
O. Dardha and J. Rot (Eds.): Combined Workshop on Expressiveness in
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2020).
EPTCS 322, 2020, pp. 13–32, doi:10.4204/EPTCS.322.4

c© D. Ancona, A. Ferrando, and V. Mascardi
This work is licensed under the
Creative Commons Attribution License.

Can determinism and compositionality coexist in RML?

Davide Ancona Viviana Mascardi
DIBRIS, University of Genova, Italy

{Davide.Ancona,Viviana.Mascardi}@unige.it

Angelo Ferrando
University of Manchester, UK

angelo.ferrando@manchester.ac.uk

Runtime verification (RV) consists in dynamically verifying that the event traces generated by single
runs of a system under scrutiny (SUS) are compliant with the formal specification of its expected
properties. RML (Runtime Monitoring Language) is a simple but expressive Domain Specific Lan-
guage for RV; its semantics is based on a trace calculus formalized by a deterministic rewriting system
which drives the implementation of the interpreter of the monitors generated by the RML compiler
from the specifications. While determinism of the trace calculus ensures better performances of the
generated monitors, it makes the semantics of its operators less intuitive. In this paper we move
a first step towards a compositional semantics of the RML trace calculus, by interpreting its basic
operators as operations on sets of instantiated event traces and by proving that such an interpretation
is equivalent to the operational semantics of the calculus.

1 Introduction

RV [35, 27, 13] consists in dynamically verifying that the event traces generated by single runs of a SUS
are compliant with the formal specification of its expected properties.

The RV process needs as inputs the SUS and the specification of the properties to be verified, usually
defined with either a domain specific (DSL) or a programming language, to denote the set of valid event
traces; RV is performed by monitors, automatically generated from the specification, which consume
the observed events of the SUS, emit verdicts and, in case they work online while the SUS is executing,
feedback useful for error recovery.

RV is complimentary to other verification methods: analogously to formal verification, it uses a
specification formalism, but, as opposite to it, scales well to real systems and complex properties and it
is not exhaustive as happens in software testing; however, it also exhibits several distinguishing features:
it is quite useful to check control-oriented properties [2], and offers opportunities for fault protection
when the monitor runs online. Many RV approaches adopt a DSL language to specifiy properties to
favor portability and reuse of specifications and interoperability of the generated monitors and to provide
stronger correctness guarantees: monitors automatically generated from a higher level DSL are more
reliable than ad hoc code implemented in a ordinary programming language to perform RV.

RML1 [28] is a simple but expressive DSL for RV which can be used in practice for RV of complex
non Context-Free properties, as FIFO properties, which can be verified by the generated monitors in
time linear in the size of the inspected trace; the language design and implementation is based on previ-
ous work on trace expressions and global types [7, 17, 4, 9], which have been adopted for RV in several
contexts. Its semantics is based on a trace calculus formalized by a rewriting system which drives the im-
plementation of the interpreter of the monitors generated by the RML compiler from the specifications; to
allow better performances, the rewriting system is fully deterministic [11] by adopting a left-preferential
evaluation strategy for binary operators and, thus, no monitor backtracking is needed and exponential

1https://rmlatdibris.github.io

http://dx.doi.org/10.4204/EPTCS.322.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://rmlatdibris.github.io

14 Can determinism and compositionality coexist in RML?

explosion of the space allocated for the states of the monitor is avoided. A similar strategy is followed
by mainstream programming languages in predefined libraries for regular expressions for efficient incre-
mental matching of input sequences, to avoid the issue of Regular expression Denial of Service (ReDoS)
[24]: for instance, given the regular expression a?(ab)? (optionally a concatenated with optionally ab)
and the input sequence ab, the Java method lookingAt() of class java.util.regex.Matcher matches
a instead of the entire input sequence ab because the evaluation of concatenation is deterministically
left-preferential.

As explained more in details in Section 5, with respect to other existing RV formalisms, RML has
been designed as an extension of regular expressions and deterministic context-free grammars, which
are widely used in RV because they are well-understood among software developers as opposite to other
more sophisticated approaches, as temporal logics. As shown in previous papers [7, 17, 4, 9], the calculus
at the basis of RML allows users to define and efficiently check complex parameterized properties and it
has been proved to be more expressive than LTL [8].

Unfortunately, while determinism ensures better performances, it makes the compositional semantics
of its operators less intuitive; for instance, the example above concerning the regular expression a?(ab)?

with deterministic left-preferential concatenation applies also to RML, which is more expressive than
regular expressions: the compositional semantics of concatenation does not correspond to standard lan-
guage concatenation, because a? and (ab)? denote the formal languages {λ ,a} and {λ ,ab}, respectively,
where λ denotes the empty string, while, if concatenation is deterministically left-preferential, then the
semantics of a?(ab)? is {λ ,a,aab} which does not coincide with the language {λ ,a,ab,aab} obtained
by concatenating {λ ,a} with {λ ,ab}. In Section 4 we show that the semantics of left-preferential con-
catenation can still be given compositionally, although the corresponding operator is more complicate
than standard language concatenation. Similar results follow for the other binary operators of RML
(union, intersection and shuffle); in particular, the compositional semantics of left-preferential shuffle is
more challenging. Furthermore, the fact that RML supports parametricity makes the compositional se-
mantics more complex, since traces must be coupled with the corresponding substitutions generated by
event matching. To this aim, as a first step towards a compositional semantics of the RML trace calculus,
we provide an interpretation of the basic operators of the RML trace calculus as operations on sets of
instantiated event traces, that is, pairs of trace of events and substitutions computed to bind the variables
occurring in the event type patterns used in the specifications and to associate them with the data values
carried by the matched events. Furthermore we prove that such an interpretation is equivalent to the
original operational semantics of the calculus based on the deterministic rewriting system.

The paper is structured as follows: Section 2 introduces the basic definitions which are used in the
subsequent technical sections, Section 3 formalizes the RML trace calculus and its operational semantics,
while Section 4 introduces the semantics based on sets of instantiated event traces and formally proves its
equivalence with the operational semantics; finally, Section 5 is devoted to the related work and Section 6
draws conclusions and directions for further work. For space limitations, some proof details can be found
in the extended version [10] of this paper.

2 Technical background

This section introduces some basic definitions and propositions used in the next technical sections.

Partial functions: Let f : D→C be a partial function; then dom(f) ⊆ D denotes the set of elements
d ∈ D s.t. f (d) is defined (hence, f (d) ∈C).

D. Ancona, A. Ferrando, and V. Mascardi 15

A partial function over natural numbers f :N→ N, with N ⊆ N, is strictly increasing iff for all
n1,n2 ∈ dom(f), n1 < n2 implies f (n1)< f (n2). From this definition one can easily deduce that a strictly
increasing partial function over natural numbers is always injective, and, hence, it is bijective iff it is
surjective.

Proposition 2.1 Let f : N → N, with N ⊆ N, be a strictly increasing partial function. Then for all
n1,n2 ∈ dom(f), if f (n1)< f (n2), then n1 < n2.

Proposition 2.2 Let f :N→ N, with N ⊆ N, be a strictly increasing partial function satisfying the fol-
lowing conditions:

1. f is surjective (hence, bijective);

2. for all n ∈ N, if n+1 ∈ dom(f), then n ∈ dom(f);

3. for all n ∈ N, if n+1 ∈ N, then n ∈ N;

Then, for all n ∈N, if n ∈ dom(f), then f (n) = n, hence f is the identity over dom(f), and dom(f) = N.

Event traces: Let E denotes a possibly infinite set E of events, called the event universe. An event
trace over the event universe E is a partial function ē :N→ E s.t. for all n ∈ N, if n+1 ∈ dom(ē), then
n∈ dom(ē). We call ē finite/infinite iff dom(ē) is finite/infinite, respectively; when ē is finite, its length |ē|
coincides with the cardinality of dom(ē), while |ē| is undefined for infinite traces ē. From the definitions
above one can easily deduce that if ē is finite, then dom(ē) = {n ∈ N | n < |ē|}. We denote with λ the
unique trace over E s.t. |λ | = 0; when not ambiguous, we denote with e the trace ē s.t. |ē| = 1 and
ē(0) = e.

For simplicity, in the rest of the paper we implicitly assume that all considered event traces are
defined over the same event universe.

Concatenation: The concatenation ē1 · ē2 of event trace ē1 and ē2 is the trace ē s.t.

• if ē1 is infinite, then ē = ē1;

• if ē1 is finite, then ē(n) = ē1(n) for all n ∈ dom(ē1), ē(n+ |ē1|) = ē2(n) for all n ∈ dom(ē2), and if
ē2 is finite, then dom(ē) = {n | n < |ē1|+ |ē2|}.

From the definition above one can easily deduce that λ is the identity of ·, and that ē1 · ē2 is infinite iff
ē1 or ē2 is infinite. The trace ē1 is a prefix of ē2, denoted with ē1C ē2, iff there exists ē s.t. ē1 · ē = ē2. If
T1 and T2 are two sets of event traces over E , then T1 ·T2 is the set {ē1 · ē2 | ē1 ∈ T1, ē2 ∈ T2}. We write
ē1CT to mean that there exists ē2 ∈ T s.t. ē1C ē2.

Shuffle: The shuffle ē1 | ē2 of event trace ē1 and ē2 is the set of traces T s.t. ē ∈ T iff dom(ē) can be
partitioned into N1 and N2 in such a way that there exist two strictly increasing and bijective2 partial
functions f1 : dom(ē1)→ N1 and f2 : dom(ē2)→ N2 s.t.

ē1(n1) = ē(f1(n1)) and ē2(n2) = ē(f2(n2)), for all n1 ∈ dom(ē1), n2 ∈ dom(ē2).

From the definition above, the definition of λ and Proposition 2.2 one can deduce that λ | ē = ē |λ = {ē};
it is easy to show that for all ē∈ ē1 | ē2, ē is infinite iff ē1 or ē2 is infinite, and |ē|= n iff |ē1|= n1, |ē2|= n2
and n = n1 +n2.

If T1 and T2 are two sets of event traces over E , then T1 |T2 is the set
⋃

ē1∈T1,ē2∈T2
(ē1 | ē2).

2Actually, the sufficient condition is surjectivity, but bijectivity can be derived from the fact that the functions are strictly
increasing over natural numbers.

16 Can determinism and compositionality coexist in RML?

Left-preferential shuffle: The left-preferential shuffle ē1←| ē2 of event trace ē1 and ē2 is the set of
traces T ⊆ ē1 | ē2 s.t. ē ∈ T iff dom(ē) can be partitioned into N1 and N2 in such a way that there exist
two strictly increasing and bijective partial functions f1 : dom(ē1)→ N1 and f2 : dom(ē2)→ N2 s.t.

• ē1(n1) = ē(f1(n1)) and ē2(n2) = ē(f2(n2)), for all n1 ∈ dom(ē1), n2 ∈ dom(ē2);

• for all n2 ∈ dom(ē2), if m = min{n1 ∈ dom(ē1) | f2(n2)< f1(n1)}, then ē1(m) 6= ē2(n2).

In the definition above, if3 {n1 ∈ dom(ē1) | f2(n2) < f1(n1)} = /0, then the second condition trivially
holds.

As an example, if we have two traces of events ē1 = e1 · e2, and ē2 = e2 · e3, by applying the left-
preferential shuffle we obtain the set of traces ē1←| ē2 = {e1 · e2 · e2 · e3,e2 · e3 · e1 · e2,e2 · e1 · e3 · e2,e2 ·
e1 · e2 · e3}. With respect to ē1 | ē2, the trace e1 · e2 · e3 · e2 has been excluded, since this can be obtained
only when the first occurrence of e2 belongs to ē2; formally, this correponds to the functions f1 :{0,1}→
{0,3} and f2 :{0,1}→ {1,2} s.t. f1(0) = 0, f1(1) = 3, f2(0) = 1, f2(1) = 2, which satisfy the first item
of the definition, but not the second, because min{n1 ∈ {0,1} | f2(0) = 1 < f1(n1)}= 1 and ē1(1) = e2 =
ē2(0); the functions f ′1 and f ′2 s.t. f ′1(0) = 0, f ′1(1) = 1, f ′2(0) = 3, f ′2(1) = 2 satisfy both items, but f ′2 is
not strictly increasing.

Generalized left-preferential shuffle: Given a set of event traces T , the generalized left-preferential
shuffle ē1←|T ē2 of event trace ē1 and ē2 w.r.t. T is the set of traces T ′ ⊆ ē1←| ē2 s.t. ē∈ T ′ iff dom(ē) can
be partitioned into N1 and N2 in such a way that there exist two strictly increasing and bijective partial
functions f1 : dom(ē1)→ N1 and f2 : dom(ē2)→ N2 s.t.

• ē1(n1) = ē(f1(n1)) and ē2(n2) = ē(f2(n2)), for all n1 ∈ dom(ē1), n2 ∈ dom(ē2);

• for all n2 ∈ dom(ē2), if m = min{n1 ∈ dom(ē1) | f2(n2) < f1(n1)}, then ē′(m) 6= ē2(n2) for all
ē′ ∈ T s.t. m ∈ dom(ē′).

From the definitions of the shuffle operators above one can easily deduce that ē1 ←| /0 ē2 = ē1 | ē2 and
ē1←|{ē1} ē2 = ē1←| ē2, for all event traces ē1, ē2. This generalisation of the left-preferential shuffle is
needed to define the compositional semantics of the shuffle in Section 4. Let us consider T1 = {e1 ·e2,e3 ·
e4} and T2 = {e1 ·e5}; one might be tempted to define T1←|T2 as the set {ē | ē1 ∈ T1, ē2 ∈ T2, ē∈ ē1←| ē2},
which corresponds to {e1 ·e2 ·e1 ·e5,e1 ·e1 ·e2 ·e5,e1 ·e1 ·e5 ·e2,e3 ·e4 ·e1 ·e5,e3 ·e1 ·e4 ·e5,e3 ·e1 ·e5 ·e4,e1 ·
e5 · e3 · e4,e1 · e3 · e4 · e5,e1 · e3 · e5 · e4}. But, the last three traces, where e1 is consumed from T2 as first
event, are not correct, because the event e1 in T1 must take the precedence. Thus, the correct definition is
given by {ē | ē1 ∈ T1, ē2 ∈ T2, ē ∈ ē1←|T1 ē2}, which does not contain the three traces mentioned above.

3 The RML trace calculus

In this section we define the operational semantics of the trace calculus on which RML is based on.
An RML specification is compiled into a term of the trace calculus, which is used as an Intermediate
Representation, and then a SWI-Prolog4 monitor is generated; its execution employs the interpreter of
the trace calculus, whose SWI-Prolog implementation is directly driven by the reduction rules defining
the labeled transition system of the calculus.

Syntax. The syntax of the calculus is defined in Figure 1. The main basic building block of the calculus

3This happens iff in ē all events of ē1 precede position n2, hence, event ē2(n2).
4http://www.swi-prolog.org/

http://www.swi-prolog.org/

D. Ancona, A. Ferrando, and V. Mascardi 17

v ::= l | {k1:v1, . . . ,kn:vn} | [v1, . . . ,vn] (data value)
b ::= x | l | {k1:b1, . . . ,kn:bn} | [b1, . . . ,bn] (basic data expression)
θ ::= τ(b1, . . . ,bn) (event type pattern)
t ::= ε (empty trace)

θ (single event)
| t1 · t2 (concatenation)
| t1∧ t2 (intersection)
| t1∨ t2 (union)
| t1 | t2 (shuffle)
| {let x; t} (parametric expression)

Figure 1: Syntax of the RML trace calculus: θ is defined inductively, t is defined coinductively on the
set of cyclic terms.

is provided by the notion of event type pattern, an expression consisting of a name τ of an event type,
applied to arguments which are basic data expressions denoting either variables or the data values (of
primitive, array, or object type) associated with the events perceived by the monitor. An event type is a
predicate which defines a possibly infinite set of events; an event type pattern specifies the set of events
that are expected to occur at a certain point in the event trace; since event type patterns can contain
variables, upon a successful match a substitution is computed to bind the variables of the pattern with the
data values carried by the matched event.

RML is based on a general object model where events are represented as JavaScript object literals;
for instance, the event type open(fd) of arity 1 may represent all events stating ‘function call fs.open
has returned file descriptor fd’ and having shape {event:’func_post’, name:’fs.open’, res:fd}. The
argument fd consists of the file descriptor (an integer value) returned by a call to fs.open. The definition
is parametric in the variable fd which can be bound only when the corresponding event is matched with
the information of the file descriptor associated with the property res; for instance, open(42) matches
all events of shape {event:’func_post’, name:’fs.open’, res:42}, that is, all returns from call to
fs.open with value 42.

Despite RML offers to the users the possibility to define the event types that are used in the specifi-
cation, for simplicity the calculus is independent of the language used to define event types; correspond-
ingly, the definition of the rewriting system of the calculus is parametric in the relation match assigning
a semantics to event types (see below).

A specification is represented by a trace expression t built on top of the constant ε (denoting the
singleton set with the empty trace), event type patterns θ (denoting the sets of all traces of length 1
with events matching θ), the binary operators (able to combine together sets of traces) of concatenation
(juxtaposition), intersection (∧), union (∨) and shuffle (|), and a let-construct to define the scope of
variables used in event type patterns.

Differently from event type patterns, which are inductively defined terms, trace expressions are as-
sumed to be cyclic (a.k.a. regular or rational) [23, 29, 5, 6] to provide an abstract support to recursion,
since no explicit constructor is needed for it: the depth of a tree corresponding to a trace expression is
allowed to be infinite, but the number of its different subtrees must be finite. This condition is proved to
be equivalent [23] to requiring that a trace expression can always be defined by a finite set5 of possibly
recursive syntactic equations.

5The internal representation of cyclic terms in SWI-Prolog is indeed based on such approach.

18 Can determinism and compositionality coexist in RML?

(e-ε)
` E(ε)

(e-al)
` E(t1) ` E(t2)
` E(t1 opt2)

op∈{|,·,∧} (e-or-l)
` E(t1)
` E(t1∨ t2)

(e-or-r)
` E(t2)
` E(t1∨ t2)

(e-par)
` E(t)

` E({let x; t})
(single)

θ
e−→ ε;σ

σ=match(e,θ) (or-l)
t1

e−→ t ′1;σ

t1∨ t2
e−→ t ′1;σ

(or-r)
t1 6

e−→ t2
e−→ t ′2;σ

t1∨ t2
e−→ t ′2;σ

(and)
t1

e−→ t ′1;σ1 t2
e−→ t ′2;σ2

t1∧ t2
e−→ t ′1∧ t ′2;σ

σ=σ1∪σ2 (shuffle-l)
t1

e−→ t ′1;σ

t1 | t2
e−→ t ′1 | t2;σ

(shuffle-r)
t1 6

e−→ t2
e−→ t ′2;σ

t1 | t2
e−→ t1 | t ′2;σ

(cat-l)
t1

e−→ t ′1;σ

t1 · t2
e−→ t ′1 · t2;σ

(cat-r)
t1 6

e−→ t2
e−→ t ′2;σ

t1 · t2
e−→ t ′2;σ

`E(t1) (par-t)
t e−→ t ′;σ

{let x; t} e−→ σ|xt ′;σ\x
x∈dom(σ)

(par-f)
t e−→ t ′;σ

{let x; t} e−→ {let x; t ′};σ
x 6∈dom(σ) (n-ε)

ε 6 e−→
(n-single)

θ 6 e−→
match(e,θ) undef (n-or)

t1 6
e−→ t2 6

e−→
t1∨ t2 6

e−→

(n-and-l)
t1 6

e−→
t1∧ t2 6

e−→
(n-and-r)

t2 6
e−→

t1∧ t2 6
e−→

(n-and)
t1

e−→ t ′1;σ1 t2
e−→ t ′2;σ2

t1∧ t2 6
e−→

σ1∪σ2 undef

(n-shuffle)
t1 6

e−→ t2 6
e−→

t1 | t2 6
e−→

(n-cat-l)
t1 6

e−→
t1 · t2 6

e−→
6 `E(t1) (n-cat-r)

t1 6
e−→ t2 6

e−→
t1 · t2 6

e−→
(n-par)

t 6 e−→
{let x; t} 6 e−→

Figure 2: Transition system for the trace calculus.

Since event type patterns are inductive terms, the definition of free variables for them is standard.

Definition 3.1 The set of free variables pfv(θ) occurring in an event type pattern θ is inductively defined
as follows:

pfv(x) = {x} pfv(l) = /0
pfv(τ(b1, . . . ,bn)) = pfv({k1:b1, . . . ,kn:bn}) = pfv([b1, . . . ,bn]) =

⋃
i=1...n pfv(bi)

Given their cyclic nature, a similar inductive definition of free variables for trace expressions does
not work; for instance, if t =open(fd)·t, a definition of fv given by induction on trace expressions would
work only for non-cyclic terms and would be undefined for fv(t). Unfortunately, neither a coinductive
definition could work correctly since the set S returned by fv(t) has to satisfy the equation S = {fd}∪S
which has infinitely many solutions; hence, while an inductive definition of fv leads to a partial function
which is undefined for all cyclic terms, a coinductive definition results in a non-functional relation fv;
luckily, such a relation always admits the “least solution” which corresponds to the intended semantics.

Fact 3.1 Let p be the predicate on trace expressions and set of variables, coinductively defined as fol-
lows:

p(ε, /0) p(θ ,S)
pfv(θ)=S

p(t,S)
p({let x; t},S\{x})

p(t1,S1) p(t2,S2)

p(t1 opt2,S1∪S2)
op∈{|,·,∧,∨}

Then, for any trace expression t, if L =
⋂
{S | p(t,S) holds}, then p(t,L) holds.

Proof: By case anaysis on t and coinduction on the definition of p(t,S). �

Definition 3.2 The set of free variables fv(t) occurring in a trace expression is defined by fv(t) =
⋂
{S |

p(t,S) holds}.

D. Ancona, A. Ferrando, and V. Mascardi 19

Semantics. The semantics of the calculus depends on three judgments, inductively defined by the
inference rules in Figure 2. Events e range over a fixed universe of events E . The judgment ` E(t)
is derivable iff t accepts the empty trace λ and is auxiliary to the definition of the other two judgments
t1

e−→ t2;σ and t 6 e−→; the rules defining it are straightforward and are independent from the remaining
judgments, hence a stratified approach is followed and ` E(t) and its negation 6 `E(t) are safely used in
the side conditions of the rules for t1

e−→ t2;σ and t 6 e−→ (see below).
The judgment t1

e−→ t2;σ defines the single reduction steps of the labeled transition system on which
the semantics of the calculus is based; t1

e−→ t2;σ is derivable iff the event e can be consumed, with the
generated substitution σ , by the expression t1, which then reduces to t2. The judgment t 6 e−→ is derivable iff
there are no reduction steps for event e starting from expression t and is needed to enforce a deterministic
semantics and to guarantee that the rules are monotonic and, hence, the existence of the least fixed-point;
the definitions of the two judgments are mutually recursive.

Substitutions are finite partial maps from variables to data values which are produced by successful
matches of event type patterns; the domain of σ and the empty substitution are denoted by dom(σ) and /0,
respectively, while σ|x and σ\x denote the substitutions obtained from σ by restricting its domain to {x}
and removing x from its domain, respectively. We simply write t1

e−→ t2 to mean t1
e−→ t2; /0. Application

of a substitution σ to an event type patter θ is denoted by σθ , and defined by induction on θ :

σx = σ(x) if x ∈ dom(σ), σx = x otherwise σ l = l
σ{k1:b1, . . . ,kn:bn}= {k1:σb1, . . . ,kn:σbn} σ [b1, . . . ,bn] = [σb1, . . . ,σbn]
στ(b1, . . . ,bn) = τ(σb1, . . . ,σbn)

Application of a substitution σ to a trace expression t is denoted by σt, and defined by coinduction
on t:

σε = ε σθ = στ(b1, . . . ,bn) if θ = τ(b1, . . . ,bn)
σ(t1 opt2) = σt1 op σt2 for op ∈ {·,∧,∨, |} σ{let x; t}= {let x; σ\xt}

Since the calculus does not cover event type definitions, the semantics of event types is parametric in the
auxiliary partial function match, used in the side condition of rules (prefix) and (n-prefix): match(e,θ)
returns the substitution σ iff event e matches event type σθ and fails (that is, is undefined) iff there is
no substitution σ for which e matches σθ . The substitution is expected to be the most general one and,
hence, its domain to be included in the set of free variables in θ (see Def. 3.1).

As an example of how match could be derived from the definitions of event types in RML, if we
consider again the event type open(fd) and e={event:’func_post’, name:’fs.open’, res:42}, then
match(e,open(fd)) = {fd 7→ 42}, while match(e,open(23)) is undefined.

Except for intersection, which is intrinsically deterministic since both operands need to be reduced,
the rules defining the semantics of the other binary operators depend on the judgment t 6 e−→ to force
determinism; in particular, the judgment is used to ensure a left-to-right evaluation strategy: reduction of
the right operand is possible only if the left hand side cannot be reduced.

The side condition of rule (and) uses the partial binary operator ∪ to merge substitutions: σ1 ∪σ2
returns the union of σ1 and σ2, if they coincide on the intersection of their domains, and is undefined
otherwise.

Rule (cat-r) uses the judgment E(t1) in its side condition: event e consumed by t2 can also be con-
sumed by t1 ·t2 only if e is not consumed by t1 (premise t1 6

e−→ forcing left-to-right deterministic reduction),
and the empty trace is accepted by t1 (side condition ` E(t1)).

Rule (par-t) can be applied when variable x is in the domain of the substitution σ generated by the
reduction step from t to t ′: the substitution σ|x restricted to x is applied to t ′, and x is removed from the

20 Can determinism and compositionality coexist in RML?

domain of σ , together with its corresponding declaration. If x is not in the domain of σ (rule (par-f)), no
substitution and no declaration removal is performed.

The rules defining t 6 e−→ are complementary to those for t e−→ t ′, and the definition of t 6 e−→ depends
on the judgment t e−→ t ′ because of rule (n-and): there are no reduction steps for event e starting from
expression t1∧ t2, even when t1

e−→ t ′1;σ1 and t2
e−→ t ′2;σ2 are derivable, if the two generated substitutions

σ1 and σ2 cannot be successfully merged together; this happens when there are two event type patterns
that match event e for two incompatible values of the same variable.

Let us consider an example of a cyclic term with the let-construct: t = {let fd; open(fd) · close(fd) · t}.
The trace expression declares a local variable fd (the file descriptor), and requires that two immediately
subsequent open and close events share the same file descriptor. Since the recursive occurrence of t
contains a nested let-construct, the subsequent open and close events can involve a different file de-
scriptor, and this can happen an infinite number of times. In terms of derivation, starting from t, if the
event {event:’func_post’, name:’fs.open’, res:42} is observed, which matches open(42), then
the substitution {fd 7→ 42} is computed. As a consequence, the residual term close(42) · t is obtained, by
substituting fd with 42 and removing the let-block. After that, the only valid event which can be observed
is {event:’func_pre’,name:’close’,args:[42]}, matching close(fd). Thus, after this rewriting step
we get t again; the behavior continues as before, but a different file descriptor can be matched because
of the let-block which hides the outermost declaration of fd; indeed, the substitution is not propagated
inside the nested let-block. Differently from t, the term {let fd; t ′} with t ′ = open(fd) ·close(fd) ·t ′ would
require all open and close events to match a unique global file descriptor. As further explained in Sec-
tion 5, such example shows how the let-construct is a solution more flexible than the mechanism of trace
slicing used in other RV tools to achieve parametricty.

The following lemma can be proved by induction on the rules defining t e−→ t ′;σ .

Lemma 3.1 If t e−→ t ′;σ is derivable, then dom(σ)∪ fv(t ′)⊆ fv(t).

Since trace expressions are cyclic, they can only contain a finite set of free variables, therefore the
domains of all substitutions generated by a possibly infinite sequence of consecutive reduction steps
starting from t are all contained in fv(t).

3.1 Semantics based on the transition system

The reduction rules defined above provide the basis for the semantics of the calculus; because of com-
puted substitutions and free variables, the semantics of a trace expression is not just a set of event traces:
every accepted trace must be equipped with a substitution specifying how variables have been instanti-
ated during the reduction steps. We call it an instantiated event trace; this can be obtained from the pairs
of event and substitution traces yield by the possibly infinite reduction steps, by considering the disjoint
union of all returned substitutions. Such a notion is needed6 to allow a compositional semantics. The
notion of substitution trace can be given in an analogous way as done for event traces in Section 2. By
the considerations related to Lemma 3.1, the substitution associated with an instantiated event trace has
always a finite domain, even when the trace is infinite; this means that the substitution is always fully
defined after a finite number of reduction steps.

Definition 3.3 A concrete instantiated event trace over the event universe E is a pair (ē,σ) of event
traces over E , and substitution traces s.t. either ē and σ are both infinite, or they are both finite and have
the same length, all the substitutions in σ have mutually disjoint domains and

⋃
{dom(σ ′) | σ ′ ∈ σ̄} is

finite.
6See the example in Section 4.

D. Ancona, A. Ferrando, and V. Mascardi 21

An abstract instantiated event trace (instantiated event trace, for short) over E is a pair (ē,σ) where
ē is an event trace over E and σ is a substitution. We say that (ē,σ) is derived from the concrete
instantiated event trace (ē, σ̄), written (ē, σ̄) (ē,σ), iff σ =

⋃
{σ ′ | σ ′ ∈ σ̄}.

In the rest of the paper we use the meta-variable I to denote sets of instantiated event traces. We
use the notations I ↓1 and I ↓2 to denote the two projections {ē | (ē,σ) ∈ I } and {σ | (ē,σ) ∈ I },
respectively; we write ēCI to mean ēCI ↓1. The notation I ↓ω denotes the set {(ē,σ) | (ē,σ) ∈
I , ē infinite} restricted to infinite traces.

We can now define the semantics of trace expressions.

Definition 3.4 The concrete semantics JtKc of a trace expression t is the set of concrete instantiated event
traces coinductively defined as follows:

• (λ ,λ) ∈ JtKc iff ` E(t) is derivable;

• (e · ē,σ · σ̄) ∈ JtKc iff t e−→ t ′;σ is derivable and (ē, σ̄) ∈ Jσt ′Kc.

The (abstract) semantics JtK of a trace expression t is the set of instantiated event traces {(ē,σ) | (ē, σ̄)∈
JtKc,(ē, σ̄) (ē,σ)}.

The following propositions show that the concrete semantics of a trace expression t as given in
Definition 3.4 is always well-defined.

Proposition 3.1 If (ē, σ̄) ∈ JtKc and ē is finite, then |ē|= |σ̄ |.

Proposition 3.2 If (ē, σ̄) ∈ JtKc and ē is infinite, then σ̄ is infinite as well.

Proposition 3.3 If (ē, σ̄) ∈ JtKc, then for all n,m ∈ N, n 6= m implies dom(σ̄(n))∩dom(σ̄(m)) = /0.

Proposition 3.4 If (ē, σ̄) ∈ JtKc, then for all n ∈ N dom(σ̄(n))⊆ fv(t).

4 Towards a compositional semantics

In this section we show how each basic trace expression operator can be interpreted as an operation
over sets of instantiated event traces and we formally prove that such an interpretation is equivalent to
the semantics derived from the transition system of the calculus in Definition 3.4, if one considers only
contractive terms.

4.1 Composition operators

Left-preferential union: The left-preferential union I1
←∨

I2 of sets of instantiated event traces I1

and I2 is defined as follows: I1
←∨

I2 = I1
⋃
{(ē,σ) ∈I2 | ē = λ or (ē = e · ē′,e 6CI1)}.

In the deterministic left-preferential version of union, instantiated event traces in I2 are kept only if
they start with an event which is not the first element of any of the traces in I1 (the condition vacuously
holds for the empty trace); since reduction steps can involve only one of the two operands at time, no
restriction on the substitutions of the instantiated event traces is required.

22 Can determinism and compositionality coexist in RML?

Left-preferential concatenation: The left-preferential concatenation I1
←· I2 of sets of instantiated

event traces I1 and I2 is defined as follows: I1
←· I2 = I1↓ω ∪{(ē1 · ē2,σ) | (ē1,σ1) ∈I1,(ē2,σ2) ∈

I2,σ = σ1∪σ2,(ē2 = λ or (ē2 = e · ē3,(ē1 · e) 6CI1))}.
The left operand I1↓ω of the union corresponds to the fact that in the deterministic left-preferential

version of concatenation, all infinite instantiated event traces in I1 belong to the semantics of concate-
nation. The right operand of the union specifies the behavior for all finite instantiated event traces ē1
in I1; in such cases, the trace in I1

←· I2 can continue with ē2 in I2 if ē1 is not allowed to continue
in I1 with the first event e of ē2 ((ē1 · e) 6CI1, the condition vacuously holds if ē2 is the empty trace).
Since the reduction steps corresponding to ē2 follow those for ē1, the overall substitution σ must meet
the constraint σ = σ1∪σ2 ensuring that σ1 and σ2 match on the shared variables of the two operands.

Intersection: The intersection I1
∧

I2 of sets of instantiated event traces I1 and I2 is defined as
follows: I1

∧
I2 = {(ē,σ) | (ē,σ1) ∈I1,(ē,σ2) ∈I2,σ = σ1∪σ2}.

Since intersection is intrinsically deterministic, its semantics throws no surprise.

Left-preferential shuffle: The left-preferential shuffle I1
←
| I2 of sets of instantiated event traces

I1 and I2 is defined as follows: I1
←
| I2 = {(ē,σ) | (ē1,σ1) ∈ I1,(ē2,σ2) ∈ I2,σ = σ1 ∪ σ2, ē ∈

ē1←|I1↓1 ē2}.
The definition is based on the generalized left-preferential shuffle defined in Section 2; an event in

ē2 at a certain position n can contribute to the shuffle only if no trace in I1↓1 could contribute with the
same event at the same position n. Since the reduction steps corresponding to ē1 and ē2 are interleaved,
the overall substitution σ must meet the constraint σ = σ1 ∪σ2 ensuring that σ1 and σ2 match on the
shared variables of the two operands.

Variable deletion: The deletion I\x of x from the set of instantiated event traces I is defined as
follows: I\x = {(ē,σ\x) | (ē,σ) ∈I }.

As expected, variable deletion only affects the domain of the computed substitution.
The definitions above show that instantiated event traces are needed to allow a compositional se-

mantics; let us consider the following simplified variation of the example given in Section 3: t ′ =
{let fd; open(fd) · close(fd)}. If we did not keep track of substitutions, then the compositional semantics
of open(fd) and close(fd) would contain all traces of length 1 matching open(fd) and close(fd), respec-
tively, for any value fd, and, hence, the semantics of open(fd) · close(fd) could not constrain open and
close events to be on the same file descriptor. Indeed, such a constraint is obtained by checking that the
substitution of the event trace matching open(fd) can be successfully merged with the substitution of the
event trace matching close(fd), so that the two substitutions agree on fd.

4.2 Contractivity

Contractivity is a condition on trace expressions which is statically enforced by the RML compiler; such
a requirement avoids infinite loops when an event does not match the specification and the generated
monitor would try to build an infinite derivation. Although the generated monitors could dynamically
check potential loops dynamically, a syntactic condition enforced statically by the compiler allows mon-
itors to be relieved of such a check, and, thus, to be more efficient.

Contractivity can be seen as a generalization of absence of left recursion in grammars [37]; loops
in cyclic terms are allowed only if they are all guarded by a concatenation where the left operand t

D. Ancona, A. Ferrando, and V. Mascardi 23

cannot contain the empty trace (that is, 6 `E(t) holds), and the loop continues in the right operand of the
concatenation. If such a condition holds, then it is not possible to build infinite derivations for t1

e−→ t2.
Interestingly enough, such a condition is also needed to prove that the interpretation of operators as

given in Section 4.1 is equivalent to the semantics given in Definition 3.4. Indeed, the equivalence result
proved in Theorem 4.1 is based on Lemma 4.1 stating that for all contractive term t1 and event e, there
exist t2 and σ s.t. t1

e−→ t2;σ is derivable if and only if t1 6
e−→ is not derivable; such a claim does not hold

for a non contractive term as t = t ∨ t, because for all e, t ′ and σ , t e−→ t ′;σ and t 6 e−→ are not derivable.
This is due to the fact that both judgments are defined by an inductive inference system. Intuitively, from
a contractive term we cannot derive a new term without passing through at least one concatenation. For
instance, considering the term t = e · t, we have contractivity because we have to consume e before going
inside the loop. But, if we swap the operands, we obtain instead t = t · e, where contractivity does not
hold; in fact, deriving the concatenation we go first inside the head, but it is cyclic. Since the −→ and
6−→ judgements are defined inductively, both are not derivable because a finite derivation tree cannot be
derived for neither of them.

Definition 4.1 Syntactic contexts C are inductively defined as follows:

C ::= � | C opt | t opC | {let x; C } with op ∈ {∧,∨, |, ·}

Definition 4.2 A syntactic context C is contractive if one of the following conditions hold:

• C = {let x; C ′} and C ′ is contractive;

• C = C ′ opt, C ′ is contractive and op ∈ {·,∧,∨, |};

• C = t opC ′, C ′ is contractive and op ∈ {∧,∨, |};

• C = t ·C ′, ` E(t) and C ′ is contractive;

• C = t ·C ′ and 6 `E(t).

Definition 4.3 A term is part of t iff it belongs to the least set partof (t) matching the following definition:

partof (ε) = partof (θ) = /0 partof ({let x; t}) = {t}∪partof (t)
partof (t1 opt2) = {t1, t2}∪partof (t1)∪partof (t2) for op ∈ {|, ·,∧,∨}

Because trace expressions can be cyclic, the definition of partof follows the same pattern adopted for fv.
One can prove that a term t is cyclic iff there exists t ′ ∈ partof (t) s.t. t ′ ∈ partof (t ′).

Definition 4.4 A term t is contractive iff the following conditions old:

• for any syntactic context C , if t = C [t] then C is contractive;

• for any term t ′, if t ′ ∈ partof (t), then t ′ is contractive.

4.3 Main Theorem

We first list all the auxiliary lemmas used to prove Theorem 4.1.

Lemma 4.1 For all contractive term t1 and event e, there exist t2 and σ s.t. t1
e−→ t2;σ is derivable if and

only if t1 6
e−→ is not derivable.

Lemma 4.2 If (ē, σ̄) (ē,σ), then (ē, σ̄\x) (ē,σ\x).

24 Can determinism and compositionality coexist in RML?

Where σ̄\x denotes the substitution sequence where x is removed from the domain of each substitution
in σ̄ .

Lemma 4.3 Given a substitution function σ and a term t, we have that σt = σ\xσ|xt = σ|xσ\xt, for every
x ∈ dom(σ).

Lemma 4.4 Let t be a term, σ1 be a substitution function s.t. dom(σ1) = {x}; we have that:

∀(ē,σ2)∈JtK.((σ1∪σ2 is defined) =⇒ (ē,σ2\x) ∈ Jσ1tK)

Lemma 4.5 Let t be a term, σ1 be a substitution function s.t. dom(σ1) = {x}; we have that:

∀(ē,σ2)∈Jσ1tK.((σ1∪σ2 is defined) =⇒ (ē,σ2) ∈ JtK)

Lemma 4.6 t 6 e−→⇐⇒ e 6C JtK.

Lemma 4.7 If (ē,σ) ∈ JtK, then (ē, /0) ∈ JσtK.

Lemma 4.8 If (ē, σ̄) ∈ JtKc and ē is infinite, then (ē, σ̄) ∈ Jt · t ′Kc for every t ′.

Lemma 4.9 If e · ē ∈ ē1←|T ē2, then ē1 = e · ē′1, or ē2 = e · ē′2 and e 6C ē1.

Lemma 4.10 If (ē, σ̄) ∈ JtKc and E(t ′), then (ē, σ̄) ∈ Jt · t ′Kc.

Lemma 4.11 Given (ē1, σ̄1) ∈ Jt1Kc, t2
e2−→ t1

2 ;σ1
2 and (ē2, σ̄

2
2) ∈ Jσ1

2 t1
2Kc with σ̄2 = σ1

2 · σ̄2
2 . If ē1 =

e1 · . . . · en is finite, t1
e1−→ t1

1 ;σ1
1 , t1

1
e2−→ t2

1 ;σ2
1 , . . ., tn−1

1
en−→ tn

1 ;σn
1 , with σ1 = σ1

1 · . . . ·σn
1 and tn

1 6
e2−→, then

(ē1 · e2 · ē2, σ̄1 · σ̄2) ∈ Jt1 · t2Kc.

In Theorem 4.1 we claim that for every operator of the trace calculus, the compositional semantics is
equivalent to the abstract semantics. To prove such claim, we need to show that, for each operator, every
trace belonging to the compositional semantics belongs to the abstract semantics, which means we only
consider correct traces (soundness); and, every trace belonging to the abstract semantics belongs to the
compositional semantics, which means we consider all the correct traces (completeness).

Each operator requires a customised proofs, but in principle, all the proofs follow the same reason-
ing. Both soundness and completeness proof start expanding the compositional semantics definition in
terms of its concrete semantics, which in turn is rewritten in terms of the operational semantics. At this
point, the compositional operator’s operands can be separately analysed in order to be recombined with
the corresponding trace calculus operator. Finally, the proofs are concluded going backwards from the
operational semantics to the abstract one, through the concrete semantics. For all the operators, except ∨
and ∧, the proofs are given by coinduction over the terms structure. In every proof which is not analysed
separately (⇐⇒ cases), we implicitly apply Lemma 4.1.

Theorem 4.1 The following claims hold for all contractive terms t1 and t2:

• Jt1∨ t2K = Jt1K
←∨

Jt2K

• Jt1 · t2K = Jt1K
←· Jt2K

• Jt1∧ t2K = Jt1K
∧

Jt2K

• Jt1 | t2K = Jt1K
←
| Jt2K

• J{let x; t1}K = Jt1K\x

D. Ancona, A. Ferrando, and V. Mascardi 25

The proofs for the union, intersection, shuffle and let cases are omitted and can be found in the ex-
tended version [10]. We decided not to report them due to space constraints. In the proofs that follow, we
prove composed implications such as A1∨ . . .∨An =⇒ B, by splitting them into n separate implications
A1 =⇒ 1 B, . . ., An =⇒ n B.

The first operator we are going to analyse is the concatenation, where we are going to show that
(ē,σ) ∈ Jt1 · t2K ⇐⇒ (ē,σ) ∈ Jt1K

←· Jt2K.
The proof for the empty trace is trivial, and is constructed on top of the definition of the E predicate.

(λ , /0) ∈ Jt1 · t2K ⇐⇒ (λ ,λ) ∈ Jt1 · t2Kc∧ (λ ,λ) (λ , /0) (by definition of JtK)

⇐⇒ E(t1 · t2) is derivable (by definition of JtKc)

⇐⇒ E(t1) is derivable ∧E(t2) is derivable (by definition of E(t))

⇐⇒ (λ ,λ) ∈ Jt1Kc∧ (λ ,λ) ∈ Jt2Kc∧ (λ ,λ) (λ , /0) (by definition of JtKc)

⇐⇒ (λ , /0) ∈ Jt1K∧ (λ , /0) ∈ Jt2K (by definition of JtK)

⇐⇒ (λ , /0) ∈ (Jt1K
←· Jt2K) (by definition of

←·)

When the trace is not empty, we present the procedure to prove completeness (=⇒) and soundness
(⇐=), separately.

Let us start with completeness. To prove it, we have to show that the abstract semantics Jt1 · t2K (based
on the original operational semantics) is included in the composition of the abstract semantics Jt1K and
Jt2K, using

←· operator. More specifically, in the first part of the proof (=⇒ 1), the first event of the trace
belongs to the head of the concatenation. Thus, the head is expanded through operational semantics,
causing the term to be rewritten into a concatenation, where the head is substituted with a new term.
Since the concrete semantics has been defined coinductively, we can conclude that the proof is satisfied
by the so derived concatenation by coinduction. Finally, the proof is concluded recombining the new
concatenation in terms of

←· . The second part of the proof (=⇒ 2) does not require coinduction, since
the trace belongs to the tail of the concatenation. Through the operational semantics, the concatenation is
rewritten into the new tail, and the proof is straightforwardly concluded following the abstract semantics.

(e · ē,σ) ∈ Jt1 · t2K =⇒ (e · ē, σ̄) ∈ Jt1 · t2Kc∧ (e · ē, σ̄) (e · ē,σ) (by definition of JtK)

=⇒ t1 · t2
e−→ t ′;σ

′ is derivable ∧ (ē, σ̄ ′) ∈ Jσ
′t ′Kc (by definition of JtKc)

=⇒ (t1
e−→ t ′1;σ

′ is derivable ∧ t1 · t2
e−→ t ′1 · t2;σ

′ is derivable ∧
(ē, σ̄ ′) ∈ Jσ

′(t ′1 · t2)Kc)∨
(t1 6

e−→∧E(t1)∧ t2
e−→ t ′2;σ

′ is derivable ∧ t1 · t2
e−→ t ′2;σ

′ is derivable∧
(ē, σ̄ ′) ∈ Jσ

′t ′2Kc) (by operational semantics)

=⇒ 1 t1
e−→ t ′1;σ

′ is derivable ∧ t1 · t2
e−→ t ′1 · t2;σ

′ is derivable ∧
(ē,σ ′′) ∈ Jσ

′(t ′1 · t2)K∧ (ē, σ̄ ′) (ē,σ ′′)∧σ = σ
′′∪σ

′

(by definition of JtK)

=⇒ 1 t1
e−→ t ′1;σ

′ is derivable ∧ t1 · t2
e−→ t ′1 · t2 is derivable ∧

(ē,σ ′′) ∈ Jσ
′t ′1K
←· Jσ

′t2K∧ (ē, σ̄ ′) (ē,σ ′′)∧σ = σ
′′∪σ

′

(by coinduction over JtK)

=⇒ 1 t1
e−→ t ′1;σ

′ is derivable ∧ t1 · t2
e−→ t ′1 · t2 is derivable ∧

26 Can determinism and compositionality coexist in RML?

(ē1,σ
′′
1) ∈ Jσ

′t ′1K∧ (ē2,σ
′′
2) ∈ Jσ

′t2K∧ ē = ē1 · ē2∧
(ē2 = λ ∨ (ē2 = e′ · ē3∧ ē1 · e′ 6C Jσ

′t ′1K)) (by definition of
←·)

=⇒ 1 t1
e−→ t ′1;σ

′ is derivable ∧ (ē1, σ̄1) ∈ Jσ
′t ′1Kc∧ (ē1, σ̄1) (ē1,σ

′′
1)∧

(ē2,σ
′′
2) ∈ Jσ

′t2K∧ ē = ē1 · ē2∧
(ē2 = λ ∨ (ē2 = e′ · ē3∧ ē1 · e′ 6C Jσ

′t ′1K)) (by definition of JtK)

=⇒ 1 (e · ē1,σ
′ · σ̄1) ∈ Jt1Kc∧ (ē1, σ̄1) (ē1,σ

′′
1)∧

(ē2,σ
′′
2) ∈ Jσ

′t2K∧ ē = ē1 · ē2∧
(ē2 = λ ∨ (ē2 = e′ · ē3∧ ē1 · e′ 6C Jσ

′t ′1K)) (by definition of JtKc)

=⇒ 1 (e · ē1,σ
′′
1) ∈ Jσ

′t1K∧ (ē2,σ
′′
2 ∪σ

′) ∈ Jt2K∧ ē = ē1 · ē2∧
(ē2 = λ ∨ (ē2 = e′ · ē3∧ ē1 · e′ 6C Jσ

′t ′1K))
(by definition of JtK and Lemma 4.7)

=⇒ 1 (e · ē,σ) ∈ Jt1K
←· Jt2K (by definition of

←·)
=⇒ 2 (e · ē, σ̄) ∈ Jt2Kc∧ (λ ,λ) ∈ Jt1Kc∧ t1 6

e−→ (by definition of JtKc)

=⇒ 2 (e · ē,σ) ∈ Jt2K∧ (λ , /0) ∈ Jt1K∧ t1 6
e−→ (by definition of JtK)

=⇒ 2 (e · ē,σ) ∈ Jt2K∧ (λ , /0) ∈ Jt1K∧ (λ · e) 6C Jt1K (by Lemma 4.6)

=⇒ 2 (e · ē,σ) ∈ Jt1K
←· Jt2K (by definition of

←·)

We now prove soundness. To prove it, we show that the composition of abstract semantics Jt1K and
Jt2K using the

←· operator is included in the abstract semantics of the related concatenation term Jt1 · t2K.
The resulting proof is splitted in four separated cases. When the trace belongs to Jt1K is infinite (=⇒ 1).
The proof is based on the fact that an infinite trace concatenated to another trace is always equal to itself.
In all the other cases, the proof can be fully derived by a direct application of the operational semantics.

(e · ē,σ) ∈ Jt1K
←· Jt2K =⇒ (e · ē) ∈ Jt1K↓ω ∨

(e · ē = ē1 · ē2∧ (ē1,σ1) ∈ Jt1K∧ (ē2,σ2) ∈ Jt2K∧σ = σ1∪σ2∧
(ē2 = λ ∨ (ē2 = e′ · ē3∧ ē1 · e′ 6C Jt1K))) (by definition of

←·)
=⇒ (e · ē) ∈ Jt1K↓ω ∨

(ē1 = λ ∧ (λ , /0) ∈ Jt1K∧ (e · ē,σ) ∈ Jt2K∧ e 6C Jt1K)∨
(ē2 = λ ∧ (e · ē) ∈ Jt1K∧ (λ , /0) ∈ Jt2K)∨
(ē1 = e · ē′1∧ ē2 = e′ · ē3∧ ē1 · e′ 6C Jt1K∧
(e · ē1,σ1) ∈ Jt1K∧ (e′ · ē3) ∈ Jt2K∧σ = σ1∪σ2)

(e · ē,σ) ∈ Jt1K↓ω =⇒ 1 (e · ē,σ) ∈ Jt1K∧ ē infinite (by definition of ↓ω)

=⇒ 1 (e · ē, σ̄) ∈ Jt1Kc∧ (e · ē, σ̄) (e · ē,σ)∧
ē infinite (by definition of JtK)

=⇒ 1 t1
e−→ t ′1;σ

′ is derivable ∧ (ē, σ̄ ′) ∈ Jσ
′t ′1Kc∧

(e · ē, σ̄) (e · ē,σ)∧ ē infinite (by definition of JtKc)

=⇒ 1 t1
e−→ t ′1;σ

′ is derivable ∧ (ē, σ̄ ′) ∈ Jσ
′(t ′1 · t2)Kc∧

D. Ancona, A. Ferrando, and V. Mascardi 27

(e · ē, σ̄) (e · ē,σ)∧ ē infinite (by Lemma 4.8)

=⇒ 1 t1 · t2
e−→ t ′1 · t2;σ

′ is derivable ∧ (ē, σ̄ ′) ∈ Jσ
′(t ′1 · t2)Kc∧

(e · ē, σ̄) (e · ē,σ)∧ ē infinite (by operational semantics)

=⇒ 1 (e · ē, σ̄) ∈ Jt1 · t2Kc∧ (e · ē, σ̄) (e · ē,σ) (by definition of JtKc)

=⇒ 1 (e · ē,σ) ∈ Jt1 · t2K (by definition of JtK)

(ē1 = λ ∧ (λ , /0) ∈ Jt1K∧
(e · ē,σ) ∈ Jt2K∧ e 6C Jt1K) =⇒ 2 E(t1) is derivable ∧ (e · ē,σ) ∈ Jt2K∧

e 6C Jt1K (by definition of JtK)

=⇒ 2 E(t1) is derivable ∧ t2
e−→ t ′2;σ

′ is derivable ∧
(ē, σ̄ ′) ∈ Jσ

′t ′2Kc∧ e 6C Jt1K∧ (e · ē, σ̄) (e · ē,σ)

(by definition of JtKc)

=⇒ 2 t1 · t2
e−→ t ′2;σ

′ is derivable ∧ (ē, σ̄ ′) ∈ Jσ
′t ′2Kc

(by operational semantics)

=⇒ 2 (e · ē, σ̄) ∈ Jt1 · t2Kc∧ (e · ē, σ̄) (e · ē,σ)

(by definition of JtKc)

=⇒ 2 (e · ē,σ) ∈ Jt1 · t2K (by definition of JtK)

(ē2 = λ ∧ (e · ē) ∈ Jt1K∧ (λ , /0) ∈ Jt2K) =⇒ 3 (e · ē,σ) ∈ Jt1 · t2K (by Lemma 4.10)

(ē1 = e · ē′1∧ ē2 = e′ · ē3∧
ē1 · e′ 6C Jt1K∧ (e · ē1,σ1) ∈ Jt1K∧
(e′ · ē3,σ2) ∈ Jt2K∧σ = σ1∪σ2) =⇒ 4 t1

e−→ t ′1;σ
′
1 is derivable ∧ (ē1, σ̄1) ∈ Jσ

′
1t1Kc∧

(ē1, σ̄1) (ē1,σ
′′
1)∧ t2

e′−→ t ′2;σ
′
2 is derivable ∧

(ē3, σ̄
′
2) ∈ Jσ

′
2t ′2K∧ (ē2, σ̄

′
2) (ē2,σ

′′
2)∧ t1 6

e′−→ is derivable

∧σ1 = σ
′
1∪σ

′′
1 ∧σ2 = σ

′
2∪σ

′′
2 (by operational semantics)

=⇒ 4 (ē1 · ē2, σ̄) ∈ Jt1 · t2Kc (by Lemma 4.11)

5 Related Work

Compositionality, determinism and events-based semantics are topics very central to concurrent systems.
Winskel has introduced the notion of event structure [44] to model computational processes as sets of
event occurrences together with relations representing their causal dependencies. Vaandrager [43] has
proved that for concurrent deterministic systems it is sufficient to observe the beginning and end of
events to derive its causal structure. Lynch and Tuttle have introduced input/output automata [36] to
model concurrent and distributed discrete event systems with a trace semantics consisting of both finite
and infinite sequences of actions.

The rest of this section describes some of the main RV techniques and state-of-the-art tools and
compares them with respect to RML; more comprehensive surveys on RV can be found in literature
[25, 30, 35, 41, 26, 13, 31] which mention formalisms for parameterised runtime verification that have
not deliberately presented here for space limitation.

28 Can determinism and compositionality coexist in RML?

Monitor-oriented programming: Similarly as RML, which does not depend on the monitored system
and its instrumentation, other proposals introduce different levels of separation of concerns. Monitor-
oriented programming (MOP [19]) is an infrastructure for RV that is neither tied to any particular pro-
gramming language nor to a single specification language. In order to add support for new logics, one has
to develop an appropriate plug-in converting specifications to one of the format supported by the MOP
instance of the language of choice; the main formalisms implemented in existing MOP include finite
state machines, extended regular expressions, context-free grammars and temporal logics. Finite state
machines (or, equivalently, regular expressions) can be easily translated to RML, have limited expressive-
ness, but are widely used in RV because they are well-understood among software developers as opposite
to other more sophisticated approaches, as temporal logics. Extended regular expressions include inter-
section and complement; although such operators allow users to write more compact specifications, they
do not increase the formal expressive power since regular languages are closed under both. Determinis-
tic Context-Free grammars (that is, deterministic pushdown automata) can be translated in RML using
recursion, concatenation, union, and the empty trace, while the relationship with Context-Free grammars
(that is, pushdown automata) has not been fully investigated yet; as stated in the introduction, RML can
express several non Context-Free properties, hence RML cannot be less expressive than Context-Free
grammars, but we do not know whether Context-Free grammars are less expressive than RML.

Temporal logics: Since RV has its roots in model checking, it is not surprising that logic-based formal-
ism previously introduced in the context of the latter have been applied to the former. Linear Temporal
Logic (LTL) [38], is one of the most used formalism in verification.

Since the standard semantics of LTL is defined on infinite traces only, and RV monitors can only
check finite trace prefixes (as opposed to static formal verification), a three-valued semantics for LTL,
named LTL3 has been proposed [15]. Beyond the basic “true” and “false” truth values, a third “inconclu-
sive” one is considered (LTL specification syntax is unchanged, only the semantics is modified to take
into account the new value). This allows one to distinguish the satisfaction/violation of the desired prop-
erty (“false”) from the lack of sufficient evidence among the events observed so far (“inconclusive”),
making this semantics more suited to RV. Differently from LTL, the semantics of LTL3 is defined on
finite prefixes, making it more suitable for comparison with other RV formalisms. Further development
of LTL3 led to RV-LTL [14], a 4-valued semantics on which RML monitor verdicts are based on.

The expressive power of LTL is the same as of star-free ω-regular languages [39]. When restricted to
finite traces, RML is much more expressive than LTL as any regular expression can be trivially translated
to it; however, on infinite traces, the comparison is slightly more intricate since RML and LTL3 have
incomparable expressiveness [8]. There exist many extensions of LTL that deal with time in a more
quantitative way (as opposed to the strictly qualitative approach of standard LTL) without increasing the
expressive power, like interval temporal logic [18], metric temporal logic [42] and timed LTL [15]. Other
proposals go beyond regularity [3] and even context-free languages [16].

Several temporal logics are embeddable in recHML [34], a variant of the modal µ-calculus [33];
this allows the formal study of monitorability [1] in a general framework, to derive results for free
about any formalism that can be expressed in such calculi. It would be interesting to study whether the
RML trace calculus could be derivable to get theoretical results that are missing from this presentation.
Unfortunately, it is not clear whether our calculus and recHML are comparable at all. For instance,
recHML is a fixed-point logic including both least and greatest fixpoint operators, while our calculus
implicitly uses a greatest fixpoint semantics for recursion. Nonetheless, recHML does not include a
shuffle operator, and we are not aware of a way to derive it from other operators.

D. Ancona, A. Ferrando, and V. Mascardi 29

Regardless of the formal expressiveness, RML and temporal logics are essentially different: RML
is closer to formalisms with which software developers are more familiar, as regular expressions and
Context-Free languages, but does not offer direct support for time; however, if the instrumentation pro-
vides timestamps, then some time-related properties can still be expressed exploiting parametricity.

State machines: As opposite to the language-based approach, as RML, specifications can be defined
using state machines (a.k.a. automata or finite-state machines). Though the core concept of a finite set
of states and a (possibly input-driven) transition function between them is always there, in the field of
automata theory different formalizations and extensions bring the expressiveness anywhere from simple
deterministic finite automata to Turing machines.

An example of such formalisms is DATE (Dynamic Automata with Timers and Events [21]), an ex-
tension of the finite-state automata computational model based on communicating automata with timers
and transitions triggered by observed events. This is the basis of LARVA [22], a Java RV tool focused on
control-flow and real-time properties, exploiting the expressiveness of the underlying system (DATE).

The main feature of LARVA that is missing in RML is the support for temporized properties, as ob-
served events can trigger timers for other expected events. On the other hand, the parametric verification
support of RML is more general. LARVA scope mechanism works at the object level, thus parametricity
is based on trace slicing [31] and implemented by spawning new monitors and associating them with
different objects. The RML approach is different as specifications can be parametric with respect to any
observed data thanks to event type patterns and the let-construct to control the scope of the variables oc-
curring in them. Limitations of the parametric trace slicing approach described above, as well as possible
generalizations to overcome them, have been explored by [20, 12, 40].

Finally, the goals of the two tools are different: while RML strives to be system-independent, LARVA
is devoted to Java verification, and the implementation relies on AspectJ [32] as an “instrumentation”
layer allowing one to inject code (the monitor) to be executed at specific locations in the program.

6 Conclusion

We have moved a first step towards a compositional semantics of the RML trace calculus, by introducing
the notion of instantiated event trace, defining the semantics of trace expressions in terms of sets of
instantiated event traces and showing how each basic trace expression operator can be interpreted as
an operation over sets of instantiated event traces; we have formally proved that such an interpretation
is equivalent to the semantics derived from the transition system of the calculus if one considers only
contractive terms.

For simplicity, here we have considered only the core of the calculus, but we plan to extend our result
to the full calculus, which includes also the prefix closure operator and a top-level layer with constructs
to support generic specifications [28]. Another interesting direction for further investigation consists in
studying how the notion of contractivity influences the expressive power of the calculus and, hence, of
RML; although we have failed so far to find a non-contractive term whose semantics is not equivalent
to a corresponding contractive trace expression, we have not formally proved that contractivity does not
limit the expressive power of the calculus.

30 Can determinism and compositionality coexist in RML?

References

[1] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir & K. Lehtinen (2019): Adventures in Monitorability:
From Branching to Linear Time and Back Again. Proc. ACM Program. Lang. 3(POPL), pp. 52:1–52:29,
doi:10.1145/3290365.

[2] Wolfgang Ahrendt, Jesús Mauricio Chimento, Gordon J. Pace & Gerardo Schneider (2017): Verifying data-
and control-oriented properties combining static and runtime verification: theory and tools. Formal Methods
in System Design 51(1), pp. 200–265, doi:10.1007/s10703-017-0274-y.

[3] Rajeev Alur, Kousha Etessami & P. Madhusudan (2004): A Temporal Logic of Nested Calls and Returns. In:
Tools and Algorithms for the Construction and Analysis of Systems, 10th International Conference, TACAS
2004, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2004,
Barcelona, Spain, March 29 - April 2, 2004, Proceedings, pp. 467–481, doi:10.1007/978-3-540-24730-2 35.

[4] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-Malo Deniélou,
Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco Martins, Vi-
viana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos
& Nobuko Yoshida (2016): Behavioral Types in Programming Languages. Foundations and Trends in Pro-
gramming Languages 3(2-3), pp. 95–230, doi:10.1561/2500000031.

[5] Davide Ancona & Andrea Corradi (2014): Sound and Complete Subtyping between Coinductive Types for
Object-Oriented Languages. In: ECOOP 2014, pp. 282–307, doi:10.1007/978-3-662-44202-9 12.

[6] Davide Ancona & Andrea Corradi (2016): Semantic subtyping for imperative object-oriented languages. In:
OOPSLA 2016, pp. 568–587, doi:10.1145/2983990.2983992.

[7] Davide Ancona, Sophia Drossopoulou & Viviana Mascardi (2012): Automatic Generation of Self-monitoring
MASs from Multiparty Global Session Types in Jason. In: Declarative Agent Languages and Technologies
X - 10th International Workshop, DALT 2012, Valencia, Spain, June 4, 2012, Revised Selected Papers, pp.
76–95, doi:10.1007/978-3-642-37890-4 5.

[8] Davide Ancona, Angelo Ferrando & Viviana Mascardi (2016): Comparing Trace Expressions and Linear
Temporal Logic for Runtime Verification. In: Theory and Practice of Formal Methods - Essays Dedicated to
Frank de Boer on the Occasion of His 60th Birthday, pp. 47–64, doi:10.1007/978-3-319-30734-3 6.

[9] Davide Ancona, Angelo Ferrando & Viviana Mascardi (2017): Parametric Runtime Verification of Multiagent
Systems. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2017, São Paulo, Brazil, May 8-12, 2017, pp. 1457–1459, doi:10.5555/3091125.3091328.

[10] Davide Ancona, Angelo Ferrando & Viviana Mascardi (2020): Can determinism and compositionality coexist
in RML? (extende version). Available at https://arxiv.org/abs/2008.06453.

[11] Davide Ancona, Luca Franceschini, Angelo Ferrando & Viviana Mascardi (2019): A Deterministic Event
Calculus for Effective Runtime Verification. In Alessandra Cherubini, Nicoletta Sabadini & Simone Tini,
editors: Proceedings of the 20th Italian Conference on Theoretical Computer Science, ICTCS 2019, Como,
Italy, September 9-11, 2019, CEUR Workshop Proceedings 2504, CEUR-WS.org, pp. 248–260. Available at
http://ceur-ws.org/Vol-2504/paper28.pdf.

[12] Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger & David E. Rydeheard (2012): Quantified
Event Automata: Towards Expressive and Efficient Runtime Monitors. In: FM 2012: Formal Methods - 18th
International Symposium, Paris, France, August 27-31, 2012. Proceedings, pp. 68–84, doi:10.1007/978-3-
642-32759-9 9.

[13] Ezio Bartocci, Yliès Falcone, Adrian Francalanza & Giles Reger (2018): Introduction to Runtime Verification.
In: Lectures on Runtime Verification - Introductory and Advanced Topics, pp. 1–33, doi:10.1007/978-3-319-
75632-5 1.

[14] Andreas Bauer, Martin Leucker & Christian Schallhart (2007): The Good, the Bad, and the Ugly, But How
Ugly Is Ugly? In Oleg Sokolsky & Serdar Taşıran, editors: Runtime Verification, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 126–138, doi:10.1007/978-3-540-77395-5 11.

http://dx.doi.org/10.1145/3290365
http://dx.doi.org/10.1007/s10703-017-0274-y
http://dx.doi.org/10.1007/978-3-540-24730-2_35
http://dx.doi.org/10.1561/2500000031
http://dx.doi.org/10.1007/978-3-662-44202-9_12
http://dx.doi.org/10.1145/2983990.2983992
http://dx.doi.org/10.1007/978-3-642-37890-4_5
http://dx.doi.org/10.1007/978-3-319-30734-3_6
http://dx.doi.org/10.5555/3091125.3091328
https://arxiv.org/abs/2008.06453
http://ceur-ws.org/Vol-2504/paper28.pdf
http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1007/978-3-319-75632-5_1
http://dx.doi.org/10.1007/978-3-319-75632-5_1
http://dx.doi.org/10.1007/978-3-540-77395-5_11

D. Ancona, A. Ferrando, and V. Mascardi 31

[15] Andreas Bauer, Martin Leucker & Christian Schallhart (2011): Runtime verification for LTL and
TLTL. ACM Transactions on Software Engineering and Methodology (TOSEM) 20(4), pp. 14:1–14:64,
doi:10.1145/2000799.2000800.

[16] Benedikt Bollig, Normann Decker & Martin Leucker (2012): Frequency Linear-time Temporal Logic. In:
Sixth International Symposium on Theoretical Aspects of Software Engineering, TASE 2012, 4-6 July 2012,
Beijing, China, pp. 85–92, doi:10.1109/TASE.2012.43.

[17] G. Castagna, M. Dezani-Ciancaglini & L. Padovani (2012): On Global Types and Multi-Party Session. Log-
ical Methods in Computer Science 8(1), doi:10.2168/LMCS-8(1:24)2012.

[18] Antonio Cau & Hussein Zedan (1997): Refining Interval Temporal Logic Specifications. In: Transformation-
Based Reactive Systems Development, 4th International AMAST Workshop on Real-Time Systems and
Concurrent and Distributed Software, ARTS’97, Palma, Mallorca, Spain, May 21-23, 1997, Proceedings,
pp. 79–94, doi:10.1007/3-540-63010-4 6.

[19] Feng Chen & Grigore Rosu (2007): Mop: an efficient and generic runtime verification framework. In:
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada, pp. 569–
588, doi:10.1145/1297027.1297069.

[20] Feng Chen & Grigore Rosu (2009): Parametric Trace Slicing and Monitoring. In: Tools and Algorithms
for the Construction and Analysis of Systems, 15th International Conference, TACAS 2009, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29,
2009. Proceedings, pp. 246–261, doi:10.1007/978-3-642-00768-2 23.

[21] Christian Colombo, Gordon J. Pace & Gerardo Schneider (2008): Dynamic Event-Based Runtime Moni-
toring of Real-Time and Contextual Properties. In: Formal Methods for Industrial Critical Systems, 13th
International Workshop, FMICS 2008, L’Aquila, Italy, September 15-16, 2008, Revised Selected Papers, pp.
135–149, doi:10.1007/978-3-642-03240-0 13.

[22] Christian Colombo, Gordon J. Pace & Gerardo Schneider (2009): LARVA – Safer Monitoring of Real-Time
Java Programs. In: SEFM 2009, pp. 33–37, doi:10.1109/SEFM.2009.13.

[23] Bruno Courcelle (1983): Fundamental Properties of Infinite Trees. Theor. Comput. Sci. 25, pp. 95–169,
doi:10.1016/0304-3975(83)90059-2.

[24] James C. Davis, Christy A. Coghlan, Francisco Servant & Dongyoon Lee (2018): The impact of regular
expression denial of service (ReDoS) in practice: an empirical study at the ecosystem scale. In: Proceedings
of the 2018 ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November
04-09, 2018, pp. 246–256, doi:10.1145/3236024.3236027.

[25] Nelly Delgado, Ann Q. Gates & Steve Roach (2004): A Taxonomy and Catalog of Runtime Software-Fault
Monitoring Tools. IEEE Trans. Software Eng. 30(12), pp. 859–872, doi:10.1109/TSE.2004.91.

[26] Yliès Falcone, Klaus Havelund & Giles Reger (2013): A Tutorial on Runtime Verification. In: Engineering
Dependable Software Systems, pp. 141–175, doi:10.3233/978-1-61499-207-3-141.

[27] Yliès Falcone, Srdan Krstic, Giles Reger & Dmitriy Traytel (2018): A Taxonomy for Classifying Runtime
Verification Tools. In: Runtime Verification - 18th International Conference, RV 2018, Limassol, Cyprus,
November 10-13, 2018, Proceedings, pp. 241–262, doi:10.1007/978-3-030-03769-7 14.

[28] Luca Franceschini (March 2020): RML: Runtime Monitoring Language. Ph.D. thesis, DIBRIS - University
of Genova. Available at http://hdl.handle.net/11567/1001856.

[29] A. Frisch, G. Castagna & V. Benzaken (2008): Semantic subtyping: Dealing set-theoretically with function,
union, intersection, and negation types. J. ACM 55(4), doi:10.1145/1391289.1391293.

[30] Klaus Havelund & Allen Goldberg (2005): Verify Your Runs. In: Verified Software: Theories, Tools, Ex-
periments, First IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich, Switzerland, October 10-13, 2005,
Revised Selected Papers and Discussions, pp. 374–383, doi:10.1007/978-3-540-69149-5 40.

http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1109/TASE.2012.43
http://dx.doi.org/10.2168/LMCS-8(1:24)2012
http://dx.doi.org/10.1007/3-540-63010-4_6
http://dx.doi.org/10.1145/1297027.1297069
http://dx.doi.org/10.1007/978-3-642-00768-2_23
http://dx.doi.org/10.1007/978-3-642-03240-0_13
http://dx.doi.org/10.1109/SEFM.2009.13
http://dx.doi.org/10.1016/0304-3975(83)90059-2
http://dx.doi.org/10.1145/3236024.3236027
http://dx.doi.org/10.1109/TSE.2004.91
http://dx.doi.org/10.3233/978-1-61499-207-3-141
http://dx.doi.org/10.1007/978-3-030-03769-7_14
http://hdl.handle.net/11567/1001856
http://dx.doi.org/10.1145/1391289.1391293
http://dx.doi.org/10.1007/978-3-540-69149-5_40

32 Can determinism and compositionality coexist in RML?

[31] Klaus Havelund, Giles Reger, Daniel Thoma & Eugen Zalinescu (2018): Monitoring Events that Carry Data.
In: Lectures on Runtime Verification - Introductory and Advanced Topics, pp. 61–102, doi:10.1007/978-3-
319-75632-5 3.

[32] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm & William G. Griswold (2001):
An Overview of AspectJ. In: ECOOP 2001 - Object-Oriented Programming, 15th European Conference,
Budapest, Hungary, June 18-22, 2001, Proceedings, pp. 327–353, doi:10.1007/3-540-45337-7 18.

[33] Dexter Kozen (1983): Results on the Propositional mu-Calculus. Theor. Comput. Sci. 27, pp. 333–354,
doi:10.1016/0304-3975(82)90125-6.

[34] Kim Guldstrand Larsen (1990): Proof Systems for Satisfiability in Hennessy-Milner Logic with Recursion.
Theor. Comput. Sci. 72(2&3), pp. 265–288, doi:10.1016/0304-3975(90)90038-J.

[35] Martin Leucker & Christian Schallhart (2009): A brief account of runtime verification. The Journal of Logic
and Algebraic Programming 78(5), pp. 293–303, doi:10.1016/j.jlap.2008.08.004.

[36] Nancy A. Lynch & Mark R. Tuttle (1987): Hierarchical Correctness Proofs for Distributed Algorithms.
In Fred B. Schneider, editor: Proceedings of the Sixth Annual ACM Symposium on Principles of Dis-
tributed Computing, Vancouver, British Columbia, Canada, August 10-12, 1987, ACM, pp. 137–151,
doi:10.1145/41840.41852.

[37] RC Moore (2000): Removing left recursion from context-free grammars. NAACL 2000: Proceedings of
the 1st North American chapter of the Association for Computational Linguistics conference. Available at
https://www.aclweb.org/anthology/A00-2033.

[38] Amir Pnueli (1977): The temporal logic of programs. In: 18th Annual Symposium on Foundations of
Computer Science, 1977, IEEE, pp. 46–57, doi:10.1109/SFCS.1977.32.

[39] Amir Pnueli & Lenore D. Zuck (1993): In and Out of Temporal Logic. In: Proceedings of the Eighth Annual
Symposium on Logic in Computer Science (LICS ’93), Montreal, Canada, June 19-23, 1993, pp. 124–135,
doi:10.1109/LICS.1993.287594.

[40] Giles Reger, Helena Cuenca Cruz & David E. Rydeheard (2015): MarQ: Monitoring at Runtime with QEA.
In: Tools and Algorithms for the Construction and Analysis of Systems - 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2015, London, UK, April 11-18, 2015. Proceedings, pp. 596–610, doi:10.1007/978-3-662-46681-0 55.

[41] Oleg Sokolsky, Klaus Havelund & Insup Lee (2012): Introduction to the special section on runtime verifica-
tion. STTT 14(3), pp. 243–247, doi:10.1007/s10009-011-0218-6.

[42] Prasanna Thati & Grigore Rosu (2005): Monitoring Algorithms for Metric Temporal Logic Specifications.
Electr. Notes Theor. Comput. Sci. 113, pp. 145–162, doi:10.1016/j.entcs.2004.01.029.

[43] Frits W. Vaandrager (1991): Determinism - (Event Structure Isomorphism = Step Sequence Equivalence).
Theor. Comput. Sci. 79(2), pp. 275–294, doi:10.1016/0304-3975(91)90333-W.

[44] Glynn Winskel (1986): Event Structures. In Wilfried Brauer, Wolfgang Reisig & Grzegorz Rozenberg,
editors: Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986, Part II, Proceedings
of an Advanced Course, Bad Honnef, Germany, 8-19 September 1986, Lecture Notes in Computer Science
255, Springer, pp. 325–392, doi:10.1007/3-540-17906-2 31.

http://dx.doi.org/10.1007/978-3-319-75632-5_3
http://dx.doi.org/10.1007/978-3-319-75632-5_3
http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.1016/0304-3975(82)90125-6
http://dx.doi.org/10.1016/0304-3975(90)90038-J
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1145/41840.41852
https://www.aclweb.org/anthology/A00-2033
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/LICS.1993.287594
http://dx.doi.org/10.1007/978-3-662-46681-0_55
http://dx.doi.org/10.1007/s10009-011-0218-6
http://dx.doi.org/10.1016/j.entcs.2004.01.029
http://dx.doi.org/10.1016/0304-3975(91)90333-W
http://dx.doi.org/10.1007/3-540-17906-2_31

	1 Introduction
	2 Technical background
	3 The RML trace calculus
	3.1 Semantics based on the transition system

	4 Towards a compositional semantics
	4.1 Composition operators
	4.2 Contractivity
	4.3 Main Theorem

	5 Related Work
	6 Conclusion

