (%), there is @ € P such that f = af’, but, by
Item 1 of (%), & goes from v to u and f(«) = 0, hence = «, because it cannot
traverse twice u; thus we have § < ||| = ||a|| + f(a), for any simple path f,
and so § < 6(v, u).

The fact that H C SgiSt is immediate because, if distg(v, u, §) € H, then, to
get the thesis, it is enough to take as P the set containing only the empty path
with f(v) = 8, which trivially satisfies all conditions in ().

Then, we have only to check that (S§/™) is closed with respect to the rules
(emrry) and (apy), as formulated in Proposition 8.19.

Case: (empry) If v = uand § = 0, then it is enough to take as P the set
containing only the empty path, with f(v) = 0.

Case: (ap;) We have v # u, G(v) = {vi,..., v} and distg(v;, u, 5;) € Sfli,st
with H = HU {distg(v, u,8)}, for all i € 1..n. If n = 0, then G(v) is empty,
6 = inf @ = co and there is no path from v to u. Hence, the thesis follows
by taking P = 0.

Then, let us assume n > 1. By hypothesis, § = 1 + inf{d;,...,8,} = 1 + &,
for some k € 1..n, since we are considering rule (apy). Since distg(v;, u, §;) €
SI‘fI‘,St, for all i € 1..n, there are P; and f; : P; — IN U {oo} satisfying (%),
in particular, by Item 3, §; = inf{||a|| + fi(@) | @ € P;}. We define P as
the set of paths va with @ € P; such that, if « ends in v, then fi(@) # J,
and f : P — N U {oco} is defined by f(var) = fi(a) when a € P;. Clearly, P
satisfies Item 1 of (%) with respect to H. To check that Item 2 holds, let S be
a simple path from v to u, then = vv;$’, for some i € 1..n. Hence, v;f’
is a simple path from v; to u and v ¢ v;#’, thus, by Item 2 of (x) applied
to P;, there is a’ € P; such that v;’ = o'y, and v ¢ a’, because v ¢ v;f’.
Therefore, va’ € P and va'y = vv;f’ = p, as needed.

We now prove Item 3 of (%), that is, § = inf{||«|| + f(a) | @ € P}. Let
a = vw;a’ € P, for some i € 1..n, then via’ € P;, hence, §;p < §; <
[via'[| + fi(via’), thus § = 1+ & < 1+ [[vid'[| + fi(via”) = [l + f(a),
which implies § < inf{||¢|| + f(«) | @ € P}. To conclude, we have to prove
the other inequality, hence we distinguish the following cases:

« if §; = oo, then § = oo and this proves the thesis, since co > x for all
x € NU {c0};

« otherwise, 8y = ||&’|| + fr(e’), for some &’ € Pi. If o’ ends in v
and fy(a’) = §, then 8¢ = ||a@’|| + & = ||&¢’|| + 1 + Ok, which implies
Ok = oo that is absurd. Otherwise, va’ € P and f(va’) = fi(a’), thus
inf{l|a]| + f(a) | @ € P} < [[va’|| + f(va’) = 1+ |l&’[| + fia) =
1+ 6 = 8, as needed.
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minElem(2, 2:2:2:. . .) minElem(1, 2:2:2:. . .) minElem(0, 2:2:2: . . .)
minElem(2, 2:2:2: .. .) minElem(1, 2:2:2: .. .) minElem(0, 2:2:2: .. .)
minElem(2, 2:2:2: .. .) minElem(1, 2:2:2: .. .) minElem(0, 2:2:2: . . .)

FIGURE 8.1 Some infinite regular derivation for the judgement minElem(x, s).

8.6 Flexible regular coinduction

Infinite derivations are a very powerful tool, which make it possible to deal with
a variety of situations that cannot be handled just by finite ones. However,
in some cases, as widely discussed in Chapter 3, they have an unexpected
behaviour, allowing the derivation of intuitively incorrect judgements. Not
surprisingly, the same issue affects also regular derivations. Let us explain this
by an example, which is a slight variation of one in Chapter 3. Consider the
following rules, defining the judgement minElem(x, ), where x is an integer
and s is a rational stream, stating that x is the minimum of the stream s.
minElem(y, s) ,

————— z = min{x, y}

minElem(z, x:s)
In Figure 8.1 we report three infinite regular derivations, thus valid for the
regular interpretation of the above rules, where, however, only the first one
is intuitively correct: judgements minElem(0, 2:2: . . .) and minElem(1, 2:2:. . .)
should not be derivable, as 0 and 1 do not belong to the stream.

Inference systems with corules, introduced in Chapter 3, have been de-
signed precisely to address this issue for the coinductive interpretation, where
arbitrary infinite derivations are allowed. Indeed, corules allow refinement
of the coinductive interpretation, by filtering out some, undesired, infinite
derivations.

In this section, we show that the results previously given for regular coin-
duction smoothly extend to generalised inference systems. The technical de-
velopment in the following is partly repetitive; this could have been avoided
by presenting the results in the generalized framework since the beginning.
However, to have separation of concerns, we preferred to first give a present-
ation using only standard notions, limiting to this section the non-standard
ones.

We start by defining the regular interpretation of an inference system
with corules (7, .7.). Recall that, given an inference system J and a set
of judgements X C U, I|x is the subset of 7 containing only rules with
conclusion in X.

DEFINITION 8.22: Let (7, I,) be an inference system with corules. The reg-
ular interpretation p([ 1, 1] of (1, L, ) is defined by p[[1, Ioo | = pll | 7uz07]-

As we will see later in this section (Corollary 8.28), in proof-theoretic terms
this is equivalent to say that p[[1, 7., ] is the set of judgements with a regular
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proof tree in 7, whose nodes all have a finite proof tree in 7 U Z,. In this way,
we can filter out some, undesired, regular derivations. In the following, we
will write (I, Zco) +p j for j € pll7, I ].

Coming back to the example, using corules, we can provide a correct defin-
ition of the judgement minElem(x, s) as follows:

n.melem(y, s) 2 = min{x, y}
minElem(z, x:s) minElem(x, x:s)

The additional constraint, imposed by the coaxiom, allows us to build regular
infinite derivation using only judgements minElem(x, s) where x belongs to s;
thus filtering out the second and third incorrect proof trees in Figure 8.1, since
they involve judgements with no finite derivation using also the coaxiom.

All the results discussed so far for the regular interpretation can be smoothly
extended to the regular interpretation of an inference system with corules.
We will now develop all the tecnical machinery needed for this, adapting
constructions in Chapter 3 to the regular case.

Bounded rational fixed point

To construct such a fixed point, we come back to the lattice-theoretic setting
of Section 8.2. Let us assume an algebraic lattice (L, C).

Let F,G : L — L be two functions, we write F LI G for the pointwise join of
F and G, and, for all z € L, F, for the function defined by F,(x) = F(x)Mz. It
is easy to see that, if F and G are monotone, then F LI G is monotone as well,
hence, by the Tarski theorem, it has a least fixed point p(F U G). It is also easy
to check that, if z € L is a pre-fixed point of FLI G, then it is a pre-fixed point of
F as well, because F(z) E F(z) U G(z) C z; this will be crucial for the following
construction, as it was for the analogous construction of Section 3.2.1.

We can now define the bounded rational fixed point:

DEFINITION 8.23: Let F: L — L be finitary and G : L — L be monotone.
The rational fixed point bounded by G, p|F, G| is defined by

plF, Gl = pFuruc)

In other words, p[F, G] is the least upper bound of all compact elements
below the least fixed point of F U G, that is,
p[F,G] = I_I{x € C(L) | x € F(x), x C u(FU G)}
To see that p[F, G] is well-defined, that is, it is indeed a fixed point of F, we
have the following propositions:

PROPOSITION 8.24 : If F: L — L is finitary, then, for all z € L, F, is
finitary as well.

Proof: Let D C L be a directed set. Since F is finitary, it is monotone, hence
i F, is monotone as well, therefore we get | [(R(D) M z) T F( D) M z.
To prove the other inequality, it is enough to show that, for any compact
element y C F(| D) Mz y E ||(F(D) M z), because the lattice is algebraic.
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: Since F is finitary, we have F (|| D) = | | F(D). We know that y C z and
y C F(LUD) = || F(D) and, since y is compact, there is a finite subset W € D
such thaty C | | F(W). Since D is directed and W is finite, there is w € D such
: that | |[W C w, hence | | F(W) C F(w) C | | F(D), because F is monotone
and w € D. Therefore, we get y C F(w) Mz C | |[(F(D)Mz),asneeded. 0O

PROPOSITION 8.25 : Let F: L — L be finitary and G : L — L be monotone,
then p[F, G] is a fixed point of F.

Proof: Set z = p(F U G) and note that F(z) C F(z) U G(z) = z,as zis a
fixed point of F U G. By Proposition 8.24, F, is finitary, hence, by Defin-
ition 8.23 and Theorem 8.4 we have p[F, G] = F(p[F, G]) M z, and from
: this we derive p[F, G| C z and F(p[F, G|) C F(z) C z. Therefore, we get
: p[F, G] = F(p[F, G]) M z = F(p[F, G]), as needed. O

In Chapter 3 we showed that the least and the greatest fixed point are
instances of the bounded fixed point (cf. Proposition 3.8). Analogously, we
show that the least and the rational fixed point are instances of the bounded
rational fixed point, that is, they can be recovered for specific choices of G.
In the following, for all z € L, we write K, : L — L for the constant function,
that is, K,(x) = z, for all x € L.

PROPOSITION 8.26 : LetF: L — Lbe afinitary function, then the following
hold:

1 pF =p[F,K,],and
2. pF = p[F,K+].

Proof: To prove 1, note that uF C p[F, K, |, as p[F, K, | is a pre-fixed point,
and p[F, K, ]| C uF, as y(FUK,) = uF and p[F,K, ]| = F(p[F, K. ]) M uF C uF.
To prove 2, note that y(F LI K+) = T, hence we have Fq,ruk,) = F, thus
i p[F,K+] = pF, as needed. O

Fixed point semantics

Let (J, I.,) be an inference system with corules where 7 is finitary. We have
two goals: first we want to justify the proof-theoretic characterisation provided
at the beginning of this section and, second, we want to prove that the rational
interpretation generated by corules is indeed an interpretation of the inference
system.

To get the proof-theoretic characterisation, it is enough to observe the
following property:

PROPOSITION 8.27 : Let X C U, thent € pTy, iff r € pTy and, for all
a € N(7), t(a) € X.
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Proof: By definition we have Z|x C 7, hence pTy, C pTr, all rulesin |
: have conclusion in X, and, by Lemma 8.8, pT7 is the set of regular proof trees
i in 7. Then, the thesis is immediate since, by definition, all nodes of a proof
tree are labelled by the conclusion of some rule. O

Recall that we have described p[ 1, I, ] in proof-theoretic terms as the set
of judgements having a regular proof tree in 7, whose nodes all have a finite
proof tree in 7 U I,. Formally, we have the following corollary:

COROLLARY 8.28 : ([I,1,) +, jiff there is 7 € pT7 such that r(r) = j and,
for all @ € N(7), t(a) € p[[Z U I,].

Proof: Set X = u[[Z U I,]. From Theorem 8.9 and Definition 8.22 we get
plL. 1] = pllZix] = r(pTizx)) = pFy)- Applying Proposition 8.27 with
P X = pllT U I,], we get the thesis. ]

Towards the second goal, we show that the regular interpretation of (I, I.,)
coincides with the rational fixed point of F; bounded by Fz_ (see Defini-
tion 8.23), which is an immediate consequence of the following proposition:

PROPOSITION 8.29 : p[7, I,] = p[Fr, Fr,].

Proof: By Definition 8.22 and Theorem 8.9, we know that p[[1, 1] =
PE(5,r0r,p- By Definition 8.23, we have plFr,Fr,]1 = p(Fr)nuF;ur,,) and,
. by definition of the inference operator, we have Fryz, = Fr U Fr_, hence
- ullI U I,]l = p(Fr U Fr,) and (Fr)murur,) = (Fr)nppruz,)- Therefore,
by Proposition 3.12, we have Farony = (Fr)nu[ruz,)> which implies the
. thesis. O

Then, this proposition, together with Proposition 8.25, in particular en-
sures that p[[7, 1] is indeed a fixed point of Fr, that is, an 7 -interpretation
(cf. Definition 2.2).

An important property of inference systems with corules is that standard
interpretations (the inductive and the coinductive one) are particular cases
(cf. Corollary 3.15). Analogously, the inductive and the regular interpretations
are particular cases of the regular interpretation generated by corules. Recall
that 7¢; denotes the inference system consisting of one axiom for each j € U.
We have the following proposition:

PROPOSITION 8.30 : Let I be an inference system, then p[ 7] = p[.Z, 0]
and p[[Z] = p[Z, Zo/].

Proof: It follows from Proposition 8.26, because p[[ 1, I,]| = p[Fr, Fz, ], by
Proposition 8.29, and we have Fz,,(X) = U and Fp(X) = 0,forall X CU. O

In other words, when the set of corules is empty, we allow only rules with con-
clusion in u[[7 U 0] = p[ 7], hence we cannot derive anything outside u[[ 1],
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and, on the other hand, when the set of corules is J¢;, we do not remove any
rule, because p[7 U I¢/]] = U, thus we get exactly the regular interpretation
of I.

Cycle detection for corules

As the standard regular interpretation, also the regular interpretation of an
inference system with corules has a sound and complete algorithm to find a
derivation for a judgment, if any.

Let us assume an inference system with corules (7, 1,). Since its regular
interpretation is defined as the regular interpretation of 7|, ruz,], which is
the inference system obtained from 7 by keeping only rules with conclusion
in p[lI U I,], we could get an inductive characterisation of p[[J, 7] by
applying the construction in Definition 8.1 to the inference system 7|, ruz,J-
This provides us with a sound and complete algorithm to find a derivation for
a judgement which belongs to p[[ 1, I, ]|, which works the same way as the one
introduced in Section 8.4, but, in addition, each time we apply the rule (unrorp)
with (Pr,j) € I, we have to check that j € p[[T U I ]. However, we will see
that this additional check is necessary only to apply circular hypotheses, thus
defining a cleaner procedure.

To this end we construct the inference system 7 ©Z as follows:

DEFINITION 8.31: The inference system 7 Y% consists of the following

rules:
( ) jeH
B-HP) —/—— .
Hej jep[Iul,]
HU{j}>»ji ... HU{j}»j . Ly
(B-UNFOLD) e H»j Ul > Jn Wts oo snts ) €T

This definition is basically the same as Definition 8.11, except for the addi-
tional side condition in rule (s-ur) j € p[[J UZ ], which enforces the additional
check. We have the following fundamental properties:

PROPOSITION 832 : If 79% by He jthen j € pf[1 U 1]

Proof: By induction on rules of 7Y%« the case for rule (s-u) is trivial, for
the rule (s-unrorp), by Definition 8.31, we have a rule {({ji,...,jn},j) € I
: and, by induction hypothesis, we know that ji € u[[I U I, ], for all k € 1..n,

hence j € p[[Z U 1], as p[[ I U I ] is closed with respect to 7. O
PROPOSITION 8.33: IfH C p[[7UI,], then T Ve Fu H"jifffﬁ[[fu,zco]] by Hej.

Proof: The proof of the left-to-right implication is by induction on rules
L in 79,

Case: (5-ur) By hypothesisj € p[7UI,], then the thesis follows by rule (ur).
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Case: (s-unrorp) By Definition 8.31, we have a rule ({ji,...,j.},j) € I and
by Proposition 8.32 we have j € p[[7 U I, hence HU {j} C u[[7 U I,]
and ({j1,...,jn},J) € Lju[ruz,]- Therefore, by induction hypothesis, we
get 7© Fu H U {j} » ji, for all k € 1..n, then the thesis follows by

|Hl[ T V1]
rule (UNFOLD).

The proof of the right-to-left implication is by induction on rules in Ili[[ TULLl

Case: (ur) Immediate by rule (s-ur), as j € H C p[[Z U I,].

Case: (unrorp) By Definition 8.11, we have a rule ({ji, ..., jn}. /) € Zu[ruz,]
C I,hencej e p[I U I,], and so H U {j} C p[[Z U Z,]. Therefore, by
induction hypothesis, we get 7 %o Fu H U {j} > ji, for all k € 1..n, then
the thesis follows by rule (s-unrorp).

O

Then, we get the following result, proving that the inductive characterisation
is correct, that is, sound and complete, with respect to the regular interpretation
of (I, Ico).

COROLLARY 8.34 : 7%k b 0> jiff (1, 1) Fp j.

Proof: It is immediate by Proposition 8.33 and Theorem 8.12. m|

The resulting algorithm behaves as follows: we start from a judgement j with
an empty set of circular hypotheses, then we try to build a regular derivation
for j using rules in 7, exactly the same way as for standard regular coinduction;
but, this time, when we find a cycle, say for a judgement j’, we trigger another
procedure, which looks for a finite derivation for j* in p[[7 U Z].

Flexible regular reasoning

We now adapt proof techniques presented in Section 8.5 to this generalised
setting. For completeness proofs, in Section 3.4, the standard coinduction prin-
ciple is extended to generalised inference systems, by adding an additional
constraint, which takes into account corules (cf. Proposition 3.27). The regu-
lar coinduction principle (cf. Proposition 8.17) can be smoothly extended to
this generalised setting following the same strategy, as expressed in the next
proposition. We call the resulting principle the bounded regular coinduction
principle.

PROPOSITION 8.35 (Bounded regular coinduction): LetS C U be a set of
judgements. If, for all j € S, there is a finite set X € U such that

BOUNDEDNESS j€ X C puf[7 UZ,], and

CONSISTENCY X C Fr(X),

then, S C p[[7, I, ]
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This proposition immediately follows from Proposition 8.5, as p[[1, 7] is
a rational fixed point by Proposition 8.29 and Definition 8.23. The additional
constraint S C p[[7 U I, ], named boundedness, reflects the fact that, using
corules, we are only allowed to build proof trees using judgements in u[[ 7 UZ,].
Note that, when I, = Iy, thus p[[1, I ]] = p[ L], the additional constraint
is trivially true, because it requires S C U, hence we recover the regular
coinduction principle in Proposition 8.17.

EXAMPLE 8.36 : We illustrate this technique on our running example: the
definition of minElem(x, s), which should hold when x is the minimum of
the rational stream of integers s. We denote by (Z™", 7™") the inference
system with corules defining the judgement minElem(x, s), and by S™" the set
of judgements minElem(x, s) where x is indeed the minimum of s. We prove,
using Proposition 8.35, the following statement:

if minElem(x, s) € S™" then (™", I7") +, minElem(x, s).

Let minElem(x, s) € S™" and define X as the set of judgements minElem(z, r) €
S™Mn such that r is a substream of s. Trivially minElem(x, s) € X and, since s
is rational, it has finitely many different substreams, hence X is finite. The
boundedness condition, that is, if minElem(z, r) € X then it has a finite proof
tree using also the coaxioms, is easy to check, because, if y is the minimum of
r, then y occurs somewhere in r, hence we can prove the thesis by induction
on the least position of y in r. In order to check that X is consistent, consider
minElem(z,r) € X, with r = y:r’. Since z is the minimum of r and r’ is a
substream of r, z is a lower bound of 7’, thus it has a minimum, say y’, and
so minElem(y’, r") € X. To conclude, we have to show that z = min{y, y’}. The
inequality z < min{y, y’} is trivial, for the other inequality, since z belongs to
r, we have two cases: if z = y, then min{y, y’} < z, otherwise z belongs to r’
and so y’ < z, thus min{y,y’} < z.

Differently from the standard coinductive interpretation, for the regular
interpretation we have also defined a proof technique to show soundness
(Proposition 8.19). Such a technique relies on the inductive characterisation of
the regular interpretation. As also the regular interpretation of an inference
system with corules has an inductive characterisation (Corollary 8.34), we can
provide a proof technique to show soundness also in this generalised setting,
which smoothly extends the one of standard regular coinduction.

PROPOSITION 8.37: LetS C U be a set of judgements, then, if there is a
family (Sx)rep,, (1) such that Sy € U and Sy € S, and, for all H € ¢,,(U),

« HNnuf U I,] € Sy, and
« for all rules (Pr, j) € 1, if Pr C Spyyjy then j € S,

then p[[ 1, 1,] € S.
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Proof By a straightforward induction on rules in 7%, we get that if
Tk u Hv j, then j € Sg; thus, the thesis follows from Corollary 8.34. O

Again, this proof principle is almost the same as Proposition 8.19, but with
an additional constraint, this time on sets of circular hypotheses, which takes
into account corules.

EXAMPLE 8.38 : We illustrate this technique proving that the definition of
minElem(x, s) is sound, that is,

if (Z™", I2"") +, minElem(x, s), then x is the minimum of s.

First of all, we note that, if minElem(x, s) has a finite proof tree using also the
coaxiom, then x belongs to s (it can be easily proved by induction on rules
in 7™" U ). Then, we define S as follows: minElem(x,s) € Sp" iff x

minElem(y, r) and x = min{xy, ..., X,, y}. We have trivially that Sg"“ c S§min,

Assume a finite set of judgements H. Clearly, if minElem(x, s) € H has a finite
proof tree using also the coaxiom, then minElem(x,s) € SJ". Now, suppose
s = xir, H = H U {minElem(z, s)}, minElem(y,r) € SJ" and z = min{x, y},
then we have two cases:

« if y is the minimum of r, then z is the minimum of s = y:r, hence
minElem(z, s) € SP™;

o if r = xp:...:xper’, minElem(y’,r’) € H’, minElem(y’,7’) has a finite
proof tree using also the coaxiom and y = min{xy,...,x,,y’}, then
s = xir = x:xq:. .. ixpr and z = min{x, xq, . . ., x,,y’}. We distinguish

two subcases:

- if minElem(y’,r’) € H, then minElem(z, s) € S} by definition, and

a finite proof tree using also the coaxiom, thus z belongs to s and
z = min{x, x1, ..., Xp, 2}, that is, z is the minimum of s.

We now consider a more involved example, which is the restriction to the
rational case of the example described in Section 3.5.1.

EXAMPLE 8.39 : It is well-known that real numbers in [0, 1] can be repres-
ented as, not necessarily rational, streams of digits in some basis. Let N~ be
the set of positive natural numbers and assume a basis b € IN. A digit d is
a natural number in 0..b — 1, then, given a stream r = (d;);en., of digits, the
series )50, d;b™" converges and its limit is the real number represented by r
and denoted by [[r]. It is also well-known that every real number x € [0, 1] has
at most two different representations as a stream, for instance, with b = 10,
the number 1/2 can be represented as either 5:0 or 4:9, where, for any digit d,
d is the stream d:d:d: . . ..
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Consider the following inference system with corules (7299, 7299} defining
the judgement add(ry, s, 7, ¢), where c is an integer representing the carry, and
which should hold when [r{] + [r2] = [r] + ¢c.

add(ry, r,7,¢)

=d d
add(dyr1,dyrs, (x mod byr,x+b) tapte

(ADD)

(co-ADD) =——ee . c € —1..2
add(ry, ry,7, )

In Section 3.5.1 it is proved that such definition is correct, that is, it correctly
defines the addition between real numbers. It is also well-known that rational
streams of digits represent rational numbers, that is, if r is a rational stream of
digits, then [[7] is a rational number. We show here that the regular interpret-
ation of the above inference system with corules is correct with respect to the
addition of rational numbers.

Define the set $2%¢ of correct judgements as follows: add(ry, o, 7, c) € S24
iff r1, r, and r are rational and [[r1]] + [r2] = [r]] + ¢. We start by proving
completeness, stated below:

for rational streams ry, ro, 7, if [r1] + [r2] = [7] + ¢,
then (7%, 724 v, add(ry, 12, 7, ).

>~co

We use the bounded regular coinduction principle. First of all, note that, since
[r1 € [0, 1] for any stream r, if add(ry, 72, 7, ¢) € S, then ¢ = [r1]+[r. ][],
hence ¢ > —1 and ¢ < 2. Therefore, we immediately have that all judgements
in $2¢9 have a finite proof tree using also the coaxiom.

Assume add(ry, 75, 7, ¢) € S?% and define X as follows: add(sy, 52,5, ¢’) € X
iff [s1]] + [s2] = [s] + ¢’ and s; and s; are substreams of r; and r,, respectively.
Trivially, add(ry, 2, 7, ¢) € X and X is finite because, since r; and r, are rational,
they have finitely many different substreams, and ¢’ can assume only four
values, hence [[s]] = [s1] + [sz]] — ¢’ can assume only finitely many values,
and so there are finitely many s satisfying that equation. Now we have to
check that X is consistent. Assume add(d;:s1, da:s2, d:s, ¢’) € X, then we have
[di:si] + [da:s2]l = [d:s] + ¢’. It is easy to check that, for any stream ¢ and
digit d, b[d:t] = d + [[t]. Hence, we get [s1] + [s2]] = [s] + ¢”, with ¢”" =
bc’ +d — dy — d;. Since s; and s; are still substreams of r; and r;, respectively,
we get add(sy, $2, S, ¢”’) € X, as needed.

We now prove soundness, as stated below:

if (7299, 7299) 1, add(ry, r2, 7, €),

»~co
then [r]l + [r2]] = [r] + ¢ and r{,r; and r are rational streams.

For any finite set H, we define SIa{dd as follows: add(ry, 72,7, ¢o) € Slafd iff ry =
dii:...:dip:si,ro = dags .. idapise, r = di:. . . :dy:sand therearecy,...,c, € —1..
such that, foralli € 1..n,dy;+ds;+c; = bej_1+d;, and either add(sy, s3, s, ¢,) € H
ors; =rq, 8, =71y, s =randcy = c,. The two closure properties in Propos-
ition 8.37 are easy to check. Hence, to conclude it is enough we show that
Sgdd C 8294, To this end, assume add(ry, o, 7,¢o) € Sadd, then, by definition,
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C1,...,¢p € —1..2 such that, for all i € 1..n, dy; + ds; + ¢; = bc;_1 + d;. This im-
plies that r; = (di,)ieN.,. "2 = (d2i)ieN., and r = (d;)ieN., are rational streams
and, for all i € N, dy; + dz; + ¢j41 = bcj +d; where j =i mod n. Hence, we
have only to check that [ry]] + [r2] = [] + co. We define sequences (xi)ren_,
and (Y )keN., as Xk = Zle(dli +dy)b " and yi = Zle d;b~'. Then we have
to show that lim x; — limy = lim(x; — yx) = co, because [r{] + [r2] = lim xy
and [[r]] = lim yj. As, for all k € N+, we have dyj + doi + cj1 = bej + dj with
j =k mod n, we getcy— (xx —yx) = ¢o + Yg — X = cj+1b_k, that, when k
tends to oo, converges to 0, hence we get lim(xx — yx) = ¢o.
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Flexible coinductive logic
programming

Logic programming is a declarative programming paradigm based on Horn
clause logic. Programs are sets of clauses, defining how to derive other atoms
from given ones, and can have both an inductive and a coinductive semantics.
Indeed, as we will formally recall in Section 9.1, clauses of a logic program
can be seen as meta-rules of an inference system where judgments are ground
atoms: inference rules are ground instances of clauses, and a ground atom
is derivable if it has a finite proof tree in the inductive interpretation and a
possibly infinite proof tree in the coinductive one.

As happens for inference systems (cf Chapter 3), standard inductive and
coinductive semantics of logic programs sometimes are not enough to properly
define predicates on possibly infinite terms (Simon et al., 2007; Ancona, 2013).
Consider the logic program in Figure 9.1, defining some predicates on lists
of numbers represented with the standard Prolog syntax. For simplicity, we
consider built-in numbers, as in Prolog.

In standard logic programming, terms are inductively defined, that is, are
finite, and predicates are inductively defined as well. In the example pro-
gram, only finite lists are considered, such as, e.g., [1|[2]| [1]1], and the three
predicates are correctly defined on such lists.

Coinductive logic programming (coLP), introduced by Simon (2006), extends
standard logic programming with the ability of reasoning about infinite objects
and their properties. Terms are coinductively defined, that is, can be infinite,
and predicates are coinductively defined as well. In the example, also infinite
lists, such as [1|[2|[3|[4]...]11]1], are considered, and the coinductive inter-

all_pos([]) —

all_pos([N|L]) « N>o, all_pos(L)

member (X, [X]|_]) «

member (X, [Y|L]) « X#Y, member (X,L)
maxElem([N],N) «—

maxElem([N|L],M) <« maxElem(L,M1), M is max(N,M1)

FIGURE 9.1 An example of logic program: all_pos(l) succeeds iff [ contains only
positive numbers, member(x, 1) iff x is in [, maxElem(l, x) iff x is the
greatest number in /.

203



204

FLEXIBLE COINDUCTIVE LOGIC PROGRAMMING

pretation of all_pos gives the expected meaning on such lists. However, this
is not the case for the other two predicates: for member the correct interpret-
ation is still the inductive one, as in the coinductive semantics member (x,[)
always succeeds for an infinite list [. For instance, for L the infinite list of 0’s,
member (1,L) has an infinite proof tree where for each node we apply the
second clause. Therefore, these two predicates cannot coexist in the same
program, as they require two different interpretations.’

The predicate maxElem shows an even worse situation. As discussed in
Chapter 3, the inductive semantics again does not work on infinite lists, but
also the coinductive one is not correct: maxElem(l,n) succeeds whenever n
is greater than all the elements of I. The expected meaning lies between the
inductive and the coinductive semantics, hence, to get it, we need something
beyond standard semantics.

The generalisation of inference systems by corules, presented in Chapter 3,
is able to express a variety of intermediate interpretations. Viewing logic pro-
grams as particular inference systems and guided by this abstract setting, which
provides solid foundations, we develop an extension of logic programming
supporting flexible coinduction,

Syntactically, programs are enriched by coclauses, which resemble clauses
but have a special meaning used to tune the interpretation of predicates. By
adding coclauses, we can obtain a declarative semantics intermediate between
the inductive and the coinductive one. Standard (inductive) and coinduct-
ive logic programming are subsumed by a particular choice of coclauses.
Correspondingly, operational semantics is a combination of standard SLD res-
olution (Lloyd, 1987; Apt, 1997) and coSLD resolution as introduced by Simon
(2006) and Simon et al. (2006, 2007). More precisely, as in coSLD resolution, it
keeps trace of already considered goals, called coinductive hypotheses. How-
ever, when a goal unifying with a coinductive hypothesis is found, rather
than being considered successful as in coSLD resolution, its standard SLD
resolution is triggered in the program where also coclauses are considered.
Our main result is that such operational semantics is sound and complete with
respect to the declarative one restricted to the regular case, relying on results
in Chapter 8.

An important additional result is that the operational semantics is not in-
cidental, but, as the declarative semantics, turns out to correspond to a precise
notion on the inference system denoted by the logic program. Indeed, as
detailed in Chapter 8, given an inference system, we can always construct an-
other one, with judgments enriched by circular hypotheses, which, interpreted
inductively, is equivalent to the regular interpretation of the original inference
system. In other words, there is a canonical way to derive a (semi-)algorithm to
show that a judgment has a regular proof tree, and our operational semantics
corresponds to this algorithm. This more abstract view supports the reliab-

1 To overcome this issue, Simon et al. (2007) introduce co-logic programming, allowing the
programmer to mark predicates as either inductive or coinductive. The declarative semantics,
however, becomes quite complex, because stratification is needed.
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ility of the approach, and, indeed, the proof of equivalence with declarative
semantics can be nicely done in a modular way, that is, by relying on a general
result proved in Section 8.6.3.

Finally, we also have a prototype SWI-Prolog implementation® of the oper-
ational semantics designed in this chapter, which can be used to experiment
with flexible coinductive logic programming.

The rest of the chapter is organised as follows. After basic notions in Sec-
tion 9.1, in Section 9.2 we introduce logic programs with coclauses and their
declarative semantics, and in Section 9.3 the operational semantics. We provide
significant examples in Section 9.4 and the results in Section 9.5.

Logic programs as inference systems

We present (standard inductive and coinductive) logic programming (Lloyd,
1987; Apt, 1997; Simon, 2006; Simon et al., 2006, 2007) as a particular instance
of the general semantic framework of inference systems (cf. Chapter 2).

Assume a first order signature (P, ¥, V) with P set of predicate symbols p,
F set of function symbols f, and V countably infinite set of variable symbols
X (variables for short). Each symbol comes with its arity, a natural number
denoting the number of arguments. Variables have arity 0. A function symbol
with arity 0 is a constant.

Terms t, s, r are (possibly infinite) trees with nodes labeled by function or
variable symbols, where the number of children of a node is the symbol arity®.
Atoms A, B, C are (possibly infinite) trees with the root labeled by a predicate
symbol and other nodes by function or variable symbols, again accordingly
with the arity. Terms and atoms are ground if they do not contain variables,
and finite (or syntactic) if they are finite trees. (Definite) clauses have shape
A« By,...,B,withn >0, A, By, ..., B, finite atoms. A clause where n = 0
is called a fact. A (definite) logic program P is a finite set of clauses.

Substitutions 0, o are partial maps from variables to terms with a finite
domain. We write t0 for the application of 8 to a term ¢, call 10 an instance
of ¢, and analogously for atoms, set of atoms, and clauses. A substitution 6
is ground if, for all X € dom(0), 6(X) is a ground term, syntactic if, for all
X € dom(6), 8(X) is a finite (syntactic) term.

In order to see a logic program P as an inference system, we fix as universe
the complete Herbrand base HB, that is, the set of all (finite and infinite) ground
atoms*. Then, P can be seen as a set of meta-rules defining an inference system
|P|| on HB. That is, ||P|| is the set of ground instances of clauses in P, where
A « By,...,B, is seen as an inference rule ({By, ..., By}, A). In this way,
typical notions related to declarative semantics of logic programs turn out

2 Available at https://github.com/davideancona/coLP-with-coclauses.

3 For a more formal definition based on paths see, e.g., the work of Ancona and Dovier (2015).

4 Traditionally (Lloyd, 1987), the inductive declarative semantics is restricted to finite atoms.
We define also the inductive semantics on the complete Herbrand base in order to work in a
uniform context.
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to be instances of analogous notions for inference systems. Notably, the (one
step) inference operator associated with a program Tp : 9(HBs) — 9(HB),
defined by:

TP(I) = {AE HBOO | (A<_Bl,aBn) € ”P”’{BlavBrl} gI}

is exactly Fp|| (cf. Section 2.3). An interpretation of the signature, that is, a set
I C HBw, is a model of a program P if Tp(I) C I, that is, it is closed with respect
to ||P||, and, dually, it is a comodel of a program P if I C Tp(I), that is, it is con-
sistent with respect to ||P|| (cf. Definition 2.2). Then, the inductive declarative
semantics of P is the least model of P and the coinductive declarative semantics®
is the greatest comodel of P. These two semantics coincide with the inductive
and coinductive interpretations of ||P|| (cf. Definition 2.6 and Theorems 2.23
and 2.24), hence we denote them by p[[P] and v[ P]}, respectively.

Coclauses

We introduce logic programs with coclauses and define their declarative se-
mantics. Consider again the example in Figure 9.1 where, as discussed in the
introduction of the chapter, each predicate needed a different kind of inter-
pretation.

As shown in the previous section, the logic program in Figure 9.1 can be
seen as an inference system. In this context, flexible coinduction, introduced
in Chapter 3, provides a generalisation able to overcome these limitations. The
key notion are corules, special inference rules used to control the semantics
of an inference system. Recall from Chapter 3 (cf. Definitions 3.1 and 3.3
and Theorem 3.13) that, given an inference system with corules (7, 1) , its
interpretation v[[ 1, ], is constructed in two steps.

« first, we take the inductive interpretation of the union 7 U Z,, that is, the
smallest (I U Z,)-closed set, denoted by p[[1 U I,

« then, the union of all 7 -consistent sets which are subsets of u[[Z7 U Z],
that is, the largest 7 -consistent subset of u[[J U Z].

In proof-theoretic terms, v[[ 1, I, ] is the set of judgements with an arbitrary
(finite or not) proof tree in 7, whose nodes all have a finite proof tree in
JUI,. Essentially, by corules we filter out some, undesired, infinite proof
trees. Theorem 3.13 shows that V[, 7] is a fixed point of Fr.

To introduce flexible coinduction in logic programming, following this
general framework, first we slightly extend the syntax by introducing (definite)
coclauses, written A < By, ..., B,, where A, By, ..., B, are finite atoms. A
coclause where n = 0 is called a cofact. Coclauses syntactically resemble
clauses, but are used in a special way, like corules for inference systems. More
precisely, we have the following definition:

5 Introduced by Simon (2006) and Simon et al. (2006) to properly deal with predicates on
infinite terms.
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allPos([]) —
allPpos([N|L]) < N>o, all_pos(L)
allPos(_) =

member (X, [X]|_]) «

member (X, [Y|L]) « X#Y, member(X,L)
maxElem([N],N) —

maxElem([N|L],M) <« maxElem(L,M1), M is max(N,M1)
maxElem([N|L],N) &

FIGURE 9.2 The logic program in Figure 9.1 enriched with coclauses.

DEFINITION 9.1: A logic program with coclauses is a pair (P, P,,) where P
and P, are sets of clauses. Its declarative semantics, denoted by v[[P, P ], is
the largest comodel of P which is a subset of u[[P U Py].

In other words, the declarative semantics of (P, P,) is the coinductive se-
mantics of P where, however, clauses are instantiated only on elements of
U[P U P,]. Note that this is the interpretation of the generalised inference
system ([[P[l, |1 e |1.

In Figure 9.2, we report the version of the example in Figure 9.1, equipped
with coclauses. In this way, all the predicate definitions are correct with respect
to the expected semantics:

+ allpPos has coinductive semantics, as the coclause allows any infinite
proof trees.

« member has inductive semantics, as without coclauses no infinite proof
tree is allowed.

+ maxElem has an intermediate semantics, as the coclause allows only infin-
ite proof trees where nodes have shape maxElem(l,x) with x an element of [.

As the example shows, coclauses allow the programmer to mix inductive and
coinductive predicates, and to correctly define predicates which are neither
inductive, nor purely coinductive. For this reason we call this paradigm flexible
coinductive logic programming. Note that, as shown for inference systems with
corules (cf. Corollary 3.15), inductive and coinductive semantics are particular
cases. Indeed, they can be recovered by special choices of coclauses: the former
is obtained when no coclause is specified, while the latter when each atom in
HB is an instance of the head of a cofact.

Big-step operational semantics

In this section we define an operational counterpart of the declarative se-
mantics of logic programs with coclauses introduced in the previous section.

As in standard coLP (Simon, 2006; Simon et al., 2006, 2007), we use finite
sets of equations between finite (syntactic) terms to represent possibly infinite
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terms. For instance, the equation L = [1,2]|L] represents the infinite list
[1,2,1,2,...].

Since the declarative semantics of logic programs with coclauses is a com-
bination of inductive and coinductive semantics, their operational semantics
combines standard SLD resolution (Lloyd, 1987; Apt, 1997) and coSLD resol-
ution (Simon, 2006; Simon et al., 2006, 2007). It is presented, rather than in
the traditional small-step style, in big-step style, as introduced by Ancona and
Dovier (2015). This style turns out to be simpler since coinductive hypotheses
(see below) can be kept local. Moreover, it naturally leads to an interpreter, and
makes it simpler to prove its correctness with respect to declarative semantics
(see the next section).

We introduce some notations. First of all, in this section we assume atoms
and terms to be finite (syntactic). A goal is a pair (G; E), where G is a finite
sequence of atoms. A goal is empty if G is the empty sequence, denoted ¢, as
usual. An equation has shape s = t where s and t are terms, and we denote by
E a finite set of equations.

Intuitively, a goal can be seen as a query to the program and the operational
semantics has to compute answers (a.k.a. solutions) to such a query. More in
detail, the operational semantics, given a goal (G; E; ), returns another set of
equations E,, which represents the answers to the goal. For instance, given
the program in Figure 9.2, for the goal (maxElem(L,M);{L = [1,2]|L]}) the
operational semantics returns the set of equations {L = [1,2|L],M = 2}.

The judgment of the operational semantics has shape

<PvPco>§S I= <G§E1> = E

meaning that resolution of {(G; E; ), under the coinductive hypotheses S (Simon
et al,, 2006), succeeds in (P, P.,), producing a set of equations E,. Set Var(t) the
set of variables in a term, and analogously for atoms, set of atoms, and equa-
tions. Resolution starts with no coinductive hypotheses, that is, the top-level
judgment has shape (P, P,); 0 I+ (G; E;) = E;. We assume Var(S) C Var(E,),
modelling the intuition that S keeps track of already considered atoms. This
condition holds for the initial judgement, and is preserved by rules in Figure 9.3,
hence it is not restrictive.
The operational semantics has two flavours:

« If there are no coclauses (P, = 0), then the judgment models standard
SLD resolution, hence the set of coinductive hypotheses is not significant.

« Otherwise, the judgment models flexible coSLD resolution, which follows
the same schema of coSLD resolution, in the sense that it keeps track in S
of the already considered atoms. However, when an atom A in the current
goal unifies with a coinductive hypothesis, rather than just considering
A successful as in coSLD resolution, standard SLD resolution of A is
triggered in the program P U P, that is, also coclauses can be used.

The judgement is inductively defined by the rules in Figure 9.3, which rely
on some auxiliary (standard) notions. A solution of an equation s = t is a unifier
of t and s, that is, a substitution 6 such that s6 = 6. A solution of a finite set of
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(EMPTY

) P.Po):SF (6E) = E

(PU Pe,0);0 - (A;Ey UEg ) = Ep

(P, Po); S (Gi, Gp; Ep) = Es BesS
(co-HYP) Ei+A=B
<P’ PC0>7S "_ <G17A9 G23E1> = E3

Po#0
<PaPCO>9SU{A} I <C1’---’CH;E1UEA,B>:E2 .
(P.Pw); S ¥ (G1, Gy Ez) = Ey ¢ fresh renaming
(STEP) PPy SE(G.AG-ES =FE BQ%Cle,...,CHQEP
< s C0>7 < 1 2 25 1> 3 Ell_A:B

FIGURE 9.3 Big-step operational semantics of flexible coinductive logic
programming

equations E is a solution of all the equations in E and E is solvable if there exists
a solution of E. Two atoms A and B are unifiable in a set of equations E, written
E+r A=B/if A=p(si,...,sn), B=p(t1,....th)and EU{s; = f1,...,8, = t,}
is solvable, and we denote by E4 p the set {s; = t1,...,s, = t,}.

Rule (emr1v) states that the resolution of an empty goal succeeds. In rule
(ster), an atom A to be resolved is selected, and a clause of the program P is
chosen such that A unifies with the head of the clause in the current set of
equations. Then, resolution of the original goal succeeds if both the body of
the selected clause and the remaining atoms are resolved, enriching the set
of equations correspondingly. As customary, the selected clause is renamed
using fresh variables, to avoid variable clashes in the set of equations obtained
after unification. Note that, in the resolution of the body of the clause, the
selected atom is added to the current set of coinductive hypotheses. This is not
relevant for standard SLD resolution (P, = 0). However, if P, # 0, this allows
rule (co-uvr) to handle the case when an atom A that has to be resolved unifies
with a coinductive hypothesis in the current set of equations. In this case,
standard SLD resolution of such atom in the program P U P is triggered, and
resolution of the original goal succeeds if both such standard SLD resolution
of the selected atom and resolution of the remaining goal succeed.

In Figure 9.4 we show an example of resolution in the program of Figure 9.2.
We use the shorter syntax M=max (N1,N2) instead of M is max(N1,N2), ab-
breviate by mE the predicate maxElem and by (s), (¥), (c) the rules (ster), (empTY)
and (co-nvr), respectively. When applying rule (srze), we also indicate the
clause/coclause which has been used: we write 1,2,3 for the two clauses and
the coclause for the maxElem predicate (the first clause is never used in this
example). Finally, to keep the example readable and focus on key aspects,
we make some simplifications: notably, T,, stands for an omitted proof tree
solving atoms of shape _ is max(_,_), irrelevant applications of rule (empry)
are omitted and, morever, equations between lists are implicitly applied.

As final remark, note that flexible coSLD resolution nicely subsumes both
SLD and coSLD. The former, as already said, is obtained when the set of
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Te Tm
(c) Tm
({1,2},3);mE(L,M),...IK{mE(L,M2),M1=max (2,M2); eq, )=>eqs;

_ T,
(S 2) ({1,2},3);mE(L,M) IK{mE ([2]| L] ,M1),M=max (1,M1);eq )=>eqss, M=2 "
-2

({1,2},3); 0-(mE(L,M); eq )=>eqss,,M=2

(E)
({1,2,3},0); .. .1-(¢e; eqsy, M3=2)=eqs;, M3=2

s-
(53) ({1,2,3},0);. . .{mE([2]L],M3),M2=max (1,M3); egs;)=egs,
Te=(s-2)
({1,2,3},0); 01-(mE (L, M2); eqs; y=eqs,
eq = L=[1,2]|L] eqs; = eq ,M2=M
eqs, = eqs;M3=2,M2=2  eqs; = eqs,, M1=2

FIGURE 9.4 Example of resolution of maxElem(L,M) with L = [1,2]|L].

coclauses is empty, that is, the program is inductive. The latter is obtained
when, for all predicate p of arity n, we have a cofact p(Xi, ..., X,) <.

Examples
In this section we discuss some more sophisticated examples.®

00-REGULAR EXPRESSIONS We define co-regular expressions on an alphabet
X, a variant of the formalism defined by Léding and Tollkétter (2016) for
denoting languages of finite and infinite words, the latter also called w-words,
as follows:
re=0|el|lalr-r|n+r|rr|r®

where a € X. The syntax of standard regular expressions is extended by r*,
denoting the w-power of the language A, denoted by r. That is, the set of
words obtained by concatenating infinitely many times words in A,. In this
way, we can denote also languages containing infinite words.

In Figure 9.5 we define the predicate match, such that match(w,r) holds if
the finite or infinite word w, implemented as a list, belongs to the language
denoted by r. For simplicity, we consider words over the alphabet {0, 1}.

Concatenation of words needs to be defined coinductively, to correctly work
on infinite words as well. Note that, when w; is infinite, w;w; is equal to wy.

On operators of regular expressions, match can be defined in the standard
way (no coclauses). In particular, the definition for expressions of shape r*
follows the explicit definition of the x-closure of a language: given a language
L, a word w belongs to L* iff it can be decomposed as w . . . wy,, for some n > 0,
where n = 0 means w is empty, and w; € L, for all i € 1..n. This condition is
checked by the auxiliary predicate match_star.

To define when a word w matches r* we have two cases. If w is empty,
then it is enough to check that the empty word matches r, as expressed by
the first clause, because concatenating infinitely many times the empty word

6 Executable code of the examples is available at https://github.com/davideancona/
coLP-with-coclauses.
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concat([],W,W) «

concat([B|W1],W2,[B|W3]) « concat(Wi,w2,W3)

concat(Wi,W2,W1) <

match([],eps) «

match([0],0) «

match([1],1) «

match(W,cat(R1,R2)) ¢« match(Wi,R1), match(W2,R2), concat(Wi,wW2,W
)

match(W,plus(R1,R2)) <« match(W,R1)

match(W,plus(R1,R2)) « match(W,R2)

match(W,star(R)) <« match_star(N,W,R)

match([],omega(R)) <« match([],R)

match([B|W],omega(R)) ¢« match([B|W1],R), match(W2,omega(R)),
concat(Wi,wW2,W)

match(W,omega(R)) «

match_star (o, [],R) —

match_star(s(N),W,R) « match(Wi,R), match_star(N,W2,R), concat(
W1,W2,W)

FIGURE 9.5 A logic program for co-regular expression recognition.

we get again the empty word. Otherwise, we have to decompose w as wyw,
where w; is not empty and matches r and w, matches r® as well, as formally
expressed by the second clause. To propertly handle infinite words, we need
to concatenate infinitely many non-empty words, hence we need to apply
the second clause infinitely many times. The coclause allows all such infinite
derivations.

AN LTL FRAGMENT In Figure 9.6 we define the predicate sat such that sat
(w, @) succeeds iff the w-word w over the alphabet {0, 1} satisfies the formula
¢ of the fragment of the Linear Temporal Logic with the temporal operators
until (U) and always (G) and the predicate zero and its negation’ one.

Since sat(w,always(¢)) holds iff all infinite suffixes of w-words w satisfy
formula ¢, infinite derivations has to be considered, hence a coclause is needed.
For instance, sat(Wo,always (zero)), with We=[e |We], succeeds because the
atom sat(We,always(zero)) in the body of the clause for always unifies®
with the coinductive hypothesis sat (We,always(zero)) (see rule (co-uve) in
Figure 9.3) and the coclause allows it to succeed with respect to standard SLD
resolution. Further, the atom sat (We,zero) in the body succeeds, thanks to
the first fact in the logic program.

Differently to always, the satisfaction of until has not to use infinite de-
rivations, because until(¢;,¢;) holds iff ¢, is satisfied after a finite number
of steps; for this reason, no coclause is given for this operator. For instance,
sat([1,1,0|W1],until(one,zero)) with wi=[1|W1] succeeds with respect

7 Predicates true and false could be easily defined as well.
8 Actually, in this case the atom to be resolved and the coinductive hypothesis are syntactically
equal.
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sat_exists(o,W,Ph) « sat(W,Ph)

sat_exists(s(N),[B|W],Ph) « sat_exists(N,W,Ph)

sat_all(o,W,Ph) <«

sat_all(s(N),[B|W],Ph) <« sat([B|W],Ph), sat_all(N,W,Ph)

sat([0|W],zero) «

sat([1|W],one) <«

sat([B|W],always(Ph)) <« sat([B|W],Ph), sat(W,always(Ph))

sat(W,always(Ph)) &

sat([B|W],until(Ph1,Ph2)) <« sat_exists(N,[B|W],Ph2), sat_all(N,[
B|W],Ph1)

FIGURE 9.6 A logic program for satisfaction of an LTL fragment:
sat_exists(N,W,Ph) succeeds iff suffix at N of w-word W satisfies
Ph, sat_all(N,W,Ph) succeeds iff all suffixes of w-word W at index
< N satisfy Ph, sat(W,Ph) succeeds iff o-word W satisfies Ph.

to standard SLD resolution, while sat (W1,until(one,zero)), sat(Wi,until(
always (one),zero)), and sat (W1,until(always (one),always(zero))) fail.
The clause for sat ([B|W],until(Ph_1,Ph_2)) follows the standard definition
of satisfaction for the U operator: there must exist a suffix of [B|w] at index N
satisfying Ph2 (sat_exists(N, [B|W],Ph2)) such that all suffixes of [B|w] at
index less than N satisfy Ph1 (sat_all(N, [B|W],Ph1)).

An interesting example concerns the goal sat ([1,1|We],until(one,always
(zero))), where the two temporal operators are mixed together: it succeeds
as expected, thanks to the two clauses for until and the fact that sat(we,
always(zero)) succeeds, as shown above.

Some of the issues faced in this example are also discussed by Gupta et al.
(2011).

BIG-STEP SEMANTICS MODELING INFINITE BEHAVIOUR AND OBSER-
vATIONS Defining a big-step operational semantics modelling divergence
is a difficult task, especially in presence of observations. In Chapter 6 we
have shown how corules can be successfully employed to tackle this problem,
providing examples of big-step semantics able to model divergence for several
variations of the A-calculus and different kinds of observations. Following this
approach, we present in Figure 9.7 a similar example, but simpler, to keep it
shorter: a logic program with coclauses defining the big-step semantics of a toy
language able to output possibly infinite sequences’® of integers. Expressions
are regular terms generated by the following grammar:

e == skip | out(n) | seq(ey, ;)

where skip is the idle expression, out(n) outputs n, and seq(e;, e;) is the sequen-
tial composition. The semantic judgement has shape e = (r, s), represented
by the atom eval(e,r,s), where e is an expression, r is either end or div, for

9 For simplicity we consider only integers, but in fact the definition below allows any term as
output.
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concat([],S,S) «

concat([N|S1],S2,[N|S3]) ¢« concat(S1,S2,S3)

eval(skip,end,[]) «

eval(out(N),end,[N]) «

eval(seq(E1,E2),R,S) ¢« eval(Ei,end,S1), eval(E2,R,S2), concat(S1
JSZ’S)

eval(seq(E1,E2),div,S) « eval(Ei,div,S)

eval(E,div,[]) <

eval(seq(E1,E2),div,S) < eval(Ei,end,[N]|S1]), concat([N]|S1],S2,S
)

FIGURE 9.7 A logic program defining a big-step semantics with infinite behaviour
and observations.

converging or diverging computations, respectively, and s is a possibly infinite
sequence of integers.

Clauses for concat are pretty standard; in this case the definition is purely
inductive (hence, no coclause is needed), since the left operand of concatenation
is always a finite sequence. Clauses for eval are rather straightforward, but
sequential composition seq(ey, e;) deserves some comment: if the evaluation
of e; converges, then the computation can continue with the evaluation of e,,
otherwise the overall computation diverges and e; is not evaluated.

As opposite to the previous examples, here we do not need just cofacts,
but also a coclause; both the cofact and the coclause ensure that for infinite
derivations only div can be derived. Furthermore, the cofact handles diverging
expressions which produce a finite output sequence, as in eval(E,div,[])

or in eval(seq(out(1),E),div,[1]), with E=seq(skip,E) or E=seq(E,E),
while the coclause deals with diverging expressions with infinite outputs,
as in eval(E,div,S) with E=seq(out(1),E) and S=[1|S]. The body of the
coclause ensures that the left operand of sequential composition converges,
thus ensuring a correct productive definition.

Soundness and completeness

After formally relating the two approaches, we state soundness of the op-
erational semantics with respect to the declarative one. Then, we show that
completeness does not hold in general, and define the regular version of the
declarative semantics. Finally, we show that the operational semantics is equi-
valent to this restricted declarative semantics.

RELATION BETWEEN OPERATIONAL AND DECLARATIVE SEMANTICS
As in the standard case, the first step is to bridge the gap between the two
approaches: the former computing equations, the latter defining truth of atoms.
This can be achieved through the notions of answers to a goal.

Given a set of equations E, sol(E) is the set of the solutions of E, that is, the
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ground substitutions unifying all the equations in E. Then, 6 € sol(E) is an
answer to {(G; E) if Var(G) C dom(6).

The judgment (P, P.,); S I+ (G; E;) = E, described in Section 9.3 computes a
set of answers to the input goal. Indeed, solutions of the output set of equations
are solutions of the input set as well, since the following proposition holds.

PROPOSITION 9.2 : The following hold:

1. If (P,P,); S+ (G;E;) = E,, then E; C E, and Var(G) C Var(E,).
2. If E; C E,, then sol(E,) C sol(E).

Proof: Item 1 follows by a straightforward induction on rules in Figure 9.3,
: while Item 2 is trivial. ]

On the other hand, we can define which answers are correct in an inter-
pretation:

DEFINITION 9.3 : LetI C HBy be an interpretation, the set of answers to
(G;E) correct inI is

ans(G, E,I) = {0 € sol(E) | GO C I}

Hence, soundness of the operational semantics can be expressed as fol-
lows: all the answers computed for a given goal are correct in the declarative
semantics.

THEOREM9.4: If(P,Py,);0 I (G;E) = E’holds, thensol(E’) C ans(G, E, v[ P, P ])).

COMPLETENESS ISSUES The converse of this theorem, that is, all correct
answers can be computed, cannot hold in general, since, as shown by Ancona
and Dovier (2015), coinductive declarative semantics does not admit any com-
plete procedure, hence our model as well, since it generalizes the coinductive
one. To explain why completeness does not hold in our case, we can adapt the
following example from Ancona and Dovier (2015)"", where p is a predicate
symbol of arity 1, z and s are function symbols of arity 0 and 1 respectively.

p(X) « p(s(X))
p(X) &

Letusdefine0 = z,n+ 1 = s(n) and w = s(s(. . .)). The declarative semantics
is the set {p(x) | x € N U {w}}. In the operational semantics, instead, only
p(w) is considered true. Indeed, all derivations have to apply the rule (co-nve),
which imposes the equation X = s(X), whose unique solution is w. Therefore,
the operational semantics is not complete.

10 That is, establishing whether an atom belongs to the coinductive declarative semantics is
neither decidable nor semi-decidable, even when the Herbrand universe is restricted to the
set of rational terms.

11 Example 10 at page 8.
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Now the question is the following: can we characterize in a declarative
way answers computed by the big-step semantics? In the example, there is a
difference between the atoms p(w) and p(n), with n € N, because the former
has a regular proof tree, namely, a tree with finitely many different subtrees,
while the latter has only non-regular, thus infinite, proof trees.

Following this observation, we prove that the operational semantics is sound
and complete with respect to the restriction of the declarative semantics to
atoms derivable by regular proof trees. As we will see, this set can be defined
in model-theoretic terms, by restricting to finite comodels of the program, as
done in Chapter 8 for an arbitrary (generalized) inference system. Here we
rephrase definitions and results from Chapter 8 in the specific case of logic
programs.

REGULAR DECLARATIVE SEMANTICS Let us write X Cg, Y if X is a finite
subset of Y. Recall that the regular interpretation of a generalised inference sys-
tem (J, I.,) (cf. Definitions 8.3 and 8.22 and Proposition 8.29) can be expressed
as

pIT, ol = | X S pllT U Lol | X € Fr(X)}

This characterisation is like the one of v[ 1, ]|, except that we take the
union only of those consistent subsets of u[[Z U I]| which are finite. The
set p[[7, 1] is a fixed point of Fy (cf. Proposition 8.29) and, hence, we get
pIT. 1] C VI, Lol

The proof-theoretic characterization relies on regular proof trees, which are
proof trees with a finite number of subtrees (Courcelle, 1983). That is, p[[ 1, 7o, ]|
is the set of judgments with a regular proof tree in 7 whose nodes all have a
finite proof tree in 7 U 1.

As special case, we get regular semantics of logic programs with coclauses.

DEFINITION 9.5 : The regular declarative semantics of (P, P,), denoted
by p[[P, P. ], is the union of all finite comodels of P which are a subset of

U[P U Pyl

Asabove, p[[P, P, || € V[P, P, ], hence ans(G, E, p[[P, P, ) C ans(G, E, v[ P, P ).

We state now soundness and completeness of the operational semantics
with respect to this semantics. We write 8 < ¢ iff dom(6) € dom(o) and, for
all X € dom(6), 0(X) = o(X). It is easy to see that < is a partial order and, if
0 < o and Var(G) € dom(#), then GO = Go.

THEOREM 9.6 : If (P,P,);0 + (G;E) = E’, and 6§ € sol(E’), then 0 €
ans(G, E, p[[P, P, ).

THEOREM 9.7 : If 8 € ans(G, E, p[[P, P,]), then (P, P,);d + (G;E) = FE’,
and 6 < ¢ for some E’ and o € sol(E’).

That is, any answer computed for a given goal is correct in the regular
declarative semantics, and any correct answer in the regular declarative se-
mantics is included in a computed answer. Theorem 9.6 immediately entails
Theorem 9.4 as ans(G, E, p[[P, P, ||) € ans(G, E, v[ P, P, ]).
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PROOF TECHNIQUE In order to prove the equivalence of the two semantics,
we rely on a property which holds in general for the regular interpretation: we
can construct an equivalent inductive characterization, see Section 8.6.3. That
is, given a generalized inference system (7, Z.,) on the universe U, we can

T 9% with judgments of shape H » j, for j € U

construct an inference system
and H Cgn, U, such that the inductive interpretation of 7 VLo coincides with
the regular interpretation of (7, 7). The set H, whose elements are called
circular hypotheses, is used to detect cycles in the proof.

In particular, for logic programs with coclauses, we get an inference sys-
tem with judgments of shape S A, for S finite set of ground atoms, and A
ground atom, defined as follows. For reader’s convenience, we report below
the instantiation of Definition 8.31 and Corollary 8.34 for logic programs with
coclauses. The circular hypotheses are called coinductive hypotheses to be

uniform in this setting.

DEFINITION 9.8 : Given (P, P.,), the inference system P consists of the
following (meta-)rules:

AeS
SeA Aep[PUP,]

(B-HP)

SU{A}»B; ... SU{A}»B
(B-UNFOLD) {4}> 15 1 {4} > B, (A« By,...,By) €||P|
>

COROLLARY 9.9 : PV ko 0> Aiff A € p[[P, Po].

Note that the definition of S» A by rules in P° has many analogies with
that of the operational semantics in Figure 9.3. The key difference is that the
former handles ground, not necessarily finite, atoms, the latter not necessarily
ground finite atoms (we use the same metavariables A and S for simplicity).
In both cases already considered atoms are kept in an auxiliary set S. In the
former, to derive an atom A € S, the side condition requires A to belong to the
inductive intepretation of the program P U P,. In the latter, when an atom
A unifies with one in S, standard SLD resolution is triggered in the program
PUP.

To summarize, pok

° can be seen as an abstract version, at the level of the
underlying inference system, of operational semantics. Hence, the proof of
soundness and completeness can be based on proving a precise correspondence
between these two inference systems, both interpreted inductively. This is
very convenient since the proof can be driven in both directions by induction
on the defining rules.

The correspondence is formally stated in the following two lemmas.

LEMMA 9.10 : Forall Sand (Ay, ..., A E),if (P,Py); S+ (Ay,..., A E) =
E’ then, for all 6 € sol(E’) and i € 1..n, pPFeo Fu SO > A;0.

LEMMA 9.11: Forall S, (Ay,...,A,;E) and 0 € sol(E), if PO Fu SO > A;0,
for all i € 1..n, then (P,P,);SI{(Ai,...,A,; E)Y=FE" and 0=<0, for some E’
and o € sol(E’).
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Soundness follows from Lemma 9.10 and Corollary 9.9, as detailed below.
Proof (Theorem 9.6): Let us assume (P, P); 0 + (G;E) = E’ with G =
Ai, ..., Ay, and consider § € sol(E’). By Lemma 9.10, for all i € 1..n, pOFe Fu
i 0> A;0 holds, hence, by Corollary 9.9, we get A;0 € p[[P, P, ||. Therefore, by
Definition 9.5, we get 0 € ans(G, E, p[[P, P, ])), as needed. O

Analogously, completeness follows from Lemma 9.11 and Corollary 9.9, as

detailed below.
. Proof (Theorem 9.7): Let G=Ay,..., Ay and 0 € ans(G, E, p[[P, Pe ). Then,

i for all i € 1..n, we have A;0 € p|P,P,] and, by Corollary 9.9, we get
pOFe Fu 0> A;0. Hence, the thesis follows by Lemma 9.11. O

We now prove Lemmas 9.10 and 9.11 and auxiliary results.

Let us start by Lemma 9.10. To carry out the proof, we rely on Corollary 9.9
and on the following proposition, stating that the inductive declarative se-
mantics of a logic program coincides with the regular semantics of a logic
program with no coclauses, and follows immediately from an analogous result
in the general setting of inference systems (cf. Proposition 8.30).

PROPOSITION 9.12 : Let P be a logic program, then u[[P] = p[[P, 0]
. Proof (Lemma 9.10): The proof is by induction on rules of Figure 9.3.

Case: (empry) There is nothing to prove.

Case: (ster) Wehave G = Gy, A;, G, thereisafreshrenaming B < By, ..., By
of a clause in P such that A; and B are unifiable in E, that is, E; = EUE4,
is solvable, and (P, P, ); SU{A;} + {(Bi,...,Bg; E;) = E;and (P, P ); S I+
(G1, Gy; E;) = E’ hold. Let 6 € sol(E’), then, by induction hypothesis,
we have, for all j € 1..n with j # i, pOFe Fu SO > A;0 holds. By Pro-
position 9.2, we have E; C E; C E’, hence sol(E’) C sol(E;) C sol(Ey),
thus 6 € sol(Ez) C sol(E;), and, since E4, g C Ei, 0 is a unifier of A; and
B, that is, A;0 = B6. Then, by induction hypothesis, we also get, for all
je 1.k, PO Fu (SU{A;})0>B;0 holds. Since (SU {A;})0 = SOU{A;0}
and BO < B:0,...,Bi0 € ||P|| and A;0 = B0, by rule (unrorp) of Defini-
tion 9.8, we get that PCFe Fu SO A;0 holds as well.

Case: (co-uyr) We have G = Gy, A;, Gy, there is an atom B € S that unifies
with A; in E, that is, E; = E U E4, p is solvable, and (P U P, 0);0
(A;;E) = E, and (P, P, ); S + (Gy, Gy; E;) = E’ hold. Let 8 € sol(E’),
then, by induction hypothesis, we get, for all j € 1..n with j # i, POFo 4
56> A;0 holds. By Proposition 9.2, we have E; C E, C E’, hence sol(E’) C
sol(Ez) C sol(E;), thus 0 € sol(Ez) C sol(E;), and, since E4, g C Ej, 0 is
a unifier of A; and B, that is, A;60 = Bf. By induction hypothesis, we
get (PU P,)°° Fu 0> A;0, hence, by Corollary 9.9 and Proposition 9.12,
we get A;0 € p[P U P,]. Furthermore, since A;60 = BO and B € S, we
have A;0 € SO. Therefore, by rule (ur) of Definition 9.8, we get that
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pOFe Fu SO > A;0 holds as well.

We now focus on Lemma 9.11. We need some preliminary results.

We start by observing a property of the operational semantics. In the follow-
ing, we say that substitutions 6, and 8, are compatible, denoted by 6, ||0; if, for
all X € dom(6;) N dom(6,), 01(X) = 62(X), and we denote by 6; & 6, the union
of two substitutions, which is well-defined only for compatible substitutions.
Note that, 6; < 6; W 0,, for all i = 1, 2, by definition.

PROPOSITION 9.13 : Let (G; E;) be a goal, 6; € sol(E;), E] such that E; C E]
and 0; < o1, for some 07 € sol(E}). If (P, Po); S - (G; E;) = E; and 0; < 05,
for some 0, € sol(E;), then there exists E) such that E; C E;, (P,P,);S I
(G;E]) = E; and 01 < 0y, for some o, € sol(E,).

: Proof:  The proof is by induction on the big-step rules in Figure 9.3.

Case: (empry) We have E; = E,, hence the thesis follows by taking E; = E].

Case: (ster) We know that G = Gy, A, Gy, B« By, ..., B, is a fresh renam-
ing of a clause in P, E;UE4 pis solvable, (P, Peo); SU{A} I (By, ..., By; E; UEsB) =
Es; and (P, Py ); S I+ {Gy, Gs; E3) = E, hold. We can assume that variables
occurring in the selected clause do not belong to dom(oy) since such vari-
ables are fresh and dom(oy) is a finite set. Since E; U E4 g C E3 C E; by
Proposition 9.2, we have 6, € sol(E;UE, p) and denote by 0] the restriction
of 0, to dom(6;)UVar(B). It is easy to see that, by construction, 6; < 6] and
0] € sol(E;UE, ) and 0] |0y, since dom(0])Ndom(oy) = dom(0;) and 0; <
o1 by hypothesis. Hence, o] = 0 W 07 is well-defined and 6] < o/. Since
E3 C E, 0; € sol(E3) and, if 67 is the restriction of 6, to dom(6)) U Var(E3),
then 0; € sol(E3) as well, and 0] < 0;. Therefore, by induction hypothesis,
we get that (P, P,,); SU {A} I+ (By,...,By; E] UEs ) = E; holds and
there is o, € sol(E}) such that 0, < o,, with E3 C E;. Since 0, < 0,
and 6, < o,, again by induction hypothesis, we get that (P, P);S I
(Gi, Gy; E;) = E; holds and there is 0 € sol(E}) such that 6, < 0y, with
E; C E;. Then, the thesis follows by applying rule (ste»).

Case: (co-nyr) We know that G = Gy, A, G,, E;UE4 pis solvable for some B €
S, (PUP.,0);0 I (A;E; UEap) = Es and (P, Po); S I (Gy, Gy; Bs) =
E; hold. Since E; U Eq g C E3 C E; by Proposition 9.2, we have 8, €
sol(E; U E4 p) and denote by 0 the restriction of 6, to dom(6;) U Var(B),
but, as Var(B) C Var(E;), 8; € sol(E;) and 6 < 0,, we get 0] = 0y, thus
01 € sol(E; U E, ). Hence, since 0; < oy, we get 01 € sol(E; U Ey4 p)
and so it also belongs to sol(E] U E p), that is, in particular, E] U Ea 3
is solvable. Since E3 C E,, 0, € sol(E3) and, if 0, is the restriction of 0,
to dom(6;) U Var(E3), then 6, € sol(E3) as well, and 0; < 0,. Therefore,
by induction hypothesis, we get (P U P, 0);0 I~ (A;E] U Esp) = Ej
and there is o, € sol(Ej) such that 0, < o,, with E; C E. Since 0, < 0,
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and 6, < o,, again by induction hypothesis, we get that (P, P,);S I
(Gi, Gy; E;) = E; holds and there is 0 € sol(E}) such that 0, < 0y, with
E; C E;. Then, the thesis follows by applying rule (co-uve).

O

LEMMA 9.14 : Let (G;E) be a goal, 8 € sol(E) and E; and E, be sets of
equations such that 8 < 6; and 0 < 6,, for some 0; € sol(E;) and 0, € sol(E).
If (P,Py); S+ (A; E) = E;and (P, Py ); S I+ {(Gy, Go; E) = E,, then there exists
E3 such that (P, P,); S I+ {Gy, A, Gy; E) = E3 and 0 < 65, for some 05 € sol(E3).

Proof: 'We sketch the proof. By Proposition 9.2, we have E C E; and by
i Proposition 9.13 we get (P, P,,); S + (Gy, Gy; E1) = Es, with E; C E; and
0, < 05, for some 605 € sol(E;). By transitivity of < we get 8 < 65. Then, the
thesis follows by case analysis on the last applied rule in the derivation of
i (P, Py); S I (A E) = Ey, by replacing the premise (P, P, ); S I+ {&; E;) = E;
. with the judgement (P, Po); S I (Gy, Gy; E1) = E. O

LEMMA 9.15 : Let A be an atom and E be a set of equations. For all 8 € sol(E),
if AB € p[[P U Py ]|, then there exists E’ such that (P U P, 0); 0 + (A;E) = E’
and 0 < o, for some o € sol(E’).

Proof: The proof is by induction on the derivation of Af in ||P U P||. Let
A’ — Ay, ..., Ay € ||PU Pyl| be the last applied rule in the finite derivation
of Af, hence we have A’ = Af. By definition of ||P U P||, we know there
! is a fresh renaming of a clause in P U P, denote it by B « By, ..., B,, and
a substitution 6’ such that B0’ = A’ and B;0’ = A;, for all i € 1..n. Since
the variables in this clause are fresh, we can assume dom(6) N dom(6’) = 0,
: hence 6" = 0w 0’ is well-defined and, by construction, we have 0 < 6", thus
0" € sol(E), and AQ”” = BO"”, that is, 8" € sol(E p). As a consequence 0" is
a solution of E U E4 g, hence, by induction hypothesis, we get that, for all
ti€1.n, (PUP,,0);0 - (Bi;EUEsp) = E; holds and 0" < o;, for some
o; € sol(E;).
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By applying n times Lemma 9.14, we get (P U Peo, 0); 0 - (By,...,B; EUE, g) =

E" and 0" < o, for some o € sol(E’). Then, the thesis follows by applying
i rule (ster) to this judgement and (P U P, 0);0 I (¢;E’) = E'. O

LEMMA 9.16 : For all S and (A; E),
if POFe Fu SO > AD, and 0 € sol(E), then (P, P, ); SIH{(A; EyY=E’ and 0=0, for
some E’ and o € sol(E’).

Proof: The proof is by induction on the derivation of S0 » Af (see Defini-
tion 9.8).

Case: (5-ur) We know that A0 € SO and A8 € p[P U Py, that is, 8 €
anspg(A, E). By Lemma 9.15, we get (PU P, 0);0 + (A;E) = E; and
0 < 64, for some 6, € sol(E;). Since A8 € SO, we know that there is B € S
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such that A0 = B0, that is 6 € sol(Ex, p), thus 6 € sol(E U E4 p). Therefore,
by Proposition 9.13, we get (PU P, 0);0 + (A;EUE,p) = E’ and
0 < 01 < o, for some o € sol(E’). The thesis follows by applying rule
(co-myp) to this judgement and (P, P,); S I+ {&; E’Yy = E'.

Case: (3-unrorp) We know there is a A" «— Aq,..., A, € ||P|| such that
A’ = Af and PP Fu SO U {A0} » A, is derivable, for all i € 1..n. By
definition of ||P U P,||, we know there is a fresh renaming of a clause
in PU P, denote it by B « By,..., By, and a substitution 8’ such that
BB’ = A’ and B;0’ = A;, for all i € 1..n. Since the variables in this clause
are fresh, we can assume dom(8) N dom(6’) = @, hence 6" = 0 W 6’ is
well-defined and, by construction, we have 6 < 6", thus 6”’ € sol(E), and
A0” = BO"”, that is, 0” € sol(Ea ) and SO U {A0} = (SU{A})8”. As a
consequence 6’ is a solution of E U E4 g, hence, by induction hypothesis,
we get that, foralli € 1..n, (P, P,,); SU {A} I+ (B;; EU E4 ) = E; holds
and 0" < g;, for some o; € sol(E;).

By applying n times Lemma 9.14, we get (P, Peo); SU{A} I- (By,...,By; EUEsB) =
E’ and 6" < o, for some o € sol(E’). By transitivity we get § < o.

Then, the thesis follows by applying rule (stre) to this judgement and
(PUPL,,0)01r(c;EY= E.

O

Proof (Lemma 9.11): The proof is by induction on the number of atoms in
G = A, ..., A, If G = ¢, then the thesis follows by rule (smrrv), taking E’ = E
and o = 0.1If G = Gy, A, G,, we know by hypothesis that PCFo Fu SO > AD,
: hence, by Lemma 9.16 we get (P, P,); S F (A; E) = E; and 6 < 0y, for some
01 € sol(E;). By induction hypothesis, we get (P, P,); S I+ (Gi, Gy, E) =
E, and 8 < 0,, for some 8, € sol(E), therefore, by Lemma 9.14, we get
i (P,Py); S {Gy,A, Gy E) = E' and 0 < o for some o € sol(E’). O



Discussion

Regular coinduction is an interesting compromise between induction and
coinduction, combining advantages of both approaches: it is not restricted to
finite derivations, thus overcoming limitations of the inductive approach, but
it still has a finite nature, as a regular derivation can be non-well-founded,
but it can only contain finitely many judgements. Hence, regular coinduction
is a simple alternative, which combines the flexibility of non-well-founded
derivations with the possibility of having sound and complete procedures
that find a derivation, if any. Indeed, many concrete examples supporting
coinduction, from proof and type systems to programming languages, actually
support regular coinduction, thus it is important to provide solid foundations
also to this case.

We address this task in Chapter 8. We extend the analysis described in
Chapter 2 for standard interpretations to the regular case. More in detail, we
start from the natural proof-theoretic definition of the regular interpretation
of an inference system, as the set of judgements derivable by a regular proof
tree. To provide a fixed point characterisation of this interpretation, we rely
on the rational fixed point construction by Adamek, Milius, and Velebil (2006),
restricted to the lattice-theoretic setting. Indeed, the regular interpretation
turns out to coincide with the rational fixed point of the inference operator.
Then, we show that the regular interpretation has an equivalent inductive
characterization, which provides us with an algorithm to find a derivation for
a judgment, if any. Relying on these results, we discuss proof techniques for
regular reasoning: from the fixed point characterisation we got the regular
coinduction principle, which allows us to prove completeness, while from the
inductive characterization we derived a proof technique to show soundness.

Regular coinduction suffers from the same limitations of standard coinduc-
tion described in Chapter 3, which inference systems with corules overcome.
Hence, we extend all results presented for regular coinduction to this general-
ised framework, thus providing a flexible approach also to regular reasoning.

Finally, in Chapter 9, we consider a case where regular coinduction plays
a crucial role: coinductive logic programming (Simon, 2006; Simon et al.,
2006, 2007). We provide a detailed formal account of an extension of logic
programming where programs are enriched by coclauses, the counterpart of
corules, which can be used to tune the interpretation of predicates. Viewing
logic programs as a particular, syntactic, instance of inference systems, we
define a declarative semantics of logic programs with coclauses the same way

221



222

10.

1

DISCUSSION

as inference systems with corules, that is, as the largest comodel below a
certain set determined by coclauses. Then, we define an operational semantics,
as a combination of standard SLD resolution and coSLD resolution, which,
being inductively defined and managing only finite objects, provides a semi-
algorithm to solve a goal.

The proposed operational semantics is not incidental, but is the logic pro-
gramming counterpart of the inductive characterisation of the regular inter-
pretation of an inference system. Following this analogy, we define the regular
declarative semantics of a logic program with coclauses (the union of all finite
comodels below a certain set determined by coclauses) and, relying on results
proved for inference systems, we show that the proposed operational semantics
is sound and complete with respect to such regular declarative semantics.

It has been shown by Ancona and Dovier (2015) that, taking the coinductive
declarative semantics (the largest comodel), there is not even a semi-algorithm,
which is complete and checks that an atom belongs to that semantics. Hence,
there is no hope to find a complete operational semantics in general. The
same result applies also to our first declarative semantics, as it generalises the
coinductive one. On the other hand, our results provide, for an extension of
logic programming, fully-developed foundations and results which are exactly
the analogous of those for standard logic programming.

Related work

The regular approach has been adopted in many different contexts, notably
to define proof systems for several kinds of logics, and to define operational
models of programming languages supporting cyclic structures.

Concerning proof systems supporting regular proofs, we find proposals by
Santocanale (2002), Fortier and Santocanale (2013), and Doumane (2017) for
logics with fixed point operators, and by Brotherston (2005) and Brotherston
and Simpson (2011) for classical first order logic with inductive definitions.
In both cases, regular proofs allow to naturally handle the unfolding of fixed
point and recursive definitions, respectively. However, regular proofs allow
the derivation of wrong sequents, such as the empty one; hence, to solve
this issue, they have to impose additional constraints on regular proofs, to
disregard incorrect derivations. These additional requirements on regular
proofs are expressed at the meta-level and typically require some condition to
hold infinitely often in the regular proof. As inference systems with corules
have been designed precisely to filter out undesired infinite derivations, and
they seem pretty good to capture requirements that should hold infinitely often
in the proof, it would be interesting to investigate whether these additional
constraints can be enforced by an appropriate set of corules.

The other context where we can find applications of regular coinduction is
in programming languages supporting cyclic structures. In this case, we use the
term regular corecursion for a semantics of recursive definitions which detects
cycles, analogously to the inductive characterization of the regular interpreta-
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tion. We can find proposals of language constructs for regular corecursion in
all common programming paradigms: logic paradigm, by Simon (2006), Simon
et al. (2006, 2007), and Ancona and Dovier (2015), functional paradigm, by
Jeannin, Kozen, and Silva, 2013, 2017 and object-oriented paradigm, by Ancona
and Zucca (2012).

Coinductive logic programming (CoLP) has been initially proposed by Si-
mon (2006) and Simon et al. (2006) as a convenient sub-paradigm of logic
programming able to deal with circularity. Its limitations, inherited from the
coinductive interpretation of clauses, were soon recognized and Simon et al.
(2007) proposed a more complex model where inductive and coinductive pre-
dicates can coexist in the same program, provided that they can be stratified.

Moura (2013), Mantadelis, Rocha, and Moura (2014), and Ancona (2013)
have proposed implementations of coLP based on refinements of the Simon’s
original proposal, with the main aim of making them more portable and flexible.
Ancona (2013) has extended coLP by introducing a finally clause, allowing the
user to define the specific behavior of a predicate when solved by coinductive
hypotheses. Implementation by Moura (2013) and Mantadelis, Rocha, and
Moura (2014) is embedded in a tabled Prolog related to the implementation
of Logtalk, and is based on a mechanism similar to finally clauses to specify
customized behavior of predicates when solved by coinductive hypotheses.
While such mechanisms resemble coclauses, the corresponding formalization
is purely operational and lacks a declarative semantics and corresponding
proof principles for proving correctness of predicate definitions based on them.

Ancona and Dovier (2015) have proposed an operational semantics of coLP
based on the big-step approach, which is simpler than the operational se-
mantics initially proposed by Simon et al. (2006) and proved it to be sound.
They have also formally shown that there is no complete procedure for decid-
ing whether a regular goal belongs to the coinductive declarative semantics,
but provided neither completeness result restricted to regular derivations, nor
mechanisms to extend coLP and make it more flexible.

While coSLD resolution and its proposed extensions are limited by the fact
that cycles must be detected in derivations to allow resolution to succeed, a
stream of work based on the notion of structural resolution (Johann, Komend-
antskaya, and Komendantskiy, 2015; Komendantskaya, Power, and Schmidt,
2016; Komendantskaya, Johann, and Schmidt, 2016) (S-resolution for short)
aims to make coinductive resolution more powerful, by allowing to lazily de-
tect infinite derivations which do not have cycles. In particular, recent results
by Li (2017), Komendantskaya and Li (2017), and Basold, Komendantskaya, and
Li (2019) investigate how it is possible to integrate coLP cycle detection into
S-resolution, by proposing a comprehensive theory. We plan to investigate in
future work how to integrate coclauses and structural resolution, to combine
advantages of both paradigms.

In the object-oriented paradigm, coFJ (Ancona and Zucca, 2012) is an ex-
tension of FJ (Igarashi, Pierce, and Wadler, 2001) supporting regular objects
and regular corecusion. As in coLP, regular objects are represented by syn-
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tactic term equations and the evaluation keeps tack of already encountered
method calls, so that it can detect cycles. Further, the programmer can specify
some code (called codefinition) to be executed when cycles are detected. This
mechanism is very similar to corules and, acutally, it was the starting point for
the development of this framework, which was initially meant for providing a
more abstract semantics to this kind of language constructs. Once introduced
inference systems with corules, we realised that the operational model by
Ancona and Zucca (2012) allows the derivation of spurious results in some
cases. To solve this issue, we recently proposed (Barbieri et al., 2019; Ancona
et al., 2020b; Barbieri, Dagnino, and Zucca, 2020) a more principled approach
to coFJ semantics: we provided an abstract semantics based on inference sys-
tem with corules, serving as reference model, an inductive abstract semantics,
modelling the cycle detection mechanism independently from the representa-
tion of infinite objects, and an operational semantics, which chooses a concrete
representation of values and serves as a guide to develop an interpreter.

CoCaml" proposed by Jeannin, Kozen, and Silva (2017) and Jeannin and
Kozen (2012) is a fully-fledged extension of OCaml supporting regular non-
well-founded data types and corecursive functions. CoCaml, as OCaml, allows
programmers to declare regular values through the let-rec construct, and,
moreover, detects cyclic calls. However, the CoCaml approach is in two phases.
First, a system of equations is constructed, associating with each call a variable
and partially evaluating the body of functions, where calls are replaced with
associated variables. Then, the system of equations is given to a solver specified
in the function definition. Solvers can be either pre-defined or written by
the programmer in order to enhance flexibility. An advantage we see in our
approaches based on corules (flexible coLP and coFJ) is that the programmer
has to write coclauses and codefinitions, which are standard code, rather than
working at the meta-level to write a solver, which is in a sense a fragment of
the interpreter.

Future work

An interesting direction is the development of more sophisticated proof tech-
niques for regular reasoning. Indeed, several enhanced coinductive techniques
have been proposed, such as parametrized coinduction (Hur et al., 2013) and
coinduction up-to (Pous, 2007; Pous and Sangiorgi, 2012; Pous, 2016), which
have been proved to be effective in several contexts. Adapting such techniques
to the (flexible) regular case would provide us with powerful tools to support
regular reasoning. A further development in this direction would be to provide
support to regular reasoning in proof assistants, which usually provide prim-
itives only for plain induction and coinduction. To this end, we could start
from existing approaches by Spadotti (2016) and Uustalu and Veltri (2017) to
implement regular terms in proof assistants.

1 Available at www.cs.cornell.edu/Projects/CoCaml
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10.2 FUTURE WORK

Another interesting direction is to use (flexible) regular coinduction to
design in a principled way abstract and operational semantics for programming
languages supporting regular corecursion in various programming paradigms.
We have addressed this issue in logic programming in Chapter 9 and we have
made some steps in this direction in the object-oriented paradigm, defining coFJ
(Barbieri et al., 2019; Ancona et al., 2020b; Barbieri, Dagnino, and Zucca, 2020).
In future work, we plan to tackle also the functional paradigm comparing our
approach with CoCaml. Here the main challenge is how to detect cycles in
presence of higher-order functions.

Another direction to improve the support for infinite objects in program-
ming languages is to integrate regular corecusion with the more common
approach to represent and deal with such objects in programming languages,
namely, lazy evaluation. With the lazy approach, arbitrary (computable) non-
well-founded objects are supported. However, we cannot compute results
which need to explore the whole structure, whereas, with regular corecursion,
this becomes possible for cyclic structures: for instance we can compute the
maximum of a regular list, which would cause non-termination in lazy lan-
guages such as Haskell. A natural question is then whether it is possible to
extend the regular corecursion approach to manage also non-regular objects,
thus overcoming the principal drawback with respect to the lazy approach.
A possible interesting direction, exploiting the work of Courcelle (1983) on
infinite trees, could be to move from regular to algebraic objects.
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Conclusion

In this thesis we introduce inference systems with corules, a generalisation of
standard inference systems, which provides more flexibility when interpreting
a given set of rules, allowing interpretations lying between the inductive and
the coinductive one. The key concept of the proposed generalisation are cor-
ules, which are special rules that need to be provided together with standard
rules, and are used to tune their semantics. More precisely, they allow us
to refine the coinductive interpretation of standard rules, disregarding some
undesired infinite derivations, thus we call this approach flexible coinduction.
An important property is that standard inductive and coinductive interpreta-
tions are particular cases, that is, they can be recovered by specific choices of
corules, thus this framework indeed generalises standard inference systems.

The first contribution of the thesis is to study in full detail inference sys-
tems with corules and their general properties, thus providing solid and fairly
simple foundations to flexible coinduction. We extend all standard results about
inference systems to this generalised setting: we define a fixed point construc-
tion that is at the basis of the model-theoretic definition of the interpretation
determined by corules, provide several proof-theoretic characterisations, prov-
ing they are all equivalent to the model-theoretic one, and describe proof
techniques to reason with corules.

The second contribution is the analysis of the paradigmatic example of big-
step operational semantics modelling also infinite behaviour, where neither
the inductive nor the coinductive interpretation of rules are able to capture the
intended meaning, showing how corules can be successfully adopted to solve
this problem. We consider first semantic descriptions where the behaviour of
the program is just described by its final result, if any, and a special result is
used to model divergence. Then, we extend the approach to more complex
descriptions where, in addition to the final result, we also have observations,
modelling the interaction with the environment (e.g., traces of events, memory
usage, costs etc.). In this latter case, considering also infinite behaviour is even
more challenging, as we need to model possibly infinite observable interac-
tions. The key contribution is that, rather than studying big-step semantics on
example languages, we take a general perspective, developing our definitions
and results for an arbitrary big-step semantics, abstracting from specific fea-
tures of concrete examples. To this end, we provide a definition of what is a
big-step semantics with or without observations, we then define computations
by means of a transition relation driven by rules modelling the evaluation
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algorithm implicitly associated with a big-step specification and serving as a
reference model, and, finally, we provide constructions producing a big-step
semantics able to distinguish between stuck and infinite computations. Fur-
thermore, in the former case without observations, relying on the proposed
constructions, we show how to express and prove soundness of a predicate
against a big-step semantics, providing a proof technique based on sufficient
conditions on individual big-step rules. The generality of our approach is
witnessed by a broad class of examples.

The third contribution is the study of algorithmic variants of the general
framework of inference systems with corules, to provide concrete support to
them. To this end, we consider the restriction of the general model to regular
derivations, as it is customary in standard coinduction. We extend all notions
and results discussed in the general setting to the regular one, thus providing
solid foundations also to flexible regular coinduction. From the algorithmic
perspective, the important result is that flexible regular coinduction has an
equivalent inductive characterisation, which provides us with a sound and
complete (abstract) algorithm to find a derivation. Building on this general
analysis, we define an extension of logic programming supporting flexible
coinduction restricted to the regular case, like standard coinductive logic pro-
gramming. We define both declarative and operational semantics of flexible
coinductive logic programming, showing the latter is equivalent to the regular
restriction of the former one, and we also have a prototype SWI-Prolog imple-
mentation available at https://github.com/davideancona/coLP-with-coclauses.

The notion of corules has been inspired by some operational models for pro-
gramming languages supporting corecursion, e.g., those proposed by Ancona
and Zucca (2012, 2013) and Ancona (2013). The original aim was to define
a more abstract counterpart of these models, enabling formal reasoning on
them. Thanks to this abstract reference model, we realised that in some cases
operational semantics proposed in these works provided incorrect results,
hence we started revising them following the abstract model described by
corules. In this thesis we have addressed the logic paradigm, as it is the closest
to the abstract model. We have also worked on the object-oriented paradigm
(Barbieri et al., 2019; Ancona et al., 2020b; Barbieri, Dagnino, and Zucca, 2020).
These results have been not included because they have specific issues to be
faced, which deviate from the main focus of this thesis, notably the fact that
we have to deal with functions rather than predicates.

Future work

We have already discussed future work for each part in Sections 4.2, 7.2 and 10.2.
Here we just recall main lines for future developments.

ABSTRACT MODEL It would be interesting to investigate variants of the
interpretation of an inference system with corules, to avoid the unexpec-
ted behaviours that sometimes may happen. To this end, we could extend
the framework to take into account the definition of multiple judgements
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at the same time, or change the definition of the model to make stronger
the connection between the two steps of the definition.

PROOF METHODS Proof techniques to reason with corules are very im-
portant. In this direction we plan to extend well-known techniques for
standard coinduction, such as up-to techniques (Pous, 2007; Pous and San-
giorgi, 2012; Pous, 2016) or parametric coinduction (Hur et al., 2013), to our
generalised setting, also in the regular case. Further, another important
direction is to provide mechanised support to corules, by implementing
them in a proof assistant such as Agda or Coq.

BIG-STEP SEMANTICS In this setting, it would be interesting to use our
general framework to define and reason about other constructions ex-
tending big-step semantics to include infinite behaviour, and also to define
other proof techniques to prove relevant semantic properties, such as
soundness or normalisation. Furthermore, we also plan to extend our
approach to take into account other computational models, such as prob-
abilistic computations.

PROGRAMMING LANGUAGES Providing support to flexible coinduction
in programming languages is a challenging direction. We have alredy
done some work on logic and object-oriented paradigm. In future work
we plan to address also the functional paradigm, where the main issue is
to deal with higher-order functions. Furthermore, we plan to extend the
current approach, restricted to regular case, by combining it with existing
techniques based on lazy evaluation.
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