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The knowledge of the modal capacitance and electro-mechanical coupling factor is essen-
tial for a proper design of systems with embedded piezoelectric transducers and materials.
In light of this, this paper presents two indirect methods for measuring the piezoelectric
modal capacitance and a method to estimate the modal electro-mechanical coupling factor.
All methods rely on simple vibration measurements of the structure with the piezoelectric
transducer connected to a proper shunt impedance, thus avoiding measurements of piezo-
electric current and voltage by expensive equipment. For the modal electro-mechanical
coupling factor, the proposed method guarantees reduced uncertainty compared to tradi-
tional experimental estimation procedures. Upon introduction of the underlying theory,
the paper experimentally demonstrates the reliability and effectiveness of the methods
by comparison with well-established procedures.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration control of structures is a fundamental issue for their durability and performances. This aspect has become even
more important in the last decades since many applications rely on lightweight structures subject to a harsh dynamic envi-
ronment. In these cases, the high vibration level could cause material fatigue, shortening the operating life of the system due
to possible damages, and also increase of maintenance costs. Consequently, the reduction of the undesirable vibrations
becomes a fundamental issue. In this scenario, piezoelectric materials play an important role because their use does not
cause much additional weight, which is a key point for the majority of light structures, they allow to achieve wide control
bandwidths and significant forces, they are characterised by low power consumption and can be used both as sensors and
actuators and therefore they show attractive features for both active and passive control strategies. Piezoelectric materials
have been successfully used for active control in several applications [1], such as in truss structures [2], helicopters [3],
spacecrafts [4], satellites [5] and also in civil engineering [6]. A detailed review of recent developments in the field of active
vibration control through piezoelectric actuators has been published by Shivashankar and Gopalakrishnan [7].

Particular attention has been paid to the optimisation of the control strategy, by e.g. fuzzy-logic algorithms [8], optimal
control [9], multi-objective optimization algorithms [10] or other types of controller [11,12], the geometrical and material
parameters [13–15] and the location on the structure to maximise the control effect, while keeping the control effort as
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low as possible [16]. Different algorithms have been employed for the optimisation of the actuator/sensor position on com-
plex structures, such as genetic algorithms [17], model-based linear quadratic regulators [18] or other criteria [19,20]. Opti-
mal configurations have been proposed for different applications, such as the rear wing of a racing car [21] or adaptive
trusses [22], and various frequency ranges [23]. The reason why great attention has been paid to these aspects is that the
actuation capability depends on the coupling between the strain field and the electrical field [24,25], represented by the
electro-mechanical coupling factor [26] that is a function of the electrical, mechanical and geometrical characteristics of
the piezoelectric transducer on the structure [27]. This parameter constitutes the foundation of piezoelectric structural con-
trol and its estimation is thus important for a proper control design. This is verified by studies that specifically develop meth-
ods for the estimation of the coupling coefficient, such as in Chesne et al. [28] where an approach especially effective for
small parameter values is presented. The knowledge of the electro-mechanical coupling factor is as well important in other
piezoelectric-based applications, for example in energy harvesting, where an accurate estimation of the coupling factor
allows for a proper prediction of the effectiveness of the electro-mechanical conversion [29], as further evidenced in e.g.
[30,31].

The key role of the coupling factor becomes even more important when passive or semi-passive control is considered, for
example in piezoelectric shunt damping [32] or synchronized switch damping [33]. In these cases, the mechanical energy,
converted into electrical energy, is reused to properly control the structure. Thus, the performances of these strategies
strongly depend on the coupling factor, making its estimation essential for effective tuning of the control parameters to max-
imize the achievable attenuation. Several studies on this topic have been carried out in the field of piezoelectric shunt damp-
ing, where the control action is obtained through the connection of a proper electric impedance (shunt) across the
piezoelectric transducer electrodes [34,35], thereby effectively attenuating vibrations in e.g. beams [36] or plates [37].
The control action can be designed for different targets, depending on the type of impedance. The simplest shunt impedances
can be composed of a pure resistance [26] or its series/parallel connection with an inductance [38,39]. The tuning of the
shunt impedance can rely on different principles, such as pole placement techniques [40,41] or minimisation of the system
Frequency Response Function (FRF) [42,43]. Furthermore, multi-branch impedances can be used for multi-mode vibration
control, by the current blocking method of Wu [44] or the subsequent current flowing technique proposed by Behrens
et al. [45]. Modified versions of these solutions have since been analysed and proposed to improve the previous techniques
[46,47]. More complex networks can be used for broadband [48,49], non-linear [50,51] or noise control [52], for control with
multiple transducers [53,54], and in different applications for cable damping [55] and vibration isolation [56]. Moreover,
synchronized switch damping aims at enhancing the control performance by adding switches to the shunt circuit, based
on active elements [57], inductors [58], voltage sources [33], or even periodic impedances [59]. However, in all the above
cases, regardless the impedance used and the tuning strategy applied, the accurate estimation of the piezoelectric transducer
capacitance and coupling factor is required to effectively tune the control system. Up to few years ago, most of the literature
relied on models where the value used for the piezoelectric capacitance was the blocked capacitance, associated with the
transducer linked to a blocked structure. However, since a thin structure is usually flexible and exhibits significant dynamic
behaviour, this piezoelectric capacitance value coincides with the value at infinite frequency, where the dynamic response of
the flexible structure vanishes [60,61]. Therefore, this value of the capacitance will be referred to as C1.

Few years ago, it was observed that the use of C1 in reduced order models of the electro-mechanical system is not able to
provide accurate tuning of the shunt impedance, resulting in non-optimised attenuation performances. Indeed, to achieve an
optimal tuning, a modified value of the piezoelectric capacitance must be used, which accounts for the contribution from the
neglected modes to the electrical behaviour of the system. Supposing that the control action is focused on the s-th mode of
the system, the capacitance value to be used is the modal capacitance Cs that is obtained by adding a correction term C0

s to
C1. The term C0

s allows to take into consideration the influence of the modes higher than the s-th [60,62]. Moreover, the
knowledge of the modal capacitance Cs has been proved to be important for a proper tuning also in case of multi-mode con-
trol [63], and not only for single mode control. Despite the importance of the modal capacitance was observed in the field of
piezoelectric shunt damping, it plays the same significant role when dealing with active control or energy harvesting since it
allows for a more accurate description of the electro-mechanical structure.

Since then, different methods have been proposed in the literature to estimate the modal capacitance. Berardengo et al.
[64] proposed to measure the trend of the capacitance of the piezoelectric patch as a function of the frequency and then to fit
the experimental data with a model. Toftekær and Høgsberg [65] developed a method based on the measurement of modal
charge and voltage. The two methods are based on the same model of the system and thus lead to similar results. Even if the
twomethods are effective in estimating Cs, both require to measure the current flowing through the piezoelectric transducer.
Since this current is very low, dedicated hardware is needed to carry out a reliable measurement, often with the need of
expensive impedance analyzers.

To overcome this issue, this paper proposes two alternative methods that allow for an indirect measurement of the modal
capacitance Cs. Both are based on the use of simple and inexpensive hardware that is usually present in labs where vibration
measurements are performed (e.g. low-cost accelerometers), common acquisition boards and additional inexpensive elec-
tronic devices.

Furthermore, taking advantage of the theory behind one of the two methods proposed for the estimation of the modal
capacitance, a new method to derive the modal electro-mechanical coupling factor is presented in this paper. As mentioned,
the importance of this parameter in piezoelectric control is well known because it is an index of the energy transfer between
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the electrical and mechanical parts of the system (e.g. [24]) and several studies focused on its estimation via analytical (e.g.
[27]), numerical (e.g. [66]) and experimental (e.g. [24,25]) methods. In general, and especially for complex structures, the
most reliable and easy-to-apply experimental procedure is based on the estimation of the short- and open-circuit eigenfre-
quencies (i.e. with the terminals of the piezoelectric transducer short- and open-circuited, respectively). However, if these
two frequencies are really close to each other (i.e. either due to small values of the modal electro-mechanical coupling factor
or because the considered mode is at low frequency), the estimation of this coupling coefficient can be significantly affected
by the uncertainty on the estimates of the two mentioned eigenfrequencies. The method proposed in this paper is shown to
provide an estimate of the coupling coefficient with a reduced uncertainty level compared to the traditional experimental
method and, therefore, to provide more accurate results in the most critical situations.

In order to explain the above-mentioned methods, the paper introduces at first the model used for describing the electro-
mechanical system in Section 2. This also allows to present one of the methods currently used for estimating Cs, which will
be employed in this paper as reference method in order to show the reliability and the effectiveness of the newly proposed
techniques. Then, these proposed methods are described in Section 3, while Section 4 explains the new approach for estimat-
ing the modal electro-mechanical coupling factor. Finally, Section 5 discusses the experimental campaign carried out to val-
idate the proposed techniques and show their results.

2. System model

The dynamics of a vibrating system with a bonded piezoelectric transducer and excited by an external force f e (see Fig. 1)
can be described, in modal coordinates, by the following equation [26,41]:
�x2 þ 2ifsxsxþx2
s

� �
us � hsV ¼ f e;s for s ¼ 1; . . . ;N ð1Þ
where x is the angular frequency, xs is the s-th eigenfrequency (with the piezoelectric transducer short-circuited), fs is the
associated non-dimensional damping ratio, f e;s is the modal forcing, hs is a coupling coefficient per unit modal mass and V is
the voltage across the electrodes of the piezoelectric transducer (see Fig. 1). Finally, i is the imaginary unit, us is the s-th
modal coordinate and N is the number of modes (theoretically N is infinite).

The electric behaviour of the system is governed by the following expression [63]:
C1V þ V
ixR0

� Q þ
XN
s¼1

hsus ¼ 0 ð2Þ
where Q is the charge in one of the electrodes of the piezoelectric transducer (see Fig. 1) and R0 is the inherent resistance of
the piezoelectric transducer (that is often neglected because it is very high). Moreover, _Q defines the current flowing in the
circuit (i.e. the dot represents the derivative with respect to the time, see Fig. 1) and, as mentioned, C1 is the value of the
piezoelectric capacitance at infinite frequency.

Assuming absence of external forcing (i.e. f e = 0 and thus f e;s = 0), Eq. (1) allows to derive the expression of the modal
coordinate us as a function of the voltage V at the piezoelectric terminals:
us ¼ hs
�x2 þ 2ifsxsxþx2

s
V for s ¼ 1; . . . ;N ð3Þ
Substituting Eq. (3) into Eq. (2), the expression of the admittance Y ixð Þ of the piezoelectric transducer attached to the
structure can be obtained, evidencing the contribution of the dynamics of the mechanical system:
Fig. 1. Piezoelectric shunt by means of an impedance Zsh.
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Y ¼
_Q
V

¼ ixQ
V

¼ ix C1 þ 1
ixR0

þ
XN
s¼1

h2s
�x2 þ 2ifsxsxþx2

s

 !
ð4Þ
If only the s-th mode is taken into account, thus considering a single-degree-of-freedom (SDOF) approximation, the modal
sum in Eq. (4) can be expressed as the sum of three terms: one due to the considered mode and other two accounting for the
residual contributions of the neglected modes (i.e. higher and lower). Therefore, in the frequency range around xs (i.e. for
x ’ xs), it is possible to approximate the capacitance of the piezoelectric transducer as a function of the frequency, C xð Þ,
with the following expression:
C ¼ B
x

¼ Im Yf g
x

¼ Im i C1 þ 1
ixR0

þ 1
�x2L0s

þ h2s
�x2 þ 2ifsxsxþx2

s
þ C 0

s

 !( )
ð5Þ
where Imfg indicates the imaginary part of a complex quantity, B xð Þ ¼ Im Y ixð Þf g is the susceptance of the piezoelectric
transducer attached to the structure and L0s and C0

s are constants accounting for the contribution of the modes lower and
higher than the s-th, respectively:
Xs�1

n¼1

h2n
�x2 þ 2ifnxnxþx2

n
’
Xs�1

n¼1

h2n
�x2 ¼ 1

�x2L0s
ð6Þ
XN
n¼sþ1

h2n
�x2 þ 2ifnxnxþx2

n
’
XN
n¼sþ1

h2n
x2

n
¼ C 0

s ð7Þ
The letters used to indicate the contributions from the out-of-band modes are related to the equivalent effect of the two
terms on the admittance of the piezoelectric transducer attached to the structure (see Eq. (4)). Indeed, C0

s has the units of
a capacitance and translates into an additional contribution to C1, while L0s has the units of an inductance and, thus, shows
that the modes lower than the s-th provide an inductive contribution to the behaviour of the electrical part of the whole
system around xs. It follows that the piezoelectric capacitance C xð Þ can be expressed as:
C ¼ Cs þ 1
�x2L0s

þ Re
h2s

�x2 þ 2ifsxsxþx2
s

( )
¼ Cs þ 1

�x2L0s
þ h2s �x2 þx2

s

� �
�x2 þx2

s

� �2 þ 2fsxsxð Þ2
ð8Þ
where Refg indicates the real part of a complex quantity.
The term Cs in Eq. (8) represents the modal capacitance and is the sum of C1 and C0

s. In order to estimate Cs, the admit-
tance Y ixð Þ of the piezoelectric transducer attached to the structure can be measured as a function of x by means of an
impedance analyzer. Then, the experimental curve describing C xð Þ can be obtained from the admittance Y ixð Þ or the sus-
ceptance as:
C xð Þ ¼ B
x

¼ Im Yf g
x

ð9Þ
It is then possible to estimate the unknowns Cs and L0s by fitting the model in Eq. (8) to the experimental curve of C xð Þ
obtained by measuring Y ixð Þ and employing Eq. (9). The values ofxs and fs are considered known in Eq. (8) because they can
be estimated by modal analysis. Considering h2s in Eq. (8), in case of lowmodal superimposition, it can be expressed as a func-
tion of the modal electro-mechanical coupling factor ks. Indeed, the relation between ks and hs is [60]:
h2s ¼ k2sx
2
s Cs ð10Þ
The modal electro-mechanical coupling factor ks can be approximated by estimating the short- (i.e. xs) and open-circuit
(i.e. x̂s) eigenfrequencies of the system as:
k2s ¼ x̂2
s �x2

s

x2
s

ð11Þ
Therefore, h2s can be approximated as (combine Eqs. (11) and (10)):
h2s ¼ Cs x̂2
s �x2

s

� � ð12Þ

Eq. (12) shows that h2s can be approximated as the product of the known quantity x̂2

s �x2
s

� �
(indeed, also x̂s can be esti-

mated by means of a modal analysis of the system) and Cs which is, together with L0s, the unknown in Eq. (8). However, h2s can
also be considered as an unknown and found by means of the minimisation, together with Cs and L0s, in order to improve the
fit, correcting a possible non-accurate initial estimation of h2s .
4
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This procedure employed to estimate the value of Cs and based on the use of an impedance analyzer will be the reference
method in this paper. Therefore, the two new methods for estimating the value of the modal capacitance Cs, discussed in
Section 3, will then be compared to this reference procedure (in Section 5).

3. Indirect methods for estimating the modal capacitance

The two methods presented here require to connect a shunt impedance Zsh to the piezoelectric transducer (see Fig. 1). The
possibility to identify system parameters by connecting a known impedance to the piezoelectric transducer was sketched in
[39]. Here, this approach is applied to the modal capacitance and is developed and investigated. The first method requires
that Zsh is an inductance L (see Section 3.1), while Zsh is a negative capacitance (NC) �Cn for the second method (see
Section 3.2).

3.1. Method 1: L-based estimation of the modal capacitance

When an inductance is shunted to the piezoelectric transducer (i.e. Zsh ¼ ixL), the relation between the charge and the
voltage at the piezoelectric terminals can be expressed as:
Q ¼ V
Lx2 ð13Þ
By using Eq. (13) in the equations describing the electric behaviour of the system (see Eqs. (2), (6) and (7)), exploiting the
SDOF approximation and neglecting R0, the following equality is obtained:
V ¼ �hsLx2

CsLx2 � 1
us ð14Þ
To obtain this equation, the term related to L0s has been neglected. Indeed, according to the literature (e.g. [60,65]), 1=L0s is
low enough to be neglected in case of low modal superimposition.

When substituting Eq. (14) into Eq. (1) and only considering mode s to describe the dynamics of the system in the fre-
quency range around xs because of the low modal superimposition hypothesis, the FRF displacement/force relation of the
electro-mechanical system can be derived (assuming fs ’0):
us

f e;s
¼ CsLx2 � 1

�x2 þx2
s

� �
CsLx2 � 1ð Þ þ h2s Lx2

ð15Þ
As expected, since a shunt impedance composed by an inductance L is used, the FRF in Eq. (15) governs four poles and,
thus, the presence of the shunt impedance produces two peaks around xs, at xs;1 and xs;2, in the FRF displacement/force of
the system (e.g. [62,67]). These two eigenfrequencies can be found posing the denominator of the FRF in Eq. (15) equal to
zero:
x4CsL�x2 L h2s þ Csx2
s

� �þ 1
� �þx2

s ¼ 0 ð16Þ

Solving Eq. (16), the analytical expressions of xs;1 and xs;2 can be found and the following equality can be obtained:
x2
s;1x

2
s;2 ¼ x2

s

CsL
ð17Þ
Ifxs;1 andxs;2 are estimated experimentally, Eq. (17) can be used to find Cs. The use of Eq. (17) is advantageous compared
to the use of a single solution of Eq. (16) (i.e. either xs;1 or xs;2) because it allows to estimate Cs without estimating hs, and
thus with a consequent decrease in the uncertainty associated to the estimate of Cs.It is also noticed that the basic idea of Eq.
(17) is to identify some features of a primary structure by observing how the coupling to a known system changes its
dynamic behaviour. This is an approach successfully adopted in other applications and with different targets (e.g. modal
mass estimation [68]).

To summarise, the following steps are necessary to estimate Cs with the L-based method:

� Measure the system FRF with the piezoelectric transducer terminals short-circuited and estimate xs with an experimen-
tal modal analysis.

� Build an inductance L and measure/estimate its value. In theory, it could have any value. However, it is good practice to
choose a value that allows to have two clear peaks for the shunted system FRF us=f e;s. Such a behaviour is obtained when
the inductance is tuned on the considered mode [26] and, thus, when its value is approximately:
L ¼ 1
Csx2

s
ð18Þ

This would require to have a rough estimation of Cs in advance. However, since a fine tuning is not necessary for the pro-
cedure (i.e. just the presence of two clear peaks in the FRF is required), the first trial for the inductance value can be
5



M. Berardengo, S. Manzoni, J. Høgsberg et al. Mechanical Systems and Signal Processing 151 (2021) 107350
obtained by using Eq. (18) with the capacitance Cpiezo of the piezoelectric patch commonly reported on the data-sheet
from the manufacturer.

� Connect the inductance to the piezoelectric transducer.
� Evaluate the system FRF us=f e;s aroundxs. If the experimental FRF does not show two clear peaks aroundxs, the value of L
can be changed with a trial and error procedure until they are evident. It is important to measure/estimate the final value
of L used before performing the next point on the list.

� Estimate xs;1 and xs;2 by experimental modal analysis on the measured FRF.
� Use Eq. (17) to find Cs.

3.2. Method 2: NC-based estimation of the modal capacitance

A shunt impedance composed by an NC, �Cn, is used in this case. The use of an NC allows to define a new enhanced trans-
ducer composed by the piezoelectric transducer and the NC, as evidenced in Fig. 2. The figure also shows that there are two
possible connection layouts: series (see Fig. 2a) and parallel (see Fig. 2b). The capability of the NC to shift either the short- or
open-circuit eigenfrequencies of the system is exploited here to estimate the modal capacitance.

Consider an electro-mechanical system with short-circuit eigenfrequencies equal toxs and open-circuit eigenfrequencies
equal to [60] (see also Eqs. (11) and (10)):
Fig. 2.
by the
x̂s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

s þ
h2s
Cs

s
ð19Þ
When an NC connected in series is used (see Fig. 2a), it shifts the short-circuit eigenfrequencies (i.e. short-circuiting the
terminals T1 and T2 of the new enhanced transducer in Fig. 2a) towards lower frequency values [60]. The new values of the
short-circuit eigenfrequencies are denoted here as xsc

s . Conversely, NCs connected in parallel (see Fig. 2b) shift the open-
circuit eigenfrequencies (i.e. with the terminals T1 and T2 of the new enhanced transducer in Fig. 2b open-circuited) towards
higher frequency values [60]. The new values of the open-circuit eigenfrequencies are denoted here as xoc

s . It is also noticed
that the two types of connection (series/parallel) require different values of the NC, as explained below.

According to [60], for an NC in series, the value of Cn must be set higher than the value of the piezoelectric capacitance at
the null frequency C0 to assure system stability (thus, the following inequalities hold Cn > C0 > Cs). In this case, for low
modal superimposition, the value of xsc

s can be expressed as:
xsc
s ¼ xs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2s

x2
s Cn � Csð Þ

s
ð20Þ
If the value of the NC used is known, as well as the short- and open-circuit eigenfrequencies (i.e.xs; x̂s andxsc
s ), it is pos-

sible to estimate the modal capacitance Cs combining Eqs. (20) and (19), without the need of estimating hs:
Cs ¼
x2

s � xsc
s

� �2
x̂2

s � xsc
s

� �2 Cn ð21Þ
For an NC in parallel, the value of Cn must be set lower than C1 to assure system stability (thus, the following inequalities
hold Cn < C1 < Cs), and the value of xoc

s is described by the following relation [60]:
xoc
s ¼ xs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2s

x2
s Cs � Cnð Þ

s
ð22Þ
The estimate of Cs in this case can be obtained by combining Eqs. (22) and (19):
A piezoelectric transducer connected to an NC in series (a) and in parallel (b). The red dashed line indicates the new enhanced transducer composed
piezoelectric transducer and the NC.

6
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Cs ¼
xoc

s

� �2 �x2
s

xoc
s

� �2 � x̂2
s

Cn ð23Þ
Therefore, the following procedure can be employed in order to estimate Cs:

� Measure the system FRF with the piezoelectric terminals short- and open-circuited and estimate xs and x̂s, respectively,
with an experimental modal analysis.

� Build an NC �Cn and measure/estimate its value. The NC must assure the stability of the system and, thus, a rough esti-
mation of either C0 or C1 is needed in advance. Such an estimation can be obtained by using the capacitance of the piezo-
electric patch reported on the data-sheet of the manufacturer, Cpiezo. Then, in case the system in unstable connecting the
NC to the piezoelectric transducer, the value of the NC must be adjusted until stability is reached. It is important to mea-
sure/estimate the final value of Cn used before performing the next point on the list.

� Connect the NC to the piezoelectric transducer and evaluate the system FRF.
� Estimate either xsc

s or xoc
s , according to the type of connection of the NC used, by experimental modal analysis.

� Use either Eq. (21) or Eq. (23) to find Cs.

An advantage of this procedure is that it allows to estimate Cs for different modes at the same time, with a single value of
the NC (i.e. the NC affects all the modes of the electro-mechanical system), while the L-based method allows to estimate Cs

only for the mode on which L is tuned.
The two methods for estimating the value of Cs described in this subsection and in Section 3.1 will be compared to the

traditional fitting procedure (see Section 2) in Section 5. The next section shows how it is possible to estimate also hs and ks
from the methods used for estimating Cs.

4. Indirect methods for estimating the coupling coefficients

When the value of hs needs to be estimated, usually, Eq. (12) is used (which requires to have estimated Cs in advance) or hs
is added among the unknowns in the fitting procedure described in Section 2. However, when a double check on the esti-
mated hs value is recommended, the two methods presented in Sections 3.1 and 3.2 to estimate Cs can be employed since
they provide different approaches for estimating hs, as explained in Section 4.1. Furthermore, the L-based method (Sec-
tion 3.1) also allows for a further estimation of ks (which is usually estimated with Eq. (11)). This additional method allows
to decrease the uncertainty associated to the traditional estimation as shown in Section 4.2.

4.1. Indirect methods for estimating hs

When the piezoelectric transducer is shunted with an inductance L (see Section 3.1), the following relation between xs;1

and xs;2 can be derived from Eq. (16):
x2
s;1 þx2

s;2 ¼ x2
s þ

h2s
Cs

þ 1
CsL

ð24Þ
If the L-based method is used to estimate Cs, the only unknown in Eq. (24) is hs that can be, then, easily estimated. This hs
estimate can be used, if needed, to check and verify the value coming from different estimation techniques. Indeed, it is
noticed that the estimate of hs through Eq. (24) relies on the knowledge of parameters different from those on which Eq.
(12) (or the fitting procedure) is based. Therefore, the procedures lead to different estimates of hs that can be, thus, compared.

Considering the NC-based method, the value of hs can be estimated using the expression of eitherxsc
s (Eq. (20)) orxoc

s (Eq.
(22)), depending on the NC layout employed. Indeed, if Cs is estimated with the method described in Section 3.2, hs is the only
unknown in Eqs. (20) and (22). Also in this case, the estimate of hs is obtained using parameters and expressions different
from those traditionally employed (e.g. Eq. (12)). Therefore, the obtained hs values can be compared.

4.2. Indirect method for estimating ks

This subsection shows a new method to estimate ks relying on the connection between the piezoelectric transducer and
an inductance L. Indeed, by substitution of Eqs. (17) and (10) into Eq. (24), the modal electro-mechanical coupling factor can
be expressed as a function of xs;1;xs;2 and xs [67]:
k2s ¼ x2
s;1 þx2

s;2

x2
s

�x2
s;1x2

s;2

x4
s

� 1 ð25Þ
This formulation reduces to k2s ¼ x2
s;1 þx2

s;2

� �
=x2

s

h i
� 2 in case L ¼ Lref , where Lref denotes the value of the inductance in

Eq. (18) (see Eqs. (17) and (18)). A first advantage of the formulation of Eq. (25) is that the estimate of ks depends on xs and
on the eigenfrequencies generated by the inductive shunt. Indeed, xs;1 and xs;2 are well separated and their distance is
7
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greater than that between xs and x̂s on which the traditional estimation of ks is based (see Eq. (11)). Therefore, in the case
short- and open-circuit eigenfrequencies are really close each other and difficult to be identified with a good accuracy (e.g.
low coupling factor, low frequency), this new method allows to overcome the problem since it is based on the identification
of eigenfrequencies more distant from each other.

Another advantage is related to the uncertainty associated to the coupling factor estimate. Indeed, estimating ks with Eq.
(25) provides a result with a reduced uncertainty compared to the case of using Eq. (11).

The standard uncertainty v of k2s can be described by means of the combined uncertainty formulation [69], which is based
on a Taylor expansion. This formulation requires an estimation of the uncertainty related to the estimation of the eigenfre-

quencies involved in the definition of k2s (either Eq. (25) or Eq. (11)). Here, the estimations of the input quantitiesxs; x̂s;xs;1

andxs;2 are assumed as independent and the standard uncertainty associated to the estimates (evaluated by means of modal
analysis) is assumed equal and here referred to as r. Assuming that the Taylor expansion can be truncated to the first order

terms for the sake of simplicity, v assumes the following expression when k2s is estimated with Eq. (11):
Fig. 3.
fs ¼ 5�
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@k2s
@xs

r

 !2

þ @k2s
@x̂s

r

 !2
vuut ¼ 2r

x̂s

x2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x̂2

s

x2
s

s
ð26Þ
Conversely, when k2s is estimated with Eq. (25), v is:
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@k2s
@xs

r

 !2

þ @k2s
@xs;1

r

 !2

þ @k2s
@xs;2

r

 !2
vuut

¼ 2r
1
x5

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x4

s;1x4
s;2 þx2

s x2
s;1 þx2

s;2

� �
x4

s � 3x2
s;1x2

s;2

� �
þx4

s x2
s;1 �x2

s;2

� �2r
ð27Þ
From here on, v is denoted as vcl for the classical estimation method (see Eq. 26) and as vL for the newly proposed method
(see Eq. 27). The two uncertainties can be compared by calculating the ratio vL=vcl as a function of two parameters: ks, which
governs the distance between xs and x̂s, and L which affects the distance between xs;1 and xs;2. This analysis is shown in
Fig. 3a where the different curves are related to different L values. The values of L are expressed as referenced to the L value of

Eq. (18), denoted as Lref in the figure. Looking at Fig. 3a, it can be seen that the influence of the L value is to modify the value
The trend of vL=vcl as a function of the jksj value for different L values (a) and as a function of the ratio L=Lref for different jks j values. Here,
10�4 and Cs = 39 nF (this value was chosen in order to stay close to the Cs values of the system used for the experiments in Section 5).
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of vL because of the change of the values and relative distances of the eigenfrequenciesxs;1 andxs;2. However, regardless the
value of the inductance used, and despite that the ratio vL=vcl increases with ks, it is evident that vL is always significantly
lower than vcl.

In order to clarify the influence of the value of L on vL, it is noticed that this relationship is not straightforward to be anal-
ysed because vL depends on both the distance between xs;1 and xs;2 and on their absolute values (see Eq. (27)). Therefore,
when L is changed, there are two effects to be considered and they can have an opposite influence on the resulting value of
vL. However, Fig. 3b allows to achieve a clear conclusion about which L value is the one allowing to reduce vL as much as

possible. In this figure, the trend of vL=vcl is depicted as a function of the ratio L=Lref for systems with different jksj values.
In all the cases, the value of L equal to Lref is always able to reduce as much as possible vL.

The next section describes the experimental tests carried out to validate the methods presented in this subsection and in
Section 3.

5. Experimental validation of the methods

This section presents the tests carried out to validate the L-based and NC-based methods for estimating the modal capac-
itance and also the method presented in Section 4.2 for the estimation of jksj. At first, the set-up is described in Section 5.1
and then the results of the tests are presented in Section 5.2.

5.1. The experimental set-up

The set-up used was a stainless steel cantilever beam (length of about 18 cm, width of approximately 3 cm and thickness
of about 1 mm) with two piezoelectric patches (length 70 mm, width 30.0 mm, thickness 0.55 mm, material PIC 151) bonded
at the clamped end (one per side) and electrically connected in series (see Fig. 4). The beam was forced by using a contactless
actuator composed of a coil and a magnet bonded close to the tip (the force exerted to the beam was assumed as propor-
tional to the measured current flowing through the coil [70]), while the structural response was measured by means of a
laser velocimeter. The measured FRFs velocity/force allowed to find the FRFs displacement/force just by diving themwith ix.

Considering the L-based method for the estimation of Cs and jksj, the tests were carried out on the first bending mode of
the beam. The main reason for choosing the first mode of the beam was to have an eigenfrequency with a low value (approx-
imately 32 Hz) and thus a high value for L (e.g. see Eq. (18)). In this way, it was possible to demonstrate the practical fea-
sibility of the L-based method also in a disadvantageous situation. Indeed, since the value required for Lwas high, a synthetic
inductor was built by using the Antoniou’s circuit [26,71] based on operational amplifiers. The circuit is shown in Fig. 5a.
Here, the variable resistance Rp1 was used in order to produce a negative resistance in series with L. This negative resistance
was needed to eliminate parasitic resistances that can be present when using operational amplifiers to simulate inductances.
The total residual resistance was estimated to 500 X, that was considered a value low enough not to affect the experimental
tests (also according to simulations).

For the NC-based method, the NC was connected in series in order to work on the first bending modes of the beam [60].
The circuit used was that of Fig. 5b. It can be modelled as the parallel connection of an NC and a negative resistance. The
value of Rcomp was chosen in order to make the resistance highly negative (i.e. �75 MX). This allows the circuit of Fig. 5b
to behave like a pure NC. More details about this circuit can be found in [60].
Fig. 4. The set-up.
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Fig. 5. The electrical schematics used to build the shunt inductance for the L-based method (a) and the NC shunt for the NC-based method (b).
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The values used for the components of the circuits of Fig. 5 are provided in Table 1. All the operational amplifiers used
were of type OPA445 and were supplied with a voltage of �30 V.

Considering the tests with the reference method for estimating Cs described in Section 2 (i.e. the fitting procedure), they
were performed with an impedance analyzer.

Finally, the modal parameters (e.g. eigenfrequencies) which are needed for using the methods proposed in this paper
were identified via modal analysis by means of a least-squares complex-frequency domain method (e.g. [72]).

5.2. Tests

At first, the tests related to the estimation of Cs are discussed here. These tests lasted an entire day. The measurement
with the impedance analyzer was repeated three times during the day (before the tests with the L-based method, between
the tests with L-based and NC-based methods, and after all tests had been conducted). Therefore, the effect of the temper-
ature change, that inherently occurred during the day in the lab, on the value of the modal capacitance is present in the
results of the reference method. This was unavoidable because the tests for both the L-based and NC-based methods lasted
some hours and could not be performed at the same nominal temperature (the temperature in the room of the tests can
change of few Kelvin during the day). Together with the tests using the impedance analyzer, also tests forcing the structure
were performed continuously in order to estimate each time the values ofxs; fs and x̂s. Their values for one of these tests are
reported in Table 2.

The tests with the L-based approach were carried out with six different values of L (gathered in Table 3). This allowed to
check the dispersion of the results of the method. Seven tests were carried out for the NC-based method, with seven different
values of the NC (see Table 3). Since the aim of the new proposed methods is to have an inexpensive approach for estimating
Cs, the values of L and Cn were not measured (this would require a device able to characterise an active element), but the-
oretical formulas were instead employed directly to estimate the L and Cn values. This allows to test both the methods with-
out the use of any additional device. More precisely, L was estimated as (refer to the elements in Fig. 5a):
Table 1
Values

RA [k

1.98
L ¼ CLRARCRp2

RB
ð28Þ
and Cn was estimated as (refer to the elements in Fig. 5b):
Cn ¼ R2

R1

bC ð29Þ
The resistances and capacitances in Eqs. (28) and (29) were measured with an inexpensive basic multimeter.
Figs. 6a, b and c show the fit of the capacitance of the piezoelectric patch with the model of Eq. (8) (setting Cs; L

0
s and hs as

the unknowns to be found) around the third bending mode of the beam for one of the tests with the impedance analyzer (a),
the system FRF showing the influence of the additional L in method 1 (b), and the system FRF with the shift of the short-
circuit eigenfrequency due to the NC in series in method 2 (c), respectively.

Fig. 7 shows the Cs results of the different methods for the first three bending modes of the beam (obviously, the results
for the L-based method are absent for the second and third mode). There is a good superimposition among the different
results for the first mode and the reproducibility of the different methods is comparable (see the magnification in
Fig. 8a). In the case of the third mode, again, the results are more than satisfactory (see the magnification in Fig. 8b). Con-
versely, for the second mode, there is a bias between the results of the reference method and of the NC-based method
of the components of the circuits in Fig. 5.

X] RB [kX] RC [kX] CL [lF] Rp2 R1 R2 [kX] bR Rcomp [MX] bC [nF]

0.99 0.99 4.84 Variable Variable 11.47 Variable 2.91 69.23
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Table 2
Values of xs , fs and x̂s for one of the tests.

bending mode xs= 2pð Þ [Hz] fs x̂s= 2pð Þ [Hz]

1 32.48 4.2 �10�3 33.40

2 154.09 7.2 �10�3 154.53

3 437.67 1.7 �10�3 440.05

Table 3
Values of L and Cn used in the tests.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

L [H] 607.9 ’ Lref 589.7 571.4 553.2 534.9 516.7 –

Cn [nF] 112.9 87.8 79.0 71.9 65.9 60.8 56.5

Fig. 6. Fit of the capacitance of the piezoelectric patch at the third mode for one of the tests with the impedance analyzer (a), magnitude of the measured
FRFs of the system (displacement/force) at the first mode showing the effect of the addition of L in method 1 (b), and magnitude of the measured FRFs of the
system (displacement/force) at the first mode showing the shift of the short-circuit eigenfrequency due to the NC in method 2 (c).
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(although, the order of magnitude of the results of the two methods is the same). The reason for this discrepancy is that the
first mode peak is much higher than for the second mode in the displacement/force FRF of the system (due to higher eigen-
mode components). This makes the hypothesis of low modal coupling (which is at the foundation of the method) not valid
for x ’ x2 with a non-negligible influence from the first mode. Therefore, to face situations like these, in which the modal
superimposition is too large, a modified approach is needed. The solution is to adopt a multi-degree-of-freedom (MDOF)
model to take into account the first two modes of the beam (those interesting for the problem) and the effect of the NC. Such
a model, developed in [63], is briefly described in Appendix A, while in this section only the results are discussed (repre-
sented with yellow crosses in Fig. 7). The use of the MDOF model allows to improve the estimation of Cs, eliminating the
previously evidenced bias. Finally, Fig. 8c shows, for the second mode, the results of the reference method superimposed
to the mean value of the results of the NC-based method with the SDOF (black square) and MDOF (yellow cross) models.
The solid lines show the spans between the largest and smallest results for the two types of NC-based method. This allows
to stress the benefits provided in this case by the MDOF approach and to evidence the reliability of the proposed method
even in case of significant modal superimposition. Obviously, in a real application, one should analyse the system FRF in
order to evaluate whether the MDOF approach is needed or the SDOF one can be employed. It is also important to notice
that the same MDOF approach can be used with the L-based method with similar results as those obtained for the NC-
based method. Therefore, even if the L-based and NC-based methods have been initially presented under the hypothesis
of low modal superimposition, the results shown above enable to evidence that they can provide reliable estimations of
Cs also when this hypothesis is not fulfilled, by using the MDOF model.
11



Fig. 7. Results of the L-based and NC-based methods compared to the reference method for the first three modes of the beam.

Fig. 8. Results of different methods for the first (a), third (b) and second (c) bending mode.
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As a concluding remark, it is possible to suggest to always carry out more than one measurement of Cs when using either
the L-based or the NC-based method. Indeed, the mean value of the results is expected to be a reliable estimator of the modal
capacitance.

Finally, the newly proposed method to estimate jksj (see Section 4.2) was tested on the first bending mode of the beam. To
this purpose, a modal analysis was repeated five times with the piezoelectric patch in both short- and open-circuit. This
allowed to estimate five values of jk1j with Eq. (11). Furthermore, also a modal analysis with the piezoelectric patch con-
nected to an inductance like that of test 2 in Table 3 was repeated five times, allowing to obtain five values of jk1j estimated
through Eq. (25). The results are shown in Fig. 9. A slight bias (i.e. different mean values) can be evidenced between the
results of the two methods. This is mainly due to thermal changes during the test session of the two methods. However, this
bias is so small that it can be considered negligible for practical applications. The interesting outcome of this figure is that the
result dispersion related to the new method is much lower compared to the classical method, therefore implying a lower
uncertainty. This is in accordance with the uncertainty analysis performed in Section 4.2 (particularly, see Fig. 3).
12



Fig. 9. The estimation of jk1j with the classical experimental approach (see Eq. (11)) and the newly proposed one related to the connection of the
piezoelectric patch to an inductance (see Eq. (25)).
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6. Conclusion

This paper has described two indirect methods for estimating the value of the modal capacitance for piezoelectric trans-
ducers using vibration measurements and low-cost electronic devices, thus avoiding the measurement of electrical voltage
and current. This results in an inexpensive experimental set-up. One method requires to connect the piezoelectric transducer
to an inductance L, while the other to an NC. Furthermore, the L-based method also allows for an estimation of the modal
electro-mechanical coupling factor affected by less uncertainty compared to what occurs for the usual experimental estima-
tion approach.

Considering the estimation of the modal capacitance, both methods have been validated against one of the reference
methods available in the literature, showing satisfactory performances. Indeed, the results have been in accordance with
those provided by the reference method and also the result dispersion was comparable. The paper has also shown that it
is possible to successfully estimate the modal capacitance even when the modal superimposition is significant. This is pos-
sible by using an MDOF model for the NC-based method (a similar approach is possible also for the L-based method).

Considering the estimation of the modal electro-mechanical coupling factor, the experimental results proved the capabil-
ity of the L-based method to provide estimations of jksjwith lower uncertainty than the classical experimental method com-
monly used to estimate it.
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Appendix A. The MDOF model

This appendix briefly recalls the basics of the MDOF model presented in [63]. The system with the open-circuited piezo-
electric transducer is represented by means of a state space model. The matrices of this model depend on the modal param-
eters of the structure (i.e. eigenfrequencies and eigenvector components scaled to the unit modal mass, with the short-
circuited piezoelectric transducer, and associated non-dimensional damping ratios for the first two bending modes of the
system, i.e. s = 1, 2) that can be estimated by means of modal analysis. In this specific case, the matrices depend on three
further variables:
13
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1. h1: it can be estimated finding C1 with the NC-based method (see Section 3.2) and then inserting this C1 value into Eq.
(12). It is recalled that C1 can be directly estimated with the method of Section 3.2 because the corresponding mode is not
severely influenced by the surrounding modes.
2. C2: it is the unknown of the problem.
3. h2: it can be expressed as a function of the unknown C2 by using Eq. (12).

The expressions of the matrices are as follows:
A ¼

�2x1f1 �x2
1 1þ h21= x2

1C2
� �� �

0 � h1h2ð Þ=C2 �h1= R0C2
ffiffiffiffiffiffi
C2

p� �
1 0 0 0 0
0 � h1h2ð Þ=C2 �2x2f2 �x2

2 1þ h22= x2
2C2

� �� � �h2= R0C2
ffiffiffiffiffiffi
C2

p� �
0 0 1 0 0
0 �h1=

ffiffiffiffiffiffi
C2

p
0 �h2=

ffiffiffiffiffiffi
C2

p �1= R0C2ð Þ

26666664

37777775 ðA:1Þ
BT
f ¼ /1 xfð Þ 0 /2 xfð Þ 0 0½ � ðA:2Þ
BT
w ¼ h1=

ffiffiffiffiffiffi
C2

p
0 h2=

ffiffiffiffiffiffi
C2

p
0 1

� � ðA:3Þ
Cz ¼ 0 /1 xmð Þ 0 /2 xmð Þ 0½ � ðA:4Þ
Cy ¼ 0 0 0 0 �1½ � ðA:5Þ
in which /s xfð Þ and /s xmð Þ are the eigenvector components (scaled to the unit modal mass and with the piezoelectric trans-
ducer short-circuited) of mode s at locations xf (i.e. where the disturbance f e is applied) and xm (i.e. where the system
response is collected), respectively, with the superscript T indicating the matrix transpose.

These matrices form the following state space description of the electro-mechanical system:
_g ¼ Agþ BwQ þ Bf f e
w xmð Þ ¼ Czg
y ¼ Cyg

8><>: ðA:6Þ
where w xmð Þ is the displacement of the system in xm; y is the output of the system, Q ¼ Q=
ffiffiffiffiffiffi
C2

p
and g is the vector containing

the state variables:
gT ¼ _u1 u1 _u2 u2
R
V

� � ðA:7Þ
where the symbol
R
V is used to indicate the integral with respect to the time of V , with V ¼ V

ffiffiffiffiffiffi
C2

p
.

The effect of the shunt impedance in this model is that of a controller which acts via a feedback loop. Therefore, in this
case where the shunt impedance is an NC, the system results controlled by means of a controller which depends on the val-
ues of Cn and C2. The transfer function Knc of the controller in the Laplace domain (the Laplace operator is defined here as S)
is:
Knc ¼ Q
y

Sð Þ ¼ �CnS
C2

ðA:8Þ
Using the previously defined matrices and controller transfer function, the transfer function Twf of the shunted system
between f e and w xmð Þ can be written as:
Twf Sð Þ ¼ Cz SI� Aþ BwKncCy
� �� ��1Bf ðA:9Þ
where I is the identity matrix.
From this transfer function displacement/force, the corresponding FRF can be easily obtained. If this FRF with the shunted

NC is experimentally measured, it can be used for fitting the model of the controlled system with C2 as the only unknown to
be tuned.

In case of doubt about the accuracy of the estimation of h1 because of closed modes (suppose to consider a system dif-
ferent from that tested), its initial value can be estimated by using the approach described in the first point in the previous
numbered list and then it can be included in the model as a variable to be tuned through the minimisation, together with C2.

Finally, it is noticed that the tests used to estimate h1 (see the first point in the previous numbered list) are the same
employed to find C2 with the fitting procedure, using the MDOF model, and no repetition of the tests is therefore needed.

A similar MDOF model can be used also when employing an inductance L to shunt the piezoelectric transducer.
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