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Abstract: Nowadays, cities can be perceived as increasingly dangerous places. Usually, CCTV is
one of the main technologies used in a modern security system. However, poor light situations
or bad weather conditions (rain, fog, etc.) limit the detection capabilities of image-based systems.
Microwave radar detection systems can be an answer to this limitation and take advantage of the
results obtained by low-cost technologies for the automotive market. Transportation by car may be
dangerous, and every year car accidents lead to the fatalities of many individuals. Humans require
automated assistance when driving through detecting and correctly classifying approaching vehicles
and, more importantly, pedestrians. In this paper, we present the application of machine learning
to data collected by a 24 GHz short-range radar for urban classification. The training and testing
take place on a Raspberry Pi as an edge computing node operating in a client/server arrangement.
The software of choice is Rulex, a high-performance machine learning package controlled through a
remote interface. Forecasts with a varying number of classes were performed with one, two, or three
classes for vehicles and one for humans. Furthermore, we applied a single forecast for all four classes,
as well as cascading forecasts in a tree-like structure while varying algorithms, cascading the block
order, setting class weights, and varying the data splitting ratio for each forecast to improve prediction
accuracy. In the experiments carried out for the validation of the presented approach, an accuracy
of up to 100% for human classification and 96.67% for vehicles, in general, was obtained. Vehicle
sub-classes were predicted with 90.63% accuracy for motorcycles and 77.34% accuracy for both cars
and trucks.

Keywords: internet of things; edge computing; machine learning; cascading; radar

1. Introduction

As cities are getting smarter, and as the spread of intelligent surveillance technologies is gaining
popularity within developed countries, making urban transport secure and efficient plays a key role
in the safety of individuals as well as in affecting traffic flow, which, in turn, may negatively impact
businesses within a city [1].

Unlike video cameras, the operation of short-range microwave radars is not much affected by
the presence of adverse weather conditions. This fact makes them ideal, in addition to classical
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closed-circuit television (CCTV) systems [2], for operating round-the-clock automatic surveillance in
an urban environment. Radars [3–5] can be used for vehicle and pedestrian classification by relying
on feature extraction from the range and Doppler profiles of each target. The data collected by radar
measurements can be used as input to machine learning (ML) algorithms for classification. However,
the hardware should be low cost and lightweight while providing good performance. Therefore,
for this application, we have chosen a Raspberry Pi [6–8], a small portable edge computing device,
which is a very effective platform for real-world scenarios as well as for educational and research
purposes. Raspberry Pi is ideal for edge computing applications, where the node or embedded device
possesses high processing capabilities and is required to have enough storage space to avoid cloud
access. With the large number of wireless sensor nodes that are used over a wide range of applications,
from wearable sensors to image processing and surveillance, along with the integration of artificial
intelligence and machine learning in their decision making, they are required to be as smart as possible
to avoid cloud access and reduce network traffic. Urban classification may not have cloud access and
requires low latency, so it is the ideal example where both training and testing need to be applied on
an edge computing node.

The main goal of the present work is the porting of the state-of-the-art machine learning package
Rulex [9] onto the Raspberry Pi computational platform. The dependencies were compiled to produce
output binary files that are compatible with the target platforms, the first being the Windows 32 Bit
client and the second being the Raspberry Pi server, which is where the Rulex engine runs.

The remainder of this paper is organized as follows: Section 2 presents a review on pedestrian–
vehicle classification, Section 3 introduces the porting of Rulex on the Raspberry Pi, and Section 4
describes the adopted machine learning architecture. Further, forecast results obtained with the present
implementation are presented in Section 5. Finally, we draw some conclusions in Section 6.

2. Pedestrian–Vehicle Classification Review

Radar systems can be used for detecting and classifying different targets, such as pedestrians and
vehicles [3–5]. Indeed, such systems produce, through a proper antenna, an electromagnetic wave that
propagates to the objects eventually located in the inspected scenario. The targets interact with the
impinging radiation employing the well-known scattering mechanism, generating a scattered field
that partly returns to the radar receiver. Specifically, the reflected waves contain information about the
characteristics of the objects that generated them.

The setup considered in the present paper includes a “Distance2Go” radar demo board developed
by Infineon technologies, which is able to produce range-Doppler maps by performing a double fast
Fourier transform (FFT) on the raw data measured using a frequency-modulated continuous wave
(FMCW) scheme [5,10]. Such maps are characterized by a peak in correspondence to the frequency
shift due to the propagation delay and to the Doppler effect (which is always present when dealing
with moving targets). With proper processing, the main information related to the range and radial
speed of the objects can then be easily obtained.

From these measurements, it is possible to derive features to be used for machine learning
classification. Specifically, the machine learning features used for training are the extension of the range
and velocity profiles, as well as the standard deviation, mean, and variance for the same variables,
in addition to the radar cross-section and the estimated target velocity [5]. However, in vehicle
classification, there is the problem of vehicles moving crosswise (i.e., along a direction perpendicular
to the radar axis), which can be mistaken for pedestrians [11]. Indeed, longitudinal moving vehicles
(i.e., traveling along the direction of the radar axis) have a large range profile and a point-shape velocity
profile on the range-Doppler diagram. The opposite is true for pedestrians, due to multiple velocities
caused by the movement of limbs. As for crosswise moving vehicles, their range profile is comparable
to the range profile of pedestrians and their velocity profile may approach that of longitudinal moving
vehicles. Consequently, we need to compute both transverse and longitudinal velocities, and with such
additional features, we attempt to avoid misclassification. Another feature is the radar cross-section
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(RCS), which is the equivalent scattering surface of the target seen by the radar and is related to the
amount of power that is reflected by the object [12,13].

In the rest of this work, we will refer to data obtained with the system described in [5] that have
been made available to us courtesy of the authors.

3. Porting Rulex to Raspberry Pi

Rulex is a machine learning software that supports various machine learning algorithms that
can be easily applied in a user-friendly environment [9]. The Rulex Graphical User Interface (GUI)
provides a means of importing training data and manipulating them before applying machine learning
algorithms. The main proprietary algorithm for Rulex is the logic learning machine (LLM) [14,15] which
implements explainable AI. LLM was the main algorithm used for most of the classifications, where a
tree-based structure, which combines vehicle classes to achieve more accurate results, was adopted.
Then, these new combined classes are split recursively until all vehicles have been classified in their
respective sub-classes.

The Raspberry Pi is a credit card-sized personal computer, which can perform application-specific
tasks as well as performing general-purpose everyday computing, where it can connect to most
personal computer (PC) input/output hardware. The Raspberry Pi has multiple digital input/output
pins which can be used in embedded system applications such as motor control, serial communications,
liquid-crystal display (LCD), and interfacing with a practically infinite variety of sensors.

Nowadays, IoT devices are becoming more intelligent because they support artificial intelligence
software and algorithms, so in this work, we have deployed Rulex to operate on the Raspberry Pi
which is one of the most popular IoT hardware platforms. In order to port a software package from
one platform to another, all of its internal and external dependencies should be compiled on the target
platform. After compilation with a specific tool, binaries or executables are generated, which are
a formatted version of the code to be linked to succeeding layers of the source code. Furthermore,
before porting software from 64 Bits to 32 Bits, all of its dependencies should be compiled in 32 Bits.
Visual Studio may be used to compile the libraries and code when porting to Windows 32 Bits. However,
when porting to Linux, we used CMake [16,17], which is a cross-platform application for generating
executables or libraries.

Rulex external libraries were ported to 32 Bits as the first step before compiling the entire code.
We ported the source code on Windows 32 Bits which is the interface and Raspbian 32 Bits which is
where the engine runs. During porting, one of the issues we faced was the incompatibility of some
datatypes with 32-Bit hardware and software, so they were either changed or cast into a compatible
datatype. Another issue is the inability to generate a larger number of threads, so we developed two
software tests, where one was written in Python and the other in C/C++ as an attempt to find out
what was the maximum number of threads that could be generated. Moreover, the source code was
modified accordingly to optimize the maximum number of threads.

After compiling locally on Windows 32 Bits, we proceeded to remotely compile the source code.
Rulex was also debugged remotely and made compatible with both operating systems by using various
macros and correctly setting variable types.

4. Classification Architecture

4.1. Classification Methodology

In urban classification, there are usually four classes: a pedestrian class and three vehicle classes.
We can go about running forecasts by relying on multiple algorithms in one overall simulation.
Rulex possesses various algorithms to choose from, such as neural networks (NN), k-nearest neighbor
(KNN), decision trees, support vector machines, and logic learning machine (LLM), all of which can
be used for classification. However, since the adopted methodology applies multiple ML algorithms
in a cascaded setup and tests multiple arrangements, which can have a large number of forecasts,
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we included just NN and LLM. This was adopted since NN is a widely used ML algorithm and also
because LLM is the commercial algorithm of Rulex. Furthermore, for NN, a multi-layer perceptron
(MLP) arrangement was applied using the back propagation algorithm [18]. However, since the
vehicle class can be split into 3 sub-classes, namely, cars, trucks, and motorcycles, and since there
is no need to differentiate between them in real-world scenarios, we took advantage of this fact by
applying a sub-class-based tree structure, where the classes are nodes and the algorithms are branches.
The forecasts of the tree-based method can lead to improved validation results by setting different
weights in each forecast. Therefore, we can choose a convenient split ratio between training and testing
data, separately for each forecast, where the split method used is holdout validation. It is also possible
to use different classification algorithms in each forecast on each branch. This is useful in case the
adopted algorithm is not generating the expected results for the dataset at hand. Figure 1 presents
such a tree structure, where the leaves are the final classification outputs.
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As presented, different types of algorithms were applied to the final branches of the tree since they
possess the lowest success rate. Therefore, the prediction accuracy is optimized by varying weights,
data splitting, and, more critically, the algorithm used for classification. The further we go down the
tree, the harder it gets to differentiate between classes.

4.2. System Setup

The machine learning system used consists of the Rulex Engine running on the Raspberry Pi as an
application server, which is where forecasts are applied. This engine is accessed through a graphical
interface running on a Windows client, while a PostgreSQL server is used as the common storage point
between both nodes.

The data acquisition system has been described in [5]. It is a standalone system dedicated to feature
extraction developed and operated separately concerning the client/server Raspberry Pi arrangement
used to run Rulex for target classification. It consists of a Distance2Go radar board developed by
Infineon technologies [19], a Raspberry Pi 3 B+, and a video camera oriented in the same direction
as the radar beam. The system supply is provided by a 5 V, 10 Ah power bank that is sufficient for
operating the whole system for several hours: for this work, it was installed on an internal road of the
DITEN department of the University of Genoa. The system collects the raw data from the radar board
through a Universal Serial Bus (USB) connection and extracts the features which are then forwarded to
the processing chain of the Rulex software for classification.

5. Results and Discussion

The dataset collected by the data acquisition system described consists of 120 rows equally
distributed into 4 classes with 30 patterns for every class. The features consist of the mean, variance,
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and standard deviation of the range and Doppler profiles, along with their reflectivity and the estimated
velocity of the target.

In order to maximize forecast accuracy, we have applied multiple tree-based sub-class arrangements
to simulate using Rulex as a client/server setup [20].

As stated earlier, multiple cascaded simulations were applied with a varying number of classes as
well as a cascaded order. Thus, a summary of all the applied forecasts is presented in Figure 2 and
described in detail in this section. In Figure 2, the red labels stand for the cases and machine learning
algorithms used in that particular simulation, and the green labels represent classes that will be split
into sub-classes in the upcoming simulation.
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In Case 1, we split the data into two classes: humans, and vehicles where LLM was used.
The accuracy is shown in Table 1.

Table 1. Humans and vehicles training and testing prediction accuracy.

Class Training Testing

Humans 100% 100%

Vehicles 95% 100%

In Case 1, the machine learning algorithm used is LLM for classification. However, in Case 2,
we only consider vehicle sub-classes. The simulation was applied using LLM where the prediction
accuracies are found in Table 2.

Table 2. Vehicles, in 3 classes, training and testing prediction accuracy.

Class Training Testing

Cars 96% 75%

Motorcycles 94% 91%

Trucks 100% 72%

In Case 3, we apply a forecast using LLM for vehicle classes by splitting the data into two classes
as shown in Table 3. In Cases 4 and 5, the cars/trucks class has been split into two sub-classes, cars and
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trucks. In Case 4, we use neural networks, whereas LLM has been used in Case 5. The results of these
can be found in Tables 4 and 5, respectively.

Table 3. Cars/trucks and motorcycles training and testing prediction accuracy.

Class Training Testing

Motorcycles 100% 91%

Cars/Trucks 98% 100%

Table 4. Cars and trucks with neural networks training and testing prediction accuracy.

Class Training Testing

Cars 95% 87%

Trucks 100% 70%

Table 5. Cars and trucks with LLM training and testing prediction accuracy.

Class Training Testing

Cars 95% 100%

Trucks 100% 66%

Cases 1 to 5 were processed separately to get a glimpse of how LLM would perform with this given
dataset. From the outputs generated in Tables 1–5, we can estimate the overall prediction accuracy for
a cascaded setup. Furthermore, it should be noted that misclassified records in preceding forecasts
will be treated as correctly classified in upcoming forecasts, which leads to the overall accuracy of
the cascaded system being incorrectly estimated. The preceding forecasts were all performed with a
70%/30% split for training and testing data, respectively, and with all weights being set to unity.

Furthermore, we can apply multiple cascaded setups which are based on the previous forecasts.
If we cascade Cases 1 and 2, the projected output is presented in Table 6. In the case where we cascade
Cases 1, 3, and 4, the projected output is provided in Table 7.

Table 6. Cases 1 and then 2 prediction accuracy.

Class Forecast

Humans 100%

Motorcycles 91%

Cars 75%

Trucks 72%

Table 7. Cases 1, 3, and then 4 prediction accuracy.

Class Forecast

Humans 100%

Motorcycles 91%

Cars 87%

Trucks 70%

If we cascade Cases 1, 3, and 5, we get the results shown in Table 8. Other variations of initializing
the cascaded system with LLM can be found in Table 9, which is Case 6, where one class for humans
along with two classes for vehicles is taken.
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Table 8. Cases 1, 3, and then 5 prediction accuracy.

Class Forecast

Humans 100%

Motorcycles 91%

Cars 100%

Trucks 66%

Table 9. Humans and vehicles, in 2 classes, training and testing prediction accuracy.

Class Training Testing

Cars/Trucks 97% 94%

Motorcycles 94% 100%

Humans 94% 69%

Finally, a single forecast for all four classes which is applied using LLM is presented in Table 10,
namely, Case 7, which consists of forecasting all classes in a single block. With the variation added
in Tables 9 and 10, we can apply two additional combinations to cascade. Thus, we can cascade
Case 6 with Case 4 which employs neural networks or we can cascade it with Case 5 which uses
LLM. These last two combinations include a situation where the previous prediction was not 100%
accurate, so we need to take that into account when theoretically estimating the overall accuracy.
When combining Case 6 with Case 4, the cars/trucks class has an accuracy of 94%, so, naturally,
the neural network predictions in Case 4 will be multiplied by 0.94. The same can be said for Case 5,
where the cars and trucks classes′ success rates are multiplied by the same factor. Tables 11 and 12
provide the projected output forecast accuracy for the last two scenarios.

Table 10. Default LLM forecast training and testing prediction accuracy.

Class Training Testing

Humans 100% 73%

Cars 100% 100%

Motorcycles 84% 91%

Trucks 90% 72%

Table 11. Cases 6 and then 4 prediction accuracy.

Class Forecast

Humans 100%

Motorcycles 69%

Cars 0.94 × 87 = 82%

Trucks 0.94 × 70 = 66%

Table 12. Cases 6 and then 5 prediction accuracy.

Class Forecast

Humans 100%

Motorcycles 69%

Cars 0.94 × 100 = 94%

Trucks 0.94 × 66 = 62%
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All of the preceding simulations only provide an estimation of actual results when cascading
multiple engines. This is due to not considering the false-positive cases of the forecast. We took into
consideration the entire dataset for each algorithm block and ignored some of the rows which were
correctly classified in the abandoned class. In case two algorithms are cascaded, the first block should
be followed by a Rulex data management block which will filter out the true and false positives in the
abandoned class and remove them from the table. However, we still have to multiply the proceeding
blocks with their parent class’s success rate to calculate the overall accuracy.

For Case 1, we split the data 70/30, with 70% used for training and 30% being used for testing.
The same was applied for Case 3. However, for Case 4, with the reduced number of rows, the data were
split 65/35, with 65% used for training and the remaining 35% being used for testing. The main reason
for changing the split ratio in Case 4 is due to the fact the prediction is applied to half of the dataset,
and we found that increasing the size of the test set can lead to higher accuracy for the given data.

As for weights, the only way to set them and optimize results is by trial and error and intuition.
There is no universal method to select weights accordingly. The unity gain in the Case 1 block should
already provide very good results, so there is no need to change the weights. With a unity gain, in Case
3, the cars/trucks class, which will be used in the proceeding block, should be accurate while keeping
the motorcycles class forecast precise enough. A gain of 1.5 was chosen for the cars/trucks field and 1.0
for motorcycles. As for the final block, which is Case 4, both trucks and cars classes, which originate in
Case 3, have an equal true positive rate of 80% in testing. Therefore, weights are left at unity.

Table 13 represents the accuracy for training and testing of Cases 1, 3, and 5, respectively, and as
predicted using Rulex. All the forecasts present good results for testing. Humans were detected with a
rate of 100% and vehicles overall at a rate of 96.67%. In Case 3, which is block 2, the cars/trucks class
has a true positive rate of 93.75% and motorcycles at 90%. As for the cars and trucks block, which is
Case 5, the success rate is 80% for both trucks and cars. Tables 14 and 15 present the overall output
true and false positive rates for the chosen All-LLM forecast. Humans are detected without any errors
for the test dataset. The overall forecasts of the motorcycles, cars, and trucks have been calculated
based on the preceding forecasts to become 90.63% for motorcycles and 77.34 for both cars and trucks.

Table 13. Training and testing accuracies for Cases 1, 3, and then 5 as predicted using Rulex before
computing the actual accuracies.

Case Training Testing

Case 1
Humans Vehicles Humans Vehicles

100% 95.82% 100% 96.67%

Case 3
Cars/Trucks Motorcycles Cars/Trucks Motorcycles

100% 100% 100% 93.75%

Case 5
Cars Trucks Cars Trucks

95% 100% 80% 80%

Table 14. Main forecast.

Class Forecast

Humans 100%

Vehicles 96.67%

Table 15. Vehicles forecast.

Class Forecast for Vehicles

Motorcycles 0.9667 × 93.75 = 90.63%

Cars 0.9667 × 80 = 77.336%

Trucks 0.9667 × 80 = 77.336%
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Furthermore, the overall prediction of vehicles is 96.67%, which can be useful in practice.

6. Conclusions

The machine learning software Rulex has been ported to the Raspberry Pi in a client/server
setup for edge computing applications. The device was used to make forecasts on a pedestrian and
vehicle classification dataset for urban security applications. Multiple forecasts were cascaded in a
tree-like structure while tuning the parameters of every forecast. Classes were split into sub-classes
and single process simulations were applied, where we estimated the overall accuracy for various
cascaded setups. After exhausting all the possible arrangements, the setup with the best projected
output was simulated in a cascaded configuration, which provides an improved prediction outcome.
This approach achieves higher accuracy over the classical approach of applying a single forecast for all
classes. Further, combining classes into a parent class can be useful in practice, such is the case with
the vehicles parent class. However, this approach is exhaustive and time-consuming and may require
setting parameters for different forecasts and various ML algorithms. Moreover, the tree-based method
for improving machine learning forecasts can be used in various configurations. After applying the
proposed method, humans were classified with an accuracy of 100% and vehicles with an accuracy of
96.67%. The final vehicles sub-classes forecast accuracies are 90.63% for motorcycles and 77.34% for
the cars and trucks classes.
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