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We consider the harmonic gauge condition in linearized gravity, seen as a gauge theory for a symmetric
tensor field. Once the harmonic gauge condition is implemented, as customary, according to the
Faddeev-Popov procedure, the gauge fixed action still depends on one gauge parameter. Consequently,
the harmonic gauge appears to be a class of conditions, rather than a particular one. This allows to
give a physical motivation for the covariant harmonic gauge(s), which emerges when the gravitational

perturbation is given a mass term. In fact, for a particular choice of harmonic gauge, we find a theory of
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linearized massive gravity displaying five degrees of freedom, as it should, and which is not affected by
the vDVZ discontinuity, differently from what happens in the standard Fierz-Pauli theory.
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1. Introduction

In this paper we consider some properties of the harmonic
gauge fixing condition in the context of Linearized Massive Gravity
(LMG) theory [1-3]. The harmonic gauge is adopted in Linearized
Gravity (LG) independently whether the theory is massive or not,
but LMG in the harmonic gauge displays some interesting physi-
cal properties which we would like to focus on in this Letter. Of
course, in gauge field theory the observables, or, more in general,
any physical claim, should not depend on the gauge choice, but in
certain gauges some physical properties might be more apparent
than in others. We believe that this is the case for the harmonic
gauge in LMG. The theory of LG is obtained as a perturbation of
General Relativity (GR) around an arbitrary background metric g,(fa
[4]. For the scope of this paper we will consider a Minkowskian
background, i.e. g,(“a = nuv = diag (-1,1,1,1), so that the whole
metric can be written as

guv(®) =npv +huy®), (1)

and, expanding the Einstein-Hilbert action

Senlgl= f d*x /—gR (2)
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to second order in the perturbation hy, (x), one gets the action
1 1
Sinv[h]=/d4x I:ihazh — huvaﬂ’avh — ihNV(I)ZhMV

+ 8,0y | (3)

where h(x) = n#*"hy, (x). It is well known that (3) is the most gen-
eral action describing a rank-2 symmetric tensor in a Minkowski
space-time and invariant under the infinitesimal gauge transfor-
mation

hyy — h;w =hyy + 90y + 00, , (4)

where 6(x) is a local infinitesimal gauge parameter. As pointed out
in [5,6], when building an action for a MG theory, it is necessary
first to gauge fix the invariant massless action (3), and, after that,
a mass term might be added. We now briefly recall why this is the
case. We remark that even an intrinsically classic theory as lin-
earized gravity needs a well defined generating functional of the
Green functions, without which, for instance, the propagator does
not exist, nor, consequently, the corresponding dynamical theory.
Adding a mass term directly to the invariant action (3), as done,
for instance, in the Fierz-Pauli (FP) approach to MG [7], has a few
fundamental flaws. Firstly, the mass term plays the primary and in-
appropriate role of gauge fixing the action, breaking the symmetry
(4). In fact, the FP mass term allows to define a propagator, but this
trades the mass for a gauge fixing parameter, which is not phys-
ical, in contrast with the fact that mass should be an observable
quantity. Secondly, the FP theory does not display a good mass-
less limit since, at vanishing masses, one is left with the invariant
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action Siy[h] (3), which has no propagator for the symmetric ten-
sor field h, (x). Furthermore, the gravitational couplings predicted
by the FP action in the massless limit are inconsistent with those
of GR. This fact is known as the vDVZ discontinuity [8,9]. A strik-
ing effect of the discontinuity is that, in the limit of small mass
of the FP theory, the predicted gravitational bending of light due
to the presence of a massive body, e.g. a star, differs by 25% from
that computed in GR. If, on the other hand, one proceeds as it is
customary for a gauge field theory, i.e. by fixing the gauge before
adding a mass term to the action, when taking the zero-mass limit
one is left with a well defined theory, for which a propagator ex-
ists. Therefore, in order to have a MG theory with physical mass
parameters and a good massless limit, it is necessary, as a prelim-
inary step, to choose a gauge. In the context of LG many gauge
fixing conditions can be used [4]. Popular choices are:

e Transverse gauge
e Synchronous gauge
e Harmonic gauge.

Amongst these, the harmonic gauge condition is the only Lorentz
invariant and, written in terms of h,, (x) and its trace h(x), it reads

1
Hhyy — iauh =0. (5)
In [5,6] a generalization of the harmonic gauge is used, namely

The aim of this Letter is to point out that the choice of the co-
variant harmonic gauge (5) is particularly clever in a theory of
LMG since a physical property (the absence of the vDVZ discon-
tinuity) turns out to be apparent in this gauge, while it is hidden
otherwise. It would be interesting to investigate the absence of the
vDVZ discontinuity in other gauges, or, even better, to show that
this property does not depend on the gauge choice. This, how-
ever, goes beyond the scope of this paper, which is focused on
the properties of the harmonic gauge in the framework of LMG.
An important issue which must be faced concerns the number of
degrees of freedom (DOFs), which must be five, for a theory de-
scribing a massive spin-2 particle. Therefore, we are dealing with
a tough task: that of finding a theory of LMG with a well defined
propagator, with a regular massless limit, no vDVZ discontinuity
and five DOFs. Our claim is that, at least in the harmonic gauge,
this is possible.

This paper is organized as follows. In Section 2 we realize the
harmonic gauge (5) according to the standard Faddeev-Popov (®IT)
procedure used in gauge field theory, and we discuss the reason
why, amongst the class of covariant gauge conditions (6), it is pe-
culiar in the context of LG. We will then use it to build a LMG
action and subsequently find the propagator of the theory. In Sec-
tion 3 we use the equations of motion (EOMs) derived from our
LMG action to study for which values of the massive parameters it
is possible to recover the five DOFs propagated by a spin-2 mas-
sive particle. In Section 4 we show that the results obtained in
Section 2 and 3 imply the absence of the vDVZ discontinuity in
our theory. Our results are summarized and discussed in the con-
cluding Section 5.

2. Harmonic gauge
The customary ®IT procedure [10] to introduce a gauge fixing

condition into a gauge field theory, is to add a gauge fixing term
to the action, which, for the class of covariant gauges (6), is

1
ng[h;k,/c]=—ﬂ-/d4x [ewh,“,JrKavh]2 ) (7)

where k and « are gauge fixing parameters. The gauge fixed action
then reads

Sth; k, k1= Siny[h]+ Sgs[h; k, k1, (8)

the ghost sector being factorized out since LG is an abelian gauge
theory, and therefore the ghosts are decoupled from the gauge
field hyy(x), as it happens in the Maxwell theory of electromag-
netism. As noticed, in LG the covariant gauge (6) is realized by
means of two gauge parameters: k and k. The harmonic gauge (5),
which is obtained from (6) by chosing x = —%. should therefore be
thought of as a class of choices, rather than a particular one, cor-
responding to generic k. We shall come again on this point later.
In this Letter we are interested in the particular k =k = —% har-
monic gauge, to which corresponds the gauge fixed action

.___1_ 4 12_1#\)2
S[hik =k = 2]_/dx[4hah Sh 3h,w]. (9)

The most general mass term which can be added to the action S
is

1 1
sm[h;mf,mg]=/d4x[§m%hwhﬂ“+ imghz] : (10)

where m? and mZ are massive parameters. The whole LMG action
is therefore given by

1
Smglh; m3, m3] = Sthi k =k = —=1+ Smlh; m}, m3] . (11)

The action (11) in momentum space reads

SMG[fz;mim—ﬁ]:/d“p huv(—p) Q4% (p; m?, m3) hap(p) ,
(12)

where fl,w(p) is the Fourier transform of hy,(x), and the kinetic
operator 2 is

1 1
Quv,ap(D; m%»m%) = 2 (m% - ipz) NuvNap

1
+ E(IJZ + m%)I;w,aﬂ s (13)

where Z is the rank-4 tensor identity

1
Lyv,po = i(’]upnva + Nuo Nvp) - (14)

The propagator Ggg, o (p;m3,m3) is defined by the following
equation
quaﬂcaﬁ,pa =Ipw,po (15)
which gives
(fluvﬁaﬁ) (P) =Gpv,ap(p; m%, m%)
2 1 p?-2m}
=5 5 Ip,v,(xﬂ — 55 5 5 Nuvlap
p?+m? 2 p2 —m?2 — 4m?
(16)
Note that the propagator (16) displays a good massless limit

(m1, my — 0), as expected.

Remark. It is worth to point out that plugging the harmonic gauge con-
dition (5) directly into the invariant action (3), one obtains the gauge
fixed action (9), i.e. the one coming from the ®TII gauge fixing term (7)
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withk = —% and k = —%. We give now an intuitive explanation of this
fact. Defining the trace-reversed field

- 1
hu,v Eh;w - Enuvh , (17)

the invariant action (3) can be written as

_ 1- - 1- _ - _
Sinv[h]=fd4x [Zhazh — Shohuy + B9,0Php |

(18)
and the harmonic gauge condition (5) reduces to
hyy =0. (19)
In terms of f_t,w (x), the gauge symmetry (4) writes
hyy = h)yy = hyy + 8,60y + 3,6, — Ny 8a6” . (20)

In fact, Siny[h] = Siny[I'] and, in close analogy with Maxwell theory,
as long as 826” (x) = 0, the transformed field h;“,(x) satisfies equation
(19). Looking at the action (18), we see that only the third term involves
Bﬂljw(x). So it is clear that, in the EOMs, the terms proportional to
d*hy, (x) come from the variation of

/ d*x h*Y3,9Phy, . (21)

Plugging (19) into the action (18) results in eliminating this term and
therefore every term in the EOMs containing 8" h,, (x) vanishes. The key
observation is that we would have obtained the same result by substitut-
ing the constraint (19) into the EOMs obtained from the invariant action
(18). Therefore, plugging the harmonic gauge condition (5) directly into
the action is a valid way of gauge fixing, since this peculiarly corresponds
to a particular choice (k =k = — %) of the ®I1 gauge fixing term (7).

3. EOMs and DOFs in the harmonic gauge
In their original paper [7] on the theory of a massive spin-f

particle, the issue faced by Fierz and Pauli in the case f =2 was
to find a theory characterized by the following constraints:

% =mHhyy =0, (22)
and
h=0. (24)

Eq. (22) is the massive wave equation for a massive rank-2 sym-
metric tensor field, and Eqgs. (23) and (24) represent the five con-
straints (respectively transversality and tracelessness) which lower
the number of independent components of hy,,, (x) from ten to five,
as it should be for a massive spin-2 particle. In this way Fierz and
Pauli recovered five DOFs from a theory which otherwise concerns
“only” the ten components of a generic symmetric 4D rank-2 ten-
sor field. In this Section we show that, at least in the case of the
harmonic gauge choice, five DOFs are indeed obtained, which is
the necessary preliminary condition which must be fulfilled before
dealing with any further question. We follow here the same steps
as in the original paper [7]. The action Sy (11) implies the fol-
lowing EOM

1
(=82 +m3)hyy + (582+m§) Nuwh=0. (25)

Taking the trace of (25) we get

Table 1
Mass conditions and corresponding DOFs.
Mass Condition Propagation Constraints DOFs
2
m% =—'L;]- (32 —m%)hy,v =0 8uhﬂv =0 6
m2=—m @ -mHHu =0  3*Huy =0 6
27 4 /iy = mv =
m2

@*—mPhy, =0 3"hyuy =0,h=0 5

(8% +m? +4m3h=0, (26)

while saturating (25) with 8V and using the harmonic gauge fixing
condition (5) we find

m2
71+m§ d,h=0. (27)

2
Looking at (27), if m% #* —"% we obtain 3, h(x) =0, which implies
the transversality condition (23) because of the harmonic gauge
condition (5), and inserting it into (26) we get

(m? +4m3)h=0. (28)

If m% + 4m% # 0, then (28) implies the tracelessness condition
h(x) = 0 (24), which, plugged into (25) yields the massive wave
equation (22). If instead m? +4m2 = 0, Eq. (25) and 3,h(x) = 0 im-
ply

(8 —m?3)Hy, =0, (29)

where Hy, (x) is the traceless part of hy, (x)

1
Hyy = hu,v - Zrlp,vh s (30)

which satisfies 8#Hy, (x) = 0. Finally, considering the case m% =

m}
—=t, Eq. (26) becomes

®*-mhHh=0, (31)

which inserted into the EOMs (25) gives again the wave equation
(22).

The results of this section are summarized in Table 1.

Only the third mass condition listed in Table 1 guarantees that
the propagating graviton hy,,(x) displays 5 DOFs, as expected for a
massive spin-2 field. Notice that the FP prescription m% + m% =0
does satisfy this requirement: the FP theory, indeed, has been in-
troduced in order to get the correct number of DOFs for MG [3]. A
theory of LMG satisfying the third mass condition, therefore, con-
tains the FP tuning.

A comment is in order concerning the comparison with the FP
theory. It has always been thought that the FP model is the unique
local theory of MG that consistently (apart from the bad mass-
less limit and the vDVZ discontinuity, but without ghost or tachyon
instabilities) describes the five DOFs of a massive spin-2 represen-
tation of the Poincaré group. In particular, modifying the kinetic
(derivative) part of MG away from that of general relativity results
in ghost instabilities in the helicity-2 sector, which becomes ob-
vious in the high-energy (i.e. massless) limit, where this sector is
supposed to reduce to GR, which is basically the statement that
GR is the unique inconsistency-free theory of a massless helicity-
2 particle. Moreover, adding a mass term other than the one of
Fierz and Pauli m? + m3 # 0 results in a scalar ghost (the “sixth”
DOF) [11]. So the question arises naturally: how comes that this
does not happen in the case discussed in this paper, where we just
proved that it is possible to go outside the FP tuning, nonetheless
keeping five DOFs? The answer to this legitimate doubt resides in
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the definition of the physical sector of a gauge field theory. It is
true that we are modifying the kinetic part of MG, but through
a gauge fixing term. A true one, not like the FP “mass” term. We
have in mind the case of any gauge field theory, where the gauge
fixing term is necessary to define the partition function (and the
Green functions it generates, starting from the propagator). Cer-
tainly the kinetic (derivative) part of the theory is modified, but
in the non-physical sector (the gauge fixing one). This means that
the observables are insensitive to this particular modification. As
we are going to show in the next Section, the absence of the vDVZ
discontinuity is exactly a consequence of this, since it concerns the
continuity with GR of a particular observable (the scattering ampli-
tude of two bodies). Therefore, as in Maxwell or Yang-Mills theory,
the gauge fixing term does not change the physics of LG, despite
the fact that it modifies its dynamic quadratic part.

4. Absence of the vDVZ discontinuity

The vDVZ discontinuity [8,9] is a well known issue affecting the
FP theory of MG [1,2], and it is essentially a statement about the
number of DOFs of a massive spin-2 particle. In this sense this
Section is tightly related to the previous one. Unlike a massless
graviton which has two DOFs, a massive graviton has five, as re-
quired by the representation theory of the Poincaré group. These
five DOFs are comprised of the helicity-2 (two DOFs), helicity-1
(two DOFs), and helicity-0 (scalar, one DOF) components. In the
short distance/high-energy (“massless”) limit of the theory, where
helicity becomes a good quantum number, the helicity-2 compo-
nent encodes the “general relativistic” part of the theory, while the
helicity-0 component does not decouple from external sources (as
far as the full graviton field couples minimally to matter), leading
to a physical “fifth force”. Hence the “discontinuity” of the linear
theory.! The common way to fix this problem of the FP theory is
to adopt the Stueckelberg mechanism [2,12], at the rather expen-
sive price of introducing additional fields in order to restore the
diffeomorphism invariance broken by the mass terms. In this Sec-
tion we show that, by choosing the harmonic gauge (5) belonging
to the k= —% class, the continuity with GR can be restored in a
more natural way, without invoking extra fields. We will now fol-
low the same steps described in [1], which lead to the evidence of
the presence of the vDVZ discontinuity in the FP theory, to verify,
instead, its absence in the LMG with k=« = —% harmonic gauge
fixing. As discussed in [1], the propagator of the FP theory is

2 1
FP: Guyag= m I:I;,w,aﬂ - gnuvnaﬂ
+ (p-dependent terms)i| , (32)
where m =m? = —m2, while in the linearized limit of GR it is
2 1
GR: Guuapg= F[I;w,aﬁ - inuvnaﬂ
+ (p-dependent terms)] . (33)

In the k=« = —% harmonic gauge theory (denoted here by H),
the propagator is given by (16):

H:

2
G = |7 ——— &
JTRT:] 2 +m% |: wv,ap 2 p2 _m% _4m§ NuvNap
(34)

1 p?—2m2 ]

T We thank the Reviewer for this contribution.

Following [1], the interaction between two non relativistic bod-
ies in the three cases (FP, GR and H) is computed by contracting
the propagator with the 00-components of the energy-momentum
tensors of the two bodies, T, (x) and T, P (x), which are conserved

(i.e. pyT# =0). In the non-relativistic case, all other components
are negligible. So, taking into account the coupling constants of the
three theories, which a priori do not coincide, in the massless limit
we get the interaction strengths

3 } 4 . 1
FP: c;FpTﬂ”cw,aﬂr’“ﬁ=§cppTooTéop’ (35)
) 3 L1
GR: GGRTﬂ”Guv,aﬁT’“ﬂ:GGRTooTéop—z’ (36)
N N .1
H: GHT“”GMU,UﬁT’“ﬂ=GHT00T60F- (37)

The constant Ggg is the one that has been experimentally mea-
sured to a certain value Ggr = Gewton- Imposing that the cou-
plings of FP and H coincide with that of GR, we get

4

§GFP =Gy = Ggr = GNewton - (38)
We now consider the energy-momentum tensor of an electromag-
netic wave (say T’(x)), which is traceless, and consider its grav-
itational interaction with that of a massive body (T(x)). In the
massless limit we obtain the interaction strengths

~ ~ ~ x, 2
FP: GFp T'u’vcﬂvyaﬁT’aﬂ=GFp T00T60—2
p

4 = = 2
= §GNewton TOOToop—2 P (39)

. - )
GR: GGrT* GuvapT'* =Ger TOOT{)OP—Z

. o~ 2
= GNewton TOOT(,)op s (40)

i 3 .2
H: GuT*GuvapT'®? =Gy TooTéop

~ ~ 2
= GNewton TOOTéoF s (41)

where we used Eq. (38). It is clear from the above equations that,
while the FP interaction differs from that of GR even in the mass-
less limit, the k =k = —% harmonic MG result happily matches
that of GR.

5. Summary and Discussion

In this Letter we highlighted a few properties of the covari-
ant harmonic gauge which, as far as we know, have not been
remarked elsewhere, although, in our opinion, deserve some at-
tention. In textbooks, the harmonic, called also Lorenz, gauge is
presented as a covariant condition on the gravitational perturba-
tion hy, (x) which just simplifies the linearized Einstein equations
(see for instance [4]). We believe that, besides this rather formal
motivation, this choice can be strengthened by more physical mo-
tivations. Our observation comes from the close analogy between
LG and ordinary gauge field theory. The approach of our paper, not
that revolutionary indeed, is to treat the action (3) of Linearized
Gravity as an ordinary free gauge field theory, like Maxwell theory,



G. Gambuti, N. Maggiore / Physics Letters B 807 (2020) 135530 5

which, hence, needs a gauge fixing in order to be defined. Only
after that, a mass term is added, thus avoiding ab initio the diver-
gent massless limit. In this way the mass term is allowed to be a
true one, without playing the double role of mass and gauge fixing
term, as it happens in the FP theory. The FP tuning m? +m3 =0 is
mandatory if the mass term is forced to serve as a gauge fixing too,
as it is known. But, if LG is modified in its non-physical sector by a
gauge fixing term (and the absence of the vDVZ discontinuity en-
courages to believe that this is the case), the mass parameters turn
out to be less constrained, being granted that the DOFs are five, as
it should and as we proved. As it is well known, the standard way
to restrict the space of connections in order to eliminate the re-
dundancy of the Green functions generating functional Z[]], is the
®IT procedure [10], which consists in introducing in the path inte-
gral a §-functional, which is then exponentiated in order to be able
to deal with a gauge fixed action. In the case of Maxwell theory,
we have

ARSI / DA, e'SivlAl 5 f DAy 8(F[A] — f(x)) e'SimlAl
~ f DA, iSmlAl=3¢ [FIA)? (42)

where F[A] = dA(x) identifies the covariant Lorenz gauge fixing
condition, which is the unique linear possibility for the gauge field
A, (x), and & is the gauge parameter, which is unique as well. Tak-
ing, as it is, LG as a gauge field theory for a symmetric tensor
huv (%), the realization of the harmonic covariant gauge fixing con-
dition (6) should go analogously as follows

z®o1= / Dhy,, €SI 5 f Dhyy 8(F[h; k] — f(x)) e'SinvIH]
~ / DA, eiSmit—s [FlRxD? (43)

where Si,y[h] is the LG action (3), and F[h;«] is the (vectorial)
covariant gauge fixing condition on hy, (x) (6). The ®IT procedure
allows to have a well defined theory, with a propagator for the
field hy, (x), which eventually can be given a mass, as discussed
previously. As we remarked, the gauge fixing term (7) depends on
two gauge parameters, k and k. The gauge parameter k in (43)
(and in (7)) is the analogous of & for the Maxwell theory (42):
it defines, for instance, the Landau (k = 0) gauge. We therefore
might consider k as a kind of “primary” gauge parameter, which
is then fine-tuned by k, which appears to be a “secondary” gauge
parameter. We remark that, by substituting directly the harmonic
gauge fixing condition (6) into the action S,y [h] (3), this non triv-
ial structure of the gauge fixing is lost. According to this approach
(rather standard, actually, despite the fact that it seems to be un-
common in the context of LG), one should refer to the harmonic

gauge Kk = —% as a class of choices, rather than to a particular one.
For instance, it makes sense to speak of a harmonic-Landau gauge,
which corresponds to k=0 and k = —%, or harmonic-Feynman

gauge (k=1, k= —%), and so on. In this Letter we hope to
have given some insights concerning the meaning of the harmonic
gauge in LG, motivating this choice in the case of a particular har-
monic gauge, the one belonging to the larger k = —% class. In this
gauge, in fact, the five DOFs of the graviton can be given physi-
cal masses, which do not serve, as in the FP theory of LMG, as
gauge parameters. The theory of LMG corresponding to the third
condition in Table 1, which contains as a particular case the FP
mass term, displays, we might say by construction, a good massless
limit and, remarkably, it is not affected by the vDVZ discontinuity.
Of course this physical property should depend on the particular
mass term which has been chosen, and not on the gauge choice.
Our claim is that, as it often happens in gauge field theory, in the
particular k =« — % - harmonic gauge, this property is apparent,
differently from what happens in the standard FP theory, where it
is absent, as it is well known. Probably the deep reason for this
flaw is the fact the FP mass serves, quite unnaturally, as gauge fix-
ing tool to allow the existence of a propagator, which nonetheless
lacks a good massless limit, more than a real mass parameter.
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