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Abstract. An approach to output feedback control for hybrid discrete-time
systems subject to uncertain mode transitions is proposed. The system dy-

namics may assume different modes upon the occurrence of a switching that is

not directly measurable. Since the current system mode is unknown, a regula-
tion scheme is proposed by combining a Luenberger observer to estimate the

continuous state, a mode estimator, and a controller fed with the estimates

of both continuous state variables and mode. The closed-loop stability is en-
sured under suitable conditions given in terms of linear matrix inequalities.

Since complexity and conservativeness grow with the increase of the modes,
we address the problem of reducing the number of linear matrix inequalities

by providing more easily tractable stability conditions. Such conditions are

extended to deal with systems having also Lipschitz nonlinearities and affected
by disturbances. The effectiveness of the proposed approach is shown by means

of simulations.

1. Introduction. Hybrid systems subject to mode transitions have attracted a
lot of attention in the last decades owing to their increased modeling capabilities
in numerous application fields. However, the control of such systems is still a
challenge due to the difficulties to deal with both stability and complexity, thus
driving current investigations to develop more efficient solutions. In this paper,
we address the control of a class of hybrid systems with switching linear dynamic
equations depending on a discrete state, called mode, which is not fully accessible.
For such systems, a novel observer-based control scheme is presented that is based a
Luenberger observer and a mode predictor to estimate the continuous and discrete
states, respectively,

There exist many systems that result from the combination of smooth continuous
dynamics and sudden switches (see, among others, [5, 13, 9, 17, 18]). Switching is
modelled by means of hybrid automata with a discrete state that usually represents
a specific operation mode of the plant. In this context, state estimation aims at
reconstructing both the continuous and discrete states by using the measurements
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and knowledge of the hybrid model in such a way as to feed the controller. The
first results reported in the literature on observer-based control of systems subject
to mode transitions require the perfect knowledge of the mode, measured on line
[15, 20, 4]. The design of controllers for hybrid systems with constraints on the
switching is dealt in [16], where only the switching rule is assumed to be known. In
[7] a moving horizon approach is proposed to control such systems by optimizing
the attenuation of the external disturbances.

In this paper, we focus on observer-based control for switching discrete-time
linear and nonlinear systems by extending the results of [14] since we explicitly
account for information on the switching dynamics. Specifically, we address the
problem of constructing an observer-based controller by using the Luenberger ob-
server proposed in [2], where sufficient conditions based on observability arguments
are presented to ensure the asymptotic stability of the estimation error. Such con-
ditions point out that a delay with respect to the current available information
is required to accomplish a correct evaluation of the system mode (see also [1]).
Indeed, here we consider the case with no delay permitted in generating the con-
trol and propose to perform the estimation of the mode with a mode predictor [3].
Switching-gain observers are analyzed in [19].

To design the proposed output feedback control scheme, a new method is pre-
sented that consists in selecting the observer and controller gains by means of a
switched quadratic Lyapunov function and a technical result inspired from [12]. In
spite of dealing with the unknown system mode as a pure uncertainty likewise in
[21], we exploit the information on the switching rule to construct the mode pre-
dictor and reduce the number of linear matrix inequalities (LMIs). Contrarily to
the approach in [11], where the observer and controller gains are computed by us-
ing two dependent sets of LMIs, our LMI conditions can be solved simultaneously.
Moreover, the stability of the proposed observer-based scheme is investigated also
in the presence of Lipschitz nonlinearities and disturbances by resorting to an H∞
approach according to [22, 8].

The paper is organized as follows. The proposed observer-based control scheme is
presented in Section 2 by referring to a simple example that motivates the approach.
Sections 3 and 4 report the main results without and with Lipschitz nolinearities and
disturbances, respectively. In Section 5, numerical results are shown to illustrate
the effectiveness of the proposed design methodologies. Conclusions are drawn in
Section 6.

Before concluding this section, let us introduce some notations used throughout
the paper. Let (x, y) := [x>, y>]>, where x and y are column vectors and the symbol
> means transposition. Given a symmetric matrix S, S > 0 (< 0) means that S

is positive (negative) definite. For any real column vector z, |z| :=
√
z>z is its

Euclidean norm. Given a sequence x := {xk}k∈N≥0
⊂ Rs, |x|ls2 :=

(∑k=∞
k=0 |xk|2

) 1
2

denotes its l2 norm and let ls2 :=
{
x = {xk} ⊂ Rs, |x|ls2 < +∞

}
. Finally, es(i) =

(0, . . . ,

ith︷︸︸︷
1 , . . . , 0)︸ ︷︷ ︸

s components

> ∈ Rs the unit vector of the canonical basis of Rs.
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2. Observer-based control of switching linear systems. Let us consider a
class of switching discrete-time linear systems described by

xt+1 = A(λt)xt +B(λt)ut (1a)

λt+1 = F (t, xt+1, ut, λt) (1b)

yt = C(λt)xt (1c)

where t = 0, 1, . . . is the time instant, xt ∈ Rn is the continuous state vector and
λt ∈ Λ = {1, 2, . . . , q} is the discrete state taking on values only in the finite set Λ;
yt ∈ Rm is the measurement vector; ut ∈ Rp is the input vector; A(λ), B(λ), and
C(λ), λ ∈ Λ, are n×n , n×p , and m×n real matrices, respectively. The mapping
F : N≥0 × Rn × Rp × Λ → Λ represents the dynamics of the discrete state. Such
a mapping and the matrices A(λ), B(λ), and C(λ) are known but, at each time
instant t, both xt and λt are not directly measurable, as the available information
is given only by the measures yt.

We will address the design of output feedback controllers based on the certainty
equivalence principle. Such a control scheme needs suitable estimates of both λt
and xt. The estimate of xt is denoted by x̂t, and is provided by a Luenberger
observer, which is adopted to perform estimation by using the measurements yt, as
depicted in Fig. 1. The Luenberger observer is fed by the estimate of λt, denoted

by λ̂t and given by a mode predictor, which in turn relies on x̂t. To sum up, the
proposed control scheme is composed of three blocks, i.e., Luenberger observer,
mode predictor, and controller, which have to be carefully designed in such a way
as to ensure closed-loop asymptotic stability. Note that a difficulty arises from the
fact that the mode dynamics depends on the full-state vector xt, which is not at
our disposal in general.

As to the Luenberger observer, we refer to the approach presented in [2]. The
estimate of the state is thus obtained as follows:

x̂t+1 = A(λ̂t) x̂t +B(λ̂t)ut + L(λ̂t)
(
yt − C(λ̂t) x̂t

)
(2)

where λ̂t ∈ Λ is an estimate of λt and the observer gains L(λ), λ ∈ Λ, are n ×
m gain matrices to be chosen. Following [2], a possible strategy to compute λ̂t
is that of detecting the discrete state λt on the basis of the observations vector
yt−α, yt−α+1, . . . , yt+ω−1, yt+ω with α and ω nonnegative integers that account for
the mode observability issues (see also [1, 10]). Of course, this would cause a delay in
generating the control action. Instead, we will exploit the knowledge of the discrete
state dynamics by using a mode predictor that estimates the mode one-step ahead
based also on the current estimates, i.e.,

λ̂t = F̂
(
t, yt, x̂t, ut−1, λ̂t−1

)
(3)

where F̂ : N≥0 × Rm × Rn × Rp × Λ → Λ. Under the state feedback with the
certainty equivalence principle, the control action is thus generated as follows:

ut = −K(λ̂t) x̂t (4)

with the p×n real matrices K(λ), λ ∈ Λ. The mapping F̂ may be chosen in such
a way as to facilitate the design of the observer-based control, as will be clarified
with the next example.
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yt
ut

λ̂t

x̂t

xt+1 = A(λt)xt +B(λt)ut

λt+1 = F (t, xt+1, ut, λt)
yt = C(λt)xt
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z−1

z−1

controller

mode predictor

Figure 1. Output feedback observer-based control scheme.

Example 1. Consider the following system and switching rule:

xt+1 = A(λt)xt +B(λt)ut

yt = C(λt)xt

λt =


1 if x1(t) +

√
3x2(t) ≥ 0 , x1(t) ≥ 0

2 if x1(t) +
√

3x2(t) < 0 , x1(t)−
√

3x2(t) ≥ 0

3 if x1(t)−
√

3x2(t) < 0 , x1(t) < 0
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x1 +
√
3 x2 ≥ 0

x1 ≥ 0

x1 −
√
3 x2 ≥ 0

x1 +
√
3 x2 < 0

x1 −
√
3 x2 < 0

x1 < 0

120◦
x1

x2

Figure 2. State space piecewise regions.

where xt ∈ R2 is the continuous state vector, ut ∈ R is the input vector, λt ∈ Λ =
{1, 2, 3} is the discrete state, yt ∈ R is the output; Ai and Bi are given matrices
and Ci = ( 1 0 ) for i = 1, 2, 3. Fig. 2 illustrates the three switching regions.
Clearly, the only knowledge of the sign of the current output yt is not sufficient to
discriminate between the discrete state either 1 or 2 if yt ≥ 0 and either 2 or 3 if
yt < 0. Moreover, an estimate of the second state variable may help to detect the
correct mode, as will be clarified in the following.

In the next section, we will consider the problem of determining observer and
controller gains.

3. Output feedback control design for switching linear systems. The sta-
bility of the closed-loop system under the feedback obtained by combining (2),
(3), and (4) is studied by referring to the augmented state vector zt := (xt, et),
where et := xt − x̂t is the estimation error. Toward this end, let ∆A(λ1, λ2) :=
A(λ1) − A(λ2), ∆B(λ1, λ2) := B(λ1) − B(λ2), and ∆C(λ1, λ2) := C(λ1) − C(λ2).
The dynamics of the augmented state is given by the discrete-time equation:

zt+1 = Π(λt, λ̂t) zt (5)

where

Π(λt, λ̂t) :=

[
W11 W12

W21 W22

]
(6)

with

W11 = A (λt)−B(λt)K(λ̂t) , W12 = B(λt)K(λ̂t) ,

W21 = ∆A(λt, λ̂t)−∆B(λt, λ̂t)K(λ̂t)− L(λ̂t)∆C(λt, λ̂t),

W22 = A(λ̂t) + ∆B(λt, λ̂t)K(λ̂t)− L(λ̂t)C(λ̂t).
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If we consider the Lyapunov function Vt(zt, λ̂t) = z>t P (λ̂t) zt , we have

Vt+1 = z>t Π(λt, λ̂t)
> P (λ̂t+1) Π(λt, λ̂t) zt,

and hence stability will be inferred by proving that Vt is strictly decreasing under
suitable conditions. Toward this end, the following result is needed (see [12, Lemma
1, p. 1786] for the proof).

Lemma 1. Let X,Y, Z be three matrices of appropriate dimensions with X =
X> > 0 and Z = Z> > 0. Then, the LMI[

−X Y >

Y −Z−1

]
< 0 (7)

holds if there exists α > 0 so that the following matrix inequality is fulfilled:−X αY > 0
αY −2αI Z
0 Z −Z

 < 0. (8)

For the sake of brevity, we denote any matrix M depending on λt or λ̂t by Mi and

Mj , respectively; similarly, Nij is a matrix that depends on both λt, and λ̂t. For

example, P (λ̂t) and A (λt)−B(λt)K(λ̂t) will be referred to as Pj and Ai −BiKj ,

respectively. Similarly, we will adopt the index k to refer to λ̂t+1, i.e., for example,

by writing Pk for P (λ̂t+1).

Theorem 1. Assume that there exist matrices Si = S>i > 0, scalars αi > 0 and

gain matrices K̃i, L̃i, i = 1, . . . , q, solutions of the LMIsSk Tij 0
(∗) 2αjI Sj
(∗) (∗) Sj

 > 0, for all i, j, k ∈ Λ (9)

with

Tij =

[
αjAi −BiK̃j BiK̃j

T21
ij T22

ij

]
,

T21
ij = αj ∆Aij −∆Bij K̃j − L̃j ∆Cij ,

T22
ij = αjAj + ∆Bij K̃j − L̃jCj .

Then, (5) is asymptotically stable with the gains Kj = K̃j/αj and Lj = L̃j/αj ,
j ∈ Λ.

Proof. The stability of (5) is proved by verifying that the Lyapunov function is
strictly decreasing out of the origin. Since

Vt+1 − Vt = z>t
(
Π>ijPkΠij − Pj

)
zt < 0 , ∀i, j, k ∈ Λ,

for all zt 6= 0, Vt is decreasing if the following inequalities are satisfied

Pj −Π>ijPkΠij > 0 , ∀i, j, k ∈ Λ (10)

where

Πij =

[
Ai −BiKj BiKj

Π21
ij Π22

ij

]
,
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with

Π21
ij = ∆Aij −∆Bij Kj − Lj ∆Cij , Π22

ij = Aj + ∆Bij Kj − LjCj

Using the notation Si = P−1
i for short, the Schur lemma allows establishing the

equivalence between (10) and the following:[
Sk Πij

(∗) S−1
j

]
> 0 , ∀i, j, k ∈ Λ . (11)

Notice that (11) is not an LMI because of the presence of both Sk and S−1
k for all

k ∈ Λ. However, using Lemma 1 (i.e., [12, Lemma 1, p. 1786]), we obtain that (11)
holds if there exist positive real scalars αj such thatSk αj Πij 0

(∗) 2αj I Sj
(∗) (∗) Sj

 > 0 , ∀i, j, k ∈ Λ .

Using the change of variables K̃j = αjKj and L̃j = αjLj , we get the LMIs (9), thus
concluding the proof. �

Remark 1. The Schur complement gives rise to the nonlinear inequality (11)
from (10) owing to Lemma 1. If we exploited another equivalent Schur form by
transforming (10) to [

Pj Π>ijPk
(?) Pk

]
,

we would obtain the product Π>ijPk, which is more complicated to deal for the
following reasons.

• First, to handle the coupling Π>ijPk, it is convenient to use a diagonal matrix

Pk =

[
P 1
k 0
0 P 2

k

]
to simplify and to cancel the off-diagonal bilinear terms.

However, even if a diagonal matrix Pk would be used, this would not solve the
problem because the matrix Πij contains decision variables depending on the
index j, while Pk depends on the index k. Indeed, this would lead to coupled
terms such as P 2

kLj , where a change of variable is not possible because both
P 2
k and Lk,j := P 2

kLj are free solutions provided by the LMIs.
• Even in case we replace (artificially only) the term Π>ijPj to get the same index
j, it is complicated for such a term due to the presence of the observer-based
controller gains Kj and Lj in Πij in both sides. Pre- and post-multiplying the
term by positive definite matrices, by using any congruence transformation,
will not solve the problem. Such a difficulty is due to the fact that in this paper
we deal with a general case where all the system matrices switch (A(λt), B(λt),
and C(λt)), contrarily to the literature where only the matrix A(λt) is con-
sidered as a switched matrix [11]. In this case, the terms Π21

ij and Π22
ij are

simplified because ∆Cij = 0 and ∆Bij = 0.
• Concerning the product Π>ijPk, the well-known congruence transformations

based on slack variables proposed in [6] cannot be used straightforwardly,
unless under strong conditions that lead to very conservative LMIs.

Hence, to avoid such complications, we rely on Lemma 1, which provides a simple
solution for the general problem with all the system matrices that may switch.
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Let us explain in more detail the motivation of using exactly the Schur transfor-
mation (11) instead of [

Pj Π>ij
(∗) P−1

k

]
> 0 (12)

which is easier and more direct from (10) without introducing the matrix Sj . Indeed,
the use of (11) is more convenient. The reason is simple but hidden in the LMIs.
The application of Lemma 1 on the inequality (12) leads toPj αj Πij 0

(∗) 2αj I Pk
(∗) (∗) Pk

 > 0 , ∀i, j, k ∈ Λ (13)

and, for the Schur lemma, it follows that

Pk < 2αj I , ∀j, k ∈ Λ (14)

because (13) is equivalent to[
Pj αj Πij

(∗) 2αj I − Pk

]
> 0 , ∀i, j, k ∈ Λ .

However, inequality (9) in the paper is equivalent to[
Sk Tij
(∗) 2αj I − Sj

]
> 0 , ∀i, j, k ∈ Λ,

which leads to
Sj < 2αj I , ∀j ∈ Λ (15)

where only the index j is used. Indeed, for a fixed index j, in (14) all the matrices
Pk should satisfy the inequality, while in inequality (9) of Theorem 1 only Sj should
satisfy (15).

Remark 2. The observer-based controller gains are synthesized together, contrar-
ily to what was proposed for a similar class of systems in [11], where, in order to
avoid bilinear matrix inequalities, the authors present an algorithm in two steps. In
the first step, a set of LMIs accounts for the gains of the observer, which is designed
by following an input-to-state stability formulation. In the second step, the con-
troller gains are deduced by solving other LMI conditions. As compared with [11],
our methodology is not affected by the difficulties involved in taking into account
additional strong equality constraints as required in [20], which are necessary to
avoid bilinear matrix inequalities to synthesize simultaneously the gains.

Remark 3. A reduction of the number of constraints in (9) is crucial to ensure
the LMI feasibility. In the worst case, we have q3 LMIs, but such a number can
be reduced in general. If the instantaneous value of the switching mode is known
in real time, we have to satisfy (9) with i = j, and hence to deal with q2 LMIs.
Moreover, we may account for the knowledge of the switching rule F to set the
mapping F̂ in such a way to reduce the number of constraints on the overall. For
the reader’s convenience, consider Example 1 and the mode estimator

λ̂t =


1 if yt +

√
3 x̂2(t) ≥ 0 , yt ≥ 0

2 if yt +
√

3 x̂2(t) < 0 , yt −
√

3 x̂2(t) ≥ 0

3 if yt −
√

3 x̂2(t) < 0 , yt < 0

(16)

where x̂2(t) denotes the second component of x̂t. Since we instantaneously measure
the first state variable, at each time instant t we know that λt belongs to either
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{1, 2} or {2, 3}. Thus, in the LMIs (9) we have λ̂t ∈ {1, 2} in case λt = 1, i.e.,

j = 1, 2 if i = 1 by excluding j = 3. Moreover, λ̂t ∈ {1, 2, 3} in case λt = 2 (i.e.,

j = 1, 2, 3 if i = 2) and λ̂t ∈ {2, 3} in case λt = 3 (i.e., j = 2, 3 if i = 3). No
reduction can be obtained for the index k, as we have to consider all the cases with

λ̂t+1 ∈ {1, 2, 3}. Summing up, we have to solve a design problem with 21 LMIs
instead of 33 = 27, since q = 3. Fig. 3 provides a pictorial description of the
aforesaid.

Figure 3. Finite state machine of the discrete state dynamics and
tree of mode combinations over successive time instants.

4. Output feedback control design for noisy switching Lipschitz nonlin-
ear systems. Consider the system (1) under the effect of additive noises and Lip-
schitzian nonlinearities:

xt+1 = A(λt)xt +B(λt)ut + φ(λt, xt) +D(λt)ωt (17a)

λt+1 = F (t, xt+1, ut, λt) (17b)

yt = C(λt)xt + ψ(λt, xt) + E(λt)ωt (17c)

where xt ∈ Rn is the continuous state vector, yt ∈ Rm is the measurement vector,
ut ∈ Rp is the input vector, ωt ∈ Rs is the vector of the noises, and λt ∈ Λ =
{1, 2, . . . , q} is the discrete state. A(λ), B(λ), C(λ), D(λ), and E(λ), λ ∈ Λ, are
n×n, n×p, m×n, n×s, and m×s real matrices, respectively. The functions φ and
ψ in (17) are globally Lipschitz with respect to the second variable with Lipschitz
constants depending on the switching mode λt, namely for each λt ∈ Λ there exist
γφ(λt) and γψ(λt) such that:

|φ(λt, x)− φ(λt, z)| ≤ γφ(λt)|x− z| , ∀x, z ∈ Rn,
|ψ(λt, x)− ψ(λt, z)| ≤ γψ(λt)|x− z| , ∀x, z ∈ Rn .

Moreover, without loss of generality let us assume φ(λ, 0) = 0 and ψ(λ, 0) = 0 for
all λ ∈ Λ.

Based on the certainty equivalence principle, we rely the control scheme presented
in Section 2, i.e., we use the observer

x̂t+1 = A(λ̂t) x̂t +B(λ̂t)ut + φ(λ̂t, x̂t) + L(λ̂t)
(
yt − C(λ̂t) x̂t − ψ(λ̂t, x̂t)

)
(18)

together with (3) and (4) since we suppose to have at disposal a mode prediction.
From (3), (4), (17), and (18) it follows that
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zt+1 =

[
W11 W12

W21 W22

]
︸ ︷︷ ︸

Ãλt,λ̂t

zt +

[
φ(λt, xt)

∆φ(λ̂t, λt) − L(λ̂t)∆ψ(λ̂t, λt)

]
+

[
D(λt)

D(λt) − L(λ̂t)E(λ̂t)

]
︸ ︷︷ ︸

Gλt,λ̂t

ωt

(19)
where W11, W12, W21, and W22 are defined as in (6); moreover,

∆φ(λ̂t, λt) := φ(λt, xt)− φ(λ̂t, x̂t) = φ(λt, xt)− φ(λt, 0)− φ(λ̂t, x̂t) + φ(λ̂t, 0)
(20a)

∆ψ(λ̂t, λt) := ψ(λt, xt)− ψ(λ̂t, x̂t) = ψ(λt, xt)− ψ(λt, 0)− ψ(λ̂t, x̂t) + ψ(λ̂t, 0)
(20b)

where, for the sake of brevity, we omit the dependence on xt and x̂t.
We now need a technical result that allows dealing with the above Lipschitz

functions in a more convenient way (see [22, Lemma 6, p. 587] for details).

Lemma 2. Considering a function ϕ : Rn → Rn, the two following facts are
equivalent:

• ϕ is γϕ-Lipschitz with respect to its argument, i.e.,

|ϕ(x)− ϕ(z)| ≤ γϕ|x− z|, ∀x, z ∈ Rn,

• for all i, j = 1, . . . , n there exist functions ϕij : Rn × Rn → R and constants
γ
ϕij

and γ̄ϕij such that, ∀x, z ∈ Rn,

ϕ(x)− ϕ(z) =

n∑
i=1

n∑
j=1

ϕij(x1, . . . , xj−1, zj , . . . , zn)Hn
ij (x− z) (21)

and

γ
ϕij
≤ ϕij(x1, . . . , xj−1, zj , . . . , zn) ≤ γ̄ϕij ,

where Hn
ij := en(i) e>n (j).

According to Lemma 2, the Lipschitz property held by φ(λt, ·) and ψ(λt, ·) leads
to the existence of bounded functions φij(λt) : Rn ×Rn → R, ψij(λt) : Rm ×Rn →
R and constants γ

φij
(λt), γ̄φij (λt), for i, j = 1, . . . , n, γψij (λt) and γ

ψij
(λt), for

i = 1, . . . ,m and j = 1, . . . , n, such that

γ
φij

(λt) ≤ φij(λt) ≤ γ̄φij (λt), γ
ψij

(λt) ≤ ψij(λt) ≤ γ̄ψij (λt),

∆φ(λ̂t, λt) =

[ n∑
i=1

n∑
j=1

φij(λt)H
n
ij

]
xt −

[ n∑
i=1

n∑
j=1

φij(λ̂t)H
n
ij

]
x̂t,

∆ψ(λ̂t, λt) =

[ m∑
i=1

n∑
j=1

ψij(λt)H
m,n
ij

]
xt −

[ m∑
i=1

n∑
j=1

ψij(λ̂t)H
m,n
ij

]
x̂t,

φ(λt, xt) =

[ n∑
i=1

n∑
j=1

φij(λt)H
n
ij

]
xt,
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where Hm,n
ij = em(i)e>n (j). For the reader’s convenience, let us introduce the fol-

lowing notations:

Θλ :=

n∑
i=1

n∑
j=1

φij(λ)Hn
ij , Ξλ :=

m∑
i=1

n∑
j=1

ψij(λ)Hm,n
ij ,

A(λ,Θλ) := A(λ) + Θλ, C(λ,Ξλ) := C(λ) + Ξλ.

Hence, system (19) can be rewritten under the form

zt+1 = Πλt,λ̂t

(
Θλt ,Θλ̂t

,Ξλt ,Ξλ̂t

)
zt +Gλt,λ̂tωt (22)

where

Πλt,λ̂t

(
Θλt ,Θλ̂t

,Ξλt ,Ξλ̂t

)
=

 Π11
λt,λ̂t

(
Θλt

)
Π12
λt,λ̂t

Π21
λt,λ̂t

(
Θλt ,Θλ̂t

,Ξλt ,Ξλ̂t
)

Π22
λt,λ̂t

(
Θλ̂t

,Ξλ̂t
)
 ,

with

Π11
λt,λ̂t

(
Θλt

)
:= A(λt,Θλt)−B(λt)K(λ̂t),

Π12
λt,λ̂t

:= B(λt)K(λ̂t),

Π21
λt,λ̂t

(
Θλt ,Θλ̂t

,Ξλt ,Ξλ̂t
)

:= ∆A(λt, λ̂t,Θλt ,Θλ̂t
)− L(λ̂t)∆C(λt, λ̂t,Ξλt ,Ξλ̂t)

−∆B(λt, λ̂t)K(λ̂t),

Π22
λt,λ̂t

(
Θλ̂t

,Ξλ̂t
)

:= A(λ̂t,Θλ̂t
) + ∆B(λt, λ̂t)K(λ̂t)− L(λ̂t)C(λ̂t,Ξλ̂t),

and

∆A(λt, λ̂t,Θλt ,Θλ̂t
) := A(λt,Θλt)−A(λ̂t,Θλ̂t

),

∆C(λt, λ̂t,Ξλt ,Ξλ̂t) := C(λt,Ξλt)− C(λ̂t,Ξλ̂t) .
Notice that in view of Lemma 2, for each λ ∈ Λ, the parameter Θλ belongs to

bounded convex set Hn(λ) for which the set of vertices is defined as follows:

VHn(λ) =
{

Φ ∈ Rn×n,Φij ∈ {γφij (λ), γ̄φij (λ)}
}
.

Similarly, for each λ ∈ Λ, the parameter Ξλ belongs to a bounded convex set
Hm(λ) for which the set of vertices is given by:

VHm(λ) =
{

Ψ ∈ Rm×n,Ψij ∈ {γψij (λ), γ̄ψij (λ)}
}
.

Our objective consists in finding the gain matrices K(λ) and L(λ) for all λ ∈ Λ
such that the closed-loop system (22) with ωt = 0 is asymptotically stable, and the
effect of ωt on the performance signal

Zt = Wzt (23)

is attenuated in the H∞ sense, where W ∈ Rr×n is a given weight matrix. More
precisely, it is required that

|Z|lr2 ≤ µ|ω|ls2 (24)

where µ > 0 is the disturbance attenuation level to be minimized. In the following
theorem, we provide new LMI conditions ensuring the robust H∞ asymptotic sta-
bilization of the closed loop system (22) in the sense of (24). Likewise in Section



12 ALESSANDRI, BEDOUHENE, BOUHADJRA, ZEMOUCHE, BAGNERINI

3, the indexes i, j, and k in any matrix correspond to dependence on λt, λ̂t, and

λ̂t+1, respectively.

Theorem 2. System (22) is H∞ asymptotically stable with attenuation level µ if

there exist some scalars γi > 0, gain matrices K̂i and L̂i, and symmetric matrices
Si for i = 1, . . . , q as a result of the the problem’s solution:

minµ s.t. LMIi,j,k (Θi,Θj ,Ξi,Ξj , γj , µ) < 0 , ∀(Θi,Θj ,Ξi,Ξj) ∈ VHn(i)
×VHn(j)× VHm(i)× VHm(j) , ∀i, j, k ∈ Λ

(25)
where

LMIi,j,k
(

Θi,Θj ,Ξi,Ξj , γj , µ
)

:=



−Sk 0 Π̃i,j G̃i,j 0 0

(?) −2γjI 0 Sj 0 γjW
>

(?) (?) −2γjI 0 I 0

(?) (?) (?) −Sj 0 0

(?) (?) (?) (?) −µ2I 0

(?) (?) (?) (?) (?) −I


,

with

Π̃i,j := γjΠi,j(Θi,Θj ,Ξi,Ξj) and G̃i,j =

[
γjDi

γjDi − L̂jEj

]
.

The controller and observer gains are given by Kj = K̂j/γj and Lj = L̂j/γj respec-
tively with j = 1 . . . q.

Proof. To ensure (24), we search for a Lyapunov function

Vj(t) := Vj(zt) = z>t Pjzt,

with Pj = P>j > 0 such that

|Zt|2 − µ2|ωt|2 + ∆Vt < 0 (26)

for all j ∈ Λ and t, where ∆Vt := Vj(t+ 1)− Vj(t) (see [8] for details). Using (22),
∆Vt becomes

∆Vt =
(

Πi,j(Θi,Θj ,Ξi,Ξj)zk +Gi,j ωt

)>
Pk

(
Πi,j(Θi,Θj ,Ξi,Ξj)zt +Gi,j ωt

)
− z>t Pjzt,

and thus

|Zt|2 − µ2|ωt|2 + ∆Vt =

[
zt
ωt

]> Σ11
i,j,k(Θi,Θj ,Ξi,Ξj) Σ12

i,j,k(Θi,Θj ,Ξi,Ξj)

(?) Σ22
i,j,k


︸ ︷︷ ︸

Υi,j,k

(
Θi,Θj ,Ξi,Ξj

)
[
zt
ωt

]

(27)



OBSERVER-BASED CONTROL OF HYBRID SYSTEMS 13

where

Υ11
i,j

(
Θi,Θj ,Ξi,Ξj

)
:= Πi,j(Θi,Θj ,Ξi,Ξj)

>PkΠi,j

(
Θi,Θj ,Ξi,Ξj

)
− Pj +W>W,

Υ12
i,j,k

(
Θi,Θj ,Ξi,Ξj

)
:= Πi,j

(
Θi,Θj ,Ξi,Ξj

)>
PkGi,j ,

Υ22
i,j,k := G>i,jPkGi,j − µ2I .

Therefore, condition (26) holds if and only if Υi,j,k

(
Θi,Θj ,Ξi,Ξj

)
< 0, for all

i, j, k ∈ Λ, Θi ∈ Hn(i),Θj ∈ Hn(j), Ξ(i) ∈ Hm(i), and Ξ(j) ∈ Hm(j), which is
equivalent, by the Schur Lemma, to

−Sk Πi,j(Θi,Θj ,Ξi,Ξj) Gi,j

(?) −S−1
j +W>W 0

(?) (?) −µ2I

 < 0 (28)

where S−1
j = Pj . Using the Schur lemma and Lemma 1, we linearize (28) and

deduce that (28) holds if there exist positive real scalars γj such that

LMIi,j,k
(
Θi,Θj ,Ξi,Ξj , γj , µ

)
< 0 ,

which ends the proof. �

5. Numerical examples. Three case studies are presented. The first and second
ones aim at a fair evaluation of the effectiveness of the proposed methodology when-
ever one may take advantage of the knowledge of the switching rule. Specifically,
the second one is based on Example 1, where the knowledge of the switching mode
allows reducing the numbers of LMIs to solve. The third case deals with the H∞
design in the presence of Lipschitz nonlinearities.

5.1. Case study 1. Let us consider (1) with Λ = {1, 2, 3},

A1 =

0.25 1 0
0 −0.1 0
0 0 0.6

 , A2 =

−0.25 1 0
0 0.5 0
0 0 1.1

 , A3 =

0.3 1 0
0 0.1 0
0 0 1

 ,
B1 =

[
1 1 0

]>
, B2 =

[
0 1 1

]>
, B3 =

[
1 1 1

]>
,

C1 =
[
1 0 2

]
, C2 =

[
1.5 0 2

]
, C3 =

[
2 0 2

]
.

and the three regions with each mode

R1 = {xk ∈ R3, x1
k < 1}, R2 = {xk ∈ R3, 1 ≤ x1

k < 5}, R3 = {xk ∈ R3, x1
k ≥ 5}.

that is

F (xt) =

 1, if xt ∈ R1

2, if xt ∈ R2

3, if xt ∈ R3 .
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We solved the LMIs (9) and obtained

K1 =
[
0.0150 0.0427 0.2936

]
, L1 =

[
0.0249 −0.0443 0.2184

]>
,

K2 =
[
0.1189 0.0048 0.1865

]
, L2 =

[
−0.0382 −0.0063 0.2301

]>
,

K3 =
[
0.0956 0.0518 0.2241

]
, L3 =

[
0.0840 −0.0257 0.1972

]>
.

As to mode estimate, we used the mode predictor λ̂t = F (x̂t). Based on
such a control scheme, the result of a simulation run with initial state x0 =[
−5 8 2.5

]> ∈ R1 and initial estimated state x̂0 =
[
6.5 4 10

]> ∈ R2 are
shown in Fig. 4.

5.2. Case study 2. Consider again Example 1 with the following matrices:

A1 =

[
1 1
0 −0.5

]
, A2 =

[
0.5 1
0 −0.5

]
, A3 =

[
0.5 0.5
0 0.5

]
,

B1 =

[
1
0

]
, B2 =

[
0.5
0.3

]
, B3 =

[
1
−0.5

]
,

C1 =
[
1 0

]
, C2 =

[
1 0

]
, C3 =

[
1 0

]
.

As pointed out in Remark 3, the knowledge of yt allows only discriminating that

λt belongs to either {1, 2} or {2, 3}. Thus, in the LMIs (9), we have λ̂t ∈ {1, 2} in

case λt = 1, i.e., j = 1, 2 if i = 1 by excluding j = 3. Moreover, λ̂t ∈ {1, 2, 3} in

case λt = 2 (i.e., j = 1, 2, 3 if i = 2) and λ̂t ∈ {2, 3} in case λt = 3 (i.e., j = 2, 3 if
i = 3). By solving the corresponding set of LMIs (9), we obtained

K1 =
[
0.5212 0.04985

]
, K2 =

[
0.4674 −0.2576

]
, K3 =

[
0.1023 −0.4376

]
,

L1 =
[
0.7743 −0.0218

]
, L2 =

[
0.5965 −0.1428

]
, L3 =

[
0.1384 0.0139

]
.

It is worth noting that the set of LMIs (9) with all the possible index combinations is
infeasible. We chose (16) as a mode predictor. The behaviors of the state and esti-

mated state variables with initial conditions x0 =
[
−6 10

]>
and x̂0 =

[
10 −20

]>
are given in Fig. 5.

5.3. Case study 3. In order to validate the approach proposed in Theorem 2,
we test the feasibility of the LMI (25) on example taken from [21]. The system is
described by the following parameters:

A1 =

[
−0.036 0.126
−0.038 0.094

]
, B1 =

[
1
0

]
, C1 =

[
29
10

]>
, D1 =

[
0.07
0.018

]
, E1 = 0.03,

A2 =

[
0.0106 0.28
−0.035 0.24

]
, B2 =

[
0
2

]
, C2 =

[
0.3
0.1

]>
, D2 =

[
0.18
0.01

]
, E2 = 0.014.

Ψ1(x) =

[
0

0.1(x1 + sinx2)

]
, Ψ2(x) =

 0
0.5 sinx1√

10

 , W =
[
0 0 0.3 0.6

]
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Figure 4. Case Study 1: state variables and their estimates.
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Figure 5. Case Study 2: state variables and their estimates.

According to Lemma 2, we have:

VHn(1) =

{[
0 0

0.1 −0.1

]
,

[
0 0

0.1 0.1

]}
,

and

VHn(2) =


 0 0

− 0.5√
10

0

 ,
 0 0

0.5√
10

0

 .
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The LMI (25) of Theorem 2 was found feasible; we obtained the following observer
and the controller gains:

L1 =

[
−0.0003
0.0016

]
, K1 =

[
0.0205 0.0316

]
,

L2 =

[
0.0167
−0.0031

]
, K2 =

[
−0.0272 −0.0688

]
.

These solutions correspond to an optimal value of the disturbance attenuation level
equal to 0.1559. The switching signal λt was randomly generated with minimum

dwell time equal to 3, and its estimate λ̂t was obtained according to the minimum
distance criterion, i.e.,

λ̂t = argmin
i∈{1,2}

(|yt − Cix̂t|) .

The simulations over an horizon of length T = 100 with x0 =
[
0.1 0.6

]>
, x̂0 =[

0.2 −0.3
]>

, and a noise

ωt =

{
1 if t ∈ 20, 21, . . . , 50

0 elsewhere
(29)

are shown in Fig.s 6-7.

6. Conclusion. We have addressed the problem of observer-based control for hy-
brid systems with possible nonlinearities and disturbances in the state equations by
using a novel approach that explicitly takes into account the switching dynamics. A
key advantage of the proposed method is the reduction of the intrinsic conservative-
ness in the resulting LMIs, which turn to be feasible under more general conditions
as compared with those reported in the current literature. This topic may be the
subject of future work as well as the investigation on the control of more specific
class of hybrid systems such as those that undergo switching with time constraints
on the mode transitions. Another direction of research is the control of such hybrid
systems by combining moving horizon estimation and model predictive control.

Acknowlegments. F. Bedouhene thanks the Algerian general direction of research
(DGRSDT/MESRS-Algeria) for their financial support.
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