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1 Introduction

Holography has been instrumental in enlightening the microscopic properties of black holes.

Even before holographic duality was formulated in its mature form [1–3], the first micro-

scopic derivation [4] of the entropy of a black hole with a finite-size classical horizon —

the supersymmetric D1-D5-P black hole — was based on the counting of states in a brane

worldvolume conformal field theory (CFT). Making progress towards a solution of the black

hole information paradox [5] requires going beyond the black hole microstate counting prob-

lem and understanding how the properties of individual black hole microstates manifest

themselves in the spacetime/bulk description, rather than in the dual CFT description.

While much of the recent literature emphasizes the consequences for the gravitational de-

scription of some universal properties of the CFT, most notably its Virasoro algebra (see

for instance [6–9]), it is natural to expect that the guide provided by an explicit string-

theoretical model of a black hole, such as the D1-D5-P black hole, might be crucial to

elucidate the fine-grained structure of the microstates, which is ultimately responsible for

the unitarity of black hole evaporation.

In this article we will exploit the power of holography in elucidating the properties

of black hole microstates, focusing on the D1-D5-P black hole. The two sides of the

holographic duality involve the decoupling region of the black hole geometry, which is

asymptotically AdS3 × S3 × M, with M either T 4 or K3, and a 2D CFT with (4, 4)

supersymmetry, known as the D1-D5 CFT [10, 11]. We will work in the best controlled

limit of the holographic duality, and thus ignore 1/N and α′ corrections. As usual in

gauge/gravity duality, classical supergravity is dual to a strongly coupled point in the CFT

moduli space, while field-theory calculations are tractable around a free locus where the D1-

D5 CFT reduces to a supersymmetric orbifold sigma-model. For this reason, the possibility

of building a precise map between CFT states and classical supergravity configurations

rests on the existence of moduli-independent quantities, which can be defined only for

supersymmetric states; however at least at the qualitative level, the insights coming from

this holographic analysis are expected to be useful also for non-supersymmetric black holes.

Supersymmetric microstates of the D1-D5-P black hole are dual to “heavy” CFT operators

that preserve 1/8 of the 32 supercharges of type IIB supergravity and with conformal

dimensions that scale as the central charge c = 6N in the large N limit, with N = n1n5

given by the product of the integer numbers of D1 and D5 branes. Working at large

N guarantees that the mass of the states is large in Planck units. In principle one can

completely characterize a heavy CFT state |H〉 by giving the expectation values of all

operators Oi in the state, i.e.

〈H|Oi|H〉 . (1.1)

These expectation values are in general non-trivial functions of the CFT moduli, however

a non-renormalization theorem proved in [12] guarantees that when Oi is a chiral primary

operator and |H〉 a 1/4 or 1/8 BPS state, the expectation values are protected quantities

that do not depend on the moduli. Hence such one-point functions computed at the

free orbifold point can be matched with supergravity where, according to the AdS/CFT
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dictionary, they are encoded in the deviations of the geometry from pure AdS, in an

expansion around the asymptotic boundary.

The holographic point of view then implies that, on the gravity side, individual mi-

crostates can in principle be distinguished from each other and from the classical black

hole geometry by the asymptotic fall-off of the fields in the decoupling region of the geom-

etry (including in principle the non-supergravity fields of string theory). This reasoning

provides part of the conceptual basis for the fuzzball program [13–19], which associates

regular bulk string theory solutions (that are not necessarily well-described in supergrav-

ity) to the heavy CFT states |H〉. Some comments are in order. Firstly, while large sets

of states may be distinguished solely through the expectation values of chiral primaries,

of course many states are not distinguished by such expectation values. Allowing O to

be any CFT operator requires going beyond the supergravity approximation. The stringy

description of black hole microstates beyond supergravity is an interesting open avenue,

with recent progress [20, 21], however developing a precise holographic dictionary in this

more general context appears to be a formidable task. Secondly, for a typical microstates

|H〉 in a given ensemble, the deviation of the expectation values 〈H|Oi|H〉 from the ensem-

ble average values are expected to be exponentially suppressed in the large N limit (see

e.g. [22]), at least for a simple enough Oi. This implies that the states that admit a simple

semiclassical gravitational description are necessarily somewhat atypical. Nevertheless, by

approaching typical microstates through limits of progressively less atypical microstates

which are amenable to study, one hopes to gain valuable insights about the structure of

typical states. For a recent discussion of related points, see [23].

The holographic analysis of black hole microstates based on the expectation values

〈H|Oi|H〉 was pioneered in [24–27], building on the results of [28, 29]. Those works laid

out a general formalism for precision holography, and the holographic dictionary was made

explicit when |H〉 is a 1/4 BPS state, carrying D1 and D5 but no P charge, and when Oi is

a set of chiral primary operators with dimension less than or equal to two. The holographic

dictionary was further developed and extended to a particular set of 1/8 BPS states in [30],

however only for chiral primaries of dimension one.

Holographic studies involving expectation values of operators of total dimension two

present some interesting complications, both technical and conceptual [27]. On one hand,

for some operators of dimension two, the correspondence between CFT operators and

supergravity fields cannot be uniquely fixed solely on the basis of the quantum numbers,

and in the holographic dictionary operators Oi with the same quantum numbers may

mix. On the other hand, while in the previous discussion we implicitly assumed that

Oi is a single-particle (single-trace) operator, one can also form dimension-two operators

by taking the product of two single-trace operators of dimension one; these double-trace

operators can also mix with single-trace operators and, while the multi-trace contributions

are suppressed by powers of 1/N in generic correlators, they can contribute at leading

order to ‘extremal’ correlators (a correlator is extremal if the dimension of one operator

is equal to the sum of the dimensions of the others.). Both these issues were addressed

in [27], where a precise form of the mixing between single-trace operators was derived, and

more qualitative results regarding the mixing with double-trace operators were proposed.
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In this article we construct a fully explicit holographic dictionary for operators of

dimension (h, h̄) = (1, 1), that can be used as a quantitative tool to perform new precision

tests of the whole class of 1/4 and 1/8 BPS microstates currently known: these include

the D1-D5 geometries constructed in [14, 15, 26] and also more recently constructed three-

charge supergravity solutions including those known as “superstrata” [31–41] and related

solutions [42–45]. As an application, we perform new holographic tests of the proposed

dual CFT description of a set of superstrata.

Our construction proceeds by first carefully defining the normalizations of both the

CFT operators and the coefficients in the asymptotic expansion of the supergravity so-

lutions, and then by fixing the numerical coefficients defining the holographic dictionary

by matching the CFT predictions with some reference D1-D5 geometries, whose identi-

fication with CFT states is already well-established. This determines uniquely both the

mixing amongst the single-trace operators, in precise agreement with the results of [27],

and the mixing between single and double-trace operators. We then test the holographic

map against other microstates, including both D1-D5 and D1-D5-P states; a stringent

requirement comes from the invariance under the R-symmetry group, which implies that

the coefficients defining the holographic map should be the same for all the operators in

the same R-charge multiplet. We will see that the consistency of the dictionary often

works in a non-trivial fashion, thus providing strong supporting evidence of the proposed

identification between the CFT states and the dual supergravity solutions.

While this paper was in the final stages of preparation for publication, we received [46]

that contains some related calculations of one-point functions in the D1-D5 orbifold CFT.

The remainder of this paper is organized as follows. We review the correspondence

between 1/4-BPS coherent states of the orbifold CFT and the family of D1-D5 supergrav-

ity solutions in section 2. The holographic map for chiral primary operators (CPOs) of

dimension 1 is summarized in section 3; this is mostly a recollection of previous results [24–

26, 30], however we clarify some minus signs that are needed to make the dictionary for the

SU(2)L×SU(2)R R-currents consistent. In section 4 we describe all the CPOs of dimension

(1, 1), including single and double-trace operators, and we first work out the holographic

dictionary for the simpler subsector of operators, which does not involve mixing between

different single-traces. The more complicated subsector is analyzed in section 5, in which

we fix in turn each of the coefficients defining the holographic dictionary, and then make

some non-trivial tests on 1/4 BPS states. In section 6 we apply our results to perform new

precision holographic tests of D1-D5-P superstrata. We comment on the significance of our

results for the fuzzball program, and on possible future developments, in the Discussion

in section 7. In the appendices we record our conventions for S3 spherical harmonics, the

derivation of some CFT correlators involving twist fields, and some details of the general

class of D1-D5-P supersymmetric supergravity solutions that are invariant on the internal

manifold M.

2 Holography for D1-D5 black hole microstates

In this section we give a brief review of holography for D1-D5 black hole microstates, with

the main purpose of setting up notation that is needed in the rest of the paper.
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The dual gravitational description of the Ramond-Ramond (RR) ground states of the

D1-D5 CFT is well known [13–15, 24, 26, 47]. There is a family of supergravity solutions

that can be associated with coherent RR ground states of the D1-D5 CFT, in the sense

that protected correlators involving such states agree, as discussed in the Introduction.

The states of the D1-D5 CFT have a simple description at the free orbifold locus in

moduli space, where the CFT is the (4, 4) sigma-model with target space MN/SN , with

M either T4 or K3 (recall N = n1n5). A review of the orbifold CFT can be found for

example in [11]. In this article we will use the notation and the conventions of [30, 36]. A

generic state of the orbifold CFT is described by a collection of “strands” involving spin-

twist operators; the ground state of each strand is characterized by a spin s and a winding

number k and is denoted by |s〉k. In this article we will consider bosonic ground states, and

excitations thereof, that are insensitive to the structure of the internal manifold M, so that

our results apply when M is either T4 or K3 (the generalization to more general states is

straightforward). For this class of ground states, there are five possible spin configurations:

s = (0, 0), (±,±), where (j, j̄) denotes a state with SU(2)L charge j and SU(2)R charge j̄;

SU(2)L × SU(2)R is the R-symmetry of the (4, 4) theory, which corresponds on the gravity

side to rotations in the four spatial directions. A RR ground state with N
(s)
k strands of

type |s〉k is denoted by

ψ{N(s)
k

} ≡
∏

k,s

(|s〉k)N
(s)
k , (2.1)

and is an allowed state if the total winding number sums up to N :

∑

k,s

kN
(s)
k = N . (2.2)

It will be convenient to work with non-normalized states; for later use we record the norm

of the states (2.1), which was derived in [30]:

∣∣∣ψ{N(s)
k

}

∣∣∣
2
=

N !
∏

k,sN
(s)
k ! kN

(s)
k

. (2.3)

States of the form (2.1) are eigenstates of the SU(2)L × SU(2)R currents (J3, J̃3); we are

interested in coherent states that are linear combinations of R-symmetry eigenstates labeled

by complex coefficients A
(s)
k ,

ψ({A(s)
k }) ≡

∑

{N(s)
k

}

′∏

k,s

(A
(s)
k |s〉k)N

(s)
k , (2.4)

where the sum
∑

{N(s)
k

}
′ is restricted by the constraint (2.2). The states that admit a good

supergravity description are those for which this sum is peaked over large values of N
(s)
k : as

shown in [30], in this semiclassical limit the parameters A
(s)
k determine the average numbers

N
(s)
k of strands of type |s〉k, via

k N
(s)
k = |A(s)

k |2 . (2.5)
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The constraint (2.2) then implies
∑

k,s

|A(s)
k |2 = N . (2.6)

The supergravity solutions describing coherent bound states of large numbers of D1 and

D5 branes are well-known and are given in terms of a profile function gi(v
′) in R

8 [14, 15, 26].

For configurations invariant on the internal manifold M, the profile function takes values

in R
5:

g1(v
′) + ig2(v

′) =
∑

k>0

(
ā
(++)
k

k
e

2πik
L

v′ +
a
(−−)
k

k
e−

2πik
L

v′

)
,

g3(v
′) + ig4(v

′) =
∑

k>0

(
ā
(+−)
k

k
e

2πik
L

v′ − a
(−+)
k

k
e−

2πik
L

v′

)
,

g5(v
′) = −Im

(∑

k>0

ā
(00)
k

k
e

2πik
L

v′

)
.

(2.7)

The map between the CFT states in (2.4) and the supergravity solutions parameterized

by the profile gi(v
′) which will be described in more detail below, is given by relating the

Fourier modes a
(s)
k to the coherent state parameters A

(s)
k , via1

A
(±±)
k = R

√
N

Q1Q5
a
(±±)
k , A

(00)
k = R

√
N

2Q1Q5
a
(00)
k . (2.8)

The curve gi(v
′) arises because the D1-D5 system is U-dual to a fundamental string

(F1) carrying momentum (P): in the F1-P duality frame, the curve (2.7) represents the

oscillation profile of the string in the five transverse directions that are U-dual to D1-D5

states invariant on M. The D1-D5 supergravity solution associated with a curve gi(v
′) is

as follows. The 6D Einstein metric of this solution is given by

ds26 = − 2√
P
(dv + β)

(
du+ ω +

F
2
(dv + β)

)
+
√
Pds24 , (2.9)

with

P = Z1Z2 − Z2
4 . (2.10)

The 4D metric ds24 describes the four spatial non-compact directions xi, and, for all the

solutions considered in this article, is the flat R4 metric

ds24 = dxidxi . (2.11)

The u and v coordinates parametrize time t and the S1 direction y, which we take to have

radius Ry:

u ≡ t− y√
2

, v ≡ t+ y√
2

. (2.12)

1We note that in eq. (2.7), the minus sign in front of a
(−+)
k and the complex conjugations differ from

those given in [30]. We will see in due course that these details in eq. (2.7) are needed for consistency of

the holographic map (2.8) and the rest of our conventions.
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The D1 and D5 charges of the solution are given by

Q1 =
(2π)4 n1 gs α

′4

V4
, Q5 = n5 gs α

′ , (2.13)

where gs is the string coupling, and V4 is the coordinate volume of M. The periodicity L

of the curve gi(v
′) is L = 2πQ5/Ry. The solution is specified by the scalar functions Z1,

Z2, Z4 and F and by the 1-forms with legs along R
4, β and ω. The solutions dual to RR

ground states have F = 0 and all the other scalars and 1-forms are only functions of xi,

specified by the curve gi(v
′) as follows:

Z1 =
Q5

L

∫ L

0
dv′

|ġi(v′)|2 + |ġ5(v′)|2
|xi − gi(v′)|2

, Z2 =
Q5

L

∫ L

0
dv′

1

|xi − gi(v′)|2
,

Z4 = −Q5

L

∫ L

0
dv′

ġ5(v
′)

|xi − gi(v′)|2
, A = −Q5

L

∫ L

0
dv′

ġj(v
′)dxj

|xi − gi(v′)|2
,

dB = − ∗4 dA , β =
−A+B√

2
, ω = −A+B√

2
,

(2.14)

where the dot indicates the derivative with respect to v′ and ∗4 is the Hodge dual with

respect to the flat metric ds24. Besides the 6D metric ds26 in (2.9), the solution contains all

other NSNS and RR fields of type IIB supergravity: their form is entirely specified by the

curve gi(v
′) through the above functions, and is recorded for completeness in eq. (C.1).

In summary, the geometry dual to the RR ground state (2.4) is completely specified by

the curve gi(v
′) (2.7), through eqs. (2.9)–(2.14). Given the identification between gravity

and CFT parameters in eq. (2.8), the CFT constraint (2.6) becomes

∑

k>0

(
|a(++)

k |2 + |a(−−)
k |2 + |a(+−)

k |2 + |a(−+)
k |2 + 1

2
|a(00)k |2

)
=

Q1Q5

R2
y

, (2.15)

which, on the gravity side, is the regularity condition for the solution (2.9)–(2.14).

The holographic map can also be extended to a subset of the BPS states carrying

D1, D5 and momentum (P) charge, which in CFT terms are states with L0 > L̃0 = c
24 .

There is not yet a general understanding of the full class of D1-D5-P states, however there

has been much recent progress in constructing large families of explicit solutions known

as “superstrata” [31–41]. There is an explicit proposal for the dual CFT states of these

solutions [31–33, 36, 40]. This family of solutions, and the proposed map to states of the

orbifold CFT, will be reviewed in section 6. Their 6D metric can still be written in the

form (2.9) with a flat ds24, but now F 6= 0 and the scalars and 1-forms specifying the solution

are functions of v as well as xi. Given the similarities of the supergravity description of

this class of D1-D5-P states with the D1-D5 states, one can formulate a unified recipe to

extract expectation values of operators of dimension one and two from the geometry. We

proceed to do this in the next three sections.

3 Expectation values of operators of dimension one

In this section we review the holographic map for expectation values of operators of di-

mension one, making precise some details that will be important in the following sections.

– 7 –
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We start by setting up some notation for the field content of the D1-D5 orbifold CFT.

We label the N copies of the CFT on M by the index r = 1, . . . , N . The orbifold CFT

has R-symmetry group SU(2)L × SU(2)R, whose spinorial indices we denote by α, α̇ = ±,

and there is also an SU(2)1 × SU(2)2 group of rotations on the tangent space of M that

is useful for labelling operators, whose spinorial indices we denote by A, Ȧ = 1, 2. On each

copy of the CFT, the fundamental fields are four bosons XAȦ
(r) , and four left-moving plus

four right-moving fermions ψαȦ
(r) , ψ̃

α̇Ȧ
(r) .

The theory also contains spin-twist operators, that change the boundary conditions

of the fields, and that are labelled by permutations of SN . For example, the ‘bare’ twist

operator σ(rs) joins or splits the copies r and s. When acting on untwisted strands in their

respective NS vacuum state, σ(rs) creates the state that is the lowest state on a twist-two

strand, which is the NS vacuum of the two-fold covering space. A brief review of covering

space methods and a more general definition of spin-twist operators is given in appendix B.

We also have left and right-moving spin-fields Sα, S̄α̇ in each twisted sector, that map NS

ground states to R ground states.

Though this description in terms of free fields ceases in general to be useful away from

the orbifold point, there are physical quantities that are guaranteed to be independent

of the moduli, and hence can be quantitatively described by the free orbifold CFT. In

particular in this paper we will focus on the expectation values of chiral primary operators

(CPOs) and their (global) SU(2)L × SU(2)R descendents in states preserving eight or four

supercharges [12]: the first class of states are the RR ground states described in the previous

section and the states in the second class include the D1-D5-P states that will be considered

in section 6. Note that in both classes, the states are “heavy”, in the sense that their left

and right dimensions h and h̄ are of order of the CFT central charge c = 6N : one has

h = h̄ = c/24 for the D1-D5 states and h > h̄ = c/24 for the D1-D5-P states. The CPOs

we will consider are instead “light”, having h, h̄ of order c0. In particular we will restrict

to CPOs with h+ h̄ ≤ 2. The purpose of the next two sections is to formulate and test a

recipe to compute the expectation values of light CPOs in heavy states from the asymptotic

expansion of the geometries dual to the heavy states.

Expectation values of CPOs with total dimension ∆ = h + h̄ = 1 have already been

considered in [25, 26, 30]. The only operators with h = ±j = 1, h̄ = j̄ = 0 are the SU(2)L
generators J±:

J± =
∑

r

J±
(r) = ±

∑

r

ψ±1
(r)ψ

±2
(r) ; (3.1)

analogously one has the SU(2)R generators J̃±, with h = j = 0, h̄ = ±j̄ = 1:

J̃± =
∑

r

J̃±
(r) = ±

∑

r

ψ̃±1
(r)ψ̃

±2
(r) . (3.2)

We define J3 to be normalized according to the standard commutation relation [J+, J−] =
2J3 and such that the eigenvalue of J3 on the RR ground state |±+〉 is ±1/2; similarly

for J̃
3
; see appendix B for more details. We normalize the corresponding vector spherical

harmonics in the same way, see appendix A for details. Note that this convention means

– 8 –
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that the normalized affine descendant of J+ is 1√
2
[J−, J+] = −

√
2J3, which means that

some factors of
√
2 will show up in equations such as (3.10).

Next we have the operators with h = j = h̄ = j̄ = 1/2. The first of these is the

twist-two operator

Σ++
2 =

∑

r<s

σ++
(rs) , σ++

(rs) = S+
(rs)S̄

+
(rs)σ(rs) (3.3)

where the operator σ(rs) is the ‘bare’ twist operator that joins or splits the copies r and s,

and S+
(rs), S̄

+
(rs) are spin fields. When acting on untwisted strands in the NS vacuum state,

σ++
(rs) creates the twisted RR vacuum state |++〉2 .

The second chiral primary with h = j = h̄ = j̄ = 1/2 is the untwisted operator

O++ =
∑

r

O++
(r) =

∑

r

−i√
2
ǫȦḂ ψ+Ȧ

(r) ψ̃
+Ḃ
(r) . (3.4)

More generally, one has operators like in (3.4) for each of the h1,1(M) elements of the

(1, 1) cohomology of M: we focus on the unique SU(2)1×SU(2)2 operator O++ because it

is the only one that has non-trivial expectation values on the M-invariant class of states

introduced in section 2.

For any CPO one also has the whole multiplet of (global) SU(2)L×SU(2)R descendants,

obtained in the usual way by acting on the CPO with J−
0 and/or J̃−

0 . We denote the generic

elements of the multiplet by Ja, J̃a, with a = +, 3,−, and Oα,α̇, Σα,α̇, with α, α̇ = ±. For

later use we record our convention that O−− = (O++)†, whereupon consistency with the

SU(2)L × SU(2)R algebra implies that O−+ = −(O+−)†, since (O+−)† = ([J̃−
0 , O++])† =

−[J̃+
0 , O−−] = −O−+. Analogous expressions hold for Σα,α̇.

The expectation values of the CPOs and their descendants in a heavy state are encoded

in the asymptotic expansion of the dual geometry near their AdS3×S3 boundary. Roughly

speaking, given a radial coordinate r, operators of increasing dimension correspond to terms

of higher order in 1/r. The precise map involves identifying gauge-invariant quantities [25,

28]; having done so, in practice it is convenient to choose a particular gauge in which to

work. Though there is, in general, no canonical choice for r, for the class of geometries of

the form (2.9) with a flat ds24 one can canonically identify r with the radial coordinate of

R
4 in standard polar coordinates:

ds24 = dr2 + r2(dθ2 + sin2 θ dφ2 + cos2 θ dψ2) . (3.5)

Similarly we can use the θ, φ, ψ coordinates to define spherical harmonics on S3. This leaves

us with the only ambiguity of choosing the origin of polar coordinates, which will be fixed

shortly. One can then define the following asymptotic expansion [25, 26]:

Z1 =
Q1

r2


1 +

∞∑

k=1

k/2∑

mk,m̄k=−k/2

f1
k (mk,m̄k)

Y mk,m̄k

k

rk


 ,

Z2 =
Q5

r2


1 +

∞∑

k=1

k/2∑

mk,m̄k=−k/2

f5
k (mk,m̄k)

Y mk,m̄k

k

rk


 ,
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Z4 =

√
Q1Q5

r2




∞∑

k=1

k/2∑

mk,m̄k=−k/2

Ak (mk,m̄k)

Y mk,m̄k

k

rk


 ,

A =

√
Q1Q5

r2

3∑

a=1

(aa+Y
a+
1 + aa−Y

a−
1 ) +O(r−3) , F = −2Qp

r2
+O(r−3) ,

(3.6)

where Y mk,m̄k

k are S3 scalar harmonics of degree k and Y a±
1 are vector harmonics of degree 1;

we list our definitions and conventions regarding the spherical harmonics in appendix A.

The D1, D5 charges Q1, Q5 have been defined in (2.13); Qp represents the momentum

charge and is quantized in terms of the integer np as

Qp =
(2π)4 np g

2
s α

′4

R2
y V4

. (3.7)

By an appropriate choice of the R
4 origin, one can choose

f1
1(α,α̇) + f5

1(α,α̇) = 0 for α, α̇ = ± , (3.8)

which completely fixes the coordinate system (for notational convenience we use the indices

(α, α̇) = (±,±) instead of (m1, m̄1) = (±1/2,±1/2) for k = 1). At the first non-trivial

order, one thus has the independent coefficients f1
1(α,α̇), A1(α,α̇) and aa±, and these encode

the expectation values of the dimension 1 operators Σαα̇
2 , Oαα̇, Ja, and J̃a.

In the CFT we will mostly use null coordinates on the cylinder, which we also denote

by (u, v), and which are related to the CFT time and spatial coordinates analogously to

the corresponding spacetime coordinate relations (2.12). All the CFT one-point functions

in this paper will consist of a light operator Oi inserted at a generic point (u, v) in the

background of a heavy state:

〈Oi〉 ≡ 〈H|Oi(u, v)|H〉 . (3.9)

The dependence on the insertion point (u, v) is determined by conformal invariance, and

in fact the expectation values of the operators we consider in RR ground states are inde-

pendent of (u, v) and are controlled solely by the zero mode of the light operator Oi. For

the superstratum states that we shall study in section 6, some of the one-point functions

will however have non-trivial v dependence.

When the expectation value is taken in the heavy state dual to the geometry corre-

sponding to (3.6), the precise map2 is [25, 26, 30]

√
2

N
〈Σαα̇

2 〉 = (−1)αα̇ 2

√
N

Q1Q5
Ry f

1
1(−α,−α̇),

1√
N

〈Oαα̇〉 = (−1)αα̇ 2

√
N

Q1Q5
Ry A1(−α,−α̇) ,

2The term (−1)αα̇ gives a minus sign when (α, α̇) = (±,∓). This is required by SU(2)L × SU(2)R
invariance: the scalar product between two operatorsO1 andO2 with indices in the fundamental of SU(2)L×
SU(2)R is given by O1 · O2 = ǫαβǫα̇β̇Oαα̇

1 Oββ̇
2 .
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1√
N

〈J±〉 =
√
2

√
N

Q1Q5
Ry a∓,+,

1√
N

〈J̃±〉 =
√
2

√
N

Q1Q5
Ry a∓,− ,

1√
N

〈J3〉 =
√

N

Q1Q5
Ry a0,+,

1√
N

〈J̃3〉 =
√

N

Q1Q5
Ry a0,− ,

(3.10)

where the numerical factors have been chosen in such a way that the operators on the

left-hand side have unit norm in the large N limit. As anticipated below eq. (3.2), our

(standard) choice of normalization of Ja, J̃a introduces different coefficients for J± and J3

in this dictionary. Taking into account that the correctly normalized descendant of J+ is

−
√
2J3, and likewise for J̃a, the above expressions indeed respect the SU(2)L and SU(2)R

R-symmetries.

3.1 An example

Several non-trivial tests of the map (3.10) have already been performed in [30]. We present

here one further example, which concentrates on the expectation values of Ja and J̃a,

because it will justify the choice of sign for a
(−+)
k in (2.7); this sign will be relevant in

testing the map for dimension two operators.

Consider the state

∑

p,q

(A |++〉1)N−p−q (B |+−〉1)p (C |−+〉1)q . (3.11)

From eq. (2.7), the profile function associated to this state has the following components:

g1(v
′) + ig2(v

′) = ā e
2πi
L

v′ , g3(v
′) + ig4(v

′) = b̄ e
2πi
L

v′ − c e−
2πi
L

v′ , g5(v
′) = 0 . (3.12)

This profile encodes the data needed to generate the dual geometry through eq. (2.14):

since we are interested in the expectation values of the left and right currents, it follows

from eq. (3.10) that the coefficients we need are

a++ =
Ry√
Q1Q5

ac̄√
2
, a−+ =

Ry√
Q1Q5

āc√
2
,

a−− =
Ry√
Q1Q5

āb√
2
, a+− =

Ry√
Q1Q5

ab̄√
2
,

a0+ =
Ry√
Q1Q5

|a|2 + |b|2 − |c|2
2

, a0− =
Ry√
Q1Q5

|a|2 − |b|2 + |c|2
2

.

(3.13)

The zero-mode of the CFT operator J3, i.e. J3
0 , has eigenvalue 1/2 on the strands

|++〉1 and |+−〉1 while it has eigenvalue −1/2 on the strands of type |−+〉1. Since each

component of the superposition in (3.11) is an eigenstate of J3
0 , its expectation value is

controlled by the average number of strands of each type:

〈J3〉 = 1

2

(
N̄++ + N̄+− − N̄−+

)
=

1

2

R2
y N

Q1Q5

(
|a|2 + |b|2 − |c|2

)
, (3.14)
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where we have used eqs. (2.5) and (2.8). Analogously one can compute the expectation

value of the operator J̃3, which gives

〈J̃3〉 = 1

2

(
N̄++ − N̄+− + N̄−+

)
=

1

2

R2
y N

Q1Q5

(
|a|2 − |b|2 + |c|2

)
. (3.15)

Let us now consider the operator J+. Its zero-mode, J+
0 , maps a strand of type |−+〉1

into |++〉1; the strand |+−〉1 is annihilated, so is just a spectator. Thus the expectation

value is determined by the following process (here and in similar expressions, to lighten the

notation we suppress the subscript 0 and it should be understood that we are considering

the zero mode of the operator, since this is the only mode that contributes to the correlator

for RR ground states):

J+
(
|++〉N−p−q

1 |+−〉p1|−+〉q
)
= (N − p− q + 1)

(
|++〉N−p−q+1

1 |+−〉p1|−+〉q−1
)
. (3.16)

Here the factor N − p − q + 1 arises from observing that J+ can transform any of the

q strands of type |−+〉1 and imposing that the total number of terms on the left and

right-hand sides of the equation match. (We will explain similar steps in more detail in

section 4.1). Thus we obtain

〈J+〉 = C

A
(N − p̄− q̄) =

R2
y N

Q1Q5
āc . (3.17)

Using J− = (J+)†, we have

〈J−〉 = 〈J+〉∗ =
R2

y N

Q1Q5
ac̄ . (3.18)

Analogously we obtain

〈J̃+〉 = B

A
(N − p̄− q̄) =

R2
y N

Q1Q5
āb , 〈J̃−〉 = 〈J̃+〉∗ =

R2
y N

Q1Q5
ab̄ . (3.19)

Comparing the gravity coefficients in eq. (3.13) and the CFT results in eqs. (3.14)–(3.19),

one can verify the consistency of (2.7), (2.8) and (3.10).

4 D1-D5 holography at dimension two

Deriving the holographic map for operators of total dimension two involves two new lev-

els of complication. First, as pointed out in [25], not all operators are distinguished by

their quantum numbers, and the map between the operator expectation values and the

coefficients obtained from the asymptotic expansion of the geometry (3.6) may involve a

non-trivial mixing matrix. The mixing matrix was subsequently derived in [27], and our

explicit tests confirm this result. Second, single-trace dimension-two operators can also

mix with “double-trace” operators given by sums of products of dimension-one operators

evaluated on different CFT copies. This possibility was also discussed in [27], however the

precise structure of the mixing was not worked out in full detail.
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In this section we derive the full explicit holographic dictionary for all single and double-

trace operators of dimension (h, h̄) = (1, 1). We choose to study operators of dimension

(1, 1) as it is for these operators that the mixing is most non-trivial, and because these

operators enable us to perform new precision holographic tests of superstrata. It should be

straightforward to generalize our work to perform a similar analysis of the other operators

of total dimension two; such operators are however beyond the scope of this paper.

Single-trace operators in a symmetric product orbifold CFT are operators that involve

a single sum over copies of the CFT (the ‘trace’ is over the discrete gauge group SN ). We

begin by describing the single-trace CPOs of dimension (1, 1), which are as follows:

• An operator of twist three,

Σ++
3 =

∑

r<s<t

(σ++
(rst) + σ++

(rts)) , σ++
(rst) ≡ J̃+

− 1
3

J+
− 1

3

σ(rst) (4.1)

where it should be understood that the fractional moded operators in the definition

of the chiral primary σ++
(rst) are those associated with the permutation (rst); more

details can be found in appendix B.

• An operator of twist two,

O++
2 ≡

∑

r<s

O++
(rs) , O++

(rs) ≡
(
O++

(r) +O++
(s)

)
σ++
(rs) . (4.2)

Here O++
(rs) is the operator (of unit norm) that joins or splits the copies r and s and

raises the spin by (1/2, 1/2); for example, when acting on copies 1 and 2:

O++
(12) |−−〉21 = |00〉2 , O++

(12) |00〉2 = |++〉21 . (4.3)

As we discussed for the operator O++ below (3.4), there are h1,1(M) similar opera-

tors, and we focus on the one that obtains non-zero expectation values in the states

we consider.

• An operator in the untwisted sector,

Ω++ =
∑

r

ψ+1
(r)ψ

+2
(r)ψ̃

+1
(r)ψ̃

+2
(r) =

∑

r

J+
(r)J̃

+
(r) . (4.4)

As usual one can also consider the global SU(2)L × SU(2)R descendants of these CPOs:

the multiplet of Σ++
3 will be denoted by Σaȧ

3 with a, ȧ = +, 0,−, and analogously for the

other operators. We define the descendants to have the same norm as the highest weight

state, thus for example Ω0+ = 1√
2
[J−

0 ,Ω++] = −
√
2
∑

r J
3
(r)J̃

+
(r) and Ω00 = 2

∑
r J

3
(r)J̃

3
(r).

As mentioned above, double-trace operators also play an important role: they are

defined by taking products of single-trace operators acting on disconnected subsets of the

N copies. The double-trace operators with dimension (1, 1) are

(Σ2 · Σ2)
++ ≡ 2

N2

∑

(r<s) 6=(p<q)

σ++
(rs)σ

++
(pq) , (J · J̃)++ ≡ 1

N

∑

r 6=s

J+
(r)J̃

+
(s) ,

(Σ2 ·O)++ ≡
√
2

N3/2

∑

r<s
t 6=r,s

σ++
(rs)O

++
(t) , (O ·O)++ ≡ 1

N

∑

r 6=s

O++
(r) O

++
(s)

(4.5)
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and descendants thereof; we have chosen the N -dependent factors to normalize the oper-

ators. The constraints in the sum defining the double-trace (Σ2 · Σ2) mean that we are

summing over all couples of pairs that have no indices in common and where, in each pair,

the first entry is smaller than the second one.

On the gravity side, the asymptotic expansion of the metric (3.6) gives, at the next

order in 1/r, the set of coefficients f1
2 I , f

5
2 I and A2 I , where for brevity I ≡ (a, ȧ) with

a, ȧ = +, 0,−. These coefficients must be related to the expectation values of the three

single-trace CPOs in (4.1), (4.2), (4.4), eventually mixed with the double-traces in (4.5).

Since the operator O2 is in fact part of a set of h1,1(M) operators, it is natural to assume

that it does not mix with the other two, and that the associated gravity coefficient is A2 I ;

the quantum numbers related with M-rotations suggest that O2 may mix with the double-

trace (Σ2 ·O). We will examine this simple subset in the next subsection. A more intricate

and interesting structure involves Σ3, Ω and the remaining double-traces (Σ2 ·Σ2), (J · J̃),
(O ·O) in (4.5). This will be the focus of section 5.

4.1 The operator O2

On the gravity side, the only relevant coefficient in this sector is A2 (a,ȧ); on the CFT side,

this should be mapped to the expectation value of Oaȧ
2 , with a possible mixing with the

double-trace (Σ2 ·O):

√
2

N
〈Oaȧ

2 〉+ c1〈(Σ2 ·O)aȧ〉 = (−1)a+ȧ γA2 (−a,−ȧ) , (4.6)

where the sign (−1)a+ȧ is needed for SU(2)L × SU(2)R invariance, as one can understand

following the same logic explained in footnote 2. We will determine the coefficients γ and

c1 by calibrating the map (4.6) using some appropriately chosen RR ground states. Tests of

this map will be performed in section 6, by comparing with some three-charge superstratum

states.

A set of states in which O−−
2 and O++

2 have a non-vanishing expectation value is

N/2∑

p=1

(A1|++〉1)N−2p(B1|00〉2)p . (4.7)

This expectation value can be computed following the general logic explained in [30], which

we now briefly review. Acting on two chosen strands of type |++〉1, (the zero mode of)

O−−
2 joins them into the strand |00〉2:

O−−
2 |++〉21 = |00〉2 . (4.8)

When acting on the full state (|++〉1)N−2p(|00〉2)p, there are
(
N−2p

2

)
ways to choose two out

of N − 2p strands |++〉1; one should also take into account that the states ψ{N(s)
k

} defined

in (2.1) are composed of
∣∣∣ψ{N(s)

k
}

∣∣∣
2
terms, with

∣∣∣ψ{N(s)
k

}

∣∣∣
2
given in (2.3). This leads to

O−−
2

(
|++〉N−2p

1 |00〉p2
)

= (p+ 1) |++〉N−2p−2
1 |00〉p+1

2 , (4.9)
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where the factor p+1 is the one needed to match the number of terms on the two sides of

the equation, since
(
N − 2p

2

) ∣∣(|++〉1)N−2p(|00〉2)p
∣∣2 = (p+ 1)

∣∣(|++〉1)N−2p−2(|00〉2)p+1
∣∣2 . (4.10)

The expectation value of O−−
2 in the state (4.7) then follows from (4.9) and the definition

of the state (4.7):

〈O−−
2 〉 =

A2
1

B1
p+ 1 ≈ A2

1

B1
p =

A2
1 B̄1

2
, (4.11)

where we have taken the large N (and large p) limit and used (2.5). On the gravity side

the state (4.7) is dual to the D1-D5 geometry associated with the profile

g1(v
′) + ig2(v

′) = ā1 e
2πi
L

v′ , g3(v
′) = g4(v

′) = 0 , g5(v
′) = −Im

(
b̄1
2
e

4πi
L

v′
)
,

(4.12)

with the a1, b1 parameters linked to A1, B1 by (2.8). Using the definition of Z4 in (2.14)

it is immediate to extract from the expansion (3.6) the coefficients A2 (a,ȧ):

A2 (+,+) =
(
A2 (−,−)

)∗
=

Ry

2
√
3 (Q1Q5)1/2

a21 b̄1 =
Q1Q5

N3/2R2
y

A2
1 B̄1√
6

. (4.13)

Note that A1 (α,α̇) = 0, consistently with the fact that the expectation value of Oα,α̇ in the

state (4.7) vanishes. Comparing the CFT (4.11) and gravity (4.13) results with the general

map (4.6), one determines the parameter γ:

γ =
√
3
N1/2R2

y

Q1Q5
. (4.14)

To fix the coefficient c1 we must consider a state with a non-vanishing expectation

value for the double-trace (Σ2 ·O)++. An example is

N/2∑

q=1

N−2q∑

p=1

(A2|++〉1)N−p−2q(B2|00〉1)p(C2|++〉2)q . (4.15)

The geometry associated with this state is sourced by the following profile:

g1(v
′) + ig2(v

′) = ā2 e
2πi
L

v′ +
c̄2
2
e

4πi
L

v′ , g3(v
′) = g4(v

′) = 0 , g5(v
′) = −Im

(
b̄2 e

2πi
L

v′
)
.

(4.16)

Choosing coordinates in which (3.8) is satisfied and using (2.14), we obtain that the coeffi-

cient encoding the expectation value of (Σ2 ·O) takes the following value for this microstate:

A2 (1,1) = −
R3

y

(Q1Q5)3/2
ā2(b

3
2 c̄2+8ā22 b2 c2)

16
√
3

. (4.17)

We now consider the action of (Σ2 · O)++ =
√
2N−3/2Σ++

2 O++ on the state (4.15). The

operator O++ contributes via the basic process O++|00〉1 = |++〉1, so that we have:

(Σ2·O)++
(
|++〉N−p−2q

1
|00〉p

1
|++〉q

2

)
=

√
2

N3/2
Σ++

2 (N−p−2q+1)
(
|++〉N−p−2q+1

1
|00〉p−1

1
|++〉q

2

)
,

(4.18)

– 15 –



J
H
E
P
0
7
(
2
0
1
9
)
1
7
1

where the factor (N − p − 2q + 1) arises from imposing that the number of terms on the

two sides of the equation match, after taking into account that the operator O++ can act

on any of the p strands of type |00〉1. The action of the operator Σ++
2 is slightly more

complicated: its expectation value receives a contribution both by the splitting a strand

of type |++〉2 into two |++〉1 and from the joining of two |++〉1 to form a |++〉2. We

thus have to consider the following basic processes (as before, the zero mode should be

understood):

Σ++
2 |++〉2 = |++〉1|++〉1 , Σ++

2 |00〉1|00〉1 =
1

4
|++〉2 , (4.19)

where the coefficient of the latter process is computed in appendix B, see eq. (B.32).

Continuing from eq. (4.18), we obtain

(Σ2·O)++(|++〉N−p−2q
1 |00〉p1|++〉q2) =

√
2

N3/2
(N−p−2q+1)

[
1

2
(N−p−2q+2)(N−p−2q+3)(|++〉N−p−2q+3

1 |00〉p−1
1 |++〉q−1

2 )

+
q+1

4
(|++〉N−p−2q+1

1 |00〉p−3
1 |++〉q+1

2 )

]
,

(4.20)

where the combinatorial factors again arise from matching the norms of the states on both

sides of the equation. In the large N limit, this gives rise to the one-point function:

〈
(Σ2 ·O)++

〉
=

√
2

N3/2

(
Ā3

2B2C2

2
+
Ā2B

3
2 C̄2

8

)
=

R5
yN

(Q1Q5)5/2

(
ā32 b2 c2

2
+
ā2 b

3
2 c̄2

16

)
,

(4.21)

where we have used eqs. (2.6) and (2.8). By comparing the results in eqs. (4.17) and (4.21)

and the map (4.6), we determine the unknown coefficient to be

c1 = − 1

N1/2
. (4.22)

The holographic map in this subsector can then be summarized as

√
2

N

〈
Õaȧ

2

〉
= (−1)a+ȧ

√
3
N1/2R2

y

Q1Q5
A2 (−a,−ȧ) , (4.23)

where

Õ++
2 ≡

∑

r<s

O++
(rs) −

1

N

∑

r<s
t 6=r,s

σ++
(rs)O

++
(t) . (4.24)

By general arguments, extremal three-point functions containing the operator Õ++
2

should vanish [25, 27, 48–50]. We can use this as a consistency check of our result. Consider

for example the correlator

〈
Õ++

2 O−−Σ−−
2

〉
=

N2

2

〈
O++

(12) (O
−−
(1) +O−−

(2) )σ
−−
(12)

〉
− N2

2
, (4.25)
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where the first term on the right-hand side comes from the single-trace part of Õ++
2 and

the second term is produced by the double-trace part. The definition of O++
(12), (4.3),

implies that 〈
O++

(12) (O
−−
(1) +O−−

(2) )σ
−−
(12)

〉
= 1 , (4.26)

and thus the extremal correlator (4.25) vanishes.

5 The operators Σ3 and Ω

In this section we turn to the sector of dimension (1, 1) operators that contains Σ3 and

Ω, in which the mixing is more involved. We begin this section by importing the results

of [25, 26] that for a metric of the form (2.9), with the choice of coordinates defined by (3.5)

and (3.8), the geometric quantities dual to the operator expectation values in this sector are

linear combinations of the following gauge-invariant quantities (evaluated in this gauge) [25,

eq. (6.4)], [26, eq. (5.27)]:

gI ≡
√
6 (f1

2 I − f5
2 I) , g̃I ≡

√
2 (−(f1

2 I + f5
2 I) + 8 aa+ab− fIab) , (5.1)

where the coefficients fIab are defined by the overlap between a scalar S3 spherical harmonic

of degree 2 and the scalar product of two vector spherical harmonics of degree 1, and are

given in appendix A.

A first guess for the holographic dictionary might have been that gI should be dual to

the expectation value of Σ−I
3 and g̃I should be dual to the expectation value Ω−I , however

in [25] it was pointed out that this guess was inconsistent with the structure of known CFT

correlators, and a modified map was proposed in [27]. In what follows we shall not assume

any previous results on the holographic dictionary beyond (5.1), and we shall simply start

with the most general map, allowing for generic mixings with the double-traces that can

mix with Σ3 and Ω:

√
3

N3/2

〈
Σaȧ
3

〉
+a1

〈
(J ·J̃)aȧ

〉
+a2

〈
(Σ2·Σ2)

aȧ
〉
+a3

〈
(O·O)aȧ

〉
= (−1)a+ȧ

[
α g(−a,−ȧ)+α̃ g̃(−a,−ȧ)

]
,

1

N1/2
〈Ωaȧ〉+b1〈(J ·J̃)aȧ〉+b2〈(Σ2·Σ2)

aȧ〉+b3〈(O·O)aȧ〉 = (−1)a+ȧ
[
β g(−a,−ȧ)+β̃ g̃(−a,−ȧ)

]
.

(5.2)

As usual the numerical factors in front of Σ3 and Ω have the purpose of normalizing the

operators, and the sign (−1)a+ȧ is required by SU(2)L × SU(2)R invariance.

In the following, we shall determine in turn the unknown coefficients α, α̃, β, β̃,

ai and bi by applying the holographic map to an appropriate set of D1-D5 RR ground

states. Note that we have implemented SU(2)L × SU(2)R invariance by requiring that

coefficients be independent of the R-symmetry indices (a, ȧ). (The real coefficients α, β

should not be confused with the one-form β or the spinorial indices of the R-symmetry

group SU(2)L × SU(2)R used elsewhere.) We will then perform a set of non-trivial checks

of the resulting dictionary by testing it on a wider class of states. Further tests involving

D1-D5-P superstrata will be performed in section 6.
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5.1 Determining the first set of coefficients

To determine the values of the coefficients α, α̃, β, β̃, we consider states in which Σ3 and Ω

have non-zero expectation values, and in which the expectation values of the double-traces

in (5.2) vanish. Two simple choices are

ψ(1)(A1, B1) =

N/3∑

p=1

(
A1|++〉1

)N−3p(
B1|++〉3

)p
, (5.3)

and

ψ(2)(A2, B2) =

N∑

p=1

(
A2|++〉1

)N−p(
B2 |−−〉1

)p
, (5.4)

which, according to the map in section 2, correspond respectively to the profiles

g
(1)
1 (v′) + ig

(1)
2 (v′) = ā1 e

2πi
L

v′ +
b̄1
3
e

6πi
L

v′ , g
(1)
3 (v′) = g

(1)
4 (v′) = g

(1)
5 (v′) = 0 , (5.5)

and

g
(2)
1 (v′) + ig

(2)
2 (v′) = ā2 e

2πi
L

v′ + b2 e
− 2πi

L
v′ , g

(2)
3 (v′) = g

(2)
4 (v′) = g

(2)
5 (v′) = 0 . (5.6)

The computation of the gravity parameters gI and g̃I follows straightforwardly from

eqs. (2.14), (3.6) and (5.1); for the state ψ(1) one obtains

g
(1)
(0,0) = −6

√
2

R2
y

Q1Q5
|a1|2 |b1|2 , g̃

(1)
(0,0) =

14
√
6

27

R2
y

Q1Q5
|a1|2 |b1|2 ,

g
(1)
(1,1) = (g

(1)
(−1,−1))

∗ =
√
2

R2
y

Q1Q5
a31 b̄1 , g̃

(1)
(1,1) = (g̃

(1)
(−1,−1))

∗ = −
√
2√
3

R2
y

Q1Q5
a31 b̄1 ,

(5.7)

and for the state ψ(2) one obtains

g
(2)
(0,0) = 2

√
2

R2
y

Q1Q5
|a2|2 |b2|2 , g̃

(2)
(0,0) = 2

√
6

R2
y

Q1Q5
|a2|2 |b2|2 ,

g
(2)
(1,1) = (g

(2)
(−1,−1))

∗ = −
√
2 a2 b̄2 , g̃

(2)
(1,1) = (g̃

(2)
(−1,−1))

∗ = −
√
6 a2 b̄2 .

(5.8)

On the CFT side, Σ−−
3 and Ω−− have non-vanishing expectation values respectively in

ψ(1) and ψ(2), while the expectation values of all the double-trace operators in (5.2) with

spin (−1,−1) are zero, as can be easily seen from the fact that the action of the dimension-

one operators Σ−−
2 , J−, J̃− or O−− on either ψ(1) or ψ(2) would produce strands of a type

that is not present in the state itself.

The expectation value of Σ−−
3 in ψ(1) arises from the process in which three strands

of winding one are joined into a strand of winding three. In general one has (as before the

zero mode should be understood here and in similar equations that follow)

σ−−
(3) |++〉k1 |++〉k2 |++〉k3 = ck1,k2,k3 |++〉k1+k2+k3

, (5.9)
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where (3) denotes a permutation that joins together the three strands |++〉ki and where

ck1,k2,k3 = k1+k2+k3
3k1k2k3

[51]. We first focus on three particular strands of winding one and one

particular permutation, say (123), of the three strands, for which we thus have

σ−−
(123)

(
|++〉1

)3
= |++〉3 . (5.10)

When considering the action of the full operator Σ−−
3 on the state |++〉N−3p

1 |++〉p3, one
must also include the appropriate combinatorial factors, as follows. The twist operator can

act on any three of the N − 3p strands of winding one, and for each choice of the three

strands there are two inequivalent 3-cycles (cf. eq. (4.1)). Thus Σ−−
3 can act in 2

(
N−3p

3

)

ways on (|++〉1)N−3p(|++〉3)p to produce the state (|++〉1)N−3p−3(|++〉3)p+1. Moreover

one has to take into account that the initial and final states have a non-trivial norm given

by (2.3). Matching the norm of the states on both sides of the following equation, one finds

Σ−−
3

(
(|++〉1)N−3p(|++〉3)p

)
= (p+ 1) (|++〉1)N−3p−3(|++〉3)p+1 . (5.11)

The above result and the definition of the state ψ(1) in (5.3) imply that, in the large N

limit. the expectation value of Σ−−
3 in the state ψ(1) is:

〈Σ−−
3 〉1 =

A3
1

B1
p̄ =

A3
1 B̄1

3
=

N2R2
y

3 (Q1Q5)2
a31 b̄1 , (5.12)

where we have used p̄ = |B|2/3 (from (2.5)) and the relation (2.8).

Next, the expectation value of Ω−− in the state ψ(2) arises from the basic process

where Ω−− maps |++〉1 to |−−〉1. There are N − p choices of strand for Ω−− to act on

the state (|++〉1)N−p(|−−〉1)p to give (|++〉1)N−p−1(|−−〉1)p+1. Matching the norms of

left and right-hand sides gives

Ω−− (
(|++〉1)N−p(|−−〉1)p

)
= (p+ 1) (|++〉1)N−p−1(|−−〉1)p+1 , (5.13)

and thus the expectation value of Ω−− on ψ(2) is

〈Ω−−〉2 =
A2

B2
p̄ = A2 B̄2 =

N R2
y

Q1Q5
a2 b̄2 , (5.14)

where we have again used (2.5) and (2.8).

Comparing 〈Σ−−
3 〉1 and 〈Ω−−〉2 with the gravity data g

(i)
−1,−1, g̃

(i)
−1,−1 (i = 1, 2) uniquely

fixes α, α̃, β, β̃ to be

α = −β̃ =

√
3

4
√
2

N1/2R2
y

Q1Q5
, α̃ = β = − 1

4
√
2

N1/2R2
y

Q1Q5
. (5.15)

These values are in agreement with the results of [27]. The expectation values of Σ++
3 and

Ω++ are simply the complex conjugates of the ones considered above, and do not add new

information. The expectation values of Σ00
3 and Ω00 are also non-vanishing, and should

be compared with g
(i)
0,0. For this value of the spin, however, double-trace operators play a

role and so we will return to this comparison in section 5.6, where we will perform some

non-trivial consistency checks of the full dictionary.
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5.2 Determining the coefficients a1, b1

The coefficients a1, b1 in the general map (5.2) correspond to the double-trace operator

(J · J̃). An RR ground state in which (J · J̃)++ is the only operator with j = j̄ = 1 to

have non-vanishing expectation value is the state given in eq. (3.11). It is straightforward

to compute this one-point function in the orbifold CFT, where J̃+ can map any of the p

strands of type |+−〉1 into |++〉1, and likewise J+ can act on any of the q |−+〉1 strands.

Taking into account the normalization (2.3) of the states, one finds

(J · J̃)++
(
|++〉N−p−q

1 |+−〉p1|−+〉q1
)

=
(N − p− q + 1)(N − p− q + 2)

N
|++〉N−p−q+2

1 |+−〉p−1
1 |−+〉q−1

1 ,

(5.16)

and, in the large N limit,

〈(J · J̃)++〉 = BC

A2

(N − p̄− q̄)2

N
=

Ā
2
BC

N
=

N R4
y

(Q1Q5)2
ā2 b c . (5.17)

Notice that, up to the normalization factor N−1, the expectation value of (J · J̃)++ is just

the product of the expectation values of J+ and J̃+, at large N .

On the gravity side, the relevant coefficients extracted from the metric associated with

the profile (3.12) are

g1,1 = (g−1,−1)
∗ =

√
2

R2
y

Q1Q5
a2 b̄ c̄ , g̃1,1 = (g̃−1,−1)

∗ =
√
6

R2
y

Q1Q5
a2 b̄ c̄ , (5.18)

which, taking into account the values of α, α̃, β, β̃ derived in (5.15), implies that

α g−1,−1 + α̃ g̃−1,−1 = 0 , β g−1,−1 + β̃ g̃−1,−1 = −
N1/2R4

y

(Q1Q5)2
. (5.19)

Then comparison with (5.2) yields

a1 = 0 , b1 = − 1

N1/2
. (5.20)

Using the above value of b1, one sees that the combination appearing in the holographic

map is

1

N1/2


Ω++ − 1

N

∑

r 6=s

J+J̃+


 ≡ 1

N1/2
Ω̃++ . (5.21)

We note that the operator Ω̃++ has the property that its extremal three-point function

with J− and J̃− vanishes,

〈Ω̃++ J− J̃−〉 = 0 . (5.22)
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5.3 Determining the coefficients a2, b2

The coefficients a2, b2 in the map (5.2) correspond to the operator (Σ2 ·Σ2). An RR ground

state in which (Σ2 · Σ2)
−− is the only operator with j = j̄ = −1 to have non-vanishing

expectation value is
N/2∑

p=1

(A |++〉1)N−2p(B |++〉2)p . (5.23)

The CFT expectation value follows from the relation

(Σ2 · Σ2)
−−

(
|++〉N−2p

1 |++〉p2
)
=

2(p+ 1)(p+ 2)

N2
|++〉N−2p−4

1 |++〉p+2
2 ; (5.24)

the combinatorial factor is derived by noting that the first σ−−
2 in the double-trace can

act in
(
N−2p

2

)
ways on the N − 2p strands |++〉1 and similarly the second σ−−

2 can act in(
N−2p−2

2

)
ways on the remaining N − 2p− 2 strands |++〉1; one then, as usual, equates the

numbers of terms composing the states on the two sides of (5.24) and multiplies by the

normalization factor 2/N2. The expectation value in the coherent state (5.23), for which

2p̄ = |B|2, is then

〈(Σ2 · Σ2)
−−〉 = A4

B2
,
2 p̄2

N2
=

A4 B̄
2

2N2
=

N R6
y

(Q1Q5)3
a4 b̄

2

2
. (5.25)

We note that, in the large N limit, the expectation value of the double-trace (Σ2 · Σ2)
−−

is given again by the square of the normalized single trace (
√
2/
√
N) Σ−−

2 , which was

computed in eq. (4.14) of [30].

The geometry dual to the state (5.23) is generated from the profile

g1(v
′)+ig2(v

′) = ā e
2πi
L

v′+
b̄

2
e

4πi
L

v′−
R2

y

2Q1Q5
ā2 b , g3(v

′) = g4(v
′) = g5(v

′) = 0 , (5.26)

where we have shifted the profile centre in order to implement the gauge condition f1
1+f5

1 =

0. From this geometry one derives

g1,1 = (g−1,−1)
∗ = −

√
2

R4
y

(Q1Q5)2
a4 b̄

2
, g̃1,1 = (g̃−1,−1)

∗ =
1√
6

R4
y

(Q1Q5)2
a4 b̄

2
. (5.27)

Comparing with (5.2) and using the values (5.15), one deduces

a2 = − 7

4
√
3

1

N1/2
, b2 =

1

4

1

N1/2
. (5.28)

5.4 Determining the coefficients a3, b3

The coefficients a3, b3 in the map (5.2) correspond to the double-trace operator (O ·O). A

set of RR ground states in which (O · O)−− is the only operator with j = j̄ = −1 to have

non-vanishing one-point function is

N∑

p=1

(A |++〉1)N−p(B |00〉1)p , (5.29)
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which is just a particular case of the state (4.15) with C2 = 0 and A2 = A, B2 = B. The

expectation value 〈(O · O)−−〉 is, as usual, proportional to the square of the single-trace

expectation value 〈O−−〉 = AB̄, as computed in [52]. We obtain

〈(O ·O)−−〉 =
A2B̄

2

N
=

N R4
y

(Q1Q5)2
a2 b̄

2

2
. (5.30)

The relevant gravity coefficients are

g1,1 = (g−1,−1)
∗ =

√
2

4

R2
y

Q1Q5
a2 b̄

2
, g̃1,1 = (g̃−1,−1)

∗ = −
√
2

4
√
3

R2
y

Q1Q5
a2 b̄

2
, (5.31)

which determines a3 and b3 to be

a3 =
1

2
√
3

1

N1/2
, b3 = 0 . (5.32)

5.5 The holographic dictionary at dimension (1, 1)

We can now summarize our results and write the explicit holographic map in the Σ3, Ω

sector as:
√
3

N3/2

〈
Σaȧ
3

〉
+

1

4
√
3

1

N1/2

[
− 7

〈
(Σ2 · Σ2)

aȧ
〉
+ 2

〈
(O ·O)aȧ

〉]
= (−1)a+ȧ h(−a,−ȧ) ,

1

N1/2

〈
Ωaȧ

〉
− 1

N1/2

[〈
(J · J̃)aȧ

〉
− 1

4

〈
(Σ2 · Σ2)

aȧ
〉]

= (−1)a+ȧ h̃(−a,−ȧ) ,

(5.33)

where (recall that g, g̃ were defined in (5.1))

h(a,ȧ) ≡
N1/2R2

y

4
√
2Q1Q5

[√
3 g(a,ȧ) − g̃(a,ȧ)

]
,

h̃(a,ȧ) ≡ −
N1/2R2

y

4
√
2Q1Q5

[
g(a,ȧ) +

√
3 g̃(a,ȧ)

]
. (5.34)

We also repeat for the reader’s convenience the results from the O2 sector, (4.23) and (4.24):

√
2

N

〈
Õaȧ

2

〉
= (−1)a+ȧ

√
3
N1/2R2

y

Q1Q5
A2 (−a,−ȧ) , (5.35)

where

Õ++
2 ≡

∑

r<s

O++
(rs) −

1

N

∑

r<s
t 6=r,s

σ++
(rs)O

++
(t) . (5.36)

For the class of M-invariant supergravity solutions with a flat four-dimensional base space,

eqs. (5.33)–(5.36) comprise the holographic dictionary at dimension (1, 1).

One can check that not all extremal three-point functions of the operator combinations

dual to g, g̃ vanish. Based on general expectations, there should be an appropriate field

redefinition such that all extremal three-point functions vanish [25, 27, 48–50]. We leave

the determination of this field redefinition for future work.
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5.6 Tests of the holographic dictionary on two-charge states

Having determined all the coefficients in the holographic map (5.33), we can now use the

map as a non-trivial consistency check on the correspondence (2.8) between the 1/4-BPS

RR ground states (2.4) and the supergravity solutions (2.14). We re-emphasize that the

SU(2)L×SU(2)R symmetry requires the coefficients in (5.33) to be independent of the spin

(a, ȧ); thus, even if the most efficient way to fix the coefficients is to focus on the highest

(or the lowest) spin component, as we have done in the previous subsections, the same

coefficients must necessarily reproduce the expectation values of all other components. A

relatively involved example is given by the operators

Ω00 = 2
∑

r

J3
(r)J̃

3
(r) and Σ00

3 =
1

2
[J−

0 , [J̃−
0 ,Σ++

3 ]] . (5.37)

We will next work out a couple of examples that demonstrate how the one-point functions

of these operators are correctly reproduced by the map (5.33). More examples involving

1/8-BPS D1-D5-P states will be examined in the next section.

• First, consider the state (A |++〉k)
N
k with k ∈ N.

The dual geometry is generated from the profile

g1(v
′) + ig2(v

′) =
ā

k
e

2πi k
L

v′ , g3(v
′) = g4(v

′) = g5(v
′) = 0 , (5.38)

and from the asymptotic expansion of the geometry one deduces that

h(a,ȧ) = h̃(a,ȧ) = 0 for all (a, ȧ) . (5.39)

This is a reflection of the fact that the geometry is a Zk quotient of AdS3 × S3, with

non-trivial constant gauge fields mixing S3 and AdS3.

Given the simple structure of the geometry, one would naively expect that on the CFT

side only the R-symmetry currents, which couple to the S3 gauge fields, have non-trivial

expectation values; the situation is however a bit more interesting. While it is true that to

leading order at large N all expectation values appearing in the first line of (5.33) vanish,3

the expectation values of the single-trace Ω00 and of the double-trace (J · J̃)00 are non-

trivial; consistency with the map (5.33) requires that the two expectation values precisely

cancel. To compute the expectation value of Ω00 one notes that

Ω00 |++〉k =
1

2 k
|++〉k . (5.40)

3Naively one could think that the expectation value of the double-trace (Σ2 · Σ2)
00 ∼ ∑

σ++
(rs)σ

−−
(pq) +

σ+−
(rs)σ

−+
(pq) could receive a contribution, for example, from the process in which a σ−− joins two strands

|++〉
k
into |++〉2k and a σ++ splits the newly created |++〉2k strand again into two |++〉

k
strands. One

can however see that this expectation value, unlike the one computed in (5.25), does not grow with N , and

hence it does not contribute to the holographic map at the leading order in the large N expansion. The

origin of the difference with (5.25) is that in the present situation the second twist operator can only act

on a particular strand, while in (5.25) it could act on O(N) strands. This observation confirms the general

rule that the expectation value of a double-trace operator is given by the product of the expectation values

of the single-trace components at leading order in N .
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The 1/k factor in this equation is not a-priori obvious and can be understood as follows.

Consider the action of the zero-mode of the SU(2)L current J3
0 on a strand of winding k,

such as |++〉k. Since there are identical copies of the SU(2)L algebra in any twist sector

of the orbifold theory, the value of J3
0 cannot depend on k: J3

0 |++〉k = 1/2 |++〉k; on the

other hand J3
0 =

∑k
r=1 J

3
(r),0 = k J3

(r),0, with J3
(r),0 the zero-mode of the operator acting on

a single copy of the CFT. One deduces that, in the k-twisted sector, J3
(r),0 = 1/k J3

0 and

analogously J̃3
(r),0 = 1/k J̃3

0 . This implies that Ω00
0 = 2

∑k
r=1 J

3
(r),0J̃

3
(r),0 = 2/k J3

0 J̃
3
0 , from

which (5.40) immediately follows.

The action of Ω00 on the full state (|++〉k)
N
k is then given by multiplying by the

number of strands N/k:

Ω00
(
|++〉k

)N
k =

N

2 k2
(
|++〉k

)N
k . (5.41)

This immediately implies
〈
Ω00

〉
=

N

2 k2
. (5.42)

As for the expectation value of the double-trace (J · J̃)00, one should first note that the

correctly normalized affine descendant of (J ·J̃)++, which is what appears in the map (5.33),

is given by

(J · J̃)00 =
2

N

∑

r 6=s

J3
(r)J̃

3
(s) . (5.43)

When acting on the state (|++〉k)
N
k , J3 can be applied on any of the N/k strands, and it

has eigenvalue 1/2. The same happens for J̃3 on the remaining N/k − 1 strands. In the

large N limit one finds

(J · J̃)00
(
|++〉k

)N
k =

2

N

N2

k2
1

4

(
|++〉k

)N
k =

N

2 k2
(|++〉k)

N
k , (5.44)

and thus 〈
(J · J̃)00

〉
=

N

2 k2
. (5.45)

The two expectation values (5.42) and (5.45) are equal, as required by the holographic map.

• Second, let us consider the state

N/k∑

p=1

(A |++〉1)N−k p(B|++〉k)p , k ∈ N , k ≥ 3 . (5.46)

The supergravity analysis is done along the usual lines: starting from the dual profile

g1(v
′) + ig2(v

′) = ā e
2πi
L

v′ +
b̄

k
e

2πi k
L

v′ , g3(v
′) = g4(v

′) = g5(v
′) = 0 , (5.47)

(where for simplicity we take a, b ∈ R) one extracts the supergravity data defined in (5.34):

h(0,0) =

√
3

6

(k + 1)2

k2
N1/2R4

y

(Q1Q5)2
a2 b2 , h̃(0,0) =

1

2

(k − 1)2

k2
N1/2R4

y

(Q1Q5)2
a2 b2 . (5.48)
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Note that in the following manipulations the regularity constraint a2 + b2 = Q1Q5

R2
y

(2.15)

will be used.

The second line of (5.33) works in a way that is qualitatively similar to the previous

example. We take k ≥ 3 for simplicity, where the non-vanishing expectation values are

〈Ω00〉 and 〈(J · J̃)00〉 (for k = 2, one would also need to include 〈(Σ2 · Σ2)
00〉). The

one-point functions can be computed by applying the rules already explained:

〈Ω00〉 =
1

2

N R4
y

(Q1Q5)2
k2a4+(k2+1)a2b2+b4

k2
, 〈(J ·J̃)00〉 =

1

2

N R4
y

(Q1Q5)2
k2a4+2ka2b2+b4

k2
.

(5.49)

One can verify that substituting these expectation values in the second line of (5.33)

reproduces the value of h̃(0,0) given in (5.48).

The first line of (5.33) introduces a novel ingredient: the expectation value of Σ00
3 .

(The other double-trace operators clearly do not play a role in this example, at large N .)

The mechanism by which Σ00
3 acquires a non-zero expectation value in the state (5.46) for

any k > 1 is as follows. Take for example k = 3 and consider the action of Σ00
3 on the

strands |++〉1 and |++〉3 corresponding to the permutation (1) (234); when the twist 3

operator acts with the permutation (132) it produces a state described by the permutation

(2) (341), which represents again two strands of type |++〉1 and |++〉3. In other words,

the operator Σ00
3 maps the state (5.46) into itself, permuting the copy |++〉1 with one of

the copies forming the strand |++〉3. To compute the expectation value associated with

this process we need to know the coefficient C
−,−(1),−
k,3,k defined by

σ00
(3) |++〉1|++〉k = C

−,−(1),−
k,3,k |++〉1|++〉k , (5.50)

where (3) denotes any permutation that maps the state on the left to the state on the

right. This coefficient is equal to C
−(1),−,−
3,k,k , corresponding to a three-point function that

differs from the one giving C
−,−(1),−
k,3,k by the ordering of the operators. One can see that the

coefficients are equal using e.g. [53, eq. (2.2.48)]. The coefficient C
−(1),−,−
3,k,k was computed

in [54, eq. (6.28)] using the techniques reviewed in appendix B, giving

C
−,−(1),−
k,3,k =

(k + 1)2

6 k2
. (5.51)

The full expectation value of Σ00
3 is given by dressing C

−,−(1),−
k,3,k by the appropriate com-

binatorial factors: the twist operator can act on any of the (N − k p) p pairs of strands

|++〉1|++〉k and can cut the |++〉k strand in k different positions (note that only one of

the two permutations (rst) and (rts) that appear in the definition of Σ3 (4.1) contributes

to the present process, and thus one does not have an additional factor of 2). We thus find

Σ00
3 |++〉N−k p

1 |++〉pk = C
−,−(1),−
k,3,k (N − k p) p k |++〉N−k p

1 |++〉pk , (5.52)

which gives
〈
Σ00
3

〉
=

(k + 1)2

6 k2
A2B2 =

(k + 1)2

6 k2
N2R4

y

(Q1Q5)2
a2 b2 . (5.53)

The CFT prediction agrees, via the map (5.33), with the gravity coefficient h(0,0) in (5.48).
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6 Precision holographic tests of superstrata

We now perform new precision tests of the proposed holographic dictionary for a recently

constructed set of superstratum solutions and proposed dual CFT microstates. The term

‘superstratum’ refers to a large class of supergravity solutions describing black hole mi-

crostates [31–41]. The key property of superstrata is that the isometries preserved by the

black hole are explicitly broken (apart from the single null isometry guaranteed by super-

symmetry). These solutions include sub-classes whose proposed dual CFT states display

momentum fractionation [32], and include solutions that have parametrically long AdS2
throats (in full, the throats are approximately AdS2×S1×S3×T4) [33, 36], which have po-

tentially important implications for AdS2 holography [37]. Some special sub-families have

the remarkable property of having completely integrable null geodesics [35]; for some recent

studies of superstrata, see [39, 55–57].

We will perform tests on a couple of specific sub-families of superstrata, including some

of the most recently constructed solutions [40]. In all cases the proposed CFT description

passes these new precision tests, which lends strong support to the proposed families of

holographically dual CFT states.

6.1 Key properties of superstrata

We now briefly summarize the elements of the superstratum construction that will be

relevant for our studies. In this paper the CFT expectation values we focus on are related

to the fall-off of metric components, so for simplicity of presentation we shall focus on

metric quantities. The main purpose will be to introduce the necessary notation for the

holographic tests that follow. For a more comprehensive introduction to superstrata, we

refer the reader to [36].

The superstrata that have been constructed to date are six-dimensional solutions where

the four-dimensional base is flat R4. The six-dimensional metric, four-dimensional base and

relation between t, y and u, v coordinates are as given in eqs. (2.9)–(2.12). The one-form

β takes the value

β =
Rya

2

√
2Σ

(
sin2 θ dφ− cos2 θ dψ

)
. (6.1)

The remaining quantities in the supergravity ansatz (C.1) are organized by the almost-

linear structure of the six-dimensional BPS equations. For completeness we give the full

Type IIB ansatz and BPS equations in appendix C, and we summarize the content here.

The four-dimensional base and the one-form β are referred to as the data of the “zeroth”

layer of equations. Then the first layer of BPS equations involves the scalars Z1, Z2, Z4

and two-forms Θ1, Θ2, Θ4. By convention Z3 is related to F , and Θ3 = dβ. Finally, the

second layer of equations determines the scalar F and the one-form ω.

In the class of superstratum solutions that we will consider, Z2 has the simple form

Z2 =
Q5

Σ
. (6.2)

The first important feature of the solutions is encoded in the function Z4 which enters

directly into the Type IIB NS-NS two-form B2, and the RR forms C(0) and C(4), and also
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into the metric via the combination P = Z1Z2 − Z2
4 . The function Z4 takes the general

form (more generally a phase could also be introduced in the definition of Z4)

Z4 = Ry

∑

k,m,n,q

δq,0 b
k,m,n,q
4

∆k,m,n

Σ
cos v̂k,m,n , (6.3)

where bk,m,n,q
4 are real coefficients (the inclusion of q in the indices is somewhat superfluous

because of the δq,0, however we choose to keep the notation general), and where

∆k,m,n ≡
(

a√
r2 + a2

)k ( r√
r2 + a2

)n

cosm θ sink−m θ ,

v̂k,m,n ≡ (m+ n)

√
2 v

Ry
+ (k −m)φ−mψ , Σ ≡ r2 + a2 cos2 θ .

The ansatz for Z1 involves a linear combination of terms similar to those appearing in

Z4, with coefficients chosen to facilitate the construction of smooth solutions without hori-

zons. This procedure is known as “coiffuring” [31, 58, 59]. In practical terms, this means

making the combination P = Z1Z2 − Z2
4 have desired properties, which in the simplest

cases means arranging that P is independent of v̂k,m,n. Several families of asymptotically

AdS3 solutions have this property, and in fact have the property that the full metric is also

independent of the phase v̂k,m,n and all explicit dependence on this phase is in the matter

fields. We will discuss the explicit form of Z1 that exhibits “coiffuring” once we specialize

the discussion to the solutions that we consider in this paper.

The proposed CFT interpretation of the superstratum solutions involves coherent su-

perpositions of several strands of the following type. The states are labelled by integers

(m,n, k, q) with4 q = 0, 1; n ≥ 1; and k > 0, k − q ≥ m ≥ 1. For ease of notation it is

convenient to define the states in the NS-NS sector, where they are given by [31–33, 36, 40]

|k,m, n, q〉NS =
1

(m− q)!(n− q)!
(J+

0 )m−qLn−q
−1

(
G+1

− 1
2

G+2
− 1

2

+
1

k
J+
0 L−1

)q

|O−−〉NS
k , (6.4)

with |O−−〉NS
k the NS-sector anti-chiral primary corresponding to the RR ground state |00〉k.

Then the states we are interested in are the RR states obtained by performing left and

right spectral flow transformations with parameters (1/2, 1/2), and for ease of notation we

shall denote the resulting RR states by |ki,mi, ni, qi〉, where i runs over the different types

of superstratum strands that are present in a given state. Our spectral flow conventions are

recorded in eqs. (B.14)–(B.16) and are such that spectral flow with parameters (1/2, 1/2)

on an individual copy of the CFT maps the NS-NS vacuum to the RR ground state |++〉.
We are interested in coherent superpositions of the states involving Ni copies of the

above superstratum-type strands |ki,mi, ni, qi〉 and N
(s)
k copies of the bosonic RR ground

state strands |s〉k introduced around eq. (2.1):

ψ{N(s)
k

,ni}
≡

4∏

s=1

∏

k

|s〉N
(s)
k

k

∏

i

|ki,mi, ni, qi〉Ni . (6.5)

4We use the notation of [41] which differs from that of CRS [40] by (m−q)here=mCRS and (n−q)here=nCRS.
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The resulting family of (non-normalized) CFT states ψ({A(s)
k , Bi}) is defined, in a way

similar to (2.4), as

ψ({A(s)
k , Bi}) ≡

∑

{Ni,N
(s)
k

}

′
[

4∏

s=1

∏

k

(
A

(s)
k |s〉k

)N
(s)
k

∏

i

(
Bi|ki,mi, ni, qi〉

)Ni

]
, (6.6)

where the prime on the overall sum indicates that it is a restricted sum (as in eq. (2.4))

over all states whose total number of copies adds up to N :

∑

k,s

kN
(s)
k +

∑

i

kiNi = N . (6.7)

Having defined the general class of superstratum states, we now specialize to those that

we will consider in this paper. We consider states with one type of ground state strands,

with winding k = 1 and polarization s = ++, and one type of superstratum strand:

ψ(A1, Bk,m,n,q) =

N/p∑

p=1

(
A1|++〉1

)N−pk(
Bk,m,n,q |k,m, n, q〉

)p
. (6.8)

This class is both sufficiently tractable and sufficiently interesting to enable the new pre-

cision holographic tests that follow.

The computations in the following subsections make use of a number of technical

results, such as the norm of the states ψ{N1 ,Nk,m,n,q}, the average numbers N i of strands in

the coherent state (6.6), and the map between the CFT parameters A1, Bk,m,n,q and the

coefficients a, bk,m,n,q
4 that define the supergravity solution. For the examples considered

below, it will be sufficient to present these results for q = 0, whose derivation can be found

in [36]:

∣∣∣ψ{N1, Nk,m,n,0}
∣∣∣
2
=

N !

N1!

∏

k,m,n

1

Nk,m,n,0!

[
1

k

(
k

m

)(
n+k−1

n

)]Nk,m,n,0

,

(6.9)

N1 = |A1|2 , kNk,m,n,0 =

(
k

m

)(
n+k−1

n

)
|Bk,m,n,0|2 , (6.10)

|A1| = Ry

√
N

Q1Q5
a , |Bk,m,n,0| = Ry

√
N

2Q1Q5

(
k

m

)−1(n+k−1

n

)−1

bk,m,n,0
4 .

(6.11)

6.2 Holographic tests of superstrata with the operator O2

We now make the first precision holographic test of superstrata at dimension two, focus-

ing on the expectation value of the operator O2. Since the one-point function of O2 is

extracted from the metric function Z4, which is the basic ingredient in the construction

of the superstrata solutions, these are the most direct tests of the identification between

superstrata and CFT states.
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Superstrata with k = 2, m = 1. We now consider the following set of states:

N
2∑

p=1

(
A|++〉1

)N−2p
(
B
(L−1 − J3

−1)
n

n!
J+
−1|00〉2

)p

. (6.12)

To begin with we will set n = 0, before extending to general n. We thus first consider the

states
N
2∑

p=1

(
A|++〉1

)N−2p(
BJ+

−1|00〉2
)p

. (6.13)

In the CFT, of the operators O2 and (Σ2 ·O) entering in the holographic dictionary (4.6),

only the single-trace O2 has a non trivial expectation value: the expectation value of the

operators O and Σ2 are zero on this state, thus also that of the double-trace (Σ2 ·O) is zero.

Moreover, since the strands |++〉1 and J+
−1|00〉2 carry spin (12 ,

1
2) and (1, 0) respectively,

by angular momentum conservation we conclude that only O0−
2 and its hermitian conjugate

have non-vanishing one-point functions. The basic process is that in which O0−
2 links two

strands |++〉1 into a strand J+
−1|00〉2 and the corresponding amplitude is

(12)〈00|J−
+1O

0−
2 (v, u)|++〉(1)|++〉(2) =

√
2e

i
√
2 v

Ry . (6.14)

In deriving this result we have used the fact that the ground state is annihilated by the

positive modes of the current operator to replace J−
+1O

0−
2 (v, u) by their commutator5

[J−
+1, O

0−
2 (v, u)] =

√
2 e

i
√
2 v

Ry O−−
2 (v, u) , (6.15)

and the hermitian conjugate of the second relation in (4.3). Note that it is important to

insert the operator O0−
2 at a generic worldsheet point (v, u) to obtain a non-trivial result:

had we inserted it at past infinity, it would have killed the initial state |++〉(1)|++〉(2).
We must now dress the result (6.14) with the proper combinatorial factor: the operator

O0−
2 can act on any of the

(
N−2p

2

)
pairs of |++〉1 to produce the state J+

−1|00〉2. Using (6.9)

and requiring that both sides of the equation contain the same number of terms, we obtain

O0−
2

(
|++〉1

)N−2p(
J+
−1|00〉2

)p
=

p+ 1√
2

e
i
√
2 v

Ry
(
|++〉1

)N−2(p+1)(
J+
−1|00〉2

)p+1
. (6.16)

This implies that

〈
O0−

2 (v, u)
〉
=

A2

√
2B

p̄ e
i
√

2 v
Ry =

A2B̄√
2
e
i
√

2 v
Ry =

N
3
2 R3

y

4(Q1Q5)
3
2

a2 b̄ e
i
√

2 v
Ry , (6.17)

where we have used (6.10) to compute p̄ and (6.11) to express the final result in terms of

the gravity parameters.

On the supergravity side, we require the first non-trivial terms in the large r expansion

of the function Z4 given in (6.3) where k = 2, m = 1, n = 0, q = 0 and b2,1,0,04 = b :

Z4 ∼
√
Q1Q5

r4
Ry a

2 b

2
√
6
√
Q1Q5

(
−e

i
√

2 v
Ry Y 0,1

2 + e
−i

√
2 v

Ry Y 0,−1
2

)
. (6.18)

5The factor
√
2 in the commutator (6.15) ensures, as usual, that all components of Oaȧ

2 have unit norm.
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Comparing the result (6.17) with (6.18) using the dictionary in (4.23) and (4.24), one

obtains exact agreement.

It is now straightforward to generalize the n = 0 computation to the general set of

states (6.12). On the CFT side the computation proceeds along the same lines as before,

with the only difference that the correlator (6.14) should be replaced by

(12)〈00|
(L1 − J3

1 )
n

n!
J−
+1O

0−
2 (v, u)|++〉(1)|++〉(2) =

√
2e

i (n+1)
√
2 v

Ry . (6.19)

The extra factor e
i n

√
2 v

Ry is produced by commuting the operator (L1−J3
1 )

n with O−−
2 (v, u),

using
[
(L1 − J3

1 )
n, O−−

2 (v, u)
]
= n! e

i n
√
2 v

Ry O−−
2,0 , (6.20)

where O−−
2,0 denotes the zero-mode of O−−

2 , which is the only one contributing to the

correlator after having eliminated the momentum-carrying operators. On the gravity side,

it follows immediately from (6.3) that the only modification to Z4 at order r−4 is an extra

factor e
i n

√
2 v

Ry . We thus see that the exact agreement persists for any value of n.

Superstrata with k = 2, m = 2. As a further consistency check, we consider the set

of superstratum states with k = 2, m = 2:

N
2∑

p=1

(A|++〉1)N−2p

(
B

(L−1 − J3
−1)

n

n!

(J+
−1)

2

2
|00〉2

)p

. (6.21)

We follow the same presentation and first set n = 0, before extending to general n. Thus,

we first consider the coherent state

N
2∑

p=1

(A|++〉1)N−2p

(
B

(J+
−1)

2

2
|00〉2

)p

. (6.22)

The strand (J+
−1)

2|00〉2 carries spin (2, 0), thus, by conservation of angular momentum, we

conclude that only the operator O+−
2 = 1

2

[
(J̃−

0 )2, O++
2

]
and its hermitian conjugate will

have non-trivial expectation values; the expectation value of the multi-trace (Σ2 · O) is

trivially zero. This operator carries out the fundamental process

O+−
2 (v, u) |++〉1|++〉1 = e

i 2
√
2v

Ry
(J+

−1)
2

2
|00〉2 , (6.23)

where we have used the commutation relation [(J−
1 )2, O+−

2 (v, u)] = 2 e
i 2

√
2v

Ry O−−
2 (v, u),

the relation defining O−−, given by the hermitian conjugate of (4.3), and the fact that
(J+

−1)
2

2 |00〉2 has unit norm. The complete action of the operator O+−
2 on the state is obtained

implementing the appropriate combinatorial factor (which follows, as usual, noticing that

O+−
2 can choose among

(
N−2p

2

)
pairs of |++〉1 and imposing that the norms on the two
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sides of the equation are equal). We obtain

O+−
2 (v, u)

[
(|++〉1)N−2p

(
(J+

−1)
2

2
|00〉2

)p ]
= e

i 2
√

2v
Ry (p+1)(|++〉1)N−2p−2

(
(J+

−1)
2

2
|00〉2

)p+1

.

(6.24)

This gives rise to the expectation value

〈
O+,−

2 (v, u)
〉
= e

i 2
√
2v

Ry p̄
A2

B
= e

i 2
√

2v
Ry

A2B̄

2
= e

i 2
√
2v

Ry
N

3
2 R3

y

2
√
2(Q1Q5)

3
2

a2 b̄ . (6.25)

Expanding the Z4 function of the dual geometry (6.3) (with k = 2, m = 2, n = q = 0,

b2,2,0,04 = b) for large r up to the first non-trivial order, we obtain

Z4 ∼
√
Q1Q5

r4
Ry a

2b

2
√
3
√
Q1Q5

(
e
i 2

√
2v

Ry Y −1,1
2 + e

−i 2
√

2v
Ry Y +1,−1

2

)
. (6.26)

Eqs. (6.25) and (6.26) are in exact agreement with the dictionary given in eqs. (4.23)

and (4.24).

As explained around eq. (6.20), it is straightforward to extend this result to the states

with general n given in eq. (6.21): both the CFT and the gravity results are simply multi-

plied by the factor e
i n

√
2 v

Ry .

6.3 Holographic tests of superstrata with the operators Ω00 and Σ00
3

We now consider the class of states with m = 1, n = 0, q = 0 and general (positive

integer) k:
N/k∑

p=1

(
A |++〉1

)N−k p(
B J+

−1|00〉k
)p

. (6.27)

The one-point function of O2 in the state with k = 2 has already been considered in the

previous subsection; here we concentrate on the other dimension-two operators, with the

purpose of testing the dictionary (5.33). This enables us to check some features of the

dual geometry other than Z4, and in particular the metric function Z1. Setting for ease of

notation bk,1,0,04 = b, for this class of metrics Z1 is given by (see e.g. [36, eq. (4.3)]):

Z1 =
Q1

Σ
+

R2
y b

2

2Q5

∆k,1,0

Σ
cos v̂2k,2,0 , (6.28)

where

Q1 =
R2

y

Q5

(
a2 +

b2

2 k

)
. (6.29)

The term proportional to Q1 is the standard term encoding the dependence on the D1

charge; the term proportional to b2 is more subtle, since it cannot be inferred simply on

the basis of the global charges or of the supergravity equations, which would be satisfied

also in the absence of that term. Its presence is however crucial for the smoothness of

the solution. The general mechanism by which regularity is ensured in the superstratum
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construction has been dubbed “coiffuring” [58, 59], and in this example it amounts to

choosing the ansatz for the function Z1 such that the combination P = Z1Z2 − Z2
4 is

independent of v.

The holographic dictionary can provide a more direct CFT understanding of the coif-

furing construction: we will show that the b2 contribution to Z1 originates from the mixing

of both Ω and Σ3 with the double-trace operator (O ·O).

We first consider the second line of the holographic dictionary (5.33), which involves the

expectation values of Ω00 and (J · J̃)00 (in these states the one-point function of (Σ2 ·Σ2)
00

is trivially zero for any k). Since these operators act in a way that has essentially already

been explained in section 5.6, we will be brief in the following. The operator Ω00 acts

non-trivially only on the |++〉1 strands, for which Ω00|++〉1 = 1/2 |++〉1, so we obtain

〈
Ω00

〉
=

|A|2
2

=
1

2

N R2
y

Q1Q5
a2 =

1

2

N R4
y

(Q1Q5)2
a2

(
a2 +

b2

2k

)
, (6.30)

where we used (6.11) and, for later convenience, the regularity constraint (6.29). The

expectation value of the double-trace (J · J̃)00 can be expressed, as usual, as the product

of the expectation values of J3 and J̃3:

〈
(J · J̃)00

〉
=

2

N

〈
J3〉 〈J̃3〉 =

|A|2
N

( |A|2
2

+ |B|2
)

=
1

2

N R4
y

(Q1Q5)2
a2

(
a2 +

b2

k2

)
. (6.31)

Substituting in the second line of (5.33), we find a value of h̃(0,0) in exact agreement with

the one extracted from the geometry:

h̃(0,0) =
N1/2R4

y

(Q1Q5)2
k − 2

4 k2
a2b2 . (6.32)

The first line of the holographic dictionary (5.33) works in a more interesting way, and

it requires us to distinguish the states with k = 1 from the ones with k > 1. For k = 1 we

have 〈Σ3〉 = 0, however the following components of the double-trace (O ·O) play a role:

(O ·O)00 =
1

N

∑

r 6=s

(
O++

(r) O
−−
(s) +O+−

(r) O
−+
(s)

)
, (O ·O)+− =

1

N

∑

r 6=s

O+−
(r) O

+−
(s) , (6.33)

as well as the hermitian conjugate (O ·O)−+. On the CFT side the expectation values are

straightforward to compute as the product of the expectation values of the single-particle

operators O+− and O−+, which were derived in eqs. (4.38), (4.39) of [30]:

〈
(O ·O)00

〉
= −|A|2 |B|2

N
,

〈
(O ·O)+−〉 = e

i 2
√

2 v
Ry

A2 B̄2

N
. (6.34)

On the gravity side the term responsible for 〈(O · O)+−〉 is the term quadratic in b in the

metric function Z1 (6.28), from which one extracts

h(−,+) = (h(+,−))
∗ =

N1/2R4
y

Q2
1Q

2
5

e
i 2

√
2v

Ry
a2b2

4
√
3

and h(0,0) = −
N1/2R4

y

Q2
1Q

2
5

a2b2

4
√
3
, (6.35)
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which agree precisely with the CFT results. As we discussed below eq. (6.28), the term

contributing to h(−,+) is the one deduced, quite indirectly, from the “coiffuring” method. It

is satisfying to see that holography provides a sharp CFT explanation of this supergravity

construction.

When k > 1 the relevant operator is Σ00
3 , which, as we have already seen, has to be

analyzed with some care. The non-trivial part of the computation is in the derivation of the

coefficient C
00(m=1)
k3k , which captures the action of the twist-three operator on a particular

pair of states |++〉1 and J+
−1|00〉k:

σ00
(3)

(
|++〉1 J+

−1|00〉k
)

= C
00(m=1)
k3k

(
|++〉1 J+

−1|00〉k
)
. (6.36)

Similarly to our explanation of the process (5.50), the twist operator σ00
(3) can cut the strand

|00〉k and join it with the strand |++〉1, while at the same permuting the spins of the two

copies involved in the process. To our knowledge the coefficient C
00(m=1)
k3k does not appear

in the literature, and we thus derive it in appendix B.2, by evaluating the three-point

function (B.17). The result is

C
00(m=1)
k3k =

k − 2

6k
. (6.37)

When acting on the full state, the twist operator Σ00
3 can act on any of the N − pk strands

|++〉1 and on any of the p strands J+
−1|00〉k, and can cut the latter in k positions (after this

choice is made, the permutation by which the twist operator can act is completely fixed);

this translates, according to the usual logic, into the identity

Σ00
3

(
|++〉N−kp

1

(
J+
−1|00〉k

)p)
= C

00(m=1)
k3k (N − kp) p k |++〉N−kp

1

(
J+
−1|00〉k

)p
, (6.38)

and thus, using the result (6.10) to compute p̄ and the CFT-gravity parameter map (6.11),

one arrives at
〈
Σ00
3

〉
= C

00(m=1)
k3k k A2B2 =

k − 2

12 k2
N2R4

y

(Q1Q5)2
a2 b2 . (6.39)

From the dual gravity solution one extracts:

h0,0 =
k − 2

4
√
3 k2

N1/2R4
y

(Q1Q5)2
a2 b2 , (6.40)

which agrees precisely with the prediction of the map (5.33).

6.4 A holographic test of supercharged superstrata

A more recently constructed, and therefore less-studied, class of superstrata is that of [40],

where some of the momentum is carried by the CFT supercurrents G. We will focus here

on the simplest state in that class, the one with k = 2, m = 1, n = 0, q = 1 in the notation

of (6.4), which we rewrite in the Ramond sector as:

N/2∑

p=1

(A|++〉1)N−2p

[
B

(
G+1

−1G
+2
−1 +

1

2
J+
−1(L−1 − J3

−1)

)
|00〉2

]p
. (6.41)
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We now verify the important feature of the supergravity solution dual to this state, namely

that Z4 = 0 (as indicated by the δq,0 in eq. (6.3)). For consistency with the holographic

dictionary (4.23)–(4.24), one expects that the expectation values of O2 and (Σ2 ·O) vanish.

While this is obvious for the double-trace (Σ2 · O), at first sight one could have a non-

vanishing expectation value for O0+
2 , generated by the correlator

1〈++| 1〈++|O0+
2 (z, z̄)

(
G+1

−1G
+2
−1 +

1

2
J+
−1(L−1 − J3

−1)

)
|00〉2 . (6.42)

It is simpler to perform the computation in the NS sector, where this correlator becomes

z̄ NS〈0|O0+
2 (z, z̄)

(
G+1

−1/2G
+2
−1/2 +

1

2
J+
0 L−1

)
|O−−〉NS

2 , (6.43)

with NS〈0| the NS vacuum and |O−−〉NS

2 ≡ O−−
2 (0, 0)|0〉NS the anti-chiral-primary state with

h = h̄ = 1 and j = j̄ = −1 introduced after eq. (6.4). One can write

O0+
2 (z, z̄) = [J−

0 , O++
2 (z, z̄)] = [J−

0 , O++
2 (∞)] + z−1 [J−

0 , [L1, O
++
2 (∞)]] + . . . , (6.44)

where the dots represent terms with higher powers of L1 or L̃1, which cannot contribute

to the correlator. Inserting (6.44) in (6.43), one finds that the correlator is proportional to

NS
2〈O−−| J−

0 L1

(
G+1

−1/2G
+2
−1/2+

1

2
J+
0 L−1

)
|O−−〉NS

2 = NS
2〈O−−| J−

0

(
−J+

0 +J+
0 L0

)
|O−−〉NS

2 = 0 ,

(6.45)

where we have used the chiral algebra commutation relations and the fact that L0|O−−〉NS

2 =

|O−−〉NS

2 , as in [40, eq. (2.7)]. The vanishing of Z4 for the state (6.41) is thus in exact

agreement with the CFT prediction.

7 Discussion

The main result of this article is the derivation of the holographic map relating the expec-

tation values of chiral primary operators (CPOs) of dimension (1, 1) in a 1/4 or 1/8-BPS

state of the D1-D5 CFT with the geometric coefficients extracted from the asymptotic

expansion of the supergravity solution dual to the state. The result, which is valid for

the class of M-invariant supergravity solutions with a flat four-dimensional base space,

and which includes all possible mixings between single-trace and double-trace operators, is

summarized in eqs. (5.33)–(5.36).

This holographic dictionary should be useful for understanding the nature of black hole

microstates and, in particular, for the development of the fuzzball program, in several ways.

Given a smooth horizonless geometry carrying the right charges (D1, D5 and P charges in

our duality frame) its identification with a state of the CFT dual to the black hole is in most

instances a difficult task, mainly because the point in the CFT moduli space where one

can easily describe the states is far from the point where the classical gravity description

holds. As mentioned in the Introduction, the expectation values of CPOs in 1/4 and

1/8-BPS states are protected quantities [12] that provide a useful bridge between the two
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descriptions. We have tested the correspondence between supergravity solutions and the

proposed dual CFT states both for several 1/4-BPS RR ground states, which had already

been extensively studied from many other angles, but also for some of the most recently

constructed and less-studied 1/8-BPS D1-D5-P states, including a set of “superstratum”

solutions. The precise match between CFT and gravity predictions, which is found in all

cases, required the knowledge of correlation functions between operators of the orbifold

CFT in non-trivial twist sectors — some already known in the literature, and others that

we have computed in this work. The high level of non-triviality of the agreement appears to

show, beyond reasonable doubt, that the geometries of the superstrata constructed in [31–

41] are indeed dual to the proposed family of microstates of the CFT that has been used

to derive the entropy of the D1-D5-P black hole.

The holographic point of view also shows how some features of the gravitational solu-

tion that were determined by requiring the regularity of the geometry could in principle

have been predicted simply by computing correlators in the orbifold CFT: the D1-D5-P

state examined in section 6.3, for instance, shows how the so-called “coiffuring” tech-

nique [58, 59] used in the superstratum construction is a reflection of the mixing between

the single-trace and double-trace operators. Related observations were made in [30]. A

more general coiffuring has been recently employed in [41] to cancel the singularities in a

family of multi-mode three-charge superstrata, and it would be interesting to investigate

whether there exists a similar dual CFT understanding of this construction. Work in this

direction is in progress. More generally, this point of view could also prove useful in finding

new microstate solutions, as in many cases computing free CFT correlators is easier than

solving the non-linear supergravity equations.

To conclude, holography has been an essential tool in the development of the fuzzball

program, and our results provide a new sharper formulation of the holographic dictionary.

We expect that our results should prove useful to clarify both the power and the limits of

supergravity to describe microstates of black holes.
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A Spherical harmonics on S3

The spherical harmonics on S3 are a representation of the isometry group of the three-

sphere SO(4) ≃ SU(2)L × SU(2)R. We will use spherical coordinates in the R
4 base space

that are related to the Cartesian coordinates via

x1 = r sin θ cosφ , x2 = r sin θ sinφ ,

x3 = r cos θ cosψ , x4 = r cos θ sinψ ,
(A.1)
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where θ ∈ [0, π2 ] and ψ, φ ∈ [0, 2π). With this coordinate choice, the S3 line element ds23
is given by ds23 = dθ2 + sin2 θdφ2 + cos2 θdψ2. We will denote a degree k scalar harmonic

with Y m,m̃
k , where (m, m̃) are the spin charges under (J3, J̃3). Denoting the volume of S3

by Ω3 = 2π2, we use normalized spherical harmonics

∫
Y ∗m1,m̃1

k1
Y m2,m̃2

k2
= Ω3 δk1,k2δ

m1,m1δm̃1,m̃2 . (A.2)

The generators of the isometry group of S3, written in terms of the standard SU(2) gener-

ators, are

J± =
1

2
e±i(φ+ψ)(±∂θ + i cot θ∂φ − i tan θ∂ψ) , J3 = − i

2
(∂φ + ∂ψ) ,

J̃± =
1

2
e±i(φ−ψ)(∓∂θ − i cot θ∂φ − i tan θ∂ψ) , J̃3 = − i

2
(∂φ − ∂ψ) .

(A.3)

One can generate the degree k scalar spherical harmonics acting with the lowering

operators in (A.3) on the highest spin, degree k scalar spherical harmonics, which are

Y
± k

2
,± k

2
k =

√
k + 1 sink θe±ikφ . (A.4)

We make use of the degree k = 1, 2 normalized scalar spherical harmonics, given by:

Y
+ 1

2
,+ 1

2

1 =
√
2 sin θ eiφ , Y

+ 1

2
,− 1

2

1 =
√
2 cos θ eiψ ,

Y
− 1

2
,+ 1

2

1 =−
√
2 cos θ e−iψ , Y

− 1

2
,− 1

2

1 =
√
2 sin θ e−iφ ;

(A.5)

Y +1,+1
2 =

√
3 sin2 θ e2iφ , Y +1,0

2 =
√
6 sin θ cos θ ei(φ+ψ) , Y +1,−1

2 =
√
3 cos2 θe2iψ ,

Y 0,+1
2 =−

√
6 sin θ cos θ ei(φ−ψ) , Y 0,0

2 =−
√
3 cos 2θ , Y 0,−1

2 =
√
6 sin θ cos θ e−i(φ−ψ) ,

Y −1,+1
2 =

√
3 cos2 θ e−2iψ , Y −1,0

2 =−
√
6 sin θ cos θ e−i(φ+ψ) , Y −1,−1

2 =
√
3 sin2 θ e−2iφ .

(A.6)

We also introduce degree 1 vector spherical harmonics Y a±
1 (a = ±, 0),

Y ++
1 =

1√
2
ei(φ+ψ) [−i dθ + sin θ cos θ d(φ− ψ)] ,

Y −+
1 =

1√
2
e−i(φ+ψ) [i dθ + sin θ cos θ d(φ− ψ)] ,

Y 0+
1 = − cos2 θ dψ − sin2 θ dφ ,

Y +−
1 =

1√
2
ei(φ−ψ) [i dθ − sin θ cos θ d(φ+ ψ)] ,

Y −−
1 = − 1√

2
e−i(φ−ψ) [i dθ + sin θ cos θ d(φ+ ψ)] ,

Y 0−
1 = cos2 θ dψ − sin2 θ dφ ,

(A.7)
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which are normalized as
∫

(Y aA
1 )∗i (Y

bB
1 )i = Ω3 δ

a,bδA,B , (A.8)

where a, b = ±, 0, A,B = ± and the index i is raised and lowered with the metric on S3.

We define the following triple integral:

∫
Y

(mk,m̃k)
k

(
Y a−
1

)
i

(
Y b+
1

)i
= Ω3f

(k)
(mk,m̃k)ab

. (A.9)

The explicit value of the components of f
(k)
(mk,m̃k)ab

, defined in (A.9), that have been used

in this paper are

f
(2)
(0,0)00 =

1√
3
, f

(2)
(1,1)−− =

1√
3
, f

(2)
(±1,±1)00 = 0 . (A.10)

B Computations of CFT correlators

In this appendix we compute the CFT correlators (B.17) and (B.27), which are used in

eqs. (6.37) and (4.19) respectively, using the method developed in [54, 60]. In order to do

so, and for reference in the main part of the paper, we also record some conventions and

notation.

B.1 Conventions and notation

On the CFT cylinder with coordinate w = τ+ iσ, the bare twist operator σk corresponding

to the permutation (12 · · · k) is defined to introduce the following boundary conditions

on the fields Xi
(r), ψ

αA
(r) , r = 1, 2, . . . k as they circle the insertion point w∗ (see e.g. [61,

eq. (2.12)]):

X(1) → X(2) → · · · → X(k) → X(1) ,

ψ(1) → ψ(2) → · · · → ψ(k) → −ψ(1) , (B.1)

and likewise for the right-moving fermions. We have of course suppressed some indices to

lighten the notation here.

In the full symmetric orbifold CFT, the bare twist operator Σk is defined by sym-

metrizing σk over all k-cycles:

Σk =
∑

k-cycles

σk . (B.2)

The conformal dimension of σk is h = h̄ = 1
4(k− 1

k ) and it is neutral under SU(2)L×SU(2)R.

The insertion of a twist operator σk allows the existence of fractional modes of the

operators. Switching to the CFT plane with coordinate z = ew, for a primary operator O

with conformal dimension h, these are defined by [54]:

O−m
k
≡

∫
dz

2πi

k∑

r=1

O(r)(z)e
−2πim

k
(r−1)z−

m
k
+h−1 . (B.3)
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To construct a chiral primary operator starting from the bare twist σk we must raise its

charge until h = j and h̄ = j̄. This is achieved by using fractional modes of the current

operators and, for even k, spin fields S± , S̄± [54]. A set of twist-k chiral primary operators

is given by [54] (see also [11, 61])

σ
k−1
2

, k−1
2

k ≡




J̃+
−(k−2)/k . . . J̃

+
−1/kJ

+
−(k−2)/k . . . J

+
−1/kσk(z) k odd

J̃+
−(k−2)/k . . . J̃

+
−2/kJ

+
−(k−2)/k . . . J

+
−2/k(S

+S̄+)σk(z) k even .
(B.4)

These operators have dimension and charge h = h̄ = j = j̄ = k−1
2 .

The covering-space method of [54, 60] for computing correlators of twist operators

involves mapping to a local covering space (with coordinate t), given by a map that is

locally of the form

z − z∗ ≃ b∗(t− t∗)
k . (B.5)

The k sets of fields Xi
(r), ψ

αA
(r) , which had untwisted boundary conditions in the absence

of the twist operator, are mapped to one set of single-valued fields in the covering space,

and in the t-plane there are no twist operator insertions; the only parts of the z-plane

operator (B.4) that survive in the covering t-plane are the currents and spin fields. When

the operator is inserted at the origin of the t-plane, the spin fields in (B.4) for even n create

the RR vacuum |++〉(t) . For more discussion and recent related work, see e.g. [51, 61–70].

Passing to the t-plane via the map (B.5), one obtains the following relation between

the modes in the z-plane (given in eq. (B.3)) and those in the covering space:

O
(z)
−m

k

→
∫

dt

2πi

(
dz

dt

)−h+1

O(t)
(
btt

k
)−m

k
+h−1

= b
−m

k
t k1−hO

(t)
−m (B.6)

where the superscripts (z) and (t) distinguish the operators in the z-plane from those in

the t-plane.

We are interested in (normalized) three-point functions in the z-plane of the follow-

ing form:

〈O†
1(∞)O2(a)O3(0)〉
〈O†

1(∞)O1(0)〉
(B.7)

where Oi is an operator that is composed of a bare twist contribution σki with conformal

dimension hi =
1
4(ki − 1

ki
) and a spin contribution which we denote schematically by Si,

i.e. Oi = Siσki . As discussed in [54, eq. (3.18)], the contributions of the twist fields and

the spin fields in the correlator (B.7) factorize as follows:

〈O†
1(∞)O2(a)O3(0)〉
〈O†

1(∞)O1(0)〉
= |C1,2,3|12|a|−2(h1+h2−h3)

〈S†
1(∞)S2(a)S3(0)〉
〈S†

1(∞)S1(0)〉
(B.8)

where the a dependence is given by conformal invariance and C1,2,3 is the fusion coefficient

of a bosonic theory with c = 1. The exponent 12 appears because we have c = 6 on a

single copy. The coefficient C1,2,3 was computed in [60]; we will thus focus on the spin field

correlator, which can be computed using bosonization [54].
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We introduce holomorphic (antiholomorphic) bosonic fields φ5(z) and φ6(z) (φ̃5(z̄) and

φ̃6(z̄)). We bosonize the fermions as (for brevity we write only the holomorphic expressions)

ψ++ = eiφ5 , ψ+− = e−iφ6 , ψ−+ = eiφ6 , ψ−− = −e−iφ5 . (B.9)

Normal ordering is implicit as usual, and we shall suppress cocycles as these will not be

important for our purposes. We also introduce the notation

φ− ≡ φ5 − φ6 ⇒ eiαφ−(z)eiβφ−(w) ∼ eiαφ−(z)+iβφ−(w)(z − w)2αβ . (B.10)

In terms of φ−, the SU(2)L currents are

J+(z) = eiφ−(z) , J−(z) = e−iφ−(z) , J3(z) =
i

2
∂φ−(z) . (B.11)

We will also need the expression for the operator O−−:

O−−(z, z̄) =
−i√
2

(
e−iφ5(z)+iφ̃6(z̄) − eiφ6(z)−iφ̃5(z̄)

)
. (B.12)

Using eqs. (B.6) and (B.11) we obtain the following expression for the twist-k primaries in

eq. (B.4) lifted to the covering space:

σ
k−1
2

, k−1
2

k (t, t̄) = |b|− 2p2

k eip φ−(t)eip φ̃−(t̄) , p =
k − 1

2
. (B.13)

We conclude this subsection by recording our conventions for spectral flow. Spectral

flow acts on states and operators as

|φ〉 → |φ′〉 = Uν |φ〉 , O → O′ = Uν OU †
ν , (B.14)

where Uν = eiνφ− in the z-plane, and where on the covering t-plane of a strand of length

k, Uν = eikνφ− . Analogous expressions hold in the antiholomorphic sector. The spectral

flow transformations for the modes of the SU(2)L currents are (for the rest of the chiral

algebra, see e.g. [11, appendix A]):6

J3
m → J3

m − c ν

6
δm,0 , J±

m → J±
m∓2ν . (B.15)

The weight and SU(2) charge (h, j) of states transform as

h → h+ 2νj +
c ν2

6
, j → j +

c ν

6
; (B.16)

for example, spectral flow with parameters (ν, ν̄) = (12 ,
1
2) maps the NS-NS vacuum to the

RR ground state |++〉.
6The convention map to the spectral flow parameters of [11] is αthere = 2νhere.
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B.2 Expectation value of Σ00
3

on a 3-charge state

We are now ready to compute the following normalized three-point function, for use in

eqs. (6.37):

1〈++|k〈00|J−
+1 σ

00
3 (a) J+

−1|00〉k|++〉1
1〈++|k〈00|J−

+1J
+
−1|00〉k|++〉1

≡ C
00(m=1)
k3k |a|−2 . (B.17)

In order to exploit the machinery worked out so far, we map the correlator eq. (B.17)

to the NS-NS sector using spectral flow with parameters (−1
2 ,−1

2). This is a unitary

transformation (B.14) that leaves invariant the value of the correlator.

This spectral flow transformation maps the RR vacuum |++〉1 to the untwisted NS-NS

vacuum. From (B.15), the operator J+
−1 becomes J+

0 in the NS sector.

Next, σ00
3 is defined by σ00

3 ≡ 1
2 [J

−
0 , [J̃−

0 , σ11
3 ]]. Using eqs. (B.4) and (B.13), we see that

in the covering space σ00
3 → 2 |b|−2/3J3J̃3, so this operator is invariant under spectral flow.

To derive the spectral flow of the state |00〉k, recall that it is defined by:

|00〉k ≡ O−−
0 |++〉k =

−i√
2
ǫȦḂψ

−Ȧ
0 ψ̃−Ḃ

0 |++〉k . (B.18)

In the z-plane, ψ−Ȧ
0 is spectral flowed to ψ−Ȧ

− 1
2

, which is related to the corresponding

covering-space mode through eq. (B.6), giving

ψ−Ȧ
− 1

2

→ b
− 1

2
t

√
k ψ

−Ȧ(t)

− k
2

. (B.19)

Under spectral flow with parameters (−1
2 ,−1

2), the RR ground state |++〉k is mapped to

an anti-chiral primary state; moving to the covering t-plane gives (as usual normal ordering

of exponentials should be understood; we leave this implicit to lighten the notation)

|++〉k → σ
− k−1

2
,− k−1

2
k |0〉(t)

NS
= |b|− 2p2

k e−ip φ−(0)e−ip φ̃−(0)|0〉(t)
NS

(B.20)

where |0〉(t)
NS

is the NS-NS vacuum of the covering t-plane and again p = k−1
2 . Then from

eqs. (B.12) and (B.18) we obtain

|00〉k → i
√
k√
2
|b|− 2p2

k
−1

(
ψ
−−(t)

− k
2

ψ̃
−+(t)

− k
2

−ψ
−+(t)

− k
2

ψ̃
−−(t)

− k
2

)
e−ip φ−(0)e−ip φ̃−(0)|0〉(t)

NS

=
i
√
k√
2
|b|− 2p2

k
−1

∫
dtdt̄

(2πi)2
t−

k+1
2 t̄−

k+1
2

(
e−iφ5(t)+iφ̃6(t̄)−eiφ6(t)−iφ̃5(t̄)

)
e−ip φ−(0)e−ip φ̃−(0)|0〉(t)

NS

=
i
√
k√
2
|b|− 2p2

k
−1

∫
dtdt̄

(2πi)2
t−1t̄−1

(
e−iφ5(t)−ip φ−(0)+iφ̃6(t̄)−ip φ̃−(0)−eiφ6(t)−ip φ−(0)−iφ̃5(t̄)−ip φ̃−(0)

)
|0〉(t)

NS

=
i
√
k√
2
|b|− 2p2

k
−1

(
e−i k+1

2
φ5(0)+i k−1

2
φ6(0)−i k−1

2
φ̃5(0)+i k+1

2
φ̃6(0)

−e−i k−1
2

φ5(0)+i k+1
2

φ6(0)−i k+1
2

φ̃5(0)+i k−1
2

φ̃6(0)
)
|0〉(t)

NS

(B.21)
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so we obtain

J+
−1|00〉k → i

√
k√
2
|b|− 2p2

k
−1

(
e−i k−1

2
φ5(0)+i k−3

2
φ6(0)−i k−1

2
φ̃5(0)+i k+1

2
φ̃6(0)

− e−i k−3
2

φ5(0)+i k−1
2

φ6(0)−i k+1
2

φ̃5(0)+i k−1
2

φ̃6(0)

)
|0〉(t)

NS
.

(B.22)

Before computing the spin correlator in eq. (B.8), we recall the value of the twist fusion

coefficient we require [60, eq. (6.25)],

|Ck,3,k|12 =
(k + 1)

k2+1
k

+ 2
3

2
4
3 3

5
3 k

4
3 (k − 1)

k2+1
k

− 2
3

. (B.23)

The map from the z-plane to the covering space used to compute this is given in [60,

eq. (4.34)]. Since it will be needed in the following, we report here the behaviour of this

map near the insertion points z = 0, a,∞, as given in [54, eq. (6.18)–(6.20)]:7

z ∼ b0t
k = a

k + 1

k − 1
tk near z = 0 ,

z ∼ a+ b1(t− 1)3 = a+ a
(k + 1)k(k − 1)

12
(t− 1)3 near z = a ,

z ∼ b∞tk = a
k − 1

k + 1
tk near z = ∞ .

(B.24)

Note that the map has been chosen so that the point z = a is mapped to t = 1. Because of

the normalization in (B.8), the spin field correlator in the case of (B.17) arises from con-

tracting the covering-space operator σ
00(t)
3 (1) = 2|b1|−

2
3J3J̃3(1) = −1

2 |b1|−
2
3∂φ−∂̄φ̃−(1)

with the operator in eq. (B.22). The result reads:

〈S†
1(∞)S2(a)S3(0)〉
〈S†

1(∞)S1(0)〉
=

k(k − 2)

2
|b0|−

2p2

k
−1|b1|−

2
3 |b∞| 2p

2

k
+1 , p =

k − 1

2
. (B.25)

Using eqs. (B.8), (B.23) and (B.24) we find

C
00(m=1)
k3k =

k − 2

6k
. (B.26)

B.3 Expectation value of Σ++

2 in the state |00〉1|++〉2

In eq. (4.19) we make use of the relation σ++
2 |00〉1|00〉1 = 1

4 |++〉2, which we now derive.

The coefficient corresponds to computing the following correlator:

2〈++|σ++
2 |00〉1|00〉1

2〈++||++〉2
. (B.27)

We lift this correlator to the covering space with the map (cf. [61])

z = t(t− 1) . (B.28)

7We note a typo in [54, eq. (6.20)]: (d− 1− d2) → (d1 − d2).
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The point z = 0 corresponds to the points t = 0, 1, where we have the insertions

(O−−S+S̄+)(0) , (O−−S+S̄+)(1) . (B.29)

Writing only the holomorphic expressions, the operators S± take the following form in the

covering space:

S±(t) = |bt|−
1
4k e±

i
2
φ−(t) . (B.30)

The operator σ++
2 is inserted at the point t = 1/2 in the covering space (see e.g. [61,

section 4]). The asymptotic behaviour of the map (B.28) at the insertion points t =

0, 1/2, 1,∞ is given in [61, eq. (C.45)]. Factorizing the correlator as in (B.8), we compute

the spin contribution

〈(S−S̄−)(∞)(S+S̄+)
(
1
2

)
(O−−S+S̄+)(1)(O−−S+S̄+)(0)〉

〈(S−S̄−)(∞)(S+S̄+)(0)〉 = |b∞| 14 |b 1
2
|− 1

4 |b1|−
1
2 |b0|−

1
2 .

(B.31)

The remaining contributions to the correlator are given in [61, eqs. (C.5), (C.39)]. Com-

bining these results with (B.31), we obtain the value of the desired coefficient,

σ++
2 |00〉1|00〉1 =

1

4
|++〉2 . (B.32)

C Type IIB supergravity ansatz and BPS equations

The general solution to Type IIB supergravity compactified on T4 that is 1/8-BPS, has

D1-D5-P charges, and is invariant on the T4 directions is [71, appendix E.7]:

ds210 =
√
αds26 +

√
Z1

Z2
dŝ24 , (C.1a)

ds26 = − 2√
P

(dv + β)

[
du+ ω +

F
2
(dv + β)

]
+
√
P ds24 , (C.1b)

e2Φ =
Z2
1

P , (C.1c)

B = −Z4

P (du+ ω) ∧ (dv + β) + a4 ∧ (dv + β) + γ4 , (C.1d)

C0 =
Z4

Z1
, (C.1e)

C2 = −Z2

P (du+ ω) ∧ (dv + β) + a1 ∧ (dv + β) + γ2 , (C.1f)

C4 =
Z4

Z2
v̂ol4 −

Z4

P γ2 ∧ (du+ ω) ∧ (dv + β) + x3 ∧ (dv + β) , (C.1g)

C6 = v̂ol4 ∧
[
−Z1

P (du+ ω) ∧ (dv + β) + a2 ∧ (dv + β) + γ1

]
, (C.1h)

where

α =
Z1Z2

Z1Z2 − Z2
4

, P = Z1Z2 − Z2
4 . (C.2)
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In the above, dŝ24 denotes the flat metric on T 4, and v̂ol4 stands for the corresponding

volume form. This ansatz contains all fields known to arise from worldsheet calculations

of the backreaction of D1-D5-P bound states invariant on M [72].

The BPS equations have the following structure. The base metric, ds24, and the one-

form β satisfy non-linear equations. Having solved these initial equations, the remaining

ansatz quantities are organized into two layers of linear equations [71, 73].

We denote the exterior differential on the spatial base B by d̃, and introduce [74]

D ≡ d̃− β ∧ ∂

∂v
. (C.3)

In the present paper we consider only solutions where the four-dimensional base space

is flat R4, and in which β does not depend on v. Then the BPS equation for β is

dβ = ∗4dβ , (C.4)

where ∗4 denotes the flat R4 Hodge dual.

To write the remaining BPS equations in a covariant form, we rescale (Z4, a4, γ4) →
(Z4, a4, γ4)/

√
2 for the remainder of this appendix (and only here). We introduce the

SO(1, 2) Minkowski metric ηab (a = 1, 2, 4) via

η12 = η21 = 1 , η44 = −1 . (C.5)

This is used to raise and lower a, b indices. We introduce the two-forms Θ1, Θ2, Θ4 via8

Θb ≡ Dab + ηbc γ̇c . (C.6)

We now have

P ≡ 1

2
ηabZaZb = Z1Z2 −

1

2
Z2
4 . (C.7)

The first layer of the BPS equations then takes the form

∗4DŻa = ηabDΘb , D ∗4 DZa = −ηabΘ
b ∧ dβ , Θa = ∗4Θa . (C.8)

The second layer becomes

Dω + ∗4Dω + F dβ = ZaΘ
a ,

∗4D ∗4
(
ω̇ − 1

2
DF

)
= P̈ − 1

2
ηabŻaŻb −

1

4
ηab ∗4 Θa ∧Θb .

(C.9)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

8The relation to the notation of [36] is that Θ1
here = Θthere

1 , Θ2
here = Θthere

2 , (1/
√
2)Θhere

4 = Θthere
4 .
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