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by Marcello SCANAVINO

In this thesis we analyze different aspects of conformal field theories, one of the

most powerful tools to study the physics of critical phenomena. Even though many

progresses have been made in the knowledge and comprehension of conformal field

theories, where the strong constraints imposed by conformal symmetry make the sys-

tem easier to solve, still much needs to be done when a perturbation is introduced.

We describe two different approaches which can be useful to tackle this problem. In

particular in Chapter 2, we carefully describe the basic properties of Conformal Per-

turbation Theory (CPT), a mathematical tool to study conformal systems perturbed

by relevant operators. We also provide two examples of how it can be applied and we

match our finding with numerical Monte Carlo simulations. In Chapter 3, we study

a conformal and relativistic hydrodynamic system,also making use of the AdS/CFT

(or holographic) correspondence. This powerful technique, introduced in the context

of string theory, becomes extremely relevant when one needs to study strongly cor-

related systems. In this case indeed, standard perturbative approaches usually fail:

the holographic duality can be thought as a valid and complementary approach to

investigate these important systems.
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Chapter 1

Introduction

1.1 Critical phenomena

One of the most interesting and studied topics in statistical physics is, with no many

doubts, the physics of phase transitions. Phase transitions occur when the macro-

scopic physical properties of a given medium change as a consequence of a change

of external condition (such as temperature, pressure, etc.). According to the modern

classification, phase transitions can be distinguished in two broad categories: first-

and second-order phase transition.

The first are characterized by the fact that they involve a latent heat and two

phases coexist during the passage. In particular, during the transition a usually large

amount of heat can be absorbed or released by the system: the solid-liquid and the

liquid-vapor transition of the water are typical examples. On the other side, the latter,

is a sharp transition with no coexistence of different phases nor the presence of any

latent heat. A very famous example of this kind of transition is the ferromagnetic

transition of a metal at the Curie point.

Nevertheless, the most important feature of this kind of transition is the diver-

gence of the correlation length, which indeed becomes a key observation to define

a phase transition to be of the second order. This fact brings the consequence that

the system loses any characteristic length (or equivalently any characteristic mass): it

means that we could not find differences observing the fluctuations in a limited part

of the system or in a larger one. At this point the correlation functions start following

a power-law behavior, instead of the usual exponential-decay.

This observation leads to conclude that in a critical phenomenon the details of

the microscopic interactions are not relevant, rather the behavior is determined by

the general symmetry properties of the system. This feature of critical phenomena

is known as Universality: even very different systems (from a microscopical point

of view) show the same macroscopic behavior if they belong to same universality

class (i.e. they respect the same symmetries at microscopic level). For instance, the

water at the critical point and a ferromagnet at the Curie point belong to the same

universality class (the Ising class) even though they may seem very different systems

at a first sight.
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In order to distinguish between different universality classes, an important mark is

given by the so called critical exponents. At the critical point, not only the correlation

functions show a power-law behavior, but also other physical quantities have similar

scaling laws. The values of these exponents is the same for any system belonging to

a certain universality class, as reported in table 1.1. Besides the already cited liquid-

vapor critical point and the ferromagnet at critical point, in table 1.1 are reported the

critical exponents of binary mixtures (multicomponent fluid mixtures) and micellar

systems (mixtures of surfactants in a liquid).

System α β γ ν

liquid-vapor critical point 0.111(2) 0.324(2) 1.14(5) 0.6297(4)
uniaxial ferromagnet 0.111(5) 0.325(2) 1.25(2) 0.6300(17)

binary mixture 0.111(2) 0.327(3) 1.236(9) 0.6297(7)
micellar systems 0.329(3) 1.26(5) 0.63(1)

TABLE 1.1: Experimental values of the critical exponents for different
systems[1]. The critical exponent reported are α, β, γ and ν that
describe the power law exponents at the critical point respectively for
the specific heat, the system order parameter (as the magnetization
for the ferromagnet), its second moment (as the susceptibility) and

the correlation length.

1.2 Renormalization Group

One of the best and most used tools to understand critical phenomena is the Renor-

malization Group (RG). The first application of the theory comes from renormaliza-

tion problems in particle physics (from where the name derives, even if misleading:

the set of transformation is more properly a semigroup). Only starting from the ‘70s,

with the work of Kenneth Wilson the ideas of RG found applications to statistical

physics.

The modern theory can be formulated in a very precise and consistent mathemat-

ical way, but we will follow a more pragmatic approach (see for instance ref. [2])

based on scaling arguments, to give an idea of what RG is and how it can be useful

for us. The common idea of all RG studies is to re-express the parameters defining a

problem in terms of other parameters, while keeping unchanged the physical aspects

of the problem. To fix the idea in mind, let us think to a regular lattice with interact-

ing molecules placed at each site of the lattice. Now, if we regroup the microscopic

sites into larger clusters and zoom out, we obtain a new coarse-grained system where

the clusters are the new elementary units.

Iterating the procedure over and over, the parameters evolve according mathe-

matical equations describing the renormalization group flow in the parameter space.

This is due to the fact that, at critical point, we do not observe differences with the

length scale: the partition functions of the two systems must be the same, but since
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we changed the elementary variables, the parameters of the system will change ac-

cordingly.

The coarse-graining, that can be parametrized by a factor of scaling b, and the

redefinition of the system parameters are a single step of the renormalization group

transformations. The set of all the transformations defines a dynamical flow in the

parameter space (i.e. the RG flow) and the study of this flow is a precious tool to

explain the features of the critical phenomena.

We mentioned that critical points are fixed point in the renormalization group

flow, this means that calling {K} the set of all the parameters of the theory, fixed

points are those for which is true that:

R({K∗}) = {K∗} (1.1)

where R is a step in the RG flow and in general will depend on the specific transfor-

mation chosen.

Let us suppose that R is at least differentiable at the critical point, so that the

renormalization group equations, linearized about the fixed point, are:

K ′a −K∗a =
∑
b

Tab(Kb −K∗b ) (1.2)

where Tab = ∂K′a
∂Kb
|K∗ . We call φia its left eigenvectors (since we cannot assume T to

be symmetric a priori), so that: ∑
a

φiaTab = λiφib (1.3)

Then let us define the scaling variables ui the following linear combination:

ui =
∑
a

φia(Ka −K∗a) (1.4)

which under the action of the RG transform multiplicatively as:

u′i =
∑
a

φia(K
′
a −K∗a) =

∑
a,b

φiaTab(Kb −K∗b ) =

=
∑
b

λiφib(Kb −K∗b ) = λiui
(1.5)

Now it is very useful to write these eigenvalues in terms of the scaling parameter

λi = byi , so that we can distinguish three possibilities:

• yi > 0: the field is called relevant,

• yi < 0: the field is called irrelevant,

• yi = 0: the field is called marginal.
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As the name may suggest, relevant perturbations are crucial to determine the

behavior of the system near the critical point. If we start from a point close to (but

not exactly at) the critical point, iterated steps of the RG flow will drive the system

away from the fixed point. On the contrary, if we start sufficiently close to the fixed

point, irrelevant perturbations will drive the system towards the fixed point. For the

marginal ones, we are not able to tell from the linearized equation whether ui will

move away or towards the fixed point.

FIGURE 1.1: A two dimensional example of RG flow. Relevant fields
drive the system away from the fixed point, meaning that relevant
observables are needed to describe the macroscopic behavior of the

system.

However, the dynamics of critical phenomena is ruled by the relevant fields. For

example, in the uniaxial ferromagnet there are two relevant operators, associated to

the temperature and the external magnetic field. The same is true for a simple fluid

(where the critical point is determined by the values of pressure and temperature).

The formalism introduced, even if so far it is very abstract, can explain the univer-

sality of the critical phenomena: if two very different systems have the same kind

of relevant eigenvalues of the RG transformations, they will have the same critical

behavior. In other words, systems belonging to the same universality class differ only

for irrelevant perturbations, meaning that they will have the same scaling laws and

critical exponents.

1.3 Conformal field theories

We already mentioned that at fixed points, the action of the Renormalization Group

flow leaves the system unchanged, or said in other words the system becomes scale
invariant. One may wonder what happens if we add scale invariance to a system

which is already invariant under the action of the Poincaré group. The answer is

that we can not simply add dilatation invariance to get a well defined mathematical
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structure, but we need a stronger condition defined by the so called special conformal
transformation. The set of these transformations realizes the famous conformal group,

a very important set of transformations we will describe in details in the next sections.

Starting from its rigorous and coherent introduction in the paper by Belavin,

Polyakov and Zamolodchikov [3] in 1984, Conformal Field Theory (CFT) rapidly

became one of the most studied and used tools in theoretical physics. Possible appli-

cations of conformal field theory are truly wide: starting from string theory (where it

has become one of the fundamental principles of the theory), it also finds an almost

uncountable amount of applications to critical phenomena, and even in many areas

of pure mathematics.

The strong constraints imposed by the dilatation invariance, in many cases make

the theory simpler to solve because the arbitrary degrees of freedom are considerably

reduced: this may be one of the reasons of the great success of conformal field the-

ories in so many and so different areas. Nevertheless, despite the great success and

widespread use of conformal field theories, there are many interesting systems (even

real ones) which, even if close to a critical point, cannot be described by a CFT.

In the following chapters, we shall see some interesting examples of how one can

deform a CFT by perturbing it with different operators. In particular, in chapter 2

we will give a more exhaustive and detailed discussion of conformal field theories

and we will describe a mathematical tool to investigate the neighborhood of a critical

point when it is perturbed by a relevant perturbation. In chapter 3 instead, we will

show how the Gauge/Gravity duality can be applied to get precious insights about a

conformal magnetohydrodynamic system.

At a first sight, the two approaches may seem very different: the first, starting

from very general assumptions, provides a method to explore the neighborhood of

a critical point, while the latter makes use of a conjecture developed in the string

theory framework to study more easily a strongly coupled CFT. Actually, both the

approaches can be adopted to study conformal field theories perturbed by different

kinds of operators. For this reason they can be somehow considered complementary,

since starting from very different assumptions they can eventually be used to study

the same system from different perspectives.
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Chapter 2

Conformal Perturbation Theory

2.1 Conformal Field Theories

Conformal field theories (CFTs) have been widely studied for more than a century

and in many different fields. They describe critical behavior of systems at second

order phase transition and more in general of those systems that show scale invari-

ance. For this reason they find important application in condensed matter physics,

statistical mechanics, quantum field theory and even string theory, where requiring

scale invariance leads to important constraints as for instance the allowed space-time

dimension.

Nevertheless, it is not possible adding simply scale invariance into a system with

Poincaré invariance, so the result is that conformal symmetry is much more constrain-

ing (specially in 2 dimensions as we will see later) than ordinary scale invariance.

The consequence is that the set of all these transformations forms a group, whose

characteristics are going to be investigated in the next section.

2.1.1 The conformal group

By definition, a conformal transformation is a transformation of the coordinates that

leave the metric invariant up to a scaling factor:

g′µν(x′) = Ω(x)gµν(x) (2.1)

Obviously, the Poicaré group is a subgroup with the scaling factor Ω = 1, but more in

general, conformal transformations are those that preserve angles.

Applying an infinitesimal transformation on the coordinates xµ → xµ + εµ, we get

the infinitesimal generators of the conformal group

∂µεν + ∂νεµ = f(x)ηµν (2.2)

by imposing the condition from Eq. 2.1, and taking trace both sides we get:

∂µεν + ∂νεµ =
2

d
(∂ · ε)ηµν (2.3)
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By applying an extra derivative, permuting the indices and taking a linear combina-

tion we find

2∂µ∂νερ = +ηµρ∂νf − ηνρ∂µfηµν∂ρf (2.4)

From here it is not difficult to show that holds:

(d− 1)∂2f(x) = 0 (2.5)

That means that the previous equation is meaningless for d = 1: any transformation

is conformal in 1 dimension, because even the notion of angle does not est. The case

d = 2 deserves a more detailed discussion later, so let us consider the case d = 3 for

the moment.

The second derivative of f vanishes, meaning that f can be at most linear in the

coordinates:

f(x) = A+Bµx
µ, A,Bµ constant (2.6)

Plugging this result back in Eq. 2.4 we see that ε can be at most quadratic in the

coordinates

εµ = aµ + bµνx
ν + cµνρx

νxρ, aµ, bµν , cµνρ constant (2.7)

Eq. 2.2 and 2.4 give constraints on these parameters that hold for all x, we may treat

each power of the coordinates separately. It follows that:

• aµ is free of constraints and it amounts to an infinitesimal transformation

• bµν = αηµν + mµν is the sum of an antisymmetric part (corresponding to in-

finitesimal rigid rotation) and a pure trace part (corresponding to infinitesimal

scale transformation)

• cµνρ = ηµρbν + ηµνbµ − ηνρbµ, where bµ = 1
dc
σ
σµ corresponds to the so-called

Special Conformal Transformation, whose corresponding infinitesimal transfor-

mation is

x′µ = xµ + 2(x · b)xµ − bµx2 (2.8)

The last transformation is the less familiar but it can be shown that corresponds to an

inversion plus translation.

By exponentiating the infinitesimal transformations, the finite transformations be-

come:

Translation x′µ = xµ + aµ

Rigid Rotation x′µ = Mµ
ν x

ν

Dilatation x′µ = αxµ

SCT x′µ =
xµ − bµx2

1− 2b · x+ b2x2

(2.9)
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The generators of Eq. 2.9 are:

Translation Pµ = −i∂µ
Rigid Rotation Lµν = i(xµ∂ν − xν∂µ)

Dilatation D = −ixµ∂µ
SCT Kµ = −i(2xµxν∂ν − x2∂µ)

(2.10)

They satisfy the following algebra:[
D,Pµ

]
= iPµ[

D,Kµ

]
= −iKµ[

Kµ, Pν
]

= 2i(ηµνD − Lµν)[
Kρ, Lµν

]
= i(ηρµKν − ηρνKµ)[

Pρ, Lµν
]

= i(ηρµPν − ηρνPµ)[
Lµν , Lρσ

]
= i(ηρνLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ)

(2.11)

However the generators can be reorganized in the following form in order to get

simpler commutation rules:

JMN =

 Lµν
Kµ−Pµ

2 −Kµ+Pµ
2

−Kµ−Pµ
2 0 D

Kµ+Pµ
2 −D 0

 , with M,N = 1, ..., d+ 2 (2.12)

The antisymmetric matrix JMN is indeed a rotation in a d+2-dimensional space-time

with signature (2, d), whose commutators are:

[
JMN , JRS

]
= i(ηRNJMS + ηMSJRN − ηMRJNS − ηNSJMR) (2.13)

This shows the isomorphism between the conformal group in d dimensions and the

group SO(d+ 1, 1) with 1
2(d+ 1)(d+ 2) generators. More in general, it can be shown

that the conformal group of a space-time with signature (p, q) is SO(p+ 1, q + 1).

Let us look in more detail the case d = 2 where the conformal group is much more

powerful. In d = 2, Eq.2.3 becomes the Cauchy-Riemann equation:

∂1ε1 = ∂2ε2, ∂1ε2 = −∂2ε1 (2.14)

It is then natural to introduce complex variables ε(z) = ε1 + iε2 and ε̄(z̄) = ε1 −
iε2, with z, z̄ = x1 ± ix2. For this reason the volume element becomes ds2 = dzdz̄

and under analytic transformation z → f(z), z̄ → f(z̄), the metric transform as

g′µν = |f(z)|2gµν . This implies that any analytic transformation corresponds to a

conformal transformation in two dimensions and that the 2 − d conformal group

is infinite dimensional, because any transformation of the kind δz ∼ zn, n > 2 is

allowed.



10 Chapter 2. Conformal Perturbation Theory

Then, how can be possible that the conformal group is infinite dimensional only

in two dimensions, while it is finite for any d > 2? The answer is that we must be

more careful in distinguishing between local and global transformations. If d ≥ 3 any

local transformation is automatically also global, while in d = 2 we only considered

local ones. In order to be global indeed, the transformation must be invertible on

the entire Riemann sphere. This additional request reduces the infinite dimensional

conformal group to a finite dimensional one, called proper conformal group. The

complete set of these transformations is given by:

f(z) =
az + b

cz + d
, with ad− bc = 1 (2.15)

which forms the SL(2,C) group. It is known that this group is isomorphic to SO(3, 1),

then if we just look at the global transformations, there are no differences between

two and higher dimensions.

2.1.2 Conformal invariance and Field Theory

In the previous section we have shown what conformal invariance is, and at classical

level a field theory is conformal if its action is invariant under conformal transforma-

tions. At quantum level instead, the situation is not so straightforward: a quantum

field theory needs to be regularized in order to make sense, but this procedure in-

troduces a scale in the theory. This scale, in general, breaks the conformal symmetry

except at particular values of the parameters, which constitute the renormalization-

group fixed points.

Representations of the Conformal Group at classical level

Let us start showing how classical fields transform under conformal transformations.

Given an infinitesimal transformation parametrized by ωg, let Tg be a matrix repre-

sentation such that the multicomponent field φ(x) transforms as

φ′(x′) = (1− ωgTg)φ(x) (2.16)

The generator Tg must be added to the space-time part of the transformation 2.11 in

order to obtain the full generator of the symmetry. Then, in order to find the complete

form of these generators, we define the action of the generators at the point x = 0

and subsequently we translate the action of the generators at an arbitrary point by

using the Baker-Campbell-Hausdorff (BCH) formula. As an example, let us consider

the angular momentum: firstly we introduce the spin matrix representation Sµν to

define the action of the angular momentum on the field φ(0):

Lµνφ(0) = Sµνφ(0) (2.17)
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Then we can translate the generator Lµν with the BCH formula, finding

eix
ρPρLµνe

−ixρPρ = Sµν − xµPν + xνPµ (2.18)

This allow us to write the action of the generators on the fields:

Pµφ(x) = −i∂µφ(x)

Lµνφ(x) = i(xµ∂ν − xν∂µ)φ(x) + Sµνφ(x)
(2.19)

We can proceed in the same way for the full conformal group. The subgroup that

leaves the origin invariant is generated by rotations, dilatations and special confor-

mal transformations. What we have obtained by removing the translation from the

complete algebra 2.11 is the Poincaré algebra augmented by dilatations. Calling

Sµν , ∆̃, and kµ the respective values of the generators Lµν , D and Kµ at x = 0, the

reduced algebra takes the form:[
∆̃, Sµν

]
= 0[

∆̃, kµ
]

= −ikµ[
kµ, kν

]
= 0[

kρ, Sµν
]

= i(ηρµkν − ηρνkµ)[
Sµν , Sρσ

]
= i(ηρνSµσ + ηµσSνρ − ηµρSνσ − ηνσSµρ)

(2.20)

With these commutation rules we are able to apply the BCH formula as we have done

before for the angular momentum also for the other generators:

Dφ(x) = (−ixν∂ν + ∆̃)φ(x)

Kµφ(x) = (kµ + 2xµ∆̃− xνSµν − 2ixµx
ν∂ν + ix2∂µ)φ(x)

(2.21)

From the Shur’s lemma, we know that any matrix that commutes with all the gen-

erators Sµν must be a multiple of the identity. So if we demand that the field φ(x)

belong to an irreducible representation of the Lorentz group, then the matrix ∆̃ is a

multiple of the identity and the algebra 2.20 forces all the matrices kµ to vanish. ∆̃

is then a simple number, manifestly equal to −i∆, where ∆ is the scaling dimension

of the field φ.

We are now ready to find the finite conformal transformation for a general field

φ(x). For a scalar field (Sµν = 0), we have:

φ′(x′) =
∣∣∣∂x′
∂x

∣∣∣−∆
d
φ(x) = Ω(x)

∆
2 φ(x) (2.22)

where Ω(x) is the conformal scaling factor of Eq. 2.1. A field transforming such

as in Eq. 2.22 is called a primary field. If the field φ(x) belongs to an irreducible

representation R of the Lorentz group with non zero spin instead, the transformation
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rule will depend also on the rotation matrix Mµ
ν defined in 2.9, so that the result

becomes:

φ′(x′) = Ω(x)
∆
2 R[Mµ

ν ]φ(x) (2.23)

where R[Mµ
ν ] is a representation matrix acting on the indices of φ(x).

The stress-energy tensor

Let us look now at the consequences on the stress-energy tensor brought by an arbi-

trary transformation of the coordinates xµ → xµ + εµ. The action change as follows:

δS =

∫
ddxTµν∂µεν

=
1

2

∫
ddxTµν(∂µεν + ∂νεµ)

(2.24)

We assumed the stress tensor Tµν to be symmetric (indeed the stress tensor can al-

ways be made symmetric if the theory is invariant under rotation). Then by recalling

Eq. 2.2 the previous expression becomes:

δS =
1

d

∫
ddxTµµ ∂ρε

ρ (2.25)

Note that the tracelessness of the stress-energy tensor implies the invariance of the

action under conformal transformations. The converse is not true, because ∂ρερ is not

an arbitrary function.

However, even if it is not true in general, under very general conditions it can be

proven that also the converse is true (see [4] for details). Then, in the large majority

of field theory at the classical level, conformal invariance is a consequence of scale

invariance and Poincaré invariance.

Representations of the Conformal Group at quantum level

In this sections we analyze the consequences of conformal invariance on a field the-

ory at quantum level, in particular let us start looking at the constraints given by

conformal invariance on two- and three-point correlation function of primary scalar

fields.

The two point function is defined as follows:

〈φ1(x1)φ2(x2)〉 =
1

Z

∫
[DΦ]φ1(x1)φ2(x2)e−iS[φ] (2.26)

where φ1 and φ2 are two primary scalar fields (not necessarily distinct), φ is the set of

all functionally independent field of the theory and S[φ] is the conformally invariant

action.
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Since the integration measure and the action are assumed to be conformally in-

variant, Eq. 2.22 leads to the following transformation rule for the correlation func-

tion:

〈φ1(x1)φ2(x2)〉 =
∣∣∣∂x′
∂x

∣∣∣∆1
d

x=x1

∣∣∣∂x′
∂x

∣∣∣∆2
d

x=x2

〈φ1(x′1)φ2(x′2)〉 (2.27)

The result can be straightforwardly generalized to higher-point function and to fields

with non-zero spin.

Firstly, ordinary translation invariance implies that a correlation function does not

depend on two independent coordinates, but rather only on their differences x1 − x2

while rotation invariance tells us that it should depend in particular on the distance

|x1 − x2|. Putting together this means:

〈φ1(x1)φ2(x2)〉 = f(|x1 − x2|) (2.28)

If we consider now a scale transformation x→ λx, Eq. 2.27 becomes:

〈φ1(x1)φ2(x2)〉 = λ∆1+∆2〈φ1(λx1)φ2(λx2)〉 (2.29)

From the two previous equations we understand that:

〈φ1(x1)φ2(x2)〉 =
C12

|x1 − x2|∆1+∆2
(2.30)

where C12 is a constant coefficient.

Finally we must impose the invariance under SCT (Ω(x) = (1 − 2b · x + b2x2)−d)

we get the following constraint:

C12

|x1 − x2|∆1+∆2
=

C12

γ∆1
1 γ∆2

2

(γ1γ2)
∆1∆

2

|x1 − x2|∆1+∆2
(2.31)

with γi = (1− 2b · xi + b2x2
i ). This constraint is identically satisfied only if ∆1 = ∆2:

this means that two primary fields are correlated only if they have the same scaling

dimension:

〈φ1(x1)φ2(x2)〉 =


C12

|x1−x2|2∆1
if ∆1 = ∆2

0 if ∆1 6= ∆2

(2.32)

Actually, the constant C12 can be absorbed in the definition of the fields, so that the

two-points function is completely fixed, with no undetermined constant: 〈φi(xi)φj(xj)〉 =

δij |xi − xj |−2∆i .

Following the same steps, also the three-points function can be constrained by

conformal invariance and for three scalar primary fields we get:

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

x∆1+∆2−∆3
12 x∆1+∆3−∆2

13 x∆2+∆3−∆1
23

(2.33)

where x12 = |x1 − x2| and C123 is an undetermined constant.
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After the successful results for 2- and 3-points function, one may expect that sim-

ilar procedures can be adopted also for generic n-points functions. Unfortunately

this impressive performance stops at n = 3. Indeed, when n ≥ 4 it is possible to

construct conformal invariant ratios and the n-point function may have an arbitrary

dependence on these ratios. For instance, the 4-points function becomes:

G(4)(x1, x2, x3, x4) = F
(x12x34

x13x24
,
x12x34

x23x14

) 4∏
i<j

x
∆/3−∆i−∆j

ij (2.34)

with ∆ =
∑4

i=1 ∆i

Conformal Ward Identities

Ward identities are identities between correlation functions that reflect symmetries

possessed by the theory: they are the quantum version of classical current conserva-

tion associated to a continuous symmetry.

An infinitesimal symmetry transformation on the field φ(x) can be written in terms

of generator as:

δφ′(x) = −iωaTaφ(x) (2.35)

being Ta the generators of the transformation and ωa the infinitesimal parameters

associated to the symmetry. Then, calling jµa the conserved current associated to the

symmetry 2.35, the corresponding Ward identity can be derived in the functional

integral formulation of correlation functions. The results reads:

∂µ〈jµa (x)φ(x1)...φ(xn)〉 = −i
n∑
i=1

δ(x− xi)〈φ(x1)...Taφ(xi)...φ(xn)〉 (2.36)

Let us see now what happens for conformal transformations. The generator as-

sociated to translational invariance is Pµ = −i∂µ, consequently the associated Ward

identity is:

∂µ〈Tµν X〉 = −i
∑
i

δ(x− xi)∂iν〈X〉 (2.37)

where X denotes a general collection of fields φ1...φn.

The conserved current associated to Lorentz invariance (once the stress-energy

tensor has been made symmetric) is

jµνρ = Tµνxρ − Tµρxν (2.38)

Recalling the corresponding generator Ta = −i(xν∂ρ − xρ∂ν) + Sνρ, and substituting

these expressions in 2.36, we obtain:

∂µ〈(Tµνxρ − Tµρxν)X〉 =
∑
i

δ(x− xi)
[
(xνi ∂

ρ
i − x

ν
i ∂

ρ
i )− iSνρi

]
〈X〉 (2.39)
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Acting with the derivatives on the stress-energy tensor or on the coordinates, the

previous expression can be further simplified using 2.37, leading to:

〈(T νρ − T νρ)X〉 = −i
∑
i

δ(x− xi)Sνρi 〈X〉 (2.40)

The previous expression states that the stress-energy tensor is symmetric within cor-

relation function, except at the contact points (i.e. the positions of the other fields

of the correlator). The last identity we are going to analyze concerns the dilatation

invariance: the associate current can be written as

jµD = Tµνxν (2.41)

The infinitesimal generator is D = −ixν∂ν − i∆, then the Ward identity is:

∂µ〈Tµν xνX〉 = −
∑
i

δ(x− xi)
[
xνi ∂

i
ν + ∆]〈X〉 (2.42)

Again, acting with the derivative and using Eq. 2.36 we find:

〈TµµX〉 = −
∑
i

δ(x− xi)∆i〈X〉 (2.43)

Last equation tells us that the stress energy tensor of a conformal quantum field

theory is traceless up to contact terms.

Equations 2.37, 2.40 and 2.43 are the Ward Identities associated with conformal

invariance.

2.1.3 Radial quantization and OPE

In the previous section we have talked about correlation function of local operators

and we have seen how they are constrained by conformal symmetry via the Ward

identities. However, we have never made use of operator formalism or Hilbert space

and indeed correlation functions could be in principle obtained in the path integral

formalism.

In the next section, we shall see a parallel approach based on Hilbert space and

operator formalism, which will be very useful for understanding many questions that

would be hard to tackle such as Unitary Bounds and Operator Product Expansion

(OPE).

Remarks on quantization

When we construct an Hilbert space in a quantum field theory, we need to choose

a foliation of space-time. Each leaf of the foliation is endowed with its own Hilbert

space. We can define in states |ψin〉 and out states 〈ψout| by inserting operators re-

spectively in the past or in the future of a given surface. The overlap of the two states
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gives the correlation function 〈ψout|ψin〉 if they belong to the same foliation. On the

other side, if they live on different foliations, there exists an unitary operator U that

connects the two states, such that the correlation function is:

〈ψout|U |ψin〉 (2.44)

Usually, one should choose a proper foliation according to the symmetry of the sys-

tem, for instance in the case of Poincaré invariance it is convenient to foliate the space

by surfaces of constant time. With this choice, the evolution operator is simply given

by the exponentiation of the generator P 0, i.e. U = exp (iP 0∆t).

Nevertheless, this foliation is not the best choice in the case of CFTs, where the

best choice is given by SD−1 spheres of constant radius. This is called radial quanti-

zation. We will assume that the spheres have the center at x = 0, but of course we

could quantize with respect to any other point and get the same correlators.

In radial quantization, the evolution operator is obtained by exponentiating the

dilatations generator D, that will play the role of the Hamiltonian:

U = eiD∆τ (2.45)

where τ = log r. The states living on the sphere are then classified according to their

scaling dimension:

D|∆〉 = i∆|∆〉 (2.46)

and by their SO(D) splin l:

Mµν |∆, l〉a = Sbµν,a|∆, l〉b (2.47)

since the angular momentum is the only generator that commutes with D. Note also

that the matrices Sµν acting on the spin indices are non-zero only for non-zero spin.

States in radial quantization

Now we will see how to generate states in radial quantization and what is their rela-

tion with operators. We already know that states are generated by inserting operators

inside the spheres. This means that the vacuum state |0〉 corresponds to inserting

nothing and its dilatation eigenvalue (i.e. the energy of the state) is simply zero.

If we insert an operator with scaling dimension ∆ at the origin O∆(x = 0), the

corresponding state |∆〉 has energy equal to ∆, indeed:

D|∆〉 = DO∆(x = 0)|0〉 = [D,O∆(x = 0)]|0〉 = i∆|∆〉 (2.48)

where we used the commutation relations

Finally, if the operator is inserted at certain x 6= 0, the corresponding state is not

an eigenstate of D, as dilatations move the insertion point. In detail, this state is a
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superposition of states with different energies:

|Ψ〉 = O∆(x)|0〉 = eiPxO∆(0)e−iPx|0〉 = eiPx|∆〉 =
∑
n

1

n!
(iPx)n|∆〉 (2.49)

In fact, the operator Pµ acts as the creation operator in radial quantization, and when

it acts on a state |∆, it raises its energy by one unit. In the same way the operator

Kµ is the annihilation operator and it lowers the energy by one unit. This becomes

evident recalling the commutation relations of these operators, which are:

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

(2.50)

With this algebraic construction of the states, becomes clearer the notion of pri-

mary fields, namely the fields which are annihilated by Kµ. In order for a theory

to be unitary, the energy spectrum must be bounded by below, so if we keep hitting

with Kµ on a general state, at a certain point we must find a state that is annihilated

(namely a primary field).

Note that the correspondence between states and operators is a one-to-one cor-

respondence. This means that inserting a local operator at the origin, we construct

a state with scaling dimension ∆ that is annihilated by Kµ, but also the converse is

true. Given a state with scaling dimension ∆ which is annihilated by Kµ, we can

construct a local primary operator. In order to construct an operator, we must define

its correlation function with other operators. It is easy to see that

〈φ1φ2...O∆(0)〉 = 〈0|φ1φ2...|∆〉 (2.51)

is a good definition which satisfies all the usual transformation properties dictated by

conformal invariance.

Finally, it is interesting looking at the definition of conjugate operators in radial

quantization. Let us start with the operators Kµ and Pµ: the first can be obtained by

applying the inversion operator R twice on the second:

Kµ = RPµR (2.52)

since a special conformal transformation is obtained by inversion followed by trans-

lation followed by inversion. Moreover, we previously identified these two operators

as the creation and annihilation operators, so it is quite natural to try to define the

conjugation operator as the inversion, so that

Kµ = P †µ (2.53)

Then, given a state Ψ〉 = φ(x)|0〉, its conjugate is given by

〈Ψ| = 〈0|[φ(x)]†, with [φ(x)]† = r−2∆φφ(Rx) = R[φ(x)] (2.54)
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where r is the radial distance of x expressed in radial coordinates x = (r, ~n).

From last equation, it also follows that in a unitary theory, correlation functions

are R-reflection positive

〈0|[φ(y)]†[φ(x)]†...φ(x)φ(y)|0〉 > 0. (2.55)

Example: two-point function in radial quantization

For a better understanding, it is useful considering a brief example: the two-point

function of scalar fields. We know that φ(x1)|0〉 = eiPx1 |∆φ〉 and from Eq. 2.54 we

can build its conjugate, so that we get:

〈0|φ(x1)φ(x2)|0〉 = r
−2∆φ

2 〈∆φ|e−iKRx2eiPx1 |∆φ〉 (2.56)

Expanding in series inside the mean value we get

〈0|φ(x1)φ(x2)|0〉 =
1

r
∆φ

1 r
∆φ

2

∑
N

〈N,~n2|N,~n1〉
(r1

r2

)∆+n
(2.57)

where the state |N,~n〉 = 1
N !(Pµ~n

µ)N |∆〉 and we used the fact that the expectation

value of product of operator involving different power of Pµ and Kµ is zero since two

states with different energies are orthogonal.

This means that the coefficients of the expansion take the form 〈∆|KKK...PPP |∆〉,
namely they are certain matrix elements which can be evaluated just using conformal

algebra. The computation is quite simple for the 2-point function:

〈∆|KµPν |∆〉 = 〈∆|[Kµ, Pν ]|∆〉 =

= 〈∆|2i(Dδµν −Mµν)|∆〉 = ∆δµν
(2.58)

but it can be generalized to the case of multi-point function. In practice it is much

simpler using the constraints fixed by conformal invariance, but in any case it is im-

portant to show that radial quantization works and it can be adopted as an alternative

approach in more complex cases where the only kinematics is not sufficient.

Unitarity bounds

The first example of how radial quantization may help in deriving some interesting

result is the case of unitarity bounds. This famous result tells us that the dimension of

a traceless primary filed in a unitary theory must be above a minimal allowed value

∆ ≥ ∆min(l), depending on the spin l, such as

∆min(l) = l + d− 2, it l = 1, 2, 3...

∆min(0) =
d

2
− 1

(2.59)
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Similar bound can be derived for antisymmetric tensor and fermionic representations

of the Lorentz group. In what follows we will show a sketch of the proof. Let us

consider the matrix element

Aνµ = 〈∆, l|KνPµ|∆, l〉 (2.60)

The corresponding eigenvalues will be necessarily positive in a unitary theory. Let

us suppose that there exist a negative eigenvalue λ < 0 with χµ the corresponding

eigenvector.Then the state |ψ〉 = χµPµ|l〉 will have negative norm:

〈ψ|ψ〉 = χ†Aχ = λχ†χ < 0 (2.61)

that clearly violates the unitarity of the theory.

Now, using [Kν , Pµ] ∼ i(Dδµν−Mµν) we see that the eigenvalues of A receive two

contributions, the first proportional to ∆, while the second will be the eigenstates of

an Hermitian matrix depending on the spin:

Bν{t}µ{s} = 〈{t}|iMµν |{s}〉 (2.62)

({s}, {t} are the spin indices). The condition λA ≥ 0 is equivalent to ∆ ≥ λmax(B)

(i.e. the maximum eigenvalue of B). The computation of these eigenvalues can be

done in analogy with the treatment of spin-orbit interaction in quantum mechanics.

Performing all the computation one finds (for details see [5]):

λmax(B) = d− 2 + l, for l ≥ 1 (2.63)

which proves the first of the unitarity bounds.

What happens if we consider matrix elements with moreK and P? Actually, when

l ≥ 1, the constraint 2.63 is a necessary and sufficient condition to have unitarity at

all levels. When l = 0 instead, a stronger bound comes from the second level, namely

from:

Aµν ρσ = 〈∆|KµKνPρPσ|∆〉 (2.64)

we obtain

∆(l = 0) ≥ d

2
− 1 (2.65)

Which is the second of the previous unitarity bounds.

Operator Product Expansion (OPE)

The notion of OPE comes from usual Quantum Field Theory and it is introduced to

define the product of two local operators (in the limit when they are very close to

each other) as a series of operators inserted at the midpoint. This kind of approach

offers a non-perturbative approach to QFT, and not only it still holds in Conformal
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Field Theory, but it acquires additional and very powerful properties thanks to a

connection with radial quantization.

Let us now derive OPE using radial quantization. Consider two operators inserted

inside a sphere as shown in figure 2.1:

FIGURE 2.1: The state |ψ〉 is generated by the insertion of the two
operators inside the sphere.

They generate the state |ψ〉 = φ2(x)φ1(0)|0〉 on the surface of the sphere. More-

over, this state can be always written as an expansion into the basis of energy (i.e.

dilatation) eigenstates:

|ψ〉 =
∑
n

cn|En〉, cn = cn(x) (2.66)

But from state-operator correspondence, we know that each state |En〉 is in a one-

to-one correspondence with operators (primary or descendants, i.e. derivatives of

primaries). Thus, we can write:

φ2(x)φ1(0)|0〉 =
∑

O primaries

CO(x, ∂y)O(y)|y=0|0〉 (2.67)

where CO(x, ∂y) is intended as a power series in ∂y. This simple argument proves the

existence of an OPE.

However, there is an important difference with the usual definition of OPE given in

QFT, where it is usually used only in the asymptotic short-distance limit. In particular,

since in a CFT the OPE can be understood as an expansion in a Hilbert space, the OPE

is not just an asymptotic expansion, but is actually a convergent series expansion at

finite point separation.

We just proved the existence of OPE, so now we may ask if it is possible to deter-

mine the structure of the coefficients. The coefficients can be constrained by asking

they are consistent with conformal algebra. For example, let us focus on a certain
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term of the expansion:

φ2(x)φ1(0)|0〉 =
const.
|x|k

[O(0) + ...]|0〉 + contributions of other primaries (2.68)

where the “...” stand for terms containing the descendants of O. The power of k can

be determined by acting with D on both sides. It is straightforward to conclude that

k = ∆1 + ∆2 − ∆O. Also the subsequent descendant terms can be fixed (by acting

with Kµ instead of D) with the result that conformal invariance fixes completely the

function of CO(x, ∂y), up to a numerical constant:∑
O
λOCO(x, ∂y)O(y)|y=0|0〉, with λO free parameter (2.69)

The above procedure is useful from a conceptual point of view, but it is not the

smartest way to compute the function CO(x, ∂y). In practice it is much easier to

use OPE to reduce an n-point function to an (n − 1)-point function and fixing the

function from the knowledge of the multi-point functions.

2.2 Conformal Perturbation Theory

In the previous section we discussed some properties of the conformal field theories,

which describe physical system at the critical point (i.e. at second order phase transi-

tion point). Nevertheless, most of the interesting physical systems are not exactly at

the transition point, but away from criticality. In particular, when the critical system

is perturbed by a relevant operator some problems may occur because the corrections

to the conformal correlation function are typically afflicted by infrared divergences.

In the next sections we will present a general method to deal with conformal field

theories perturbed by relevant operators, since the standard approach based on the

Gell-Mann and Low theorem is not useful in this situation. The general idea presented

in [6] is to express the short distance behavior using the OPE so that the perturba-

tive and non-perturbative contributions split up. The non-perturbative behavior is

encoded in the vacuum expectation values (VEV) of the local operators, while the

Wilson coefficients include the part that can be calculated perturbatively.

2.2.1 The underlying hypothesis

In order to show the general approach to extract the short distance behavior of corre-

lator functions, we have to introduce first a list of underlying hypothesis. Let us now

introduce the action of the model we are going to analyze.

S = SCFT −
∫
dx
∑
i

mi
BOiB(x) (2.70)
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The model represents a D-dimensional euclidean conformal field theory, perturbed

by one or more relevant operators Oi (of canonical dimensions 0 < xDi) with di-

mensionful couplings mi (“generalized masses” of dimensions yi = D − xi). In what

follows we may refer also to the unperturbed model as “massless theory” while the

complete theory will be the “deformed theory”.

We assume the massless theory to be at least perturbatively UV renormalizable

with respect to some coupling λ and that only logarithmic corrections can arise to

tree level scale invariance. Nevertheless in the following we will forget about the λ

dependence and all the results must be intended as results holding order by order in

the renormalized perturbative expansion in λ.

As we said, a crucial point of our discussion is the introduction of an OPE to

rewrite to short-distance behavior of a correlator function. In general we can write:

〈Φa1(r1)...Φan(rn)X(R)〉m ∼ Cca1...an(r1−rn, ..., rn−1−rn;m)〈Φc(rn)X(R)〉m (2.71)

where Φai(ri) is a complete set of composite operators of dimension xi, X(R) is

a multi-local operator defined on |R| > max |r1|, ..., |rn| (or eventually the identity

operator (X(R) = 1) and the index m indicates that correlators are evaluated at

fixed sources mi.

In order to be able to evaluate the derivatives of the coefficients Cca1...an , we must

first introduce three hypothesis.

Hypothesis 1: Regularity.

An UV renormalization scheme for correlators of the deformed theory is assumed
such that counterterms are polynomial in renormalized generalized masses (Minimal
Mass Dependence, MMD) and the Wilson coefficients are regular (i.e. C∞) in general-
ized masses at mi = 0.

The request of Minimal Mass Dependence is crucial because it guarantees the

smoothness in the mi → 0 from the point of view of UV renormalization. In fact

the presence of a renormalization scheme which introduce a scale mass would break

conformal invariance of the unperturbed theory. On the contrary, any subtraction

scheme that only subtracts the infinite part (i.e. Minimal Subtraction), satisfies MMD

because it does not introduce any additional mass dependence in the counterterms.

Let us stress that Minimal Mass Dependence and the regularity of Wilson coef-

ficients are equivalent in the framework of perturbative renormalization. Indeed,

Minimal Subtraction (MS) in dimensional renormalization satisfies MMD and reg-

ularity. Moreover, any other renormalization scheme that satisfies MMD will differ

from MS only by finite counterterms (i.e. polynomial in the masses). In particular, a

renormalized operator will change under change of scheme accordingly as:

[Φa]
′ = N b

a[Φb] (2.72)
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where N b
a = δba + Y b

a and Y is a O(~) matrix polynomial in the masses. Consequently

the Wilson coefficients transform as:

C ′
c
a1...an = N b1

a1
...N bn

anN
−1c

dC
d
b1...bn (2.73)

The matrices of change of scheme are chosen to be regular, thus since the Wilson coef-

ficient of the original scheme are regular, also the new ones will be regular. Moreover

the stronger assumption of analyticity of Wilson coefficient guarantees the conver-

gence of the Taylor series we are building up, while in the general case only the

asymptotic convergence is ensured.

The second assumption is necessary to evaluate the derivatives of Wilson coeffi-

cients with respect to generalized masses.

Hypothesis 2: Action Principle.

It is assumed that for each renormalized generalized mass mi a conjugate operator
Oi exists such that the derivative with respect to mi is:

∂mi〈X〉m =

∫
dx〈: Oi : X〉m, : Oi :≡ Oi − 〈Oi〉m (2.74)

for each multilocal operator X.

The above hypothesis is known to hold in perturbative renormalization in schemes

satisfying Hypothesis 1 such as Dimensional Renormalization and Analytic Renormal-

ization. Moreover it is rather simple with respect to other approaches in literature and

this aspect will be important later because it will allow us to deal with expressions

for derivatives of generic order and to give the inductive IR finiteness proof.

Last hypothesis we need to introduce concerns the convergence of the OPE. While

the convergence of the OPE in the unperturbed theory (i.e a conformal field theory)

is well understood, the convergence in a general theory (i.e. mi 6= 0) is far from being

proved. From our purposes, we don’t need a complete proof of the convergence, but

it is sufficient a weaker assumption.

Hypothesis 3: OPE asymptotic weak convergence.

It is assumed that the remainder of OPE

∆(N)(XR,m) ≡ 〈(Φa1(r1)...Φan(rn)−
xc≤N∑
c

Cca1...anΦc)XR〉m (2.75)

(XR being the unity or a multilocal operator with support outside R > |r1|, ..., |rn|)
satisfies

lim
N→∞

lim
m→0

lim
R→∞

∂i1 ...∂ik∆(N)(XR,m) = 0 (2.76)
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for any k. Equivalently we can write

lim
N→∞

lim
R→∞

〈(Φa1(r1)...Φan(rn)−
xc≤N∑
c

Cca1...anΦc)XR〉 ∼ 0 (2.77)

in the sense of asymptotic series in mi.

Let us make some comments about this statement. First of all Eq. 2.77 for k = 0 is

equivalent to asking for the convergence of the OPE in the unperturbed theory when

inserted in correlators with “far” operators, a well known property of conformal field

theories. Then, in general quantum field theory, it is known from perturbative as well

as axiomatic considerations that the OPE is an asymptotic expansion in power of r.

In our case, the limit R → ∞ is reached and the contribution of XR factorizes: this

means that the only physical scale in the OPE comes from the generalized mass. The

remainder will be order O((m
1
y r)ν) by dimensional analysis, and thus the OPE series

with respect to powers of the generalized masses reasonably becomes asymptotic.

2.2.2 A basic example

In order to understand better what we said in the previous section, it may be helpful

to consider a basic but very instructive example. Suppose we want to compute the

first derivative with respect to mi (in mi = 0) of the two point Wilson coefficient C1
ab

(where the indices label the renormalized operators Φa, Φb and 1). Let us consider

the remainder of the OPE:

∆(N)(XR,m) ≡ 〈(Φa(r)Φb(0)−
xc≤N∑
c

CcabΦc(0))XR〉m (2.78)

As usualXR is the identity or a multilocal operator with support in ER ≡ {x/|x| > R}
(we call IR the complement set of ER, i.e. IR = R

D − ER).

Then, taking derivatives both sides with respect to mi, we can write by using the

Action Principle 2.74:

∂i∆
(N)(XR,m) =

∫
dx〈: Oi(x) : (ΦaΦb −

xc≤N∑
c

CcabΦc)XR〉m+

−
xc≤N∑
c

∂iC
c
ab〈ΦcXR〉m

(2.79)

In the limit of zero generalized masses, the integral on the right hand side must be

IR divergent. In order to deal with this problem, we must proceed as follow and split
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the integral in two pieces:

∂i∆
(N)(XR,m) =

∫
IR1

dx〈: Oi : (ΦaΦb −
xc≤N∑
c

CcabΦc)XR〉m+

+

∫
ER1

dx〈: Oi : (ΦaΦb −
xc≤N∑
c

CcabΦc)XR〉m+

−
xc≤N∑
c

∂iC
c
ab〈ΦcXR〉m

(2.80)

where R1 > R. The second integral may be rewritten as a remainder:

∫
ER1

dx〈: Oi : (ΦaΦb −
xc≤N∑
c

CcabΦc)XR〉m = ∆(N)(X ′R,m) (2.81)

with support on X ′R ≡
∫
ER1

: Oi : XR, satisfying the same hypothesis on the support

of XR.

Thanks to the the hypothesis of asymptotic weak convergence of the OPE (inserted

in correlator functions) 2.77, we can state that in the limit N →∞, the remainder of

Eq. 2.81 is zero for any R1 > R > |r| and the subsequent m→ 0 limit is safe and can

be exchanged with the first (IR cut off) integral. This leads to the desired result:

0 = lim
N→∞

{∫
IR1

dx〈: Oi : (ΦaΦb −
xc≤N∑
c

CcabΦc)XR〉m=0+

−
xc≤N∑
c

∂iC
c
ab〈ΦcXR〉m=0

} (2.82)

From now on, the symbol 〈...〉 (with no suffix) is meant to be at m = 0, namely

evaluated at the critical point.

We are now ready to take also the limit R1 →∞ and to set XR = 1, finding:

0 = lim
N,R1→∞

{∫
IR1

dx〈: Oi : (ΦaΦb −
xc≤N∑
c

Ccab|0Φc)〉 −
xc≤N∑
c

∂iC
c
ab|0〈Φc〉

}
(2.83)

We exchanged the limit over m and R preventing any possible issue coming from

eventual IR divergences. Taking the m → 0 limit, also the Wilson coefficients are

evaluated at m = 0 as indicated by “|0” (we will omit this specification in the future

for simplicity of notation).

To have a useful formula we must observe that by dimensional considerations is

true in general that

lim
Ri→∞

∫
IR1

dx1...

∫
IRk

dxk〈: Oi1 : ... : Oik : Φc(0)〉 = 0 (2.84)

if xc −
∑k

j=1 yj > 0 (where yj are the mass dimensions of mi). This is due to the fact
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that the unperturbed theory has not physical scales since the renormalization point µ

does not give powerlike corrections.

Then, the series in the c index in Eq. 2.83 is truncated and we finally get:

∂iC
1
ab(0) = lim

R→∞

∫
IR

dx〈: Oi : (ΦaΦb −
xc≤yi∑
c

CcabΦc)〉 (2.85)

In this way we were able to express the first derivative of a Wilson coefficient in

term of well defined quantities of the unperturbed theory. It is interesting to observe

that the formulae above as well as the formulae we are going to derive in the next

sections do not depend on the choice of the UV renormalization scheme, provided

that the Hypothesis 1-3 are satisfied.

2.2.3 Higher order expansion

We are now ready to generalize the illustrated procedure to a more general case in-

volving the nth derivative of the Wilson coefficient Cca1...al
. We will prove by induction

the formula for the general case, by assuming that at order n is true that:

lim
N,R→∞

∂i1 ...∂in∆(N)(XR,m) ∼

lim
N,R→∞

{∫
I1

dx1...

∫
In

dxn〈: Oin : ... : Oi1 : (Φa1 ...Φal −
xc≤N∑
c

Cca1...al
Φc)XR〉m+

−
xc≤N∑
c

∂i1C
c
a1...al

∫
I2

dx2...

∫
In

dxn〈: Oin : ... : Oi2 : ΦcXR〉m + P.+

− ...+

−
xc≤N∑
c

∂i1 ...∂inC
c
a1...al

〈ΦcXR〉m
}

(2.86)

where we have defined I1 ≡ IR1 for shortness and the series are to be intended

asymptotic as explained before. With P. we mean all the terms obtained by the

possible permutations of the suffix (1,...,k − 1) of the Wilson coefficients’ derivatives

with (k,...,n) inside the integrals without distinguishing the ordering.

Hypothesis 3 ensures that Eq. 2.86 holds for the n = 0 case. Then, if we are able

to prove that the order n relation holds also at order n + 1 we will demonstrate the

desired result. Thus, let us take derivative with respect to mi+1 both sides of Eq. 2.86

and call {n} the terms coming from the order n formula.

The derivative ∂in+1 may acts on the correlators or on the Wilson coefficients. In

the first case, it gives terms of the form:

lim
N,R→∞

∫
dxn+1〈: Oin+1(xn+1){n}〉m (2.87)
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namely, the same terms as before, but with the addition of : Oin+1 :. In the second

case the derivative acts on the Wilson coefficients present at order n. In the limit of

Rn, Rn−1, ..., R1 ≥ R→∞, is true that:

lim
N,R→∞

∫
dxn+1〈: Oin+1{n}〉m = lim

N,R→∞

∫
IRn+1

dxn+1〈: Oin+1{n}〉m (2.88)

Finally, by summing the two contributions, we reproduce the n+1 expression accord-

ing to 2.86, showing that induction works.

For generic XR, Eq. 2.86 provides a set of constraints which relate the derivatives

of the Wilson coefficients with respect to the coupling to correlators of the unper-

turbed theory. This system can be consistently solved in terms of the derivatives of

the Wilson coefficients if one knows the properties of the model at the critical point.

In order to make contact with a practical example, let us consider once again a

simpler case and let us set XR = 1. Then, taking the limit m→ 0 and reminding the

dimensional selection rule 2.84 we get:

∂i1 ...∂inC
1

a1...al
=

lim
R→∞

{∫
I1

dx1...

∫
In

dxn〈: Oin : ... : Oi1 : (Φa1 ...Φal −
xc≤x̄∑
c

Cca1...al
Φc)〉+

−
xc≤x̄∑
c

∂i1C
c
a1...al

∫
I2

dx2...

∫
In

dxn〈: Oin : ... : Oi2 : Φc〉+ P.+

− ...+

−
xc≤x̄∑
c

∂i1 ...∂in−1C
c
a1...al

∫
In

dxn〈 Oin : Φc〉+ P.
}

(2.89)

The sum over c is restricted (in virtue of 2.84) to Φc such that xc ≤ x̄ = yik + ...+ yin .

As a final comment, let us outline that even though we restricted ourselves to

a particular choice of IR spatial cutoff to derive our results by induction, the same

results hold for a wide class of IR regularizations. In [7], it has been shown that an

analogous result of Eq. 2.86 holds considering a generic IR cutoff θR′(x) such that

limR′→∞ θR′(x) = 1 and repeating the usual procedure. Of course, the choice of a

clever IR cutoff may help to simplify considerably the computation. For instance, if

the cutoff θR′(x) is rotation invariant, then only scalar operators are involved in the

expressions.

2.2.4 Advantages of the approach

As we have seen in the previous section, Conformal Perturbation Theory is a math-

ematical tool to realize an expansion for the short-distance behavior of correlation

functions of quantum field theories, in the vicinity of a conformally invariant critical

point. In particular, CPT can be seen as a way to derive the coefficients of the Wilson
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operator-product expansion that is induced, when a conformally invariant theory is

perturbed by a relevant operator. The method deals with short-distance divergences

in a standard fashion, and is self-consistent in the long-distance limit, where it yields

finite results: this is a clear advantage over more conventional expansions, say, in

powers of the mass perturbing the conformal theory, which are often plagued by

infrared divergences.

A clear advantage of this kind of approach is that, by construction, CPT expansions

separate the non-perturbative features of the theory (i.e. the vacuum expectation

values of different operators) from those that can be computed perturbatively (i.e.

the Wilson coefficients). Another important feature of CPT is that it only requires the

knowledge of limited information characterizing the theory: this includes universal

(like the critical indices) as well as non-universal data, (like critical amplitudes of

one-point functions, which can be obtained using off-critical methods, such as strong

or weak-coupling expansions, or numerical simulations).

In the next sections we are going to see some examples of how Conformal Pertur-

bation Theory may be applied in rather different fields to extract informations on the

behavior of the systems in the proximity of a critical point.

2.3 SU(2) gauge theory in 3 + 1 dimensions

In the first example we are going to analyze, we propose to use CPT to study the be-

havior of quantum chromodynamics (QCD) and other strongly coupled non-Abelian

gauge theories near the critical points associated with a continuous phase transition

in their phase diagram. The long-term goal of this approach is to derive theoretical

predictions for the dynamics of strong interactions under the extreme conditions of

temperature and density that are realized in heavy-ion collisions, for the values of

center-of-mass energy and nuclear masses allowing one to probe the neighborhood

of the critical end-point appearing at finite temperature T and quark chemical poten-

tial µ in the QCD phase diagram. It is well known that such a line does not extend

to the µ = 0 axis (i.e. the baryon density axis), where the deconfining and chiral-

symmetry restoring transition is actually a crossover. Hence, the first-order transition

line is believed to terminate at an end-point corresponding to a continuous phase

transition, where the infrared behavior of the theory should be described by the criti-

cal exponents characteristic of an effective field theory compatible with the expected

symmetry and dimension requirements, which is just the Ising model in three dimen-

sions.

The experimental search for the QCD critical end-point, proposed more than 20

years ago, remains a very active line of research. Meanwhile, despite a great effort,

a derivation of the existence and location of this critical end-point is still missing:

this is mainly due to the fact that the tool of choice for theoretical studies of strong

interactions in the regime probed in heavy-ion collisions, namely numerical calcula-

tions in the lattice regularization is obstructed by a computational sign problem when
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the quark chemical potential is finite. As a consequence, complementary theoretical

approaches could provide valuable information on the region of the phase diagram

in the neighborhood of the critical end-point. We argue that conformal perturbation

theory could allow one to study the physics of strongly coupled QCD matter at values

of temperature and net baryonic density lying along the “trajectories” (in the phase

diagram) scanned in experiments, as long as such trajectories pass sufficiently close

to the critical point.

For this reason, it is important to understand how well conformal perturbation

theory works at a quantitative level, i.e. how large is the range of parameters of the

underlying microscopic theory (in this case, QCD), for which the resulting low-energy

physics can be approximated well by the associated conformal model (in this case,

the Ising model in three dimensions) at or near criticality.

To this purpose, we present a detailed comparison of theoretical predictions from

conformal perturbation theory, with those derived numerically using lattice simula-

tions. We do this for SU(2) Yang-Mills theory, a strongly coupled non-Abelian gauge

theory in four space-time dimensions exhibiting a continuous phase transition at a

finite deconfinement temperature Tc, which is in the same universality class as the

one associated with the critical end-point of QCD, namely the one of the Ising model

in three dimensions. In contrast to the critical end-point of QCD, however, the criti-

cal behavior at the deconfinement transition in finite-temperature SU(2) Yang-Mills

theory can be studied numerically to very high precision, making this theory a useful

proxy with which to test the quantitative accuracy of conformal-perturbation-theory

predictions.

In particular, we focus our comparison on the two-point correlation function of

Wilson lines winding around in the Euclidean-time direction, also known as Polyakov

loops. They are important observables in lattice gauge theory, which, at T = 0, can

be directly linked to the potential V (r) of a pair of static color sources a distance r

apart from each other, and, as a consequence, to the spectrum of heavy-quark bound

states.

Presently, much analytical information is known about the behavior of the poten-

tial derived from this correlator in non-supersymmetric non-Abelian gauge theories:

at short distances, asymptotic freedom implies that its dominant contribution is a

Coulomb term, arising from one-gluon exchange, and the separation between the

momentum and mass scales allows one to organize the different terms appearing in

perturbative calculations in a systematic way. Conversely, the long-distance physics is

dominated by non-perturbative features, resulting in a linearly rising potential V (r) at

asymptotically large r: assuming the formation of a confining flux tube, with energy

per unit length σ (the “string tension”), it is then possible to show that its dominant

excitations in the infrared limit are described by massless bosonic oscillations in the

transverse direction, that yield a characteristic 1/r correction to V (r).

This picture can be described by a low-energy effective theory, associated with

the spontaneous breaking of translational and rotational symmetries in the presence
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of a confining string: the requirement of a non-linear realization of Lorentz-Poincaré

invariance poses very tight constraints on the terms of this effective theory, making it

highly predictive.

The situation in finite-temperature QCD is more subtle, because the finite tem-

perature T introduces an additional energy scale and the infrared divergences play

a non-trivial rôle with screening and dumping effects. The modern, proper defini-

tion of the potential between heavy color sources has a real and an imaginary part,

which can be reconstructed from a spectral-function analysis of thermal Wilson loops.

Nevertheless, the Euclidean correlator of Polyakov lines (and −T times its logarithm,

which, for simplicity, we still denote as V ) still encodes interesting information about

the thermal behavior of the theory. In the confining phase, the long-distance proper-

ties of this correlator can be accurately modeled assuming that the flux tube joining

the color sources oscillates with a Euclidean action proportional to the area it spans,

i.e. that in the infrared limit the dynamics of the theory is described by a low-energy

effective action equal to the Nambu-Gotō action. At intermediate quark-antiquark

distances r, however, deviations from the ideal picture of a Nambu-Gotō string do

show up, as well as corrections induced by the finite temperature. In fact, it has been

known for a long time that the Polyakov-loop operator captures much of the dynamics

of Yang-Mills theory close to the deconfinement temperature.

In what follows, we are going to derive analytically the expressions for the two-

point correlation function of Polyakov lines in the pure SU(2) Yang-Miills theory,

at temperatures in the vicinity of its second-order deconfinement transition, and to

compare this results with numerical results obtained from Monte Carlo simulations

on the lattice. As will be discussed below, our main findings are:

• The results obtained from conformal perturbation theory are in very good agree-

ment with those from lattice simulations in a rather wide temperature interval;

i.e. conformal perturbation theory provides reliable predictions in a rather large

neighborhood of the conformal point.

• Conformal perturbation theory predicts the Polyakov-loop correlator to be de-

scribed by an operator-product expansion (OPE) with different coefficients above

and below the critical temperature Tc; the ratio of these coefficients is fixed by

the universality class of the conformal model, and can be predicted in confor-

mal field theory. The numerical values of the coefficients extracted from our

lattice simulations of the SU(2) Yang-Mills theory above and below Tc are such,

that their ratio agrees with the value predicted by conformal theory for the Ising

universality class.

2.3.1 Model and analytic results

The first aspect we must point out is the universality class of the corresponding field

theory at the critical point. We are dealing with a purely gluonic Yang-Mills theory

with an SU(2) gauge group and in this situation the correspondence between the



2.3. SU(2) gauge theory in 3 + 1 dimensions 31

degrees of freedom of the gauge theory and those of the spin model is clear. As con-

jectured by Svetitsky and Yaffe [8], n-point correlation functions of thermal Wilson

lines (or Polyakov loops) are mapped to n-point correlators of spin degrees of free-

dom. In particular, here we are interested in the behavior of the two-point correlator

of Polyakov loops in the gauge theory, which, denoting the spin degrees of freedom

by σ, is mapped to the 〈σ(r)σ(0)〉 correlator in the Ising model.

The CPT analysis for the three-dimensional Ising model is straightforward. This

model is characterized by two relevant operators, namely the energy density ε and

the magnetization (the one-point correlation function of the spin σ); the dimensions

of these operators have been recently computed [9] and are ∆ε = 1.412625(10) and

∆σ = 0.5181489(10). The action of the perturbed model is defined as

S = SCFT + t

∫
d3x ε(x) (2.90)

where SCFT denotes the action at the critical point, and the parameter t is related to

the deviation from the critical temperature of the model. For the non-critical theory at

finite t, the behavior of the two-point correlation function of operators Oi and Oj at

short separation r can be expressed in terms of the Wilson coefficients Cijk appearing

in the expansion:

〈Oi(r)Oj(0)〉t =
∑
k

Ckij(r, t)〈Ok〉t (2.91)

The Wilson coefficients can be expanded in Taylor series in t,

Ckij(r, t) =

∞∑
n=0

tn

n!

∂nCkij
∂tn

(2.92)

As proved before, the partial derivatives appearing on the right-hand side of this

equation are not divergent at large r. Defining ∆t = 3−∆ε and writing the one-point

correlation functions for the energy density and magnetization at finite t as

〈ε〉t = A±|t|
∆ε
∆t , 〈σ〉t = Bσ|t|

∆σ
∆t (2.93)

the leading terms in the conformal perturbative expansion of the 〈σ(r)σ(0)〉t correla-

tor are

〈σ(r)σ(0)〉t = C1

σσ(0, r) + Cεσσ(0, r)A±|t|
∆ε
∆t + t∂tC

1

σσ(0, r) + . . . (2.94)

where the Wilson coefficients evaluated at (0, r) are the usual structure constants

with the r dependence factorized:

C1

σσ(0, r) =
1

r2∆σ
, Cεσσ(0, r) = Cεσσ

1

r2∆σ−∆ε
(2.95)

We have also chosen the standard normalization for the fields, so that C1

σσ = 1 and

we know that Cεσσ = 1.0518537(41) from [9].
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The derivative of the Wilson coefficient can be computed following Eq. 2.85,

leading to

∂tC
1

σσ(0, r) = −
∫
dr1

(
〈σ(r)σ(0)ε(r1)〉0 − Cεσσ〈ε(r1)ε(0)〉0

)
(2.96)

Where the three-point function at critical point is known:

〈σ(r)σ(0)ε(r1)〉0 =
Cσσε

r2∆σ−∆εr∆ε
1 (r2 + r2

1 − 2rr1 cos θ)
∆ε
2

(2.97)

while Cεσσr
−2∆ε since we choose again a normalization of the fields such that C1

εε = 1.

Integral 2.96 can be evaluated using a Mellin transform technique (for details, see

Appendix A) or numerically. In the first case, the second term of the integrand acts

just as an infrared counterterm and only the first term contributes, giving:

∂tC
1

σσ(0, r) = −r∆t−2∆σCεσσ

∫
dy

y−∆ε

(1 + y2 − 2y cos θ)∆ε/2
(2.98)

where y = r1/r. It is convenient to define

∂tC
1

σσ(0, r) = −r∆t−2∆σCεσσI (2.99)

Thus, after performing the angular integrals we get

I = 2π

∫
dy
|1 + y|2−∆ε − |1− y|2−∆ε

2−∆ε
y1−∆ε (2.100)

The previous integral can be written in terms of Gamma functions giving as a final

result I ' −62.5336. It is also important to notice that Eq. 2.94 defines the non-

connected correlation function.

Sometimes it may be useful to introduce the scaling variable

s = tr∆t (2.101)

in this case, the two-point correlator becomes:

r2∆σ〈σ(r)σ(0)〉t = 1 + CεσσA
±|s|

∆ε
∆t + ICεσσs+ . . . (2.102)

In order to compare this analytical prediction from CPT with the numerical results

from Monte Carlo simulations of SU(2) Yang-Mills theory, we have to fix some non-

universal quantities. These include the following:

• The normalization of the Polyakov loop, i.e. a proportionality factor relating the

σ spin expectation value in the Ising model, and the Polyakov loop P of SU(2)

Yang-Mills theory, evaluated on the lattice. It should be noted that the latter

quantity is a bare one, which would tend to zero in the continuum limit. As

a consequence, the proportionality factor relating σ and P is a function of the
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lattice spacing of the Yang-Mills theory a, or, equivalently, of the Wilson param-

eter β = 4/g2, where g denotes the bare lattice coupling. We decided to fix this

normalization by matching the two-point correlation function of Polyakov loops

at the critical point to the corresponding spin-spin correlator in the critical Ising

model.

• Identifying r with the spatial separation R between the Polyakov lines, we reab-

sorb all non-universal factors into the definition of the perturbation coefficient

t in the spin model. This quantity is related to the perturbing parameter of the

SU(2) lattice gauge theory, which is β − βc(Nt), where βc(Nt) is the value of

the Wilson parameter (or of the bare gauge coupling) corresponding to a lattice

spacing a such that aNt is the inverse of the critical deconfinement temperature

in natural units. Note that the β − βc(Nt) difference controls the deviation of

the temperature from its critical value. To fix the non-universal relation be-

tween t and β − βc(Nt), we take advantage of the universality of the last term

on the right-hand side of eq. (2.102), by fitting our results for the correlator as

a function of r, and using the result to fix the relation between t and β−βc(Nt).

• The amplitudes A± can be determined using the second term in the expansion

above. The numerical value of these amplitudes is one of the non-trivial results

of our analysis; the A+/A− ratio is universal, and this expectation provides a

useful check of the self-consistency and robustness of the whole analysis.

2.3.2 Numerical results for SU(2) Yang-Mills theory

In order to test the predictions discussed in the previous section, we studied the be-

havior of the Polyakov loop correlators in the vicinity of the deconfinement transition

of the 3 + 1-dimensional SU(2) Yang-Mills theory. In the following subsection 2.3.2,

we define the setup of our lattice regularization of this theory; then, we present our

numerical results, comparing them with CPT predictions in subsection 2.3.2, and dis-

cussing their uncertainties in subsection 2.3.2.

Setup of the lattice calculation

We regularize the theory on a finite hypercubic lattice of spacing a and sizes aNt

in the 0̂ (“Euclidean-time”) direction and L = aNs in the three other (“spatial”)

directions, labeled as 1̂, 2̂, and 3̂. We always take aNs � aNt. The fundamental

degrees of freedom of the lattice theory are matrices Uµ(x), taking values in the

defining representation of the SU(2) group, and associated with parallel transporters

between neighboring sites x and x + aµ̂. Periodic boundary conditions are assumed

in all directions. The dynamics of the theory is defined by the Wilson action [10]

SW = − 2

g2

∑
x

∑
0≤µ<ν≤3

TrUµν(x) (2.103)



34 Chapter 2. Conformal Perturbation Theory

where Uµν(x) = Uµ(x)Uν (x+ aµ̂)U †µ (x+ aν̂)U †ν (x) is a plaquette having the site x

as a corner and lying in the oriented (µ, ν) plane, and g2 is the squared bare coupling;

we also introduce the parameter β = 4/g2.

The temperature T is related to the extent of the shortest compact size of the

lattice as aNt = 1/T : as a consequence, T can be varied by changing Nt, a, or both.

The physical value of the lattice spacing a is set non-perturbatively, as discussed in

ref. [11], and is controlled by the parameter β. We express our results in terms of

the deconfinement temperature Tc, using the value for the ratio of Tc over the square

root of the zero-temperature string tension Tc/
√
σ = 0.7091(36), which was reported

in ref. [12].

The Polyakov loop at a spatial coordinate ~x is defined as the trace of the closed

Wilson line in the 0̂ direction:

P (~x) =
1

2
Tr

Nt∏
t=0

U0 (ta, ~x) . (2.104)

The two-point correlation function of Polyakov loops is then defined as

G(R) =

〈
1

N3
s

∑
~x

P (~x)P
(
~x+Rk̂

)〉
, (2.105)

where k̂ denotes one of the three “spatial” directions, the sum is over all spatial coor-

dinates ~x, while the 〈. . . 〉 average is taken over all values of all of the Uµ(x) variables,

with a measure that is proportional to the product of the Haar measures of all Uµ(x)

matrices and to exp(−SW ), and normalized in such a way that the expectation value

of the identity operator is 1.

We remark that, like eq. (2.94), eq. (2.105) defines the non-connected (i.e. full)

correlator, in which the square of the average value of the Polyakov loop (which,

in the thermodynamic limit, is non-zero in the deconfined phase) is not subtracted.

The reason for this choice is that we are going to compare the lattice results for

this correlator with the analogous correlator in conformal perturbation theory, where

the correlation function of interest is the non-connected one. The fact that the CPT

formalism deals with the non-connected correlators (i.e. does not encode any in-

formation on long-wavelength physics, including a possibly non-vanishing vacuum

expectation value of the field) is unsurprising, given that it is ultimately formulated

in terms of a particular type of operator-product expansion, which is expected to cap-

ture the behavior of physical correlators at short distances only. Accordingly, as will

be discussed below (see also the values reported in table 2.3), we will restrict our fit

ranges to distances shorter than the characteristic correlation length of the theory at

that temperature.

One may wonder whether it might be possible to carry out a meaningful fit to CPT

using the connected correlator, too. The answer is no: the reason is that, as discussed

in section 2.2, the non-trivial information from CPT is expressed in terms of a function
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of a non-trivial combination of the variables that describe the temperature and the

distance, see eqs. (2.101) and (2.102), whereas the quantity that is subtracted from

the full correlator to obtain the connected one, i.e. the square of the average value of

the Polyakov loop, is, by definition, R independent, but temperature dependent.
Finally, it is also worth noting that, by contrast, the fact that the lattice correlator

defined in eq. (2.105) is a bare one does not hinder the possibility of a comparison

with CPT predictions, thanks to the fact that the Polyakov loop undergoes a purely

multiplicative renormalization.

As we already said, CPT gives reliable predictions in the range of short distances,

or in other words, the numerical results from lattice simulations of the SU(2) Yang-

Mills theory can be compared with the analytical predictions from conformal pertur-

bation theory only when the distances involved are much smaller than the typical

correlation length of the system. For this reason we decided to estimate the correla-

tion length in the confining phase (i.e. for T < Tc) by fitting our numerical results

for G(R) to the functional form

G(R) = A

{
exp (−R/ξ)

R
+

exp [−(L−R)/ξ]

L−R

}
, (2.106)

with ξ (which is the largest correlation length of the theory) and A (which is an

overall amplitude, with no direct physical meaning) as fitting parameters. Note that

the second summand on the right-hand side of eq. (2.106) accounts for the effect of

the closest periodic copy of the Polyakov line on the hypertorus; we neglect the effect

of other periodic copies (at distances L,
√
L2 +R2,

√
R2 + 2L(L−R), . . . ) as well

as corrections due to higher-energy states.

As expected in the presence of a continuous phase transition, ξ →∞ for T → Tc.

More precisely, in the proximity of the critical point, ξ diverges like [(T − Tc)/Tc]−ν

(which defines the hyperscaling exponent ν), with two different amplitudes, respec-

tively denoted as ξ0+ and as ξ0− , for T > Tc and T < Tc. While these amplitudes

are not universal, their ratio is, and for the universality class of the Ising model that

ratio was evaluated to be ξ0+/ξ0− = 1.95(2) in ref. [13]. This allows one to obtain

an estimate of the typical correlation length also in the deconfined phase (at least

for temperatures not very far from Tc). Anyway, in all of the fits that we carried out,

we always restricted our comparison of the G(R) correlator with CPT predictions to

distances not larger than a maximum Polyakov-loop separation Rmax, with Rmax � ξ.

At the same time, the shortest R distances probed in the fits are always larger than

a few units of the lattice spacing a. The double constraint a � R � ξ enforces

the hierarchy of scales making a sensible comparison between lattice results and CPT

predictions possible.

Table 2.1 summarizes the parameters of the Monte Carlo simulations that we

carried out.
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Nt ×N3
s β T/Tc nconf ξ/a

8× 803 2.48479 0.90 8× 104 9.24(3)
2.50311 0.96 8× 104 23.3(2)
2.50598 0.97 8× 104 43.3(4)
2.51165 1 8× 104

2.52295 1.02 8× 104 ∼ 85
2.52567 1.05 8× 104 ∼ 45
2.54189 1.10 8× 104 ∼ 18

10× 803 2.55 0.90 105 11.72(8)
2.569 0.96 105 29.4(3)
2.572 0.97 105 42.9(4)

2.58101 1 8× 104

2.58984 1.02 1.6× 105 ∼ 85
2.59271 1.05 1.6× 105 ∼ 55

2.61 1.10 1.6× 105 ∼ 23

12× 963 2.60573 0.90 8× 104 12.89(15)
2.626 0.96 8× 104 34.8(4)

2.62923 0.97 8× 104 41.3(3)
2.63896 1 8× 104

2.64558 1.02 1.6× 105 ∼ 81
2.65541 1.05 1.6× 105 ∼ 65
2.67085 1.10 1.6× 105 ∼ 25

TABLE 2.1: Information about the parameters of our lattice calcula-
tions for SU(2) Yang-Mills theory. The first two columns show the lat-
tice sizes in units of the lattice spacing a and the parameter β = 4/g2,
while in the third we display the temperature in units of Tc and in the
fourth the statistics for the Polyakov-loop correlators. Finally, in the
last column we present our estimates for the correlation length ξ, in

units of a.

Comparison with CPT predictions

We analyzed our lattice results for the Polyakov-loop correlators in SU(2) Yang-Mills

theory as follows.

1. First, we fixed the normalization constant for the Polyakov loops by matching

the value of G(R) at the critical temperature T = Tc to the corresponding

quantity in the Ising model at criticality, i.e. the spin-spin correlator.

2. Then, we fitted the numerical value of the correlator to eq. (2.102), as a func-

tion of R, keeping the coefficients of the second and third term on the right-

hand side of that equation as the parameters to be fitted.

3. Finally, we used our best estimates for these coefficients to fix the remaining

quantities, and studied how they depend on the temperature T .

For the first of these steps, fig. 2.2 shows an example of our results for the G(R)

correlator at the critical temperature: the lattice data confirm the expected power-

law behavior (revealing itself as a straight line in the plot with logarithmic axes), and

the presence of significant finite-size effects for the points at the largest values of R.
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FIGURE 2.2: Logarithmic plot of our results for the two-point correla-
tion function of Polyakov loops G(R) in the SU(2) gauge theory at the

deconfinement temperature, as a function of the distance R.
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Rmin/a Rmax/a C2
P χ2

red
4 12 0.005463(12) 0.25

4 20 0.005477(15) 0.40

4 30 0.005492(19) 0.66

4 40 0.005513(31) 1.96

TABLE 2.2: Results of our fits of the Polyakov-loop correlator G(R)
at Nt = 10, Ns = 80 and β = 2.58101, corresponding to T = Tc,
to eq. (2.107). The results for C2

P , shown in the third column, are
obtained from fits for Rmin ≤ R ≤ Rmax (first two columns); the values

of the reduced χ2 are listed in the last column.

Thus, we fit the correlator at criticality to the form

G(R) =
C2
P

R2∆σ
(2.107)

for different ranges of values of the Polyakov-loop separation Rmin ≤ R ≤ Rmax.

In order to avoid excessive contamination from lattice discretization artifacts (on

the gauge-theory side) and/or from other charge-conjugation-odd operators (in the

comparison with the conformal field theory), we set Rmin = 4a, and fitted the data

for different values of Rmax. An example of the results of this analysis (from a lattice

with Nt = 10 at T = Tc) is shown in tab. 2.2. As expected, the data at the largest

values of R (close to L/2) are affected by non-negligible contamination due to the

periodic copies of the lattice. Combining the results from the fits withRmax = 12a and

Rmax = 20a, we take C2
P = 0.00547(2) as our final estimate for the critical-correlator

fit at this value of Nt.

For the analysis of the Polyakov loop correlators G(R) at T 6= Tc we fitted the

results of the correlator to the functional form

G(R) =
C2
P

R2∆σ

(
1 + c1R

∆ε + c2R
∆t
)
, (2.108)

where the exponents ∆σ, ∆ε and ∆t are those discussed in section 2.2, while c1 and

c2 are the free parameters. The results of this analysis are reported in table 2.3 and

shown in fig. 2.3, where the inset shows a zoom onto the smaller range of distances,

where the results at T > Tc are fitted.

Next, we investigated the relation between the perturbing parameter t and the

difference β − βc(Nt) using the following relation:

c2 = I · Cεσσ · t. (2.109)

Using the values for I ' −62.5336 and for Cεσσ = 1.0518537(41), the analysis of the

data set corresponding to Nt = 10 yields the values for t reported in tab. 2.4.

The table also reports the values of ∆β = [β − βc(Nt)]/2, which for the SU(2)
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β T/Tc Rmax/a ξ/a c1 c2

2.55 0.90 [7− 8] 11.72(8) −0.169(1) 0.099(1)
2.569 0.96 [11− 14] 29.4(3) −0.067(2) 0.037(1)
2.572 0.97 [12− 21] 42.9(4) −0.048(3) 0.026(2)

2.58984 1.02 [18− 25] ∼ 85 0.067(2) −0.019(1)
2.59271 1.05 [13− 19] ∼ 55 0.091(2) −0.0256(15)

2.61 1.10 [8− 9] ∼ 23 0.221(3) −0.081(3)

TABLE 2.3: Example of results of the fits of the correlator G(R) to
eq. (2.108), obtained from simulations on lattices with Nt = 10 at
different values of β = 4/g2 (first column), corresponding to the tem-
peratures reported in the second column, in the range 4a ≤ R ≤ Rmax,
and for the values of Rmax shown in the third column. In the fourth
column, we display our estimates for the correlation lengths in units
of the lattice spacing, while the fitted parameters c1 and c2 are listed
in the fifth and in the sixth column, respectively. Note that, as dis-
cussed in the text, at each temperature, the largest distances at which
the correlators are fitted (shown in the third column) are always cho-
sen to be shorter, or much shorter, than the corresponding correlation

lengths reported in the fourth column.
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FIGURE 2.3: Example of results for the Polyakov-loop two-point corre-
lation function (in logarithmic scale), plotted against the spatial sep-
aration R (in linear scale), for different temperatures T off Tc. These
results were obtained from simulations on lattices with Nt = 10 lattice
spacings in the Euclidean-time direction. The inset (in which both axes
are in a linear scale) shows an enlargement of the region where the
correlators at T > Tc were fitted to the CPT prediction, eq. (2.108), as

discussed in the text.
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β T/Tc t ∆β

2.55 0.90 0.001505(15) −0.01550
2.569 0.96 0.000563(15) −0.00600
2.572 0.97 0.000395(30) −0.00450

2.58984 1.02 −0.000284(18) 0.00440
2.59271 1.05 −0.000389(23) 0.00585

2.61 1.10 −0.001231(45) 0.01450

TABLE 2.4: Results for the perturbing parameter t and for ∆β, ob-
tained from eq. (2.109), at different values of the temperature in the
proximity of the deconfining transition. The analysis is based on a set
of data obtained from simulations on a lattice with Nt = 10 lattice

spacings in the Euclidean-time direction.

lattice gauge theory is the perturbing parameter with respect to the plaquette oper-

ator
∑

x

∑
0≤µ<ν≤3 TrUµν(x). As expected, t has a negative sign in the deconfined

phase, where the center symmetry is broken, and a positive sign in the confining,

Z2-symmetric phase. The magnitude of these values of t is similar to those stud-

ied in ref. [14], for which conformal perturbation theory was found to give reliable

predictions, which leads us to expect that this should also be the case here.

We note that, interestingly, t is almost exactly proportional to ∆β: this means

that, in the neighborhood of the critical temperature, the energy operator of the

three-dimensional Ising model encodes the dynamics of the Euclidean-action density

operator of the four-dimensional SU(2) gauge theory in a quantitatively accurate

way.

By fixing t, it is possible to derive the values of the amplitudesA+ (in the confining

phase, i.e. for T < Tc) and A− (at T > Tc) from the relation

A± = ∓ c1

Cεσσ
|t|−

∆ε
∆t . (2.110)

The determination of these amplitudes allows for a non-trivial test of the validity

of this CPT analysis: in particular, A+ should be constant and negative in the confin-

ing phase, while in the deconfined phase the amplitude A− should be constant and

positive. Furthermore, the A+/A− ratio should be universal and is predicted to be

A+/A− = −0.536(2) [15].

Our results for A± are reported in table 2.5: in the confining phase, the values

for A+ are indeed compatible with a constant (that we estimate as A+ = −50(2)),

while in the deconfined phase the values are slightly less stable, with a quantita-

tively significant deviation at the largest temperature. This may indicate that the

largest temperature that we investigated is close to the limit where our leading-order

conformal-perturbation-theory analysis breaks down. We remark that, as our fits to

CPT were limited to spatial separations shorter (or much shorter) than the correlation

length at that temperature, this slight instability of the fits in the deconfined phase is

not simply interpretable as an effect caused by the fact that our fits do not include an
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β T/Tc A+ A−

2.55 0.90 −52.6(6)
2.569 0.96 −50(2)
2.572 0.97 −49(5)

2.58984 1.02 91(6)
2.59271 1.05 94(5)

2.61 1.10 82(3)

TABLE 2.5: Results for the amplitude A+ in the confining phase (first
three rows) and for A− in the deconfining phase (last three rows), for
the values of inverse coupling β and of the temperature T reported in

the first two columns, as discussed in the text.

R-independent term. Rather, it may be a numerical artifact induced by the fact that,

in the deconfined phase, as the temperature is increased to values larger and larger

than Tc, the correlation length decreases, and, as a consequence, the fitting range in

R (whose upper limit is bound to be shorter than the correlation length) reduces to

only a few points.

We estimate the amplitude in the deconfined phase to beA− = 89(6). Accordingly,

we obtain the numerical value A+/A− = −0.56(4), which is compatible with the one

computed in ref. [15].

Technical details

Lattice setup and choice of parameters have been already declared in Tab. 2.1, so let

us now specify some details of the algorithm and the data analysis.

The algorithm we adopted is based on a combination of Heath bath and Overrelax-
ation, common algorithms applied to gauge fields. In contrast to standard Metropolis

algorithm they have the advantage to optimize the local acceptance rate and improve

the step size in the Markov chain. They must be applied together because the only

Overrelaxation, exploiting the symmetry properties of the action, is not sufficient to

guarantee the ergodicity of the Markov chain.

In the heat bath method one combines two steps of the single link Metropolis

update into a single step and chooses the new value Uµ(x)′ according to the local

probability distribution defined by the surrounding link variables:

dP (U) = dU exp
(β

2
Re Tr[UA]

)
(2.111)

where U = Uµ(n)′ is the updated link, dU is the Haar integration measure and A is

the sum of the staples Pi:

A =
6∑
i=1

Pi =
∑
ν 6=µ

Uν(x+ aµ̂)U−µ(x+ aµ̂+ aν̂)U−ν(x+ aν̂)+

+U−ν(x+ aµ̂)U−µ(x+ aµ̂− aν̂)Uν(x− aν̂)

(2.112)
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The overrelaxation algorithm utilizes the property that in the Metropolis algo-

rithm new configurations are always accepted if they do not change the action. The

idea of the overrelaxation method is to find a new value U ′ which has the same prob-

ability weight as U and thus is automatically accepted. For the non-abelian groups

(like SU(2)), one suggests a change according to the ansatz:

U → U ′ = V †U †V †, (2.113)

with a gauge group element V chosen such that the action is invariant.

Nevertheless, the overrelaxation algorithm alone is not ergodic, because it sam-

ples the configuration space on the subspace of constant action. This is called the

microcanonical ensemble. Since one wants to determine configurations according

to the canonical ensemble, i.e., distributed according to the Boltzmann weight, one

has to combine the overrelaxation steps with other updating algorithms, such as heat

bath steps.

Systematic uncertainties

We conclude this section with a few comments on the uncertainties involved in our

analysis.

In order to test the impact of finite-volume effects, we repeated a subset of our

calculations also on lattices at a larger value of Ns (the extent of the system in each

of the spatial directions), namely Ns = 96. In all cases, we found that the results

obtained from simulations with Ns = 96 were compatible with those at Ns = 80

within their uncertainties.1

While in this work we have not carried out a systematic study of the continuum

limit, we remark that, in addition to the results discussed here (from the analysis of

data obtained at Nt = 10), we also repeated the analysis for those at Nt = 8 and at

Nt = 12, finding the same qualitative picture.

One may wonder, why conformal perturbation theory describes the dynamics of

this gauge theory so well. The main reason is that, for the underlying conformal

theory that is involved in this case (i.e. the one describing the Ising model in three

dimensions at criticality), the conformal weights of the terms included in the expan-

sion in eq. (2.102) and the subleading terms, that are neglected, are separated by a

finite (and sufficiently large) gap. More precisely, the terms appearing in the paren-

theses on the right-hand side of eq. (2.102), besides the constant, have exponents

(for t) which are approximately equal to 0.6 and 1.2, while the first subleading cor-

rection, that is neglected in eq. (2.102), scales at least quadratically in t, see ref. [16,

eq. (5)]. In turn, this feature of the conformal spectrum for the three-dimensional

Ising universality class is due to the intrinsic simplicity of the operator content of the

model.
1We also observed that, on smaller lattices with Ns = 64, some deviations start to be visible, at least

for temperatures sufficiently close to Tc.
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Our results show that conformal perturbation theory works well in a wide neigh-

borhood of the critical point, and at least for temperatures down to T/Tc = 0.90.

While in principle it would be possible to test the CPT predictions at even lower

temperatures, this would require significantly finer lattices (and, as a consequence,

computationally much more demanding simulations), in order to keep the physical

correlation length well separated from the lattice spacing.

2.3.3 Concluding remarks

We have presented a numerical test of conformal perturbation theory as a tool to pre-

dict the behavior of strongly interacting gauge theories in the proximity of a critical

point.

Specifically, we focused on SU(2) Yang-Mills theory at finite temperature T : this

theory, which can be studied to high precision by numerical calculations on the lat-

tice, has a second-order deconfinement phase transition at a finite temperature Tc,

which is in the universality class of the three-dimensional Ising model. Accordingly,

correlation functions in the gauge theory at criticality are mapped to those in the spin

model, and universality arguments imply a set of interesting predictions for the be-

havior of the gauge theory at T = Tc. Conformal perturbation theory extends these

predictions from the critical point to a whole finite neighborhood: as we discussed

in detail in section 2.3.2, the physical correlation functions of the strongly coupled

gauge theory near the critical point can be successfully described by means of the cor-

responding truncated conformal perturbation theory expansions, such as eq. (2.102).

The approximation involved in the truncation is robust, as long as the terms that are

neglected are sufficiently suppressed. For the universality class of the Ising model in

three dimensions, this is indeed the case, and conformal perturbation theory success-

fully predicts the behavior of the gauge theory in a large interval of temperatures.

2.4 Energy-trapped Ising Model

The second example we propose concerns a quite different model: a classical spin

model in three dimensions. It is known (and we also gave an example before), that

combining this numerical high-precision technique to analytical methods developed

in the framework of Conformal Perturbation Theory, it is possible to determine the

behavior of the off-critical correlators of many different systems. This approach has

been applied successfully to the well known 3D Ising model, by adding perturbations

proportional to the spin and the energy operator [11, 16].

Starting from a slightly different perspective, CPT can be also combined to Monte

Carlo simulations to get insight both on the behavior of the correlators outside the

critical point and on the CFTs data at the critical point. In [17], the author followed

this approach to study the Ising model perturbed by a confining potential coupled

to the spin operator. This model is particularly interesting because the behavior of
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the 1-point expectation values can be argued just by applying simple renormalization

group arguments [18–20], and depends only on the trap potential parameters (trap

size scaling (TSS) behavior). Moreover, many experiments involving Bose-Einstein

condensates and cold atoms show a critical behavior even in the presence of a trap-

ping potential [21, 22].

In what follows we pursue further this program, studying the Ising model per-

turbed by a trapping potential coupled to the energy operator in 3 dimensions. There

are many reasons to investigate this system. From a purely theoretical point of view,

one can wonder if the TSS argument still holds if the trapping potential is coupled

to the energy operator instead of the spin operator. Moreover, studying the effects of

the energy-trapping potential on the 2-point functions out of criticality provides an

alternative method to estimate the CFT data at the critical point.

Finally, the study of the correlation functions out of the critical point is relevant

also from the experimental point of view. Indeed, a trapping potential coupled to

the energy operator can be effectively seen as a perturbation of the system by a non-

uniform thermal gradient, a thermal trap. This setup might be implemented in real

system experiments and the knowledge of the correlators is fundamental in order to

understand the behavior of the observables of this system out of the critical point.

2.4.1 The model and the trap size scaling

We consider the Ising model perturbed by a confining potential coupled to the energy

operator:

S = SCFT +

∫
ddzU(z)ε(z) , (2.114)

where SCFT is the d-dimensional Ising model action, z is the radial coordinate and

U(z) = ρ|z|p is the trap potential. In this following we will consider p ≥ 2, focusing

mostly on the harmonic potential case p = 2. The parameter ρ is the trap parameter,

which is related to the characteristic trap length l−p ≡ ρ defined in [18], and deter-

mines the shape of the trap. Here we will study the large-trap case, namely the small

ρ regime, where the CPT approach can be safely applied.

Before writing the expressions for the correlators down, it might be helpful recall

the trap size scaling ansatz and the one-point functions we will use in the following.

From standard renormalization group argument, we can write the scaling behav-

ior of the singular part of the free energy density near the critical point. The scaling

variables are ut, uh associated to the energy and spin operators respectively, to which

we must add a further variable uρ given by the trap. All the other irrelevant fields are

neglected, because the do not affect the asymptotic behavior. The scaling law then

becomes:

Fs(ut, uh, uρ;x) = b−dFs(utb
yt , uhb

yh , uρb
yρ ;xb−1) (2.115)

Notice that we inserted also the space position x to stress that now the translational
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symmetry is broken (by the presence of the trap) and the observables are point de-

pendent. As usual for this kind of approach we can iterate the renormalization group

n times, finding:

Fs(ut, uh, uρ;x) = b−ndFs(utb
nyt , uhb

nyh , uρb
nyρ ;xb−n) (2.116)

At some point, there will be a fixed uρ0 = uρ|bnyρ |: this point is arbitrary fixed, but it

allows us to write explicitly the dependence on the trap variable:

Fs(ut, uh, uρ;x) =
∣∣∣ uρ
uρ0

∣∣∣d/yρFs(ut∣∣∣ uρ
uρ0

∣∣∣− yt
yρ , uh

∣∣∣ uρ
uρ0

∣∣∣− yhyρ , uρ0 ;x
∣∣∣ uρ
uρ0

∣∣∣ 1
yρ
)

(2.117)

Moreover, the ui are defined as linear combinations of the parameter deviations from

the fixed point, then near the critical point we can reliably substitute them with their

corresponding physical parameters:

ut ∼ t, uh ∼ h, uρ ∼ ρ = l−p (2.118)

Reabsorbing uv0 in the definition of the free energy we finally arrive at

Fs = l−pθdf(tlpθyt , hlpθyh ;xl−pθ) (2.119)

where we also defined θ = y−1
ρ , that is the characteristic trap exponent and can be

deduced by means of scaling arguments if one notices that the perturbation has to

be scale invariant. Indeed, rescaling the radial coordinate z by a factor b, z → z
b , the

perturbation transforms as∫
ddz′U ′(z′)ε′(z′) = b−d+yρ−p+∆ε

∫
ddzU(z)ε(z) , (2.120)

Eventually the scale invariance condition yields

θ =
1

p+ d−∆ε
. (2.121)

This expression depends only on the dimensionality and universality class of the

system and the geometry of the confining trap, confirming that the trap size scaling

ansatz shows universal features. It is also interesting noting that if p is sent to infinity,

the trap becomes a wall with infinite boundary potential, namely a free system with

fixed boundary conditions; in this limit θ = 1, correctly recovering the finite size

scaling ansatz.

From the free energy density 2.119 it is straightforward to derive the one-point

functions of the spin and energy operators:

〈σ(0)〉ρ = Aσρ
θ∆σ , 〈ε(0)〉ρ = Aερ

θ∆ε , (2.122)
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where ∆σ, ∆ε are the scaling dimensions of the operators σ and ε respectively, while

Aσ and Aε are non universal constants.

Two-point functions

Just like we did in section 2.3, the two-point functions can be expressed as a series

involving one-point expectation values, making use of the Operator Product Expan-

sion:

〈Oi(z)Oj(0)〉ρ =
∑
k

Ckij(ρ, z)〈Ok(0)〉ρ . (2.123)

Each of the Wilson coefficient Ckij(ρ, z), evaluated outside the critical point, can be

expanded in series of the trap characteristic parameter ρ, namely:

〈Oi(z)Oj(0)〉ρ =
∑
k

[Ckij(0, z) + ρ∂ρC
k
ij(0, z) + ...]〈Ok(0)〉ρ (2.124)

We stress again that the series expansion asymptotically converges,all the coefficients

are infrared finite and the derivatives of the coefficients can be evaluated systemat-

ically in terms of quantities of the unperturbed theory. But before doing that, it is

useful to write the fusion rules, in order to understand which of the Wilson coeffi-

cients identically vanish. Among the primary operators of the 3D Ising model, we are

interested in the identity I together with only two relevant ones, namely σ and ε. The

corresponding fusion rules are:

[σ][σ] = [1] + [ε] + ... , [ε][ε] = [1] + [ε] + ... , [σ][ε] = [σ] + ... . (2.125)

These relations imply that any correlation functions containing an odd number of

σs identically vanishes. Contrary to the d = 2 case, where Kramers-Wannier duality

(〈[ε]n[1]l〉 = (−1)n〈[ε]n[1]l〉) implies that Cεεε = 0, in d = 3 this Wilson coefficient is in

general non-trivial and must be taken into account in the series expansions.

Wilson coefficients in the d = 3 case

In three spatial dimensions, the knowledge of correlators at the critical point is limited

to two and three-point functions, and the scaling dimensions and structure constants

have been evaluated numerically in [9]: (∆σ,∆ε) = (0.5181489(10), 1.412625(10))

and (Cεσσ, C
ε
εε) = (1.0518537(41), 1.532435(19)). Out of the critical point, the correla-

tors can be expanded as a series of the parameter ρ in the following way:

〈σ(z1)σ(0)〉ρ = C1

σσ(z1) + Cεσσ(z1)Aερ
θ∆ε + ρ∂ρC

1

σσ(z1) + ... , (2.126)

〈ε(z1)ε(0)〉ρ = C1

εε(z1) + Cεεε(z1)Aερ
θ∆ε + ρ∂ρC

1

εε(z1) + ... , (2.127)

〈σ(z1)ε(0)〉ρ = Aσρ
θ∆σ(Cσσε(z1) + ρ∂ρC

σ
σε(z1) + ...) . (2.128)
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As said before, the derivatives of Wilson coefficient can be written in terms of known

quantities. For instance, ∂ρCIσσ(z1) reads:

− ∂ρCIσσ(z1) =

∫
d3z2 |z2|p

[
〈σ(z1)σ(0)ε(z2)〉 − Cεσσ(z1)〈ε(z2)ε(0)〉

]
. (2.129)

This integral can be evaluated using a Mellin transform technique (see appendix A

for details). In particular, the second term is just a regulator needed to cancel the

IR-divergent part, meaning that only the first term contributes to the final result.

Expanding the first term in (2.129) in terms of the known correlation function at the

critical point we find:

∂ρC
I
σσ(z1) = −z∆t−2∆σ+p

1 Cεσσ

∫
d3y

yp

y∆ε(1 + y2 − 2y cos θ)
∆ε
2

, (2.130)

where ∆t = 3 − ∆ε and y = z2/z1. We refer to Appendix A for the details of the

computation. The final result is:

∂ρC
I
σσ(z1) = −z∆t−2∆σ+p

1 CεσσI(p) , (2.131)

where I(p) is numerical factor that can be expressed in terms of Gamma functions and

the relevant parameters of the model, as shown in (A.8). In what follow we are going

to consider mostly the harmonic potential case, p = 2, for which I(2) ' −8.4448.

Following the same procedure we can also evaluate the derivative of CIεε:

∂ρC
I
εε(z1) = −z∆t−2∆ε+p

1 CεεεI(p) . (2.132)

Putting all together, the expressions (2.126)-(2.128) can be expressed as:

z2∆σ
1 〈σ(z1)σ(0)〉ρ = 1 + CεσσAε(ρ

θz1)∆ε − Cεσσρz∆t+2
1 I(2) + ... , (2.133)

z2∆ε
1 〈ε(z1)ε(0)〉ρ = 1 + CεεεAε(ρ

θz1)∆ε − Cεεερz
∆t+2
1 I(2) + ... , (2.134)

z∆ε
1 〈σ(z1)ε(0)〉ρ = Aσρ

θ∆σ
(
Cσσε + #ρz∆t+2

1 + ...
)
. (2.135)

As usual in this approach, the asymptotic convergence of the series expansion

is guaranteed for distances (measured from the center of the trap) less than about

one correlation length. In the last equation the symbol # stands for the numerical

value of the coefficient ∂ρCσσε(z1). The computation of this coefficient within the CPT

framework involves the use of a 4-point correlation function at the critical point:

− ∂ρCσσε(z1) lim
|z3|→∞

〈σ(z3)σ(0)〉 =

lim
|z3|→∞

∫
|z2|<|z3|

d3z2 |z2|p
[
〈σ(z1)σ(z3)ε(z2)ε(0)〉 − Cσσε(z1)〈σ(z3)σ(0)ε(z2)〉

]
.

(2.136)

Since 〈σ(z1)σ(z3)ε(z2)ε(0)〉 is not known analytically at the critical point, (2.136)
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can not be evaluated exactly. However, as we will show later, this term can not be

neglected and it will be determined a posteriori using Monte Carlo simulations.

2.4.2 Conversion to the lattice and numerical results

The model previously described can be solved on a lattice in order to verify the va-

lidity of the CPT expansion and to get some insights in the numerical factors which

we have not been able to determine analytically. The Hamiltonian of the system on a

cubic lattice can be expressed in the following form:

H = −J
∑
〈ij〉

σiσj(1 + U(ri)) + h
∑
i

σi (2.137)

where σi is the spin field, ri is its distance from the center of the confining potential

and h is a possible magnetic field perturbation whose importance will be shortly

explained. The conformal point is recovered for h = 0. To get a more precise physical

intuition about the trapping effect, it is convenient to perform the transformation

σi = 1 − 2ρi. Then, the new variable ρi can only assume two values (0 and 1) and

it can be thought as a density of particles in a d-dimensional gas. Eventually, the

Hamiltonian reads:

H = −4J
∑
〈ij〉

ρiρj − µ
∑
i

ρi + 4J
∑
〈ij〉

U(ri)ρi(1− ρj) (2.138)

where µ = 2h − 4qJ is the chemical potential and q is the coordination number

(q = 6 in three dimensions). The main advantage of this transformation is that, since

the potential U(ri) diverges at large ri, it makes it apparent that the only way to

prevent the last term in (2.138) to diverge is to set either 〈ρi〉 = 1 or 〈ρi〉 = 0 for all

i far from the center of the trap. The first condition is not physically acceptable (all

the particles running away to infinity) and it can be avoided by inserting a small and

positive magnetic field h in eq. 2.137, namely:

lim
h→0+

lim
|r|→∞

〈σr〉 = 1 . (2.139)

This leaves us only with the second possibility, which is equivalent to require a null

density of particles (〈ρi〉 = 0) far from the center of the lattice, which means that the

system is trapped.

Lattice implementation

The Monte Carlo simulation is performed with the Metropolis algorithm on a cube

with side L and fixed boundary. The trap is centered in the middle point of the cube.

The spin i located on the lattice at distance r from the center is denoted with σlatri .

We calculate the following observables: the spin one-point function on the central

site 〈σlat0 〉, and the energy one-point function in the middle of the lattice, defined as
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〈εlat0 〉 ≡ 〈σlat0 σlat1 〉−Ecr, where Ecr is the energy bulk contribution at the critical point

and 〈...〉 is the statistical average.

The correlation functions are calculated from the central site of the lattice up to

the distance r on the central axis, averaging between the six orthogonal directions.

Thus, they are defined as:

Gσσ(r) ≡ 1

6
〈

3∑
i=1

σlat0 (σlatri + σlat−ri)〉 , (2.140)

Gεε(r) ≡
1

6
〈

3∑
i=1

εlat0 (εlatri + εlat−ri)〉 , (2.141)

Gσε(r) ≡
1

6
〈

3∑
i=1

εlat0 (σlatri + σlat−ri)〉 , (2.142)

As the system breaks translational invariance, we may wonder Gσε to be different

from Gεσ. However, we have verified that the differences between the two correla-

tors are negligible within the parameter range used in the simulations and we will

eventually focus on Gσε in the rest of our analysis.

We have performed our simulations focusing on the harmonic trap case, namely

setting p = 2. Moreover we have fixed the following constants to their known

Ising model values: the energy bulk value Ecr = 0.3302022(5) and the critical tem-

perature βc = 0.22165462(2) [23], the scaling dimensions ∆σ = 0.51815(2) and

∆ε = 1.41267(13) [24]. Thus, pθ = 2/(5 − ∆ε) ' 0.55752. The uncertainty on

these constants is negligible with respect to our numerical precision.

The simulations have been performed with a lattice side L = 480 that is large

enough to avoid finite size effects within our current precision. Since our observables

are closely sampled around the center of the trap, we adopt a hierarchical upgrad-

ing scheme [25]: instead of performing the Monte Carlo sweep on the whole lattice

at each step, sweeps are performed in nested cycles over smaller cubic boxes of in-

creasing size centered in the middle of the lattice. With this procedure computational

times are reduced without affecting local central observables. In a single Monte Carlo

simulation, starting from a configuration with all spins aligned, 5 · 106 sweeps have

been performed, with about 104 sweeps for thermalization. Observable uncertainties

have been calculated by using the batched mean method. Moreover, final results of all

observables have been obtained by averaging about 100 repeated and independent

Monte Carlo simulations.

One-point functions

Since the potential is coupled to the temperature, which in the lattice is non-zero at

the critical point, the effective scaling parameter on the lattice to be compared with
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analytical prediction is ρlat ≡ βcρ. Thus, the one-point functions on the lattice are:

〈σlat0 〉 = Alatσ ρθ∆σ
lat , (2.143)

〈εlat0 〉 = Alatε ρθ∆ε
lat . (2.144)

FIGURE 2.4: Bi-log plots of the the spin (Upper panel) and energy
(Lower panel) one-point functions against power law fits (red line).
Due to numerical accuracy, the fits have been performed for values of

ρ greater than the ones indicated by the dashed vertical lines.

The results for the spin and energy one-point functions are shown in figure 2.4.

The fit has been performed in the range 10−8 ≤ ρ ≤ 5.625× 10−7. Within this range,

the scaling exponents are in good agreement with the theoretical result predicted by

the TSS argument 2.143-2.144, as shown in table 2.6. This confirms the validity of
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exponent theory simulation χ2/d.o.f.

θ∆σ 0.144439(5) 0.144(1) 0.6
θ∆ε 0.39379(5) 0.392(4) 1.4

TABLE 2.6: Exponents extracted from the fits shown in figure 2.4.

the TSS ansatz [18] also in the present case. Eventually, we fix the exponents to the

value 2.143-2.144 and we repeat the fit with only two free parameters to find the

remaining constants, obtaining Alatσ = 1.6390(13) and Alatε = 2.226(11).

Two-point functions

With the definitions 2.140-2.142 at hand, and taking into account the bulk contribu-

tion to the energy operator on the lattice Ecr, the two-point functions on the lattice

(denoted with with the average 〈...〉lat) assume the following form:

〈σ(r)σ(0)〉lat = Gσσ(r) , (2.145)

〈ε(r)ε(0)〉lat = Gεε(r) + E2
cr − Ecr(〈εlatr 〉+ 〈εlat0 〉) , (2.146)

〈σ(r)ε(0)〉lat = Gσε(r)− Ecr〈σlatr 〉 . (2.147)

In order to make contact with the CPT theoretical results (2.126)-(2.128), we

must consider the lattice conversion factors Rσ and Rε. Regarding the first, Rσ =

0.55245(13) according to [26]. Estimates ofRε vary from 0.2306(38) [26] to 0.2377(9)

[17]. This is the largest source of systematic uncertainty in our simulations. For this

reason we will adopt the averageRε = 0.2341 with a variation±0.0030 to evaluate the

final systematic error. Finally, the structure constant on the lattice (Cεσσ)lat must be

converted taking into account the conversion rules for ε and ρ, namely 〈εlat〉 = Rε〈ε〉
and ρlat = R−1

ε ρ. Eventually, combining (2.126)-(2.128) with (2.145)-(2.147) we

obtain:

〈σ(r)σ(0)〉lat =
R2
σ

r2∆σ

(
1 + Cεσσ R

−1
ε Alatε ρθ∆ε

lat r
∆ε − CεσσI(2)Rερlatr

2+∆t

)
,(2.148)

〈ε(r)ε(0)〉lat =
R2
ε

r2∆ε

(
1 + Cεεε R

−1
ε Alatε ρθ∆ε

lat r
∆ε − CεεεI(2)Rερlatr

2+∆t

)
,(2.149)

〈σ(r)ε(0)〉lat =
RεRσρ

θ∆σ
lat

r∆ε

(
Cσσε R

−1
σ Alatσ + bρlatr

2+∆t

)
. (2.150)

The parameter b in the second term of (2.150) is related to the coefficient (2.136),

which, as already mentioned, we have not been able to compute analytical using CPT.

This parameter will be evaluated a posteriori by fitting the numerical results.

We can now insert the lattice quantities Alatε and Alatσ calculated in section 2.4.2,

and directly fit the continuum structure constants Cεσσ and Cεεε. Fit results, reported in

the table 2.7, are in good agreement with the known values: Cεσσ = 1.0518537, Cεεε =

1.532435 [24]. Figure 2.5 shows the behavior of the correlators. More specifically,
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ρ range r Cεσσ χ2/d.o.f.

1× 10−8 7-13 1.059(20)[40] 3.5
4× 10−8 7-13 1.049(5)[15] 0.9
9× 10−8 7-13 1.043(3)[14] 0.2

ρ range r Cεεε χ2/d.o.f.

1× 10−8 6-13 1.46(15)[30] 0.9
4× 10−8 6-13 1.58(7)[24] 0.6
9× 10−8 6-13 1.50(8)[20] 1.1

TABLE 2.7: Results of the structure constant found by fitting the data
with the function 2.148 for various trap sizes ρ. The number in round
brackets denotes the statistical uncertainty of the fit, while the number
in square brackets denotes the systematic error due to the uncertainty
of the constants. Regarding the correlator related to the table on the
right side, we have sampled all the distances in the same simulation, so
that statistical errors have been estimated by means of the jack-knife

technique.

data and fits are outlined for ρ = 9× 10−8, and Monte Carlo data reproduce well the

expected behavior. We obtained very similar results for the other trap-sizes reported

in the tables 2.7.

Table 2.8 shows the fit results for the mixed correlator 〈σε〉 without including the

second term in (2.150) (b = 0), while table 2.9 shows the fits including b as a free

parameter. As one can see from the tables, once Cσσε is left as a free parameter its

value agrees better with the known result if we take into account the parameter b.

This is confirmed in Figure 2.6, where it is evident that the presence of b significantly

improves the agreement between the theoretical prediction and the numerics. This

proves that the second term in (2.150) is definitely important and must be taken into

account.

ρ range r b (Cσσε = 1.0518537) χ2/d.o.f. Cσσε (b=0) χ2/d.o.f.

1× 10−8 7-13 1.1(2)[3]·104 2.2 1.098(3)[10] 0.3
4× 10−8 6-13 2.8(4)[5]·103 0.98 1.082(6)[12] 1.6
9× 10−8 6-13 1.9(2)[4]·103 5.5 1.094(10)[14] 4.3

TABLE 2.8: Fit performed including the second term of Eq. 2.150 and
fixing Cσσε to the known value (third column), and fit of the struc-
ture constant Cσσε setting b = 0 (fifth column). It is evident from the
data that b contributes non-trivially to the correlator, as our numerical

results do not match the known value for Cσσε if we set b = 0.

2.4.3 Discussion

With this simple model we have further developed the program of studying systems

in their off-critical scaling regime, using the consolidated approach based on the OPE

and the possibility of expanding the Wilson coefficients in terms of the perturbing
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ρ range r Cσσε b χ2/d.o.f.

1× 10−8 7-13 1.098(4)[10] ∼ 0 0.3
4× 10−8 6-13 1.067(7)[12] 1.8(5)[1]·103 0.3
9× 10−8 6-13 1.080(9)[12] 1.0(2)[1]·103 0.8

TABLE 2.9: Performing the fit with two free parameters the situation
improves and the numerical values of Cσσε are in agreement with the
expected one within the numerical error. The results for ρ = 1× 10−8

are probably affected by some finite-size effect, as it can been seen in
the 〈σσ〉 correlator as well.

parameter by means of conformal perturbation theory [7, 27, 28]. This has been

done for the 3D Ising model perturbed by a trapping potential coupled to the energy

operator. Nevertheless, the procedure can be applied in principle to other systems in

a different universality class since the method only requires scale invariance at the

critical point.

We have evaluated the first leading terms in the expansions of the correlators

comparing the analytic predictions against numerical Monte Carlo simulations. The

results for the 1-point functions outlined in Fig. 2.4 confirm once again the validity of

the TSS ansatz [18] as a powerful tool to determine the behavior of the expectation

values of the model outside the critical point.

Despite the necessity of using large size traps and consequently large lattices, the

estimates of the structure constants shown in tables 2.7 are in good agreement with

the known results found in literature. This fact shows the reliability of the approach

and confirms that this method is a promising tool for studying different systems out

of criticality. Additionally, we have proven that the behavior of the 〈σε〉 correlator is

influenced by the presence of a term which depends, according to the CPT approach,

on an integral involving a 4-point function (2.136). Due to the lack of knowledge

on the 4-point function at the critical point in the 3D Ising model, this integral can

not be evaluated analytically. However, using the high quality CFT data in [29] one

could compute the 4-point function needed in (2.136) analogously to what has been

done for the σ 4-point function in [30]. The integral (2.136) may be eventually

evaluated applying the procedure used to compute similar integrals involving the ε

4-point function in [31] and the σ 4-point function in [32]. This will allow us to

validate our numerical estimation (Table 2.8 and 2.9) and constitutes a worthwhile

future direction.
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FIGURE 2.5: Results for the spin-spin (up) and energy-energy (down)
two-point functions and their fits with the expected behavior (eq.
2.148 and 2.149) red line. Due to numerical accuracy, fits are per-
formed for values of r greater than the ones indicated by the black
dashed vertical lines. Error bars are small and usually hidden within

the points size.
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and including (red line) the second term in Eq. 2.150. As it is evident,
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Chapter 3

Magneto-thermal transport

3.1 Introduction

The method described in the previous chapter is only one of the possible ways to

study conformal field theories and systems near a critical point. For example, the

very well known paper by Juan Maldacena [33] more than twenty years ago gave

rise to the idea of the famous AdS-CFT correspondence. In a nutshell, the concept

behind the duality is that it is possible to get informations about a (strongly coupled)

conformal field theory by studying a classical theory of gravity in a one dimension

more.

The applications of this approach are very disparate and almost countless, and in

this chapter we are going to see how the AdS-CFT duality can be adopted to help us

in a specific problem of magnetohydrodynamics.

Magnetohydrodynamics is a collective theory of hydrodynamic modes coupled to

electromagnetic degrees of freedom. It is an effective field theory which describes the

long-range correlations of near-equilibrium systems, when the microscopic theory is

coupled to a U(1) gauge field. The electromagnetic field can be dynamical, where the

evolution of the gauge field is governed by the Maxwell equations from a given initial

configuration, or external where the profile is arbitrary up to satisfying the Bianchi

identity. We are interested in the latter.

In recent times magnetohydrodynamics has been intensively studied. New break-

throughs in the theoretical study of magnetohydrodynamics include, among others

things, understanding the deeper underlying symmetries and structures that con-

strain the transport coefficients and subsequently formulating classification schemes

[34, 35]. There have also been applications to the generalized global symmetry re-

formulation of hydrodynamics [36–39]. At a more practical level the formalism has

been used to analyze the physics of relativistic plasmas [40], as well as to understand

the behavior of strongly coupled condensed matter systems [41–46].

In the earliest formulations of (2 + 1)-dimensional relativistic magnetohydrody-

namics [41–43, 47–51] the entire suite of physically relevant conductivities, electric,

thermo-electric and thermal, were given in terms of a single incoherent longitudi-

nal conductivity σ0 for “not too strong magnetic fields”. The latter requirement is a

consequence of matching holographic and hydrodynamic results. In particular, it was
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discovered that if one assumes the constitutive relation of [41, 48] for the charge cur-

rent, which depends on only a single transport coefficient σ0, then one matches pre-

cisely the DC electric and thermo-electric conductivities. However, the holographic

DC thermal conductivities match the hydrodynamic prediction only in the extreme

region where charge density completely suppresses the effect of the magnetic field.

We claim that a more appropriate hydrodynamic theory contains two non-trivial

charge transport coefficients - the usual σ0 and an incoherent Hall conductivity σ̃H.

To fix these quantities we just use the fact that the diffeomorphism and U(1) gauge

Ward identities constrain the small frequency expansion of the charge conductivity

[48, 52]. In particular, we note that the O(ω2) piece of the charge correlator relies

on the values of the DC thermal conductivities. Thusly, by matching our hydrody-

namic correlators at small frequency up to and including O(ω2), we find that σ0 and

σ̃H can be expressed entirely in terms of two system dependent quantities - the lon-

gitudinal (κL) and Hall (κH) thermal DC conductivities - and the thermodynamics.

Consequently our hydrodynamic correlators, being dependent only on σ0, σ̃H and

the thermodynamics at order one in hydrodynamic derivatives, are also expressed

entirely in terms of the same variables. It is important to note that the resultant re-

lations are valid at any order in the magnetic field, provided that one knows κL and

κH exactly.

In [53], where (2 + 1)-dimensional parity violating hydrodynamics is considered

up to an including order one in derivatives, an incoherent Hall conductivity is in-

cluded in the constitutive relation of the U(1) charge current. However, because the

authors of that paper consider B ∼ O(∂) this Hall conductivity is only non-zero to

the order worked at if the theory violates spatial parity in the absence of the mag-

netic field. The incoherent Hall conductivity we will consider is proportional to the

magnetic field - which we take to be order zero in derivatives - and exists in a theory

that does not violate spatial parity microscopically. It could potentially appear in the

formalism of [53] at O(∂2), as a new transport coefficient. In principle, our type of

Hall conductivity was allowed for in the appendix of [45], but to our knowledge it

has never been shown to be non-zero. Here we provide for the first time an expres-

sion for σ̃H (and also σ0) in terms of κL, κH and the thermodynamics. We eventually

verify the validity of our results using gauge/gravity duality, analyzing the simple

holographic model of the dyonic black hole. In these kinds of holographic models,

analytical formulae for the DC thermo-electric transport coefficients in terms of the

thermodynamic data are very well known [42, 47–50, 52, 54–61]. Consequently

we have been able, using the known result for κL and κH, to completely determine

the incoherent conductivities σ0 and σ̃H, and eventually to compare the complete

hydrodynamic correlators to the holographic ones.

In the next sections we will present in general the theory of a relativistic charged

fluid in (2+1)-dimensions in the presence of an external magnetic field. After review-

ing the Ward identities, we show that the incoherent conductivities σ0 and σ̃H, and
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eventually the hydrodynamic AC charge correlator for general frequencies, are com-

pletely determined by thermodynamic quantities and the DC longitudinal and Hall

thermal conductivities κL and κH. Subsequently, we return to the tried and tested ex-

ample of the (3 + 1)-dimensional dyonic black hole and apply our formalism, finding

that the system is very well described by the hydrodynamics derived in section 3.2.

3.2 Magnetohydrodynamics

Consider a (2 + 1)-dimensional system with a conserved, global U(1) current. The

(non-) conservation equations of the stress-energy-momentum (SEM) tensor and

charge current are

∇µ〈Tµν〉 = F νµ 〈Jµ〉 , (3.1)

∇µ〈Jµ〉 = 0 . (3.2)

Here 〈Tµν〉 and 〈Jµ〉 refer to the “total currents” given by variation of the source

terms in the action describing our system. In the presence of an electromagnetic field

which is O(∂0) in derivatives the right hand side of (3.1) has an explicit source term.

We assume the existence of a preferred time-like Killing vector field uµ and SO(2)

rotational invariance. We define the following tensor structures

Πµν = gµν + uµuν , Σµν =
√
−gεµνρuρ , (3.3)

ΠµνΠνρ = Π ρ
µ , ΠµνΣνρ = Σ ρ

µ , ΣµνΣνρ = −Π ρ
µ , (3.4)

where εµνρ is the Levi-Civita symbol with ε012 = 1. With respect to these structures

we can define a gauge and Lorentz invariant electric Eµ and magnetic field B by

decomposing the field strength tensor into

Fµν = uµEν − uνEµ +BΣµν . (3.5)

Similarly we can decompose the stress tensor and the electric current in the following

manner

〈Tµν〉 = Euµuν + (Pµuν + Pνuµ) + PΠµν + T µν , (3.6)

〈Jµ〉 = Nuµ + J µ , (3.7)

where all indices not present on uµ are transverse and we have defined

E = uµuν〈Tµν〉 , P =
1

2
Πµν〈Tµν〉 , N = −uµ〈Jµ〉 , (3.8)

Pµ = −Πµ
ρ〈T ρν〉uν , J µ = Πµν〈Jν〉 , (3.9)

T µν =

(
Πµ

σΠν
ρ −

1

2
ΠµνΠρσ

)
〈T ρσ〉 . (3.10)
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The two index structure T µν is symmetric and traceless.

3.2.1 The diffeomorphism and U(1) gauge symmetry Ward identities

A key role in our derivation will be played by the Ward identities. Essentially, the

presence of an order zero in derivative O(∂0) source in the momentum conserva-

tion equation will mean that the thermo-electric and thermal conductivities are com-

pletely determined by the electric conductivity.

The Ward identities for the two point functions of the SEM tensor and charge

current, on a flat spacetime with a non-zero electromagnetic field [52], are

0 = −kµ〈JαTµν〉+ iF ν
µ 〈JαJµ〉+ kν〈Jα〉 − kµηαν〈Jµ〉 , (3.11)

0 = kµ

(
〈TαβTµν〉+ ηαν〈T βµ〉+ ηβν〈Tαµ〉 − ηµν〈Tαβ〉

)
+iηβνF α

µ 〈Jµ〉+ iηανF β
µ 〈Jµ〉 − iF ν

µ 〈TαβJµ〉 , (3.12)

where kµ = (ω,~k) is the momentum. Contracting with the fluid velocity or spatial

projector while specializing to zero wavevector we find that these identities can be

written as

ω〈J µPν〉 = −ωNΠµν − iEν〈J µN〉+ iBΣ ν
ρ 〈J µJ ρ〉 , (3.13)

ω〈PρPσ〉 = − (ωE − iEµ〈J µ〉) Πρσ − iEσ〈PρN〉+ iBΣ σ
µ 〈PρJ µ〉 . (3.14)

In the case of the dyonic black hole that we investigate later, we will take Eµ ≡ 0

and B to be constant. Evaluating the Ward identities with these restrictions causes

terms proportional to Eµ to drop out. Further, replacing Pµ by the spatially projected

canonical heat current Qµ = Pµ − µJ µ we arrive at the following relations

〈J µQν〉 = −NΠµν −
(
µΠ ν

ρ −
iB

ω
Σ ν
ρ

)
〈J µJ ρ〉 , (3.15)

〈QµQν〉 = − (E + P −Nµ) Πµν −
(
µΠ ν

ρ −
iB

ω
Σ ν
ρ

)
〈QµJ ρ〉 . (3.16)

The importance of the terms which depend on B/ω cannot be overstated. They are

essential to the structure of the correlation functions as they mix different orders in

frequency between the correlators. Consequently, knowing the complete AC behavior

of the charge conductivity is sufficient to determine the thermo-electric and thermal

conductivities.

More explicitly, we define the AC electric, thermo-electric and thermal conduc-

tivities to be

〈J µJ ν〉 = iωσµν(ω) , (3.17)

〈J µQν〉 = iωαµν(ω) , (3.18)

〈QµQν〉 = iωκµν(ω) , (3.19)
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respectively. In terms of these totally transverse tensor structures, the Ward identities

become

αµν = i
N
ω

Πµν −
(
µΠ ν

ρ −
iB

ω
Σ ν
ρ

)
σµρ , (3.20)

κµν =
i

ω
(E + P −Nµ) Πµν −

(
µΠ ν

ρ −
iB

ω
Σ ν
ρ

)
αµρ . (3.21)

As the thermo-electric and thermal conductivities are given entirely in terms of the

charge conductivity, and the Ward identities hold for all frequencies, it follows that

complete specification of the charge conductivity at all frequencies is sufficient to

determine the other two conductivities.

The microscopic theory has SO(2) rotational invariance with B breaking spatial

parity. Consequently we can decompose the conductivity tensor structures into

(σ(ω), α(ω), κ(ω))µν = (σL, αL, κL)Πµν +
1

B
(σH, αH, κH)Σµν , (3.22)

where the tensors Πµν and Σµν are treated as order zero in fluctuations, namely

substituting uµ = (1,~0). In terms of this decomposition, and at low frequencies, we

discover that

σL(ω) = −i
(
E + P
B2

)
ω +

κL(0)

B2
ω2 +O(ω3) , (3.23)

σH(ω) = N +
1

B2
(κH(0) + µ (2(E + P)− µN ))ω2 +O(ω3) , (3.24)

where we have used that the conductivities must be finite at vanishing ω and we have

assumed that N , E and P are independent of frequency up to and including O(ω2).

In particular, requiring finite behavior as ω → 0 in the Ward identities1 constrains

σL(0) = αL(0) = 0 , σH(0) = N , αH(0) = E + P − µN , (3.25)

but leaves κL(0) and κH(0) unconstrained and system dependent. In section 3.3 we

will set them to be the values befitting the dyonic black hole.

We emphasise that we have not made any magnetization subtractions in our

definition of the spatially projected currents and therefore the transport coefficients

refer to the total current and not the “free current”. Moreover we have ignored any

of the normalizations by temperature often made to the thermal conductivity so as to

not clutter notation.
1The magnetic field gaps excitations of the system to be at or above the cyclotron frequency in

energy. Consequently one expects a smooth limit at low frequencies. This should be compared to
relativistic charged hydrodynamics without a background field strength where there is a known δ-
function singularity at low frequencies.
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3.2.2 Equilibrium magnetohydrodynamics

A comprehensive derivation of the equilibrium configurations of polarizable matter

is given in [62]; however we shall only need the results to lowest order in derivatives.

The equilibrium charge current in a theory with only a non-vanishing magnetic field

in the background (and no electric field) has the form

〈Jµ〉 = ρuµ −∇νMνµ , (3.26)

Mµν = −mεµνρuρ , (3.27)

to all orders in derivatives where ρ = ∂F
∂µ is the charge density, m = −∂F

∂B is the mag-

netization and F is the free energy. For our purposes the equilibrium configuration

of the charge current decomposed with respect to the time-like vector at zeroth order

in derivatives is

N = ρ , J µ = 0 , (3.28)

where we have taken a ground state with no vorticity.

Turning now to the SEM tensor, we identify the following expressions at order

zero in derivatives,

E = −P + Ts+ µρ , P = P −mB , Pµ = 0 , T µν = 0 . (3.29)

In the above P is the pressure, T the temperature and s the entropy density. Again we

have assumed the electric field vanishes in the background. Our microscopic theory

will be conformal such that the trace of the SEM tensor gives

E − 2P = (ε− 2P + 2mB) = 0 , (3.30)

where ε is the energy density. We note that the equilibrium configuration of the

system depends on the external magnetic field B; as will the leading terms in the

derivative expansion of the transport coefficients. In systems where the magnetic

field is extremely weak - such that it can be treated as O(∂) in derivatives - the

thermodynamic quantities and transport coefficients can still depend on B but this

dependence appears as higher order terms in the derivative expansion i.e. the leading

terms in this latter case are B independent.

3.2.3 AC diffusivities in magnetohydrodynamics

We wish to work to order one in fluctuations about a flat background at constant

temperature Tb, chemical potential µb and magnetic field B. Let uµ = uµb + δuµ,

with uµb = (1,~0), be the time-like Killing vector field of the system to order one in

fluctuations. We require our fluctuation to maintain uµuµ = −1; whence it is the case

that δuµ needs to be entirely transverse. At this order in fluctuations the conservation



3.2. Magnetohydrodynamics 61

equations have the form

∂µδ〈Tµν〉 = F νµb δ〈Jµ〉+ δFµν〈Jbµ〉 , (3.31)

∂µδ〈Jµ〉 = 0 . (3.32)

Just as for the full currents, the fluctuations can be decomposed with respect to a

time-like vector field. In this case it is useful to use uµb . Consequently, we can identify

δ〈Tµν〉 = δEuµb u
ν
b +

(
δPµuνb + δPνuµb

)
+ δPΠµν

b + δT µν , (3.33)

δ〈Jµ〉 = δNuµb + δJ µ , (3.34)

δFµν = uµb δE
ν − uνb δEµ . (3.35)

With these expressions we can decompose the spatial part of the SEM tensor (non-)

conservation equation into the following form

uµb ∂µδP
ν = −Πνµ

b (∂µδP + ∂µδT µν) +NbδEν +BΣνµ
b δJµ , (3.36)

This will be the only relevant differential equation that we need to solve.

An unusual feature of any hydrodynamic theory with an explicitly sourced mo-

mentum term is the ability to work in the diffusive sector assuming vanishing wavevec-

tor ~k from the get-go. This is due to the fact that the diffusive pole does not move to

the origin of the complex frequency plane as ~k → 0. To compare this with ungapped

hydrodynamics, the diffusive pole has the form ω = −iD~k2 and taking ~k2 → 0 in

the conservation equations (if one is not careful) gives a trivial result. This inspires

us to ignore spatial derivatives in our conservation equations such that the relevant

momentum flow equations become

uµb ∂µδP
ν = NbδEν +BΣνµ

b δJµ , (3.37)

for arbitrary - slowly varying - time dependent profiles.

At the level of linear response we need only determine the fluctuating part of the

constitutive relations that are non-zero for completely time dependent profiles. We

remind the reader that the electric field is external and permitted to have any time

dependence we choose on the condition that the time dependence is sufficiently slow.

As such, we will choose it to be a plane wave at a single frequency. With this in mind

the constitutive relation for the current takes the form,

δJ µ(ω) = σ̂µν0 δEν + χ̂µνδPν(ω) , (3.38)

where the subscript 0 indicates the fundamental (incoherent) conductivity of the the-

ory and the tensor transport coefficients are constant. We have chosen spatial mo-

mentum rather than spatial velocity to be one of our fluid variables as it is more
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convenient for solving the resultant hydrodynamic equations of motion. Spatial rota-

tional invariance allows us to break the transverse tensor structures of (3.38) into a

piece proportional to Πµν and one proportional to Σµν .

We would like to highlight a point that will return later, the constitutive relation

of (3.38) represents the complete response of the charge current in hydrodynamics.

We are working at ~k = 0 so there are no derivative corrections proportional to ~k.

Moreover one cannot add derivative corrections in ω without introducing additional

modes and taking us outside the hydrodynamic regime. As we are working to order

one in fluctuations and both the electric field and momentum vanish in the back-

ground there cannot be non-linear tensor structures that correct (3.38). Thus (3.38)

contains everything consistent with hydrodynamics.

Applying the definitions of (3.38) to (3.37) we see that the spatial momentum

(non-) conservation equation becomes

uµb ∂µδP
ν(t) = −ΓνµδPµ(t) + ΘµνδEν(t) , (3.39)

where we have defined

Γµν = −BΣ µ
b ρχ̂

ρν , (3.40)

Θµν = NbΠµν
b +BΣ µ

b ρσ̂
ρν
0 . (3.41)

It is important to note that, unlike in the case of B = 0 or B ∼ O(∂1), the conserva-

tion equation (3.39) is a non-trivial and solvable linear differential equation for the

spatial momentum because there is a gap in excitations of the system generated by

the magnetic field. In the case of B = 0 or B ∼ O(∂1) the expression on the right

hand side of (3.39) vanishes at lowest order in derivatives.

In the Martin-Kadanoff procedure [63] we assume that we turn on some source

for our conserved quantities at t = 0 and allow them to evolve according to the con-

servation equations. Performing a Laplace transform in time (accounting for bound-

ary conditions at t = 0) of (3.39) we arrive at

−iωδP i(ω)− δP i0 = −ΓijδPj(ω) + Θi
jδE

j , (3.42)

where δP i0 is the perturbed value of the spatial momentum at t = 0. Consequently

the momentum evolves in frequency according to

δP(ω) = (Γ− iω12)−1 (ΘδE + δP0) , (3.43)

where indices are implied.
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The frequency evolution of the charge currents can now be determined by sub-

stituting (3.43) into the charge conservation equation employing the constitutive re-

lations (3.38). The result for the charge current is

δJ =
(
σ̂0 + χ̂ (Γ− iω12)−1 Θ

)
δE + χ̂ (Γ− iω12)−1 δP0 . (3.44)

From these expressions the frequency evolution of the electric conductivity can be

readily determined to be

σ(ω) = σ̂0 + χ̂ (Γ− iω12)−1 Θ . (3.45)

To determine the thermal conductivity from the constitutive relations we would in

principle need a non-zero spatial momentum. However, we are saved from having to

do this by making use of the Ward identities of (3.15) and (3.16).

There are some important observations to make about our expressions for the

AC diffusivities. Firstly, all poles in these correlation functions must originate in

the inverse matrix (Γ− iω12)−1. The zeroes of the determinant of this matrix will

correspond to the quasinormal modes of our dyonic black hole model. Secondly, if we

determine the AC response of the charge conductivity, the fundamental conductivities

are given entirely in terms of other quantities,

Tr [σ(ω)] = Tr [σ̂0]− Tr
[
χ̂ (Γ− iω12)−1 Θ

]
, (3.46)

Tr [σ(ω)ε] = Tr [σ̂0ε]− Tr
[
χ̂ (Γ− iω12)−1 Θε

]
, (3.47)

with

ε =

(
0 1

−1 0

)
, (3.48)

where we assume we are away from any singularities associated with the inverse

operation. In what follows we will decompose our fundamental conductivities as

σ̂ij0 = σ0δ
ij + σ̃HF

ij , (3.49)

χ̂ij = χ0δ
ij + χHF

ij , (3.50)

where we have used spatial parity invariance to argue that the scalar Hall conduc-

tivities σ̃H, χH must be even in B when they multiply the tensor structure F ij . We

note that unlike some previous formulations [41, 48, 64] we have allowed for an

incoherent Hall conductivity in (3.49). Such a term is not forbidden (in particular

by transformations under spatial parity as it multiplies F ij) and should therefore be

included. In fact it turns out to be necessary. It is consistent with the previous results

[53] where the magnetic field is treated as O(∂) because it would only appear at

O(∂2).
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3.2.4 Constraining hydrodynamic correlators with the Ward identities

We are now ready to compare the electric conductivities derived in (3.46) and (3.47)

to the Ward identities (3.23) and (3.24), expanding them order by order in the fre-

quency ω. Eventually we constrain the unknown transport coefficients σ0, σ̃H, χ0 and

χH of (3.49) and (3.50).

The order O(ω0) equations are trivial so we immediately turn to O(ω1). In the

small frequency expansion of the AC correlators, the trace relations (3.46) and (3.47)

become

i

2
Tr[σ′(0)] =

ρχ0 + (σ0χH + χ0σ̃H)B2

B2
(
χ2

0 +B2χ2
H

) , (3.51)

− i
2

Tr[σ′(0)F ] =
σ0χ0 − ρχH + χHσ̃HB

2

B2
(
χ2

0 +B2χ2
H

) . (3.52)

Comparing the previous expressions with (3.23) and (3.24), at O(ω1) we can con-

strain

χ0 =
ρ−B2σ̃H

sT + µρ−mB
, χH =

σ0

sT + µρ−mB
, (3.53)

which agree with the standard result of (B.5) up to the introduction of the magneti-

zation (a known result) and a fundamental Hall conductivity.

At O(ω2) we can apply the same process, which will yield expressions for σ0 and

σ̃H in terms of the DC thermal conductivities κL(0) and κH(0) and the thermodynamic

variables. The resultant expressions are

Ξσ0(0) = (sT + µρ−mB)2κL(0) , (3.54)

Ξσ̃H(0) = −
(
m2
(
κH(0) + µ2ρ+ 6µsT

)
− ρκL(0)2

)
+

2m

B
(κH(0)(sT − µρ) + µsT (µρ+ 3sT ))

− 1

B2

(
s2T 2 − ρκH(0)

) (
κH(0) + µ2ρ+ 2µsT

)
+ 2Bµm3 , (3.55)

Ξ = B2
(
κL(0)2 + 4µ2m2

)
− 4Bµm

(
κH(0) + µ2ρ+ 2µsT

)
+
(
κH(0) + µ2ρ+ 2µsT

)2
. (3.56)

These expressions are valid to all orders in B and we remind the reader that κL(0)

and κH(0) are the DC thermal conductivities of the total currents - not the free cur-

rent. Parenthetically, we note that on the condition κL(0) 6= 0 there is a non-zero

σ0. Moreover, the incoherent Hall conductivity σ̃H can only be zero if the thermal

conductivities are related by the constraint (3.55) (with σ̃H = 0). As we will see

in section 3.3 this is not true in general and as such we generically expect σ̃H to be

non-zero in all but a very special subset of systems.
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Our AC charge conductivity correlator at order one in hydrodynamic derivatives

takes the form

σL(ω) =
iω
(
γ2
∗ + iγ∗ω + ω2

∗
)

(sT + µρ−mB)

B2 ((ω − iγ∗)2 − ω2
∗)

, (3.57)

σH(ω)

B
=

ρ

B
+
ω2ω∗(sT + µρ−mB)

B2 ((ω − iγ∗)2 − ω2
∗)

, (3.58)

where

ω∗ =
B(sT + µρ−mB) (−κH(0) + 2Bµm− µ(µρ+ 2sT ))

Ξ
, (3.59)

γ∗ =
B2κL(0)(sT + µρ−mB)

Ξ
, (3.60)

and Ξ has been defined in (3.56). We include in appendix B.2 the AC thermo-electric

and thermal conductivities. This is one of our key results as it represents an excel-

lent approximation to the charge correlators that yields the correct values for the DC

electric, thermo-electric and thermal conductivities. Moreover, it demonstrates that

obtaining the correct DC value of the thermal correlator has nothing to do with in-

cluding higher order derivative terms nor a frame transformation [64] - everything is

fixed at O(∂) in the constitutive relations, once one takes into account the constraints

between the incoherent and the thermal DC conductivities (3.55)-(3.56), which are

dictated by the Ward identities.

Since it will be useful in what follows, we also introduce the complexified con-

ductivity,

σ+(ω) ≡ σH(ω)

B
+ iσL(ω)

= Bσ̃H + iσ0 −
(sT + µρ−mB)(ω∗ − iγ∗)2

B2(ω − (ω∗ − iγ∗))
. (3.61)

The advantage of this complexified representation is that σ+ depends in a straight-

forward way only on a single hydrodynamic pole located at ω∗ − iγ∗, as is evident in

(3.61).

Some notes about (3.61) are rather important. Relativistic hydrodynamics is

a derivative expansion in time and space describing the lowest lying quasinormal

modes (typically one or two such modes with similar imaginary part). In [45] for

example there are two constant terms sourcing the momentum and one finds two

quasinormal modes are necessary to specify the hydrodynamic limit of the AC con-

ductivity. As hydrodynamics does not incorporate other quasinormal modes, in our

case, one expects it to at most get the AC correlator correct to O(ω2). One can moti-

vate this from arguing for the general form of σ+(ω), which is

σ+(ω) =
α1 + α2ω

ω + α3
, (3.62)
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where α1, α2 and α3 are complex numbers. We can use the Ward identities to fix

α1, α2 and α3 in terms of the three complex DC conductivities - determining (3.62)

uniquely.

There can be no further corrections in hydrodynamics to (3.61). Any ω dependent

corrections to (3.61) necessarily introduce additional modes and take us outside the

regime of hydrodynamics. Similarly, attempting to improve the position of the quasi-

normal mode necessarily requires that we modify the α3 of (3.62) and subsequently

no longer match the DC conductivities2. There is in fact a good motivation for fixing

the DC conductivities in preference to the quasi-normal mode as one can see that

errors in the position of the latter are suppressed by the distance of the complex pole

from the real frequency axis. Hence (3.61) is the complete hydrodynamic correlator.

Any errors between it and the observed AC conductivity cannot be removed within

the hydrodynamic regime.

3.3 Revisiting the dyonic black hole

We will check the results of the previous section using the holographic dyonic black

hole. Eventually, we consider the following action

S =

∫
d3+1x

√
−g
(
R− 6− 1

4
F 2

)
, (3.63)

where F is a U(1) gauge field strength. The bulk spacetime corresponding to a (2+1)-

dimensional conformal field theory at strong coupling with a non-zero charge density

and magnetic field is the asymptotically AdS4 dyonic black hole solution to the equa-

tions of motion coming from (3.63). This black hole has the metric

ds2 =
dz2

f(z)
+
α2

z2

(
−f(z)dt2 + dx2 + dy2

)
, (3.64a)

f(z) = 1 +
(
ρ2 +B2

) ( z
α

)4
− 1

α

(
α4 + ρ2 +B2

) ( z
α

)3
, (3.64b)

with the horizon at z = 1, the boundary at z = 0 and bulk gauge field strength

F = −µdz ∧ dt+Bdx ∧ dy . (3.65)

The thermodynamics of this black brane is well known, and here we only list the

results. The temperature T , the entropy density s, the charge density ρ and the mag-

netization density m are expressed in terms of the bulk data µ, α and B as follows:

T =
(3α4 − µ2 −B2)

4πα3
, ρ = αµ , m = −B

α
, s = πα2 . (3.66)

2A discussion of how well our hydrodynamic expression matches the lowest quasinormal mode of
the dyonic black hole is relegated to appendix B.2.
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As the system is conformally invariant it satisfies a scaling Ward identity which relates

the pressure P and the energy density ε:

ε = 2 (P −mB) , ε =
1

2α

(
α4 + ρ2 +B2

)
. (3.67)

Additionally the system is extensive and therefore satisfies a first law with ε + P =

µρ+ sT .

We will be interested in finite frequency fluctuations about the background (3.64)

and (3.65) corresponding to fluctuations of the boundary electric field. This requires

that we consider fluctuations of the tx and ty components, δgtx and δgty, of the

metric and x and y components of the gauge field, δax and δay. The analysis of these

perturbations at first order in small frequency was completed in [47]. We record

them here

〈J µJ ν〉 = −iω ρ
B

Σµν +O(ω2) , (3.68)

〈J µQν〉 = − iω
B

(
3

2
ε− µρ

)
Σµν +O(ω2) , (3.69)

〈QµQν〉 = iω

(
(sT )2

ρ2 +B2

)
Πµν

−iω
(

ρ

B(ρ2 +B2)

(
(sT )2 − (m2 + µ2)B2

))
Σµν +O(ω2) . (3.70)

These were determined analytically and hold for all values of the magnetic field and

charge. Comparing with (3.25) we see that we can identify

N = ρ , E + P =
3ε

2
, (3.71)

and additionally we have

κL(0) =
(sT )2

ρ2 +B2
, κH(0) =

ρ

ρ2 +B2

(
(sT )2 − (m2 + µ2)B2

)
. (3.72)

The AdS-CFT correspondence gives the total current as a variation of the on-shell

action. Consequently our DC conductivities are with reference to the total current,

and not the magnetization subtracted versions that sometimes appear in the literature

[41, 48–51] .

The Ward identities were demonstrated to hold in the holographic case of the

dyonic black hole in [48]. Through them, should we evaluate the charge conductivity

at arbitrary frequency, we will be able to determine the thermo-electric and thermal

conductivities. This analysis has been done previously and we refer the reader to

[48]. The result is that the independent response of our theory is described by the
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coupled bulk equations

f(z)
(
−ρE ′+(z) +BB′+(z)

)
+ ω

(
BE ′+(z) + ρB′+(z)

)
= 0 , (3.73)

ω

4z2

(
E ′+(z)− ω

f(z)
B+(z)

)
+B2B+(z)− ρBE+(z) = 0 , (3.74)

where

E+(z) = iω (δax(z) + iδay(z)) +
iB

z2
(δgtx(z) + iδgty(z)) , (3.75)

B+(z) = −Bf(z)
(
δa′x(z)− iδa′y(x)

)
. (3.76)

The asymptotic expansion of the fields E+(z) and B+(z) yield the boundary elec-

tric field and charge currents respectively,

lim
z→0
E+(z) = Ex + iEy , −i lim

z→0
B+(z) = Jx + iJy . (3.77)

This provides another motivation for us to consider the complex charge conductivity

lim
z→0

B+(z)

E+(z)
= σ+(ω) = σxy(ω) + iσxx(ω) . (3.78)

Expressed in terms of this complexified conductivity, and having substituted the dy-

onic black hole results (3.71) for N , E and P, the Ward identities (3.23) and (3.24)

give:

σ+(ω) =
ρ

B
+
sT + µρ−mB

B2
ω

+

[
2
(
κH(0) + µ2ρ+ 2µsT − 2µmB

)
2B3

+ i
κL(0)

B2

]
ω2 +O

(
ω3
)
. (3.79)

3.3.1 An incoherent conductivity

We now prove that the formulae for the incoherent conductivities given in (3.54)

and (3.55) are actually valid in the dyonic black hole. The usual definition of such a

quantity in terms of the charge current orthogonal to momentum [65] will no longer

suffice as the magnetic field B mixes the two spatial components of the momen-

tum. Consequently there is no part of the charge current which is orthogonal to the

momentum at all points in space. Instead, we return to the original motivation for

defining the incoherent conductivity - it is the contribution to the correlator that is

independent of coherent dissipative mechanisms. Such mechanisms when relevant to

hydrodynamics can be introduced into the formalism by modifying the source term

of the momentum equation by shifting Γij to Γij + Γijcoherent.

With this remark in mind we define the incoherent conductivity to be the con-

stant term in the Laurent expansion of the complexified conductivity σ+ as defined in

(3.61) about the hydrodynamic pole located at ω∗ − iγ∗ . This is invariant under the
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FIGURE 3.1: Plots of the constant term in the Laurent expansion of
the charge correlator about the hydrodynamic pole against the charge
density. The blue dots are data. Upper left: The imaginary part of
σinc.
+ against our analytic expression for σ0. The three red lines repre-

sent B/α2 = 1/1000 (solid), 1/25 (dashed) and 3/50 (dotted). Notice
that σ0 > 1 which stands in contradiction to the standard prescrip-
tion where σ0 = (sT/(ε + P ))2 ≤ 1. Upper right: The real part of
σinc.
+ against our analytic expression for σ̃H. The three red lines repre-

sent B/α2 = 1/1000 (solid), 5/1000 (dashed) and 10/1000 (dotted).
Lower left: The leading contribution at small B to the imaginary part
of the constant term. The solid red line is the analytic expression for
[σ0]B=0. Lower right: The O(B1) contribution to the constant part of
the Laurent expansion. The red line is our analytic result for [σ̃H]B=0.

translation ω → ω − iΓcoherent and equal to the first term of (3.61) i.e.

σinc.
+ ≡ Bσ̃H + iσ0 . (3.80)

At lowest order in B these terms are

[σ0]B=0 =

(
3α4 − ρ2

3(ρ2 + α4)2

)2

, [σ̃H]B=0 = −
16ρ

(
ρ2 + 3α4

) (
5ρ4 + 6α4ρ2 + 9α8

)
81 (ρ2 + α4)4 ,

(3.81)

when expressed in dyonic black hole data. In fact, it should be noted that σ̃H vanishes

as O(ρ) independent of the value of B for the dyonic black hole.

We have checked the validity of the relation (3.80) against the numerics. Dis-

played in the upper plots of fig. 3.1 are our analytic expressions for the incoherent

conductivities against charge density at various values of the magnetic field. For low

magnetic fields the match is excellent as expected, becoming progressively worse as



70 Chapter 3. Magneto-thermal transport

-15 -10 -5
Log[ω/α]

2

4

6

8

10

12

Re[σL(ω)]

(A)

-15 -10 -5
Log[ω/α]

-2

2

4

6

8

10

Re[σH(ω)]/B

(B)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
ω/α0.0

0.2

0.4

0.6

0.8

1.0

Re[σL(ω)]

(C)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
ω/α

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Re[σH(ω)]/B

(D)

FIGURE 3.2: The real parts of the AC charge conductivity as a func-
tion of frequency for two choices of charge density and magnetic field.
Blue dots are data, the solid red line is our analytic result and the pur-
ple dashed line is the result of standard magnetohydrodynamics (see
appendix B.1). Upper: The longitudinal (left) and Hall (right) AC
conductivities with B/α2 = 1/100 and ρ/α2 = 1/20. Lower: The lon-
gitudinal (left) and Hall (right) AC conductivities with B/α2 = 1/20

and ρ/α2 = 1/100 i.e. B > ρ.

we increase the magnetic field and charge density (and therefore effectively lower

the temperature). Moreover, our result for σ0 becomes greater than one for B > ρ,

in agreement with the data. The result from the standard magentohydrodynamic

approach to the dyonic black hole leads to an incoherent conductivity σ0 bounded

above by one.

Additionally, in fig. 3.1 we display [σ0]B=0 against the numerically extracted con-

stant Laurent coefficient at low B in the lower left hand plot of fig. 3.1 and the

matching is excellent. In the lower right plot we also show [σ̃H]B=0. The match is a

little less accurate as ρ increases, or equivalently T decreases. This is most likely due

to higher order pole corrections which become relevant at low T and one expects hy-

drodynamics to be less accurate. These comparisons at least prove that σ̃H is nonzero

in the dyonic black hole and that (3.54) and (3.55) are accurate expressions for σ0

and σ̃H.

3.3.2 Matching the correlators

We can now proceed to match the full correlators (3.57) and (3.58) (considering

the pole position (3.59)) against the numerical results for the dyonic black hole. The

outcome is shown in figure 3.2. We distinguish two different regimes. When ρ > B
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FIGURE 3.3: Turning points of the AC charge conductivity as a function
of charge density for two values of the magnetic field: B/α2 = 0.01
(top left) and B/α2 = 0.025 (top right). The blue dots are data while
the solid red line is our analytic result for the incoherent conductivity
σ0. The dashed red line indicates the point where ρ = B while the
purple line indicates the B = 0 limit of our analytic result, coinciding
with the conductivity given by [48]. In particular, the light blue upper-
most dots of both figures which occur in the region B > ρ are maxima,
while the dark blue dots in the region ρ > B are minima. In the bottom
row we display a zoomed in plot of real part of the longitudinal charge
conductivity against the logarithm of frequency at B/α2 = 0.025. The
leftmost plot with ρ/α2 = 1/100 such that B � ρ shows the local max-
imum at logω/α ≈ −2 which corresponds to the light blue dots in the
upper right figure. The rightmost plot is taken at ρ/α2 = 3/100 so that
ρ > B and we have a minimum at logω/α ≈ −1.5. The middle plot
on the bottom row indicates what happens in the intermediate region

ρ . B.

(figures 3.2 (a) and (b)), the agreement between (3.57) and (3.58) and the numerics

is excellent in a wide range of temperature. In this case, at large ω the conductivity

σL reaches a minimum before approaching the conformal value (σL = 1) as shown

in figure 3.3. The same figure shows that the value of this minimum is very well

approximated by the incoherent conductivity σ0 defined in (3.54), which is less than

1 in this regime. The frequency at which the conductivity shows this minimum can be

considered as a high frequency cut-off for the validity of the hydrodynamic regime.

It is worth mentioning that, as it is evident from the purple line in figure 3.3, the

B = 0 limit of σ0, namely the well known result [σ0]B=0 =
[
(sT/(ε+ P ))2

]
B=0

of

standard magnetohydrodynamics (see appendix B.1), approximates the minimum in

a significantly worse way than the full σ0 in (3.81).

In the opposite regime, ρ < B, the matching is good in a shorter range of fre-

quencies as shown in figures 3.2 (c) and (d). This is reasonable since B is becoming
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large and hydrodynamics is expected to be a worse approximation in this regime.

In any case the correlators (3.57) and (3.58) approximate the numerics consistently

better than the standard magnetohydrodynamics (see appendix B.1), which does not

take into account the existence of a non-trivial σ̃H (see the purple dashed line in fig-

ure 3.2 (c) and (d)). In this regime σ0 > 1 as one can see in figure 3.3, and the

conductivity does not show anymore a minimum at high frequency, approaching the

conformal value from above. However, when B � ρ, σ0 approximates the maximum

of the conductivity, as shown in figure 3.3. Eventually, in this case the frequency

at which the conductivity reaches its maximum can be defined as the UV cut-off for

hydrodynamics.

We reiterate an important point in our discussion here. Hydrodynamics, like any

theory, depends on a set of a priori unknown variables - the transport coefficients

which must be fixed by reference to data; in our case the DC conductivities. We

can of course choose different data such as the quasinormal modes to match against.

However, while hydrodynamics remains a theory of a single quasinormal mode there

are at most three complex constants one can fix (3.62). Any improvement in matching

against other quantities, for example the AC correlator at larger B or the quasinormal

mode, comes at the cost of losing an exact match with the DC conductivity.

In any case, we have proved that including a non-zero incoherent Hall conduc-

tivity σ̃H, in addition to the previously considered longitudinal incoherent charge

conductivity σ0, it is possible to match hydrodynamics to the value of the DC thermal

current beyond order zero in the magnetic field expansion. These incoherent conduc-

tivities - and subsequently thermo-electric correlation functions - can be expressed

in terms of the DC thermal conductivities κL and κH and the thermodynamics once

one appreciates that these thermal DC transport coefficients fix the O(ω2) piece of

the charge current correlator. This is a consequence of the structure of the diffeomor-

phism and U(1) gauge Ward identities [48, 52]. Subsequently, we have shown that

this modified hydrodynamics leads to the correct effective field theory necessary to

describe the hydrodynamic regime of the holographic dyonic black hole.
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Chapter 4

Final discussion

In this thesis, we have faced several problems that at a first sight might seem a little

unrelated. However, analyzing more carefully the systems we have presented here, it

is possible to observe that they all share a common thread, since they are somehow

related to different aspects of Conformal Field Theories.

Here we have discussed some general but very important features of Conformal

Field Theories, which allowed us to understand better the power of the conformal

invariance. The presence of the strong constraints imposed by conformal invariance

indeed, makes the system easier to solve (e.g. the shape of the 2- and 3-point func-

tions is determined by symmetry constraints). Nevertheless, despite the great success

and diffusion of CFTs in very different fields of physics (from string theory to con-

densed matter physics), in many cases they are not sufficient to explain some inter-

esting phenomena. We have proposed two approaches that can be useful when a CFT

is perturbed by different kinds of operators and the tools of standard approaches to

conformal field theories become ineffective.

The approach based on conformal perturbation theory has demonstrated to be

very adaptable to achieve different goals in many contexts. In fact, not only we have

shown that it can be applied to various systems (whether classical or quantum sys-

tems, and in any dimensions), but also we have applied it for different purposes.

In the first example, we were able to study the inter-quark potential using a new

approach, and the numerical results from Monte Carlo simulations confirmed the re-

liability of our method in a quite large range of temperatures. In the second example

instead, we used the results for the perturbed two-point functions to extract a numeri-

cal estimates of OPE coefficients. Our findings are in good agreement with the known

results in literature, for instance using the conformal bootstrap approach, even if we

are far from its precision. In any case, the method presented here is a reliable alter-

native and the precision of our results could be further improved by performing high

precision Monte Carlo simulations.

The successful tests of conformal perturbation theory open up the possibility of

interesting generalizations. Of particular relevance could be the one for the critical

end-point in the phase diagram of QCD, which, if it exists, is expected to be in the

universality class of the Ising model in three dimensions. It should be emphasized

that the origin of the critical point in the QCD phase diagram is totally different from
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the one in the purely gluonic SU(2) Yang-Mills theory, with N = 2 color charges, that

we have considered before. In QCD, even though the quark condensate vanishes at

a finite temperature and for µ = 0, this change of state from the hadronic phase to

a deconfined, chirally symmetric phase is not a transition, but rather a crossover. At

finite µ the transition between the two phases should be given by a line of first-order

transitions. If that line exists, then it should turn into the crossover band at a critical

end-point which is expected to be described in terms of a conformal field theory in

the universality class of the three-dimensional Ising model [66].

The discussion above clarifies that, although the symmetries of SU(2) Yang-Mills

theory at finite temperature (and vanishing chemical potential) and those of QCD

with dynamical quarks of physical masses at finite temperature and finite chemical

potential are remarkably different, their critical behavior at the deconfinement phase

transition and at the QCD critical end point are remarkably described by the same

universality class, i.e. their static, long-range properties are expected to be those

characteristic of the Ising model in three dimensions. With the previous discussion,

we have shown that it would be possible to formulate theoretical predictions in its

neighborhood using conformal perturbation theory.

Another fascinating possible generalization could be the application of conformal

perturbation theory to systems where the critical point is broken by a lattice operator.

The results could be also compared with what has been done in [67] by means of

AdS/CFT techniques. In this sense it becomes clearer how the two approaches pre-

sented in this thesis, despite being so different, are actually strictly connected and

somehow complementary. Indeed, one of the major problems concerning perturba-

tive approaches is the strong coupling limit, where perturbative methods usually fail.

On the other hand, the Gauge/Gravity duality offers a solution, mapping the strong

coupled problem to a weakly coupled, classical theory of gravity in one dimension

more, which is usually easier to treat. In Chapter 3 we have seen an application to

a relatively simple model and the results perfectly matched the hydrodynamic ones.

It would be also interesting to understand if the present discussion can be general-

ized to systems with Goldstone bosons in the presence of the magnetic field, like the

charge density wave models described in [68–72].

As we have seen, the Physics of critical phenomena and of systems near a critical

point is extremely rich and one of the most studied topics in the last decades, both

theoretically and experimentally. We have described some tools to study these fasci-

nating systems and provided some relatively simple example to show the reliability

of the methods. Of course, much can still be done for a more complete and deeper

knowledge about critical phenomena.
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Appendix A

Mellin transform technique

Integrals such as 2.96 and 2.129 can not be directly computed because one needs to

carefully treat their behavior in the IR regime. Thus it is useful to write a general

integral of this kind as:

I(m) =

∫
d3zΘ(m|z|)g(z) , (A.1)

where Θ(|m|z) = e−m|z| is an IR-regulator needed to guarantee the convergence of

the integral. We are interested in the m ∼ 0 expansion of I(m), that can be recovered

by considering its Mellin transform. Assuming that the leading behavior of I(m) as

m → 0 is ma, while it approaches m−b when m → ∞, the Mellin transform Ĩ(s) is

defined on the strip −a < Re(s) < b in the complex s plane as:

Ĩ(s) =

∫ ∞
0

dm

m
msI(m) . (A.2)

Even though the integrals we are interested in consist of two pieces, it can be proven

that only the first term of the integrals contributes, while the second one leads to a

null strip so that the transform is not well defined. This is due to the fact that the true

information of the Wilson coefficient is contained in the first term, while the second

one acts as an IR regulator.

However, it is known that the asymptotic expansion of the original function I(m)

at m = 0 is in a one to one correspondence with the poles of the Mellin transform,

namely:

I(m) =
∑
i

Res(Ĩ(s))s=−aim
−s , (A.3)

where a1 ≡ a < a2 < ... are the powers of m in the asymptotic expansion of I(m)

at m ∼ 0. (A.3) tells us that we can get the corrections to the Wilson coefficients

by taking the residue of the perturbative expansions at s = 0 if the infrared counter-

terms do not give any finite contribution.

With our choice of the regulator, the Mellin transform of I(m) can be easily ob-

tained by using the convolution theorem, finding:

Ĩ(s) = Γ(s)g̃(1− s) , (A.4)
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where

g̃(1− s) =

∫
d3z|z|−sg(z) , (A.5)

is essentially the Mellin transform of g up to angular coefficients. This means that

in order to find an expression for the derivatives of the Wilson coefficients, one just

needs to evaluate the Mellin transform of the function g(z).

In our case, the function g(z) can be written as:

g(z) =
zp−∆ε

(1 + z2 − 2z cos θ)
∆ε
2

. (A.6)

where depending on the value of p we recover one of the two integrals: if p = 0 we

get 2.96 while for p = 2 we find 2.129.

The Mellin transform of g(z) can be evaluated by performing the angular integral

and rewriting the result in terms of beta-functions as follows:

Ĩ(s) = Γ(s)
2π

2−∆ε

[
B(p+ 2−∆ε − s, 2∆ε − 4− p+ s)+

−B(p+ 2−∆ε − s, 3−∆ε)−B(3−∆ε, 2∆ε − 4− p+ s)
]

(A.7)

Then, we are ready to extract the m ∼ 0 behavior from A.3. The only contribution

comes from the residue at s = 0, so that

I(p) =
2π

2−∆ε

[
B(p+ 2−∆ε, 2∆ε − 4− p)+

−B(p+ 2−∆ε, 3−∆ε)−B(3−∆ε, 2∆ε − 4− p)
]
, (A.8)

which gives I(0) = −62.5336 for p = 0 and I(2) ' −8.4448 for p = 2 .
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Appendix B

Additional details on
magnetohydrodynamics

B.1 Standard formulation of relativistic magnetohydrody-

namics

We take a moment here to compare our expressions with the standard versions in

magneto-hydrodynamics in the Landau frame. We set δuµ = (0, ~v) and note the

constitutive relation for the current

〈Jµ〉 = quµ + σQ

(
Fµνuν − TΠµν∇ν

(µ
T

))
. (B.1)

The fluctuation of this expression around a flat background of constant µ, T and B

gives

δ〈Jµ〉 = δquµb + Πµν
b

((
ρΠb

νρ +BσQΣb
νρ

)
δuρ + δEν − σQ∂νδµ+ σQ

µb
Tb
∂νδT

)
.

(B.2)

Examining only time dependent profiles we identify the spatial part of the current

δ ~J = (ρ12 + σQBε) δ~v + σQδ ~E , ε2 = −12 . (B.3)

From the constitutive relation of the stress-energy-momentum tensor we have

δ ~P(ω) = (ε+ P )δ~v(ω) , (B.4)

to order one in fluctuations which we can back substitute into (B.3). Employing this

relationship we determine

χ =
1

B
(ωc12 + γcε) , σ0 = σQ1 , ωc =

ρB

(ε+ P )
, γc =

σ0B
2

(ε+ P )
, (B.5)

where ωc is the cyclotron frequency and γc is the cyclotron decay rate and σQ =

(sT/(ε+ P ))2. From these expressions it follows that

Γ = γc12 − ωcε , Θ = ρ12 + σ0Bε . (B.6)
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FIGURE B.1: Plots of the longitudinal and Hall thermal conductivites
at B/α2 = 1/100 against ρ/α2. The blue dots represent data while the
red lines are analytic expressions. The matching is generally on the

order of ∼ 10−15.

In the standard formulation of magnetohydrodynamics it follows from our ex-

pressions that

(Γ− iω12)−1 =
1

(ω + iγc)
2 − ω2

c

(−ωcε (iω − γc)12) . (B.7)

From this we determine that the charge conductivity is

σ(ω) = σQ

ω
(
ω + iγc + iω

2
c
γc

)
(ω + iγc)

2 − ω2
c

12 −
ρ

B

ω2
c − 2iγcω + γ2

c

(ω + iγc)
2 − ω2

c

ε , (B.8)

which agrees with [48] and [41]. We know that this expression fails to correctly

evaluate the thermal conductivities except at extremely small magnetic fields.

B.2 Miscellaneous additional results

As a check on the strength of our numerics, we have extracted numerically κL and

κH using the c2 coefficient of the Laurent expansion around ω = 0,

c2 =
1

2π

∮
Γ
dω

σ+(ω)

ω3
(B.9)

and compared to the analytical expressions (3.72). The results for B/α2 = 1/100 as a

function of ρ/α2 are displayed in fig. B.1, showing that the analytical and numerical

results match with a very high degree of accuracy. We have confirmed this for general

B.
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FIGURE B.2: Plots of the logarithm of the absolute difference between
our analytic expression for the position of the hydrodynamic mode and
the numerical position for the dyonic black hole against the magnetic
field at ρ/α2 = 1/20. The red dashed line indicates the point where
B = ρ. Left: The difference in the real part. The trough in the data
indicates the point where our analytic result almost coincides with
the numerical result. On the left of this trough the difference grows
as B3 while on the right it behaves as B5. Right: The difference in
the imaginary part. Again, the trough in the data indicates the point
where our analytic result almost coincides with the numerical result.
On the left of this trough the difference grows as B4 while on the right

it behaves as B6.

For completeness we record here the longitudinal and Hall thermo-electric and

thermal AC conductivities. These are given by the expressions

αL(ω) =
iω(sT + µρ−mB)

(
Bω∗ − µ

(
γ2
∗ − iγ∗ω + ω2

∗
))

B2 ((ω − iγ∗)2 − ω2
∗)

, (B.10)

αH(ω) = −B(ω + iγ∗)(µρω − i(sT −mB)γ∗) +Bω2
∗(sT −mB)

B2 ((ω − iγ∗)2 − ω2
∗)

−µω∗(sT + µρ−mB)

B2 ((ω − iγ∗)2 − ω2
∗)
ω2 , (B.11)

and

κL(ω) =
(sT + µρ−mB)

(
B2(ω + iγ∗)− 2Bµωω∗ + µ2ω

(
γ2
∗ − iγ∗ω + ω2

∗
))

B2 ((ω − iγ∗)2 − ω2
∗)

,(B.12)

κH(ω) =
Bµω2

∗(2sT + µρ− 2Bm)− ω∗
(
B2 + µ2ω2

)
(sT + µρ−mB)

B2 ((ω − iγ∗)2 − ω2
∗)

+
iµ(ω + iγ∗)(2Bγ∗m− iµρ(ω − iγ∗)− 2γ∗sT )

B ((ω − iγ∗)2 − ω2
∗)

, (B.13)

respectively. Defining complex correlators and expanding about the pole at ω =

ω∗ − iγ∗ we find that the incoherent conductivities satisfy the relationship

αinc. = −µσinc. , κinc. = µ2σinc. , (B.14)

which, up to the usual normalization of αinc. and κinc. by temperature (which we

chose not to include in our work) is a known result. In terms of real and imaginary
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parts this relationship becomes

α0 = −µσ0 , κ0 = µ2σ0 , (B.15)

αH = −µσ̃H , κH = µ2σ̃H . (B.16)

To get an idea of the error in our hydrodynamic charge correlator compared to

the numerical charge correlator one can compare the quasi-normal mode defined by

the pole in our correlator - see (3.59) and (3.60) - to the numerics. We do this in

fig. B.2. We can see that the accuracy and precision are quite good, although there

is a systematic difference. The trough in the plots corresponds to a point where

our analytic result almost matches the numerical one. To the left of this trough the

analytic result overestimates the position, while to the right it underestimates.
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