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Phase-pure CsSnI3, FASnI3, Cs(PbSn)I3, FA(PbSn)I3 perovskites (FA = formamidinium = 

HC(NH2)2
+) as well as the analogous so-called “vacancy-ordered double perovskites” Cs2SnI6 

and FA2SnI6 were mechanochemically synthesized. The addition of SnF2 was found to be 

crucial for the synthesis of Cs-containing perovskites but unnecessary for hybrid ones. All 

compounds show an absorption onset in the near-IR region, which makes them especially 

relevant for photovoltaic applications. The addition of Pb(II) and SnF2 is crucial to improve 

the electronic properties in 3D Sn(II)-based perovskites, in particular their charge carriers 

mobility (~0.2 cm2/V.s) which is enhanced upon reduction of the dark carrier conductivity. 
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Stokes-shifted photoluminescence is observed on dry powders of Sn(II)-based perovskites, 

which makes these materials promising for light-emitting and sensing applications. Thermal 

stability of all compounds has been examined, revealing no significant degradation up to at 

least 200 °C. This meets the requirements for standard operation conditions of most 

optoelectronic devices and is potentially compatible with thermal vacuum deposition of 

polycrystalline thin films. 

 
1. Introduction 

Lead iodide perovskites have shown excellent photovoltaic (PV) as well as electroluminescent 

properties.[1,2] In part due to the toxicity of Pb2+ ions, other metal halide perovskites are being 

investigated. Divalent tin is the most straightforward alternative to lead, considering their 

similar electronic configuration (group 14) and similar ionic radiuses.[3–34] Furthermore, 

mixed Sn-Pb iodide perovskites possess a lower bandgap than pure Pb and Sn ones, with 

applications in both single junction and tandem solar cells.[35] One problem that arises with 

the use of Sn(II) is that it may be easily oxidized to Sn(IV). Two workarounds exist to this 

problem: (i) limiting the oxidation by using additives such as SnF2, [8,11,12,33,36] or (ii) exploring 

the properties of Sn(IV)-based materials.[37–48] A2B(IV)X6 compounds can be seen as a similar 

structure to the AB(II)X3 perovskite where every other BX6 octahedra is removed, and B is in 

+4 oxidation state to ensure charge neutrality (see Scheme 1). 

These compounds are sometimes referred to as vacancy-ordered double perovskites, where 

the B-“vacancies” are described as virtual cations, also explaining why the stoichiometry of 

A2BX6 is often written as 2-☐-1-6. Cs2SnI6 has been shown to be a degradation product of 

CsSnI3 upon air-exposure.[46] Although this compound can be seen as a zero-dimensional 

structure due to the fact that adjacent SnI6 octahedra do not share any corners, their vicinity 

and consequent orbital overlap results in interesting optoelectronic properties for PV.[46]  

Mechanochemical synthesis via ball-milling or other techniques (e.g., hand grinding) provides 
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an ideal platform to form a wide variety of perovskites in stoichiometric and solvent-free 

conditions.[49,50,50–70] 

Additionally, these compounds may later be used for thin film deposition by single-source 

thermal evaporation.[52] The high number of recent publications indicate that 

mechanochemical synthesis is starting to be a common practice in a few research groups 

focusing on halide perovskites and related compounds, and we foresee that it will be a 

widespread approach in the near future. Surprisingly, given the interest on tin perovskites, we 

could only find two publications focusing on mechanochemical synthesis of such compounds. 

The first one is the seminal work of Stoumpos et al.[71] where mechanochemical synthesis 

(grinding by hand with mortar and pestle) was found to yield non-pure perovskites with 

considerable amounts of unreacted precursors. The second reference is a recent work from 

Saski et al.[59] where several 3D pure-tin mixed iodide-bromide perovskites were synthesized. 

To the best of our knowledge, no reports either on mixed Sn-Pb (especially relevant for low 

bandgap applications as previously discussed) or on 0D iodide perovskites by 

mechanochemistry exist. Also, the only report of 3D iodide perovskites made by 

mechanochemical synthesis that we are aware of [59]  does not provide thermal stability or 

electrical conductivity characterization.  

Hereafter, we have used ball-milling to synthesize the pure Sn and mixed Sn-Pb iodide 

perovskites CsSnI3, FASnI3, Cs(PbSn)I3, and FA(PbSn)I3 as well as the Sn(IV)-based 

vacancy-ordered perovskites Cs2SnI6 and FA2SnI6 (FA = formamidinium = HC(NH2)2
+). The 

influence of SnF2 as additive in the synthesis is also investigated. The elemental, chemical 

and structural characteristics of the as-prepared compounds are investigated by X-ray 

diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Furthermore, the thermal 

stability is studied by means of differential thermal analysis and thermogravimetry (DTA/TG). 

The energy level diagram is estimated from optical characterization and ultraviolet 

photoelectron spectroscopy (UPS). In addition, the charge carrier mobility and lifetime of 3D 
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Sn(II)-based perovskite and 0D Sn(IV)-based structure were investigated by time-resolved 

microwave conductivity (TRMC), revealing that the effective mobility is two orders of 

magnitude larger for 3D Sn(II)-based perovskites as compared to 0D Sn(IV)-based structures. 

These measurements show that the electronic properties of fully-inorganic Sn(II)-based 

perovskites are improved during synthesis by Pb-mixing and addition of SnF2, which 

decreases the charge carrier conductivity caused by oxidation to Sn(IV).

 
 

 
 

 
2. Results and Discussion 
 

Sn(II)- and Sn(IV)-based compounds were synthesized by dry ball-milling of stoichiometric 

mixtures of the different precursors (see experimental section for details). Figure 1 shows the 

XRD characterization of all metal iodide perovskites. 

The X-ray diffractograms of CsSnI3, FASnI3, Cs2SnI6, and FA2SnI6 match very well with the 

corresponding reference bulk patterns. The mixed tin-lead compounds Cs(SnPb)I3 and 

FA(SnPb)I3 have XRD signals comparable to the pure tin compounds albeit slightly shifted to 

lower angles, as expected from a partial replacement of tin with a bigger cation such as lead. 

Accordingly, we also observe a shift to lower diffraction angles in FA-based compounds 

compared to Cs-based ones. These differences are more clearly observed in Figure S2, which 

shows the three more relevant regions of each diffractogram. The high phase purity and match 

with reference XRD patterns highlight the potential of mechanochemical synthesis to obtain 

high quality materials. As noted in the legend of Figure 1, CsSnI3 and Cs(PbSn)I3 were 

formed in the presence of SnF2. This additive was found to be crucial in the synthesis of 

CsSnI3 (but not in the synthesis of FASnI3) to avoid the formation of SnI4, as revealed by 

thermal analyses (Figure 2, and Figures S3-S5). In particular, when comparing the DTA signal 

of CsSnI3 synthesized with and without SnF2 (Figure S3), an endothermic peak around 160 
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°C, ascribed to the melting of SnI4, is visible only in the case where no SnF2 is added. This 

peak is also absent in the case of FASnI3 even without additive (Figure 2). 

Besides the effect of SnF2, all the samples were analyzed through DTA/TG to investigate their 

thermal stability (Fig. 2). CsSnI3 is stable up to 450 °C, temperature at which it melts with the 

subsequent vaporization of SnI2 and CsI.[14] A very similar behavior was recorded for 

Cs(SnPb)I3 (Fig. S4). Cs2SnI6 seems less stable, decomposing at ~320 °C due to SnI4 (b.p. ~ 

350 °C) which is more volatile than SnI2 (b.p. ~ 700 °C). Indeed, the TG variation, equal to 

53.6 % and 47.0 % in the first and second step, respectively, are consistent with the loss of 

SnI4 and CsI (whose melting point is reported in the DTA curve at 627 °C). FASnI3 and 

FA(SnPb)I3 have considerable lower stability respect to the Cs-based counterparts because of 

the organic cation, which mainly drives the decomposition mechanism.[72] Interestingly, 

FA2SnI6 is slightly more stable with respect to FASnI3 and FA(SnPb)I3, with the initial weight 

loss starting around 250 °C instead of 200 °C. This might be due to a stronger interaction 

between FA molecules in FA2SnI6. However, the weight loss is much faster in this Sn(IV) 

compound, being completely vaporized at 400 °C, consistent with the reaction: FA2SnI6  2 

FAI + SnI4. Similarly, the decomposition mechanism for FASnI3 and FA(SnPb)I3 could be 

summarized, respectively, as FASnI3  FAI + SnI2 and FA(SnPb)I3  FAI + ½ SnI2 + ½ 

PbI2.[73] However, their TG and DTA curves evidence a more complex mechanism involving 

the formation of several intermediates. The last weight losses in TG curves of FASnI3 and 

FA(SnPb)I3 start at ~ 500 °C, temperature at which SnI2 is released, as also observed in the 

inorganic Cs-based counterparts (Figure S4). This further confirms that Sn remains in +2 

oxidation state in these hybrid perovskites without addition of SnF2. 

All Sn(II) and Sn(IV) perovskites were further analyzed by high-resolution XPS, in order to 

gather quantitative information on their chemical composition (XPS spectra of all compounds 

are shown in Figure 3 and atomic percentages of relevant elements are given in Table 1). 
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Carbon C 1s spectra of all samples show a peak at low binding energy (BE) which is ascribed 

to C-C bonds of adventitious carbon originating from exposure to organic volatile compounds 

in air. This peak is fixed to BE = 284.5 eV for energy calibration, as standard practice. FA-

based samples show a second peak at BE = 287.9 +/- 0.2 eV assigned to the carbon atom in 

formamidinium cations. Although not shown in Figure 3, CsSnI3 and Cs(SnPb)I3 samples 

exhibit an additional peak at BE = 684.0 eV corresponding to the F 1s orbital from SnF2 (see 

Figure S6). Quantitative elemental analysis can be derived from these high-resolution spectra, 

after correcting for SnF2 contribution and considering only the highest energy component of C 

1s. Atomic percentages of all relevant elements are given in Table 1. 

Several observations can be made from Table 1. First of all, FA2SnI6 seems highly degraded as 

only a very low amount of tin is detected. This suggests that this compound is severely 

affected by X-ray radiation and ultrahigh vacuum, leading most likely to the formation and 

subsequent loss of SnI4. For all the other compounds we note that the A:B ratios (where A is 

either Cs or FA and B is either Sn or SnPb) are very close to the expected 1:1 or 2:1 ratios, 

further confirming the material purity already observed by XRD. The same is true for the 

Sn:Pb ratios, which are close to 1:1 in both mixed tin-lead perovskites. The C:N ratios in FA-

based samples are close to the expected 1:2 ratio for FA cations, confirming the assignment of 

the high-BE component of C 1s spectra to FA and, importantly, suggesting that FA is not 

degraded during mechanochemical synthesis. This is not obvious a priori, as FAI is known to 

give different degradation byproducts, such as HCN or others, which could be volatile and 

hence alter the C:N ratio in the sample.[74] Nonetheless, we note that in all samples the 

measured iodine concentration is lower than expected. In regards to this, it should be noted 

that we also observe oxygen (see Figure S7), which is likely due to oxidation upon air 

exposure prior to analysis. Indeed, although the synthesis is carried out under nitrogen (see 

experimental section for details), the samples are exposed to air for a short time before 

characterization. As photoelectron spectroscopies are surface-sensitive techniques (depth of 
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analysis is typically few nanometers), even a small superficial oxidation will have a high 

impact on XPS results. In other words, it is unlikely that a significant formation of SnOx 

affects the bulk of the perovskites here, as these species do not appear in the XRD signal 

(Figure 1). Furthermore, based on literature, the formation of significant SnOx in the bulk 

from air exposure is a process that typically takes several days or weeks.[46] A closer look at 

XPS spectra (Figure 3) allows to further discuss the oxidation states and chemical 

environments of the different elements in all samples. In the case of Cs-based samples, the Cs 

3d spectra show a doublet with Cs 3d5/2 peak located at BE = 724.0 +/- 0.3 eV as well as I 3d 

spectra with I 3d5/2 at BE = 618.7 eV +/- 0.2 eV. These values are consistent with Cs(+1) and 

I(-1) oxidation states expected for inorganic iodide perovskites.[75] The Sn 3d spectra of 

CsSnI3 and Cs(SnPb)I3 show two clear components (two doublets) ascribed to the addition of 

SnF2 in these samples, while Cs2SnI6 shows only one component, as expected. Comparing the 

BE values of Sn(II) and Sn(IV) reported in literature, it seems unlikely to easily distinguish 

them, as these values largely overlap.[76] In the case of Cs(SnPb)I3 we note that Pb 4f spectra 

are asymmetric with a low-BE component whose origin could not be clearly elucidated. 

Importantly, no metallic lead (or tin) was observed in any of the samples (the Sn 3d and Pb 4f 

peak positions for metallic tin and lead are indicated by dashed lines in Figure 2), which could 

otherwise have a detrimental effect on the perovskite optoelectronic properties.[77–79] In the 

case of FA-based samples, the peak at BE = 287.9 +/- 0.2 eV is assigned to the carbon atom of 

FA cations. Accordingly, the N 1s peak is at BE = 400.2 +/- 0.1 eV, corresponding to the N 

atoms of FA. Interestingly, FASnI3 sample shows a second peak at lower BE which may be 

ascribed to deprotonated amines in FA (noted in the graph as C-NH2
0).[80,81] Here, the 

deprotonation of FA is concomitant to the formation of different iodine species, as evidenced 

by the I 3d spectra, which only in the case of FASnI3 shows two different components. It is 

possible that a partial proton transfer from FA to I- occurs. Nonetheless, the complexity of 

iodine chemistry in hybrid perovskites complicate the identification of the exact species 
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formed here.[82] Sn 3d spectra of the three FA-based compounds show a main Sn 3d5/2 peak 

centered at BE = 487.1 +/- 0.1 eV, consistent both with Sn(II) and Sn(IV) iodide 

perovskites.[30] A small component at lower BE appears in the Sn 3d spectrum in the case of 

FA(SnPb)I3 sample, somehow similar to the lead signal in Cs(SnPb)I3. This low BE 

component might be due to oxidation as previously discussed. In summary, aside from 

FA2SnI6 that is degraded under characterization, XPS spectra confirm overall the formation of 

the entire series of compounds, with signals that match with the expected spectra of the 

different perovskites (and the corresponding signal for SnF2 in the CsSnI3 and Cs(SnPb)I3 

samples). 

Optical characterization (diffuse reflectance and photoluminescence) as well as ultraviolet 

photoelectron spectroscopy (UPS) were performed to estimate the energetic positions of the 

valence band, Fermi level and conduction band of these materials (Figure 4). 

All compounds have an absorption onset in the near-infrared (NIR) region, suited for single 

junction solar cells as well as rear absorber in perovskite-perovskite tandem devices. All 

Sn(II)-based compounds have clear Stokes-shifted photoluminescence at room temperature 

(Figure 4), which make them potentially interesting also for near-infrared light-emitting 

diodes. The UPS secondary electron cut-off (Figure 4, middle column) and onset (right 

column) allow us to determine the work function and the energy difference between the Fermi 

level and the top of the valence band, respectively. Combining this information, we are able to 

estimate the characteristic energy levels as presented at the bottom of Figure 4. The addition 

of lead to Sn(II)-based perovskites results in deeper energy levels as compared to the pure-tin 

counterparts, which is consistent with the literature.[83] Furthermore, a red-shift in PL is 

clearly observed from pure-tin FASnI3 to mixed tin-lead FA(SnPb)I3. Such behavior has also 

been noted by others, where mixed tin-lead perovskites were found to have a lower bandgap 

than both pure-tin and pure-lead compositions. [84] Interestingly we do not observe this 

phenomenon in inorganic Cs-based perovskites. The apparent p-type doping in FASnI3 may 
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be ascribed to a partial oxidation of Sn(II) to Sn(IV).[85] On the other hand, mixed FA(SnPb)I3 

seems to be rather n-type. The origin of this effect is not fully elucidated. However, we 

already noted in the discussion of XPS data (Figure 3, blue spectra) that tin appeared to be 

slightly reduced, which might explain the n-type character observed here. Again, these effects 

do not seem to be significant for inorganic Cs-based compounds, as both appear rather 

intrinsic semiconductors. It must be noted though that these perovskites were formed with 

addition of SnF2. We therefore infer that SnF2 helps maintaining the intrinsic nature of the 

semiconductor by preventing oxidation of tin. For Sn(IV) compounds, we clearly see a 

difference from the valence band maximum to the Fermi level (UPS onset, right column) of 

1.5 eV, close to the reported bandgap for the same material.[86] Unfortunately, we cannot 

determine the optical bandgap, due to the smooth absorption onset and lack of 

photoluminescence. As it cannot be lower than 1.5 eV, we take this as the bandgap (it seems a 

reasonable assumption considering that the sample is clearly black; see Figure S8). These 

observations mean that these materials are heavily n-doped. Again, this conclusion is in 

agreement with literature, where Cs2SnI6 has been reported by several groups to be 

intrinsically n-type.[45] 

Eventually, we studied the mobility and lifetime of charge carriers by pulse-radiolysis time-

resolved microwave conductivity (PR-TRMC). In this technique, materials are ionized with a 

high energy electron pulse and, subsequently, the change in conductivity is probed with GHz 

microwaves. If irradiation leads to mobile charge carriers, these will absorb part of the 

microwave power, decreasing the microwave power reflected by the cell.  This decrease in 

microwave power is directly related to the change in conductivity and ultimately to the 

mobility of charge carriers.[87] We note that in most samples, measurements were not possible 

due to high or even complete absorption of the microwaves without irradiation. This is 

indicative of a considerable dark conductivity that hinders the detection of changes in 

conductivity upon irradiation. This behaviour matches with the UPS measurements, where we 
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observe that most samples are doped either with a p-type character, most likely caused by 

oxidation of Sn2+ to Sn4+, or a n-type character. It has been shown in literature that presence 

of low concentrations of dark charge carriers has a strong detrimental effect on the electronic 

properties.[8,11,12,33,36]
 In fact, we are able to observe change of reflection (not quantifiable) that 

is very short-lived (<5ns), which indicates that the generated charge carriers recombine or are 

trapped within the time resolution of the PR-TRMC experiment (see Figure S9).    

Nevertheless, we were able to obtain meaningful results on two compounds: a 3D Sn(II)-

based compound (Cs(SnPb)I3) and a 0D Sn(IV)-based compound (FA2SnI6), which are 

hereafter simply referred to as 3D and 0D samples (Figure 5a). The fact that we can measure 

these samples matches with the UPS measurements, where Cs(SnPb)I3 seems to be an 

intrinsic semiconductor.  This intrinsic character is most likely achieved during synthesis. 

Where decreasing tin content with lead and adding SnF2 suppresses Sn2+ oxidation to Sn4+ 

and as a result decreases the concentration of dark charge carriers. This is also in line with 

reported improved stabilities of tin based perovskites when also lead cations are present.[88] 

As can be seen in Figure 5a, the 3D sample shows a charge carrier mobility is 2 orders of 

magnitude higher compared to the 0D sample (0.2 and 0.004 cm2/Vs, respectively). This is 

not surprising if we consider that the higher dimensionality of the 3D sample leads to a higher 

overlap of molecular orbitals. In both cases, the mobility was not found to significantly 

change when cooling from RT to 173 K. This indicates that the charge carrier mobility is not 

dominated by lattice scattering, but may be controlled by defects.  The mobility of the 3D 

sample is of the same order of magnitude as for 3D lead-based perovskite samples prepared 

without the use of solvents,[89] while it is one to two orders of magnitude lower than 3D lead-

based perovskites prepared by precipitation or single crystals, respectively.[89,90] This points 

out that dry mechanochemical synthesis as performed here might lead to a higher density of 

defects as opposed to solution-processing. Nonetheless, we believe that the synthesis may be 

optimized, for example by reducing the grinding time, which in this case was 5 hours. Such a 
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long time is probably unnecessary to yield phase pure perovskites, and reducing it will likely 

limit detrimental effects of prolonged grinding (i.e. tin oxidation). The time-resolved 

conductivity (Figure 5b) of the 3D sample shows a fast-initial decay followed by a long-tail 

that does not decay to zero, even at very long times. Also, the maximum change in 

conductivity increases with the initial concentration of charge carriers (increase pulse length; 

see Figure S10). This behavior is similar to the observed for 3D MAPbX3 samples,[89] and is 

attributed to second order recombination with a limited concentration of trap states. [89] The 

fast-initial decay is caused by trapping of one of the charges and the long tail signal comes 

from the remaining free charges.[89,90] As for the mobility, the carrier lifetime seems almost 

unaffected by temperature (see Figure S11), indicating that the decay is still dominated by the 

recombination with a similar concentrations of the trap states as at room temperature. In the 

case of the 0D sample, the conductivity signal is very low and decays in less than 50 ns 

(Figure 5b). However, we observe a slight conductivity increase at low temperatures which 

may be related to less thermal vibration of the lattice (see Figure S12). 

3. Conclusion 
 

In conclusion we have been able to synthesize hybrid and inorganic pure-tin and mixed tin-

lead iodide perovskites and vacancy ordered perovskites with excellent phase purity as 

revealed by XRD. Detailed thermal stability studies were carried out revealing that all 

compounds are be stable up to 200 °C, which is compatible with common operational 

conditions in optoelectronic devices. Inorganic perovskites based on Sn(II) were found to be 

stable beyond 400 °C, making them good candidates for single source thermal deposition in 

thin films. Indeed, these compounds show a narrow bandgap suited for photovoltaics and 

near-IR LEDs. The charge carrier mobility was found to be rather low which could be due to 

oxidation during the long ball-milling mechanochemical synthesis. However, we 

demonstrated that the dark carrier conductivity in inorganic 3D Sn(II)-based compounds can 
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be improved by addition of Pb(II) and/or SnF2 during synthesis.  Ongoing work is focused on 

optimizing the preparation conditions, especially reducing the grinding time to an ideal 

duration that will ensure a complete synthesis while avoiding possible detrimental effects. 
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Scheme 1. Crystal structures of CsSnI3 (left) and Cs2SnI6 (right). Green balls represent Cs+ 

ions and orange octahedra represent SnI6 units. Cs2SnI6 crystal structure can be viewed as a 

derivative from CsSnI3 where every other SnI6 octahedra is removed (the oxidation state of Sn 

is consequently +2 in CsSnI3 and +4 in Cs2SnI6). 

 
 

 

 

 

 

A
cc

ep
te

d 
A

rti
cl

ePhys. Chem. C

A
cc

ep
te

d 
A

rti
cl

ePhys. Chem. C 2016

A
cc

ep
te

d 
A

rti
cl

e 2016

M. C. Gélve

A
cc

ep
te

d 
A

rti
cl

e
M. C. Gélvez

A
cc

ep
te

d 
A

rti
cl

e
z-

A
cc

ep
te

d 
A

rti
cl

e
-Rueda, N. Renaud, F. C. Grozema, 

A
cc

ep
te

d 
A

rti
cl

e
Rueda, N. Renaud, F. C. Grozema, 

1

A
cc

ep
te

d 
A

rti
cl

e

1.

A
cc

ep
te

d 
A

rti
cl

e

.

A
cc

ep
te

d 
A

rti
cl

e

Crystal structures of CsSnI

A
cc

ep
te

d 
A

rti
cl

e

Crystal structures of CsSnI

ions and orange octahedra represent SnI

A
cc

ep
te

d 
A

rti
cl

e

ions and orange octahedra represent SnI

derivative from CsSnI

A
cc

ep
te

d 
A

rti
cl

e

derivative from CsSnI3

A
cc

ep
te

d 
A

rti
cl

e

3

A
cc

ep
te

d 
A

rti
cl

e

is consequently +2 in CsSnI

A
cc

ep
te

d 
A

rti
cl

e

is consequently +2 in CsSnI



  

This article is protected by copyright. All rights reserved 

 

 

Figure 1. XRD diffractograms of mechanochemically synthesized tin perovskites (black 

lines) together with reference bulk patterns from Inorganic Crystal Structure Database (ICSD; 

color columns). A broad peak around 2Θ = 26º and marked with an asterisk is visible in most 

diffractograms due to parasitic diffraction from the adhesive tape used to fix the powder 

samples on the substrate (see Figure S1). No reference pattern is available for mixed tin-lead 

perovskites. However, main peaks’ positions match the reference pure-tin counterpart with a 

slight shift to lower angles due to the incorporation of the larger lead cation (see Figure S2).  
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Figure 2. TG (filled area) and DTA (simple line) curves of all compounds in the 40 °C to 

1000 °C range. 

 

Figure 3. High-resolution XPS spectra of all main elements from the different compounds: Cs 

3d, I 3d, Sn 3d, N 1s, C1s, and Pb 4f regions. Additional O 1s and F 1s spectra are given as 

supporting information in Figures S6 and S7. 

 

 

Figure 4. Optical characterization, UPS, and derived energy diagram. 
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Figure 5. Mobility of charge carriers as a function of temperature (a) and change of 

conductivity as a function of time (b) of a Sn(II) 3D perovskite (grey) and a Sn(IV) 0D 

vacancy-ordered perovskite (green). 

 
 
 
Table 1. Atomic percentages of relevant elements based on high-resolution XPS spectra. 

 Cs 

at. % 

I 

at. % 

Sn 

at. % 

N 

at. % 

C 

at. % 

Pb 

at. % 

CsSnI3 23.8 50.6 25.5 - - - 

Cs(SnPb)I3 26.4 50.7 11.5 - - 11.4 

FASnI3 - 25.9 21.2 34.6 17.7 - 

FA(SnPb)I3 - 34.5 9.3 31.0 17.0 8.2 
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Cs2SnI6 28.0 57.3 14.7 - - - 

FA2SnI6 - 26.8 1.2 47.4 24.6 - 
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Dry mechanochemical synthesis of various Sn(II) and Sn(IV) iodide perovskites are reported. 
As-prepared materials show excellent phase purity as determined by X-ray diffraction as well 
as tunable bandgap and photoluminescencence in the near-infrared. Hence, mechanochemistry 
appears as an ideal route to develop low-toxicity materials for optoelectronics in a solvent-
free approach. 
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