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NK cells play an important role in the innate defenses against tumor growth and

metastases. Human NK cell activation and function are regulated by an array of

HLA class I-specific inhibitory receptors and activating receptors recognizing ligands

expressed de novo on tumor or virus-infected cells. NK cells have been exploited in

immunotherapy of cancer, including: (1) the in vivo infusion of IL-2 or IL-15, cytokines

inducing activation and proliferation of NK cells that are frequently impaired in cancer

patients. Nonetheless, the significant toxicity experienced, primarily with IL-2, limited

their use except for combination therapies, e.g., IL-15 with checkpoint inhibitors; (2) the

adoptive immunotherapy with cytokine-induced NK cells had effect on some melanoma

metastases (lung), while other localizations were not affected; (3) a remarkable evolution

of adoptive cell therapy is represented by NK cells engineered with CAR-targeting tumor

antigens (CAR-NK). CAR-NK cells complement CAR-T cells as they do not cause GvHD

and may be obtained from unrelated donors. Accordingly, CAR-NK cells may represent

an “off-the-shelf” tool, readily available for effective tumor therapy; (4) the efficacy of

adoptive cell therapy in cancer is also witnessed by the αβT cell- and B cell-depleted

haploidentical HSC transplantation in which the infusion of donor NK cells and γδT cells,

together with HSC, sharply reduces leukemia relapses and infections; (5) a true revolution

in tumor therapy is the use of mAbs targeting checkpoint inhibitors including PD-1,

CTLA-4, the HLA class I-specific KIR, and NKG2A. Since PD-1 is expressed not only

by tumor-associated T cells but also by NK cells, its blocking might unleash NK cells

playing a crucial effector role against HLA class I-deficient tumors that are undetectable

by T cells.
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INTRODUCTION

Natural killer (NK) cells play a central role in innate defenses against viruses and tumors. They
belong to a family of innate lymphoid cells (ILC) that do not express receptors encoded by
rearranged genes. NK cell function is regulated by an array of inhibitory and activating receptors.
Inhibitory receptors that play a major role in the control of NK cell function are those specific for
HLA-class (Cl)-I molecules. Killer Ig-like receptors (KIRs) recognize allotypic determinants shared
by different HLA-Cl-I alleles, while CD94/NKG2A is specific for the non-classical HLA-E (1). The
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fact that NK cell inactivation is required to spare healthy cells
implied the existence of activating receptors recognizing ligands
on target cells. The prototypes and most important ones in
tumor cell detection and killing are NKp46, NKp44, and NKp30,
collectively called “natural cytotoxicity receptors” (NCRs) (2).
While in an autologous setting all NK cells express one or more
inhibitory receptors for self HLA-Cl-I, in an allogeneic setting,
it may occur that KIRs expressed by a subset of NK cells do
not recognize HLA-Cl-I alleles on allogeneic cells, and the lack
of inhibition may result in killing of target cells (3). NK cells
with these characteristics were named “alloreactive” NK cells.
Although NK cells display a potent anti-tumor activity and
are thought to participate to the control of tumor growth and
metastatic spread, the tumor microenvironment may sharply
inhibit their effector functions (4, 5). This inhibitory effect is
due to the tumor cells themselves as well as to other cells
present in the tumor microenvironment and frequently involves
both the downregulation of activating surface receptors and the
de novo expression of inhibitory checkpoints (primarily PD-
1) (6, 7). In this contribution, we will briefly discuss different
therapeutic strategies (Table 1), which allow to successfully
exploit NK cell-mediated anti-tumor activity as well as novel
promising approaches that may offer important new tools in
cancer treatment.

BOOSTING IN VIVO NK CELLS WITH
IMMUNE STIMULATORY CYTOKINES

In cancer patients, NK cells frequently display an impaired
function (6, 27). Thus, primary strategies in immunotherapy are
aimed to boost in vivo NK cell-mediated antitumor activity. One
approach is based on the in vivo administration of cytokines,
such as IL-2 and IL-15, that determine NK cell activation,
differentiation, and expansion (8, 28–32). IL-2 administration
was approved in the 1990s for the treatment of metastatic RCC

TABLE 1 | Human NK cell-based immunotherapeutic approaches in tumors.

1. Adoptive NK cell therapies

- Infusion of IL-2- or IL-15-activated NK cells or lymphokine-activated lymphocytes

(LAK and CIK) (8–11);

- Infusion of allogeneic “off-the-shelf” CAR-NK cells directed to tumor

antigens (12).

2. NK cells in haplo-HSCT to cure high-risk leukemia

- Transplant of “pure” donor CD34+ cells. NKG2A+ NK cells are detectable after

2 weeks, while KIR+, cytolytic NK cells only after 6–8 weeks. Central role of NK

cells in GvL, especially of “alloreactive” NK cells (13, 14);

- Transplant of αβT- and B cell-depleted mononuclear cells. Donor NK cells and

γδT cells, being present in the graft, are immediately available for the control of

infections and leukemia relapses. Better clinical outcome, particularly in AML

(15–19).

3. mAbs blocking inhibitory checkpoints in NK cells

- The disruption of PD1/PD-L1 interactions unleashes both PD1+ T and NK cells.

Major effect of NK cells in case of HLA-Cl-I− tumors (20–24);

- Blocking of NKG2A expressed by both NK and tumor-infiltrating T cells results in

killing of HLA-E+ tumors (i.e., most tumors) (25, 26);

- Combined blocking of NKG2A and PD1 in case of PD-L1+ tumors (25, 26);

- Combined use of NKG2A-blocking mAb and mAb specific for tumor antigens

(e.g., EGFR): “unlocked” NK cells mediate ADCC (25, 26).

and melanoma patients (33–35). Two major obstacles in IL-2-
based therapy are the dose-associated toxicity (primarily vascular
leakage) and the induction of T regulatory (Treg) cell activation
and expansion, thus resulting in inhibition of NK cell function
(9, 10). Recently, IL-2 variants, with lower affinity for IL-2Rα

subunit (highly expressed by Treg cells), have been designed
(11, 36, 37). In addition, PEGylated IL-2 (also known as NKTR-
214) that binds CD122 (IL-2Rβ), expressed by both T and NK
cells, is able to boost preferentially these cells and their anti-
tumor responses. This therapeutic treatment is currently under
investigation in clinical trials for solid tumors (13). The use
of IL-15 may represent a better therapeutic option as it can
selectively sustain NK cells without inducing Treg expansion.
However, the clinical use of IL-15 is limited because of its short
in vivo half-life (38). Notably, IL-15 induces a rapid expansion
of memory CD8+ T cells, thus favoring anti-tumor activity.
The effect of IL-15 administration combined with checkpoint
inhibitors (anti-CTLA-4 and/or anti-PD-1 mAbs) is currently
under investigation in patients with cancers refractory to other
therapies. To improve the anti-tumor effect of NK cells, ALT-803,
an IL-15 superagonist complex, is also being assessed in phase
I studies either alone (14) or in combination with checkpoint
inhibitors (39). An emerging approach is based on bi- or tri-
specific killer cell engagers (BiKEs and TriKEs) binding CD16
or NKG2D on NK cells and tumor antigens, thus favoring the
interaction between NK cells and tumor cells. Notably, “TriKEs”
also contain a modified IL-15 linker to improve NK cell survival
and proliferation (15, 40, 41). An additional prospect is the use
of IL-12, a molecule that enhances cytokine production and
cytotoxicity by NK cells (16).

ADOPTIVE IMMUNOTHERAPY WITH
CYTOKINE-INDUCED NK CELLS

Clinical trials have been attempted since 1980s in which NK cell-
containing cell suspensions isolated from patients withmetastatic
melanomas were expanded in vitro in the presence of IL-2
and infused back into the patients. While a relevant effect
was detected in some cases, primarily in metastatic lesions
such as lung metastases, other tumor localizations were not
affected. These studies were important because they provided
the first evidence that such “lymphokine-activated killers” (LAK)
could exert their anti-tumor effect also in vivo. Relevant
toxicity was mostly related to the concomitant administration
of high dosages of IL-2 (17, 18). Evolutions of such pioneering
studies, based on adoptive cell therapy, were the use of IL-
15 and, recently, the use of NK cells engineered with chimeric
antigen receptor (CAR, see below). Although NK cells to
be used in adoptive tumor therapy are usually derived from
peripheral blood (PB), other sources have also been proposed.
For example, the pleural fluid of primary or metastatic tumors
contains high numbers of functional NK cells (19), which
acquire strong cytotoxicity upon short culture intervals with
IL-15 or IL-2 in vitro. Since large volumes of such fluids
are routinely discarded, NK cells could be recovered and
reinfused systemically or in the pleural cavity after in vitro
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culture with IL-15 (8). Such loco-regional treatment might
contribute to the control of pleural localizations of the tumor.
In general, the infusion of potent effector cells with anti-tumor
activity is an important approach in tumor immunotherapy
because it may greatly amplify the effect of endogenous cells.
The relevance of infusing mature effector cells in cancer
patients is also underscored in the αβT- and B-cell-depleted
haploidentical hematopoietic stem cell transplantation (HSCT),
in which leukemia relapses and infections are sharply reduced
as compared to the HSCT setting with “purified” CD34+

cells, thanks to the co-infusion of mature γδT cells and NK
cells (see below).

ROLE OF NK CELLS IN THE THERAPY OF
HIGH-RISK LEUKEMIA IN
HAPLOIDENTICAL HSCT

HSCT represents the life-saving therapy for acute leukemia
poorly responsive to chemotherapy, relapsing, or with adverse
cytogenetic characteristics. Unfortunately, it is possible to find
a HLA compatible donor only for ∼60% of patients (42, 43).
Thus, T-depleted haplo-identical HSCT has been developed in
an attempt to rescue those patients for whom no alternative
therapeutic option is available. Haplo-HSCT is based on the
infusion of “megadoses” of purified CD34+ cells extensively
depleted of T cells in order to avoid life-threatening GvHD.
In this transplantation setting, donor NK cells may express
KIR that do not recognize any of the HLA-Cl-I alleles of
the patient (44, 45). Notably, NK cells are the first donor
lymphoid cells detectable in patients’ PB after transplantation.
In pediatric patients, this occurs after ∼2 weeks. However, such
NK cells are represented by relatively immature CD56bright cells,
expressing NKG2A but not KIR (KIR expression is required
for NK cell alloreactivity). Appearance of mature KIR+ NK
cells requires an additional 4–6 weeks. In this T-depleted HSCT
setting, NK cells play a major role in graft-vs.-leukemia (GvL)
(46). The anti-leukemia effect has been related to NK cell
alloreactivity in different studies, pioneered by Ruggeri et al.,
in adult AML (20, 21, 45). Indeed a clear correlation was
found between the frequency of alloreactive NK cells and the
clinical outcome (22, 44). Of note, a subset of NK cells derived
from CMV-seropositive donors could undergo expansion in
transplanted patients upon CMV reactivation after HSCT. These
NK cells expressed NKG2C, CD57, and displayed epigenetic
modifications identical to those present in memory T cells. These
characteristics confer to NK cells a strong cytolytic activity,
including a “memory-like” behavior in response to NKG2C
triggering, and are associated to a better clinical outcome (23–
25, 47, 48). In pediatric patients receiving “megadoses” of purified
CD34+, the survival probability at 5 years was very good for
patients with high-risk ALL, reaching over 70% in the presence
of NK alloreactivity and∼40% in its absence, the overall survival
being ∼60%. In patients with AML, survival reached ∼40% in
case of NK alloreactivity, but only ∼20% in its absence, the
overall survival being ∼30%. Notably, all deaths occurred early,
during the first few weeks/months after transplant, primarily due

to leukemia relapses or infections (20, 49). In an attempt to
fill the temporal gap between transplant and the generation of
mature KIR+ alloreactive NK cells, a novel graft manipulation
has been developed. This is based on the selective depletion of
TCR αβ T cells (responsible of GvHD) and B cells (to prevent
B cell malignancies in immunocompromised individuals). With
this graft manipulation, the infused mononuclear cells also
contain, in addition to HSC (including not only CD34+ but also
CD34− precursors), effector cells such as mature (CD56dim) NK
cells and TCRγδ T cells, both capable of anti-leukemia activity
(12, 26, 50). In addition, the graft contained different myeloid
cell types, including monocytes and low-density monocytic
or polymorphonuclear (PMN) myeloid cells (51, 52). The
immediate availability of cells capable of killing leukemia blasts
and controlling virus reactivation or infections had a major
positive impact. Indeed the overall survival probability was∼70%
not only for ALL but also for AML patients. An unexpected
finding was that NK cell-mediated alloreactivity did not appear
to play a significant role (49). While it is conceivable that the NK
cell function may be offset by a predominant GvL effect of γδT
cells (greatly expanded in vivo thanks to the use of zoledronic
acid) (53), we could not exclude that also other mechanisms
may impair NK alloreactivity. Indeed we recently found that
myeloid-derived suppressor cells (MDSC), particularly abundant
in the graft, exert a potent inhibitory effect on NK cell function
(54). These data suggest a possible effect also in vivo and offer
a clue for applying an additional step in the graft manipulation
to further remove MDSC. The rescue of NK cell function
may contribute to increase the clinical outcome, particularly
by preventing leukemia relapses, still representing ∼25% of
total deaths.

Taken together, these data support the notion that NK and
other cells of the innate immunity may play a relevant role in
the therapy of high-risk leukemia. Notably, HSC from different
sources give rise to other innate lymphoid cells (ILC), particularly
ILC3. ILC3 cells contribute to tissue repair and regeneration of
lymphoid tissues and are likely to play amajor role in the integrity
of such tissues severely compromised by the chemo/radiotherapy
given to patients prior to HSCT (55).

BLOCKING OF INHIBITORY
CHECKPOINTS/RECEPTORS TO
UNLEASH NK CELLS

NK cells express inhibitory receptors such as the HLA-Cl-I-
specific KIRs and CD94/NKG2A that may function as true
inhibitory checkpoints (56). The lack of interactions with
their cognate HLA class I ligands on target cells leads to
cytolytic activity and cytokine production. This may occur in
an autologous environment in the case of tumors or viral
infections, as well as in an allogeneic setting such as the
haplo-HSCT (see above).

While KIRs and NKG2A are constitutively expressed by
mature NK cells, the expression of other inhibitory checkpoints
involved in the homeostasis of immune responses, including
PD-1, TIGIT, TIM-3, and CD96, is inducible (57). Such
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de novo-expressed checkpoint regulators have been shown to
inhibit the NK cell function upon interaction with their ligands
on tumor cells (19, 58). We will focus on PD-1 since it is a
major checkpoint receptor involved in the control of immune
responses, and the therapeutic use of blocking antibodies
disrupting the PD-1/PD-L1 axis represents a major breakthrough
in the cure of highly aggressive tumors.

While PD-1 expression has been first reported in T
lymphocytes, recent studies revealed that, in pathological
conditions, such as CMV infections and tumors, it may be
expressed also by NK cells. The expression of PD-1 by NK cells
is controversial; indeed PB-NK cells derived from both healthy
donors (HD) and neoplastic patients were originally reported to
express low levels, if any, of PD-1. On the other hand, PD-1bright

NK cells were found in the PB and, more abundantly, in ascitic
fluid of ovarian carcinoma patients (58), as well as in pleural
effusions of patients with primary andmetastatic tumors (19) and
in Hodgkin lymphoma. Notably, both PD-1 mRNA and PD-1
protein are present in the cytoplasm of NK cells isolated fromHD
(59), although the molecular mechanisms leading to its surface
expression are still poorly defined.

Under physiological conditions, PD-1 acts as a brake in the
regulation of immune responses, playing a relevant role in the
induction and maintenance of T cell tolerance. However, in
cancer patients, it may impair T cell- and NK cell-mediated
responses against tumor cells. In these cases, immunotherapy
with mAbs disrupting the PD-1/PD-L1 interaction has
shown great effectiveness, particularly in melanoma and
lung carcinomas with responses to therapy reaching 20–40%
in different clinical trials. Importantly, therapeutic blockade
of inhibitory checkpoints in NK cells may be effective also
in HLA-Cl-Ineg tumors, a condition that frequently occurs in
metastatic carcinomas (as a result of tumor escape from cytolytic
T cell-mediated control) (60, 61). Nevertheless, the majority of
patients do not benefit from the anti-PD-1/PD-L1 treatment.
Thus, prediction of clinical responses to PD-1/PD-L1 blockade
represents a major issue also in view of important side effects and
of the high treatment cost. In this context, an important approach
is the evaluation of PD-L1 expression on tumor cells. However,
its predictive value is still unsatisfactory due to several technical
limitations, such as the use of different mAbs, different diagnostic
materials (biopsies vs. surgical specimen, cytology), and different
operators (62–64). For this reason, current researches are aimed
to identify additional checkpoints to be targeted, either alone or
in combination. In this context, the actual potential of blocking
TIGIT, TIM-3, CD96, or LAG-3 is currently under investigation.
Importantly, a recent study by Vivier’s group has highlighted
the use of anti-CD94/NKG2A blocking mAb in tumor therapy
(65). NKG2A+ cells represent >50% of PB-NK cells and may
express either the CD56bright or the CD56dim phenotype. While
CD56bright NKG2A+ NK cells are primarily cytokine producers,
CD56dim NKG2A+ cells also display potent cytolytic activity
and DC editing capability (66). NKG2A is also expressed by
T lymphocytes, either upon prolonged stimulation via TCR
(67) or upon exposure to TGF- β (68), an immunosuppressive
cytokine often present in the tumor microenvironment. This
de novo NKG2A expression may lead to the impairment of T

cell function, including anti-tumor activity (67). Accordingly,
blocking of NKG2A can unleash not only NK cells but also
tumor-infiltrating T cells with potential anti-tumor activity. In
addition, HLA-E, the NKG2A ligand, is expressed in many highly
aggressive tumors (e.g., lung, head and neck, colon, pancreas,
and liver), and most cells in the tumor are HLA-E+. Accordingly,
blocking of NKG2A may result in potent anti-tumor effect in
different cancers. In tumors expressing both HLA-E and PD-L1,
the combined blocking of NKG2A and PD-1/PD-L1 axis can
enhance NK cell cytotoxicity and rescue T cell function. Notably,
in a murine model, this combined treatment also resulted
in T cell proliferation and T cell memory induction. Finally,
in HLA-E+ tumors, expressing tumor-associated antigens,
NKG2A blockade could increase the therapeutic efficacy of
other mAbs (for example, anti-EGFR mAb), favoring the NK
cell triggering via the CD16-mediated antibody-dependent
cytotoxicity (ADCC) (65, 69). These different scenarios
involving NKG2A blockade are promising because they may
occur in many tumors and involve important synergies with
other checkpoint inhibitors or therapeutic antibodies directed
to tumor antigens. In addition, these studies emphasize the
importance of harnessing NK cell-mediated anti-tumor activity
while, so far, the immunotherapeutic strategies have been mostly
focused on potentiating T cell anti-tumor responses.

CONCLUDING REMARKS

It is now clear that cells of the innate immunity, in particular NK
cells, play a relevant defensive role in the control of tumor growth
and metastases. As shown by many experimental evidences, both
in vitro and in vivo, such anti-tumor effect is related both to
direct cytolytic activity and to the production of cytokines that
activate other effector cells and promote useful TH1 adaptive
responses. Therefore, therapeutic approaches that trigger and/or
reconstitute NK cell function and proliferation are crucial
in tumor immunotherapy. In addition, NK cells engineered
with CAR, targeting tumor antigens, are highly promising.
Indeed CAR-NK cells could complement or even replace CAR-
T cells in view of their particularly potent cytolytic activity
and their peculiar homing capability (70–72). Importantly, in
case of loss of the targeted tumor antigen, CAR-NK cells
could still exert their anti-tumor activity, particularly in the
absence of KIR/HLA ligand matching. In addition, CAR-NK
cells, genetically modified to over-express either molecules
mediating tumor killing or cytokines able to sustain NK cell
proliferation/function (e.g., IL-15), may represent a further
valuable tool for adoptive cell therapy of cancer (73, 74). Notably,
since NK cells do not cause GvHD, they may be obtained
from unrelated donors, thus overcoming major limitations of
autologous T cell therapy (time needed for preparation and
high costs) and providing a rapid access to an “off-the-shelf ”
life-saving therapy. Indeed given the possibility to better plan
treatments with standardized approaches and appropriate cell
numbers, donor-derived allogeneic CAR-NK cells may represent
the next generation of cell-based therapies of cancer. Table 2
summarizes recent or ongoing clinical trials based on the use of
adoptively infused NK cells.
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TABLE 2 | Selected recent/ongoing trials of NK-based adoptive therapy of cancer.

Identifier Trial Status Phase NK cells/drug Tumor

NCT00900809 QUILT-3.018: NeukoplastTM (NK-92) for the

treatment of refractory or relapsed acute

myeloid leukemia

Recruitment

completed

I NK-92 Acute myeloid leukemia

NCT03027128 QUILT-3.028: study of haNKTM for infusion in

subjects with metastatic or locally advanced

solid tumors

Recruitment

completed

I NK-92 Solid tumor

NCT03383978 Intracranial injection of NK-92/5.28.z cells in

patients with recurrent HER2-positive

glioblastoma (CAR2BRAIN)

Recruiting I NK-92/5.28.z Glioblastoma

NCT02573896 Immunotherapy of relapsed refractory

neuroblastoma with expanded NK cells

Recruiting I CAR-NK-Ch14.18 lenalidomide Neuroblastoma

NCT02280525 Cord blood Natural Killer (NK) cells in

leukemia/lymphoma

Active, not

recruiting

I NK Cells, lenalidomide, rituximab

(anti-CD20), fludarabine,

cyclophosphamide, cytarabine

Leukemia

NCT02481934 Clinical trial of expanded and activated

autologous NK cells to treat multiple myeloma

(NK-VS-MM)

Completed I NK Cells, lenalidomide, bortezomib Multiple myeloma

NCT03415100 Pilot study of NKG2D-ligand targeted CAR-NK

cells in patients with metastatic solid tumors

Recruiting I CAR-NK cells targeting NKG2D

ligands

Solid tumors

NCT01974479 Pilot study of redirected haploidentical natural

killer cell infusions for B-lineage acute

lymphoblastic leukemia

Suspended I Anti-CD19 redirected NK cells B-cell acute lymphoblastic leukemia

NCT03579927 CAR.CD19-CD28-zeta-2A-iCasp9-IL15-

transduced cord blood NK cells, high-dose

chemotherapy, and stem cell transplant in

treating participants with B-cell lymphoma

Not yet

recruiting

I/II Cord blood-NK Cells

Autologous HSCT carmustine

Cytarabine, etoposide, filgrastim,

melphalan, rituximab (anti-CD20)

CD19 positive, mantle cell lymphoma, recurrent diffuse large

B-cell lymphoma, recurrent follicular lymphoma, refractory

B-cell non-Hodgkin lymphoma, refractory diffuse large B-Cell

lymphoma, refractory follicular lymphoma

NCT03056339 Umbilical and Cord Blood (CB) derived

CAR-engineered NK cells for B lymphoid

malignancies

Recruiting I/II iC9/CAR.19/IL15 transduced CB-NK

Cells, fludarabine,

cyclophosphamide, mesna, AP1903

B-lymphoid malignancies, acute lymphocytic leukemia,

chronic lymphocytic leukemia, non-Hodgkin lymphoma

NCT02839954 CAR-pNK cell immunotherapy in MUC1

positive relapsed or refractory solid tumor

Unknown I/II Anti-MUC1 CAR-NK cells Hepatocellular carcinoma, NSCLc, pancreatic carcinoma,

triple-negative invasive breast carcinoma, malignant glioma of

brain, colorectal carcinoma, gastric carcinoma

NCT02892695 PCAR-119 bridge immunotherapy prior to

stem cell transplant in treating patients with

CD19 positive leukemia and lymphoma

Unknown I/II Anti-CD19 CAR-NK cells Acute/chronic lymphocytic leukemia, follicular lymphoma,

mantle cell lymphoma, B-cell prolymphocytic leukemia,

diffuse large cell lymphoma

NCT02742727 CAR-pNK cell immunotherapy in CD7 positive

leukemia and lymphoma

Unknown I/II Anti-CD7 CAR-NK cells Acute myeloid leukemia, precursor T-cell lymphoblastic

leukemia-lymphoma, T-cell prolymphocytic leukemia, T-cell

large granular lymphocytic leukemia, peripheral T-cell

lymphoma, angioimmunoblastic T-cell lymphoma, extranodal

NK/T-cell lymphoma, nasal type enteropathy-type intestinal

T-cell lymphoma
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