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Abstract
Random-based learning paradigms exhibit efficient training algorithms and remarkable generalization performances.

However, the computational cost of the training procedure scales with the cube of the number of hidden neurons. The paper

presents a novel training procedure for random-based neural networks, which combines ensemble techniques and dropout

regularization. This limits the computational complexity of the training phase without affecting classification performance

significantly; the method best fits Internet of Things (IoT) applications. In the training algorithm, one first generates a pool

of random neurons; then, an ensemble of independent sub-networks (each including a fraction of the original pool) is

trained; finally, the sub-networks are integrated into one classifier. The experimental validation compared the proposed

approach with state-of-the-art solutions, by taking into account both generalization performance and computational

complexity. To verify the effectiveness in IoT applications, the training procedures were deployed on a pair of com-

mercially available embedded devices. The results showed that the proposed approach overall improved accuracy, with a

minor degradation in performance in a few cases. When considering embedded implementations as compared with

conventional architectures, the speedup of the proposed method scored up to 209 in IoT devices.

Keywords Internet of Things � Random-based neural networks � Embedded systems

1 Introduction

Edge computing and Internet of Things (IoT) are crucial

areas in modern electronics [26, 42], involving important

domains such as healthcare [39, 41], intelligent trans-

portation [40], and multimedia communications [38]. Deep

learning paradigms [14] prove effective in those applica-

tions, but resource-constrained devices cannot support the

training process [19], and even deploying trained models in

embedded systems still remains a challenging task.

Traditional approaches such as single-layer feed-for-

ward neural networks (SLFNNs) and support vector

machines (SVMs) can be trained by involving a relatively

small amount of computational resources. Random-based

networks (RBNs) such as random radial basis functions

[28], random vector functional link (RVFLs) [31], extreme

learning machines (ELMs) [17, 18], and weighted sum of

random kitchen sinks [36] offer interesting opportunities.

The major advantage of the latter paradigms is that the

training process requires to solve a system of linear equa-

tions, and can therefore be supported by limited resource

devices. In addition, the small number of hyper-parameters

that characterize those models reduces the complexity of

model fitting. As a result, this approach might provide a

viable option for custom ad hoc applications, featuring the

capability of automatic tuning in compliance with the

users’ needs.

Several, effective solutions have been proposed in the

literature for a variety of applications based on these

models [5, 22, 52], yet the deployment of stand-alone

solutions on inexpensive, resource-constrained devices still

remains tricky [20], for a pair of reasons.
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First, the proposed designs mostly rely on reconfigurable

platforms such as field programmable gate arrays (FPGAs)

[9, 10, 37, 50], which may prove quite expensive. By

contrast, implementations on micro-controllers or micro-

computers have drawn limited attention, in spite of the fact

that these devices best fit IoT applications and remarkably

shrink the time-to-market of commercial products [1, 17].

Second, the existing approaches in the literature aimed

to improve the generalization capabilities of RBNs, by

including some strategy to select effective neurons in the

eventual predictors. This often went with a parallel

increase in computational costs. For instance, an opti-

mization problem favored sparse solution and removed

ineffective neurons [29]; multiple sparse regression and

leave-one-out mechanisms took out the least informative

neurons. The pruning process proved computationally

demanding and added some hyper-parameters to the

underlying optimization problem. Likewise, recent

attempts [11, 34] to reduce the number of inactive neurons

by a light model selection scheme brought about some

increase in the computational cost of training. Biologically

inspired optimization stimulated self-adaptive evolutionary

ELM [4], dolphin swarm ELM [45], genetic ensemble of

ELM [47], particle swarm optimization-based ELM [46],

and artificial immune system-based ELM [44]. These

approaches all adopted nature-inspired strategies to

enhance the classifiers generalization abilities, but overall

proved computationally demanding, especially because

they mostly involved non-convex optimization problems.

Recent advances in deep learning models [43] intro-

duced novel regularization techniques that improved over

traditional methods and boosted specific applications (e.g.,

smart IoT devices). Within that context, dropout regular-

ization is a popular technique for deep network training

[43]: the underlying idea is that a network should represent

an input sample in several ways, thus yielding a robust

representation of the sample itself. This is attained by

switching off a varying subset of neurons during each

iteration of the gradient descent optimization algorithm.

This mechanism has been applied successfully to ELMs

[21] by adding a regularization term to the basic cost

function, again with a consequent increase in the compu-

tational complexity of training. In [51], an ensemble

implemented a dropout mechanism and applies fuzzy logic

to combine the outputs of the individual classifiers. Similar

approaches [23, 25, 27] combined ensemble mechanisms

with random-based networks. These works privileged the

predictors generalization performances over the computa-

tional costs of training.

This paper describes a hardware-friendly dropout train-

ing strategy for RBNs, whose targets are resource-con-

strained devices with non-varying hardware architectures,

such as micro-controllers. As compared with the existing

literature, the paper presents a procedure that limits the

computational cost of the training phase on these devices.

The proposed approach determines the eventual linear

predictor for a network with N hidden neurons by merging

an ensemble of Q linear predictors; each element of the

ensemble is a network holding ~N\N neurons. Figure 1

outlines the underlying architecture. The contribution of

each neuron (i.e., its weight) in the eventual network

results from the summation of the non-dropped corre-

sponding weights in each sub-network.

As compared with the methods cited above

[23, 25, 27, 51], this schema exhibits a hybrid ensem-

ble/dropout training procedure, which best exploits the

regularization properties of the dropout process, while

limiting the computational cost of the training process.

The empirical validation on a set of eight well-known

benchmarks and three real-world datasets recently used to

test IoT algorithms confirmed that the proposed method

could yield a satisfactory trade-off between generalization

performances and hardware requirements for training. To

prove the effectiveness of the electronic design, the train-

ing algorithm was implemented on a pair of low-power,

resource-constrained devices, namely the Broadcom

BCM2837B0 Quad–core Cortex-A53, and an Allwinner

H3, Quad–core Cortex-A7.

1.1 Contribution

The major contributions of the approach described in this

paper can be summarized as follows:

• A novel training algorithm for RBN classifiers, featur-

ing a low-cost optimization procedure that yet preserves

the generalization ability of the eventual predictors.

• A design strategy to support the training of RBNs in

embedded devices.

• For a given training set and a specified network size, an

analytical formulation of the cost function yields a

Fig. 1 Schematic description of the low-cost training procedure
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preliminary assessment of the required number of

operations when implemented in commercial devices.

• The demonstration of the method effectiveness in two

main stream devices for IoT applications and 11 real-

world benchmarks.

The paper is organized as follows: Sect. 2 reviews both the

ELM model and the dropout regularization scheme. Sec-

tion 3 illustrates the novel training strategy, also in com-

parison with related works. Sections 4 and 5 report on the

experimental results, whereas some concluding remarks are

made in Sect. 6.

2 Background

2.1 Extreme learning machine

The ELM model features a vast, long-standing literature

within the existing RBN approaches. Let X be the input

domain (typically, X 2 RD, D 2 Nþ), while T ¼
fðx; yÞi; x 2 X ; y 2 f�1; 1g; i ¼ 1; . . .; Zg denotes a

labeled training set drawn i.i.d. from a fixed, unknown

distribution, P.

The parameters of the hidden layer ðbj 2 RD; bj 2
RÞ; j ¼ 1; . . .;N are random; hence, the layer implements a

fixed mapping of the input space, X , into RN . The ELM

training process optimizes the output weights x 2 RN by

solving a regularized least square (RLS) problem in the

remapped space [17]. Let H denote the activation of the

hidden layer as a Z � N matrix, where hij ¼ hjðxi; bj; bjÞ is
the activation of the jth neuron for the ith input sample and

Z is the number of samples in the training set. Then, the

associate learning problem can be expressed as

min
x

fky�Hxk2 þ kkxk2g ð1Þ

When Z �N, one has:

x ¼ HTðkI þHHTÞ�1y ð2Þ

Conversely, when Z[N, one has:

x ¼ ðkI þHTHÞ�1HTy ð3Þ

In the following, it will be assumed Z[N without loss of

generality. The eventual classifier can be written as

y ¼ sign
XN

j¼1

xjhjðxi; bj; bjÞ
 !

: ð4Þ

2.2 Dropout regularization

The dropout technique was first introduced in [43] to tackle

the overfitting problem, which affects the training of fully

connected networks when adopting iterative algorithms.

For a single-layer, fully connected network trained with

a gradient descend algorithm, the quantity Ht will denote

the activation of the hidden layer at the tth iteration of the

training process. The dropout procedure ignores a subset of

neurons at each training iteration that subset varies from

one iteration to another. A vector m 2 f0; 1gN of Bernoulli

random variables keeps track of such mechanism: at each

iteration, the variable mj {j = 1,...,N} takes on the values

f1; 0g with probabilities p, 1� p, respectively. At iteration

t, the vector mt is drawn at random, and it multiplies ele-

ment-wise the columns of matrix Ht. Thus, the contribu-

tions of all neurons whose multipliers in mt are zero nullify

for that iteration.

A major advantage of dropout is that the resulting net-

work actually represents the (sparse) average of an

ensemble of smaller networks; this notably simplifies the

overfitting problem. Moreover, the dynamic exclusion

mechanism makes it less likely that an input sample strictly

corresponds to one specific neuron of the network. As a

consequence, the solution of the optimization problem gets

more robust even when a specific neuron is removed.

2.3 Dropout extreme learning machine

Iosifidis et al. [21] recently applied the concept of dropout

regularization to extreme learning machines and proposed

an augmented loss function to set the learning process:

L ¼ 1

2
trðxTSxÞ þ c

2
ky�Hxk2 þ k

2NT

XNT

t¼1

kĤtxk2 ð5Þ

The first term in the expression (5) aims to regularize the

output weights x and takes into account the geometrical

information of the input space through the use of matrix S;

this term is not related to the dropout mechanism. The

conventional mean square error characterizes the second

term. The third term takes into account the NT sub-net-

works; it includes the matrix Ĥ ¼ H �H0, where H0 is

obtained from matrix H by setting a set of rows to 0 and is

expected to introduce benefits of dropout mechanisms into

the eventual classifier. The weighting hyper-parameters

c and k balance the contributions of the corresponding

terms.

The minimum of (5) is written as

x ¼ HTH þ k
c
R1 þ

1

c
S

� ��1

HTy ð6Þ

where
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R1 ¼
1

NT

XNT

t¼1

ĤT
t Ĥt ð7Þ

The summation becomes an expectation when NT ! 1;

hence, one has

R1 ¼ ðHTHÞ � P ð8Þ

where P ¼ ½ðpTpÞ� � 1T1� I� þ ½ð1TpÞ � I�; here p is a row

vector with the dropout probability of each neuron, 1 is a

row vector whose elements are all equal to 1, and � denotes

the element-wise product.

The formulation (5) leads to a closed-form solution:

x ¼ ½HTH� � 1T1þ k
c
P

� �
þ 1

c
S

� ��1

HTy ð9Þ

It is worth noting that—in terms of asymptotic computa-

tional complexity—this solution exhibits the same com-

plexity of the expression (3). Section 3.2 analyzes the

associate computational costs in detail.

3 Constrained ensemble-based training
procedure

3.1 Dropout and local ensemble for efficient
training

The first step of the training procedure complies with the

basic ELM model: a set of N neurons remaps the training

set, T , into a space H 2 RZ�N . The quantities Z and N set

the size of the matrix H.

The constrained ensemble-based approach now applies a

sub-sampling of the matrix H. At each step q of the sub-

sampling process, a subset of rows ~Z and columns ~N are

drawn at random and considered to evaluate the cost

function. The idea of using a subset of ~N neurons intro-

duces the dropout mechanism. This leads to a reformulated

training problem:

min
~xq

k~yq � ~Hq ~xqk2 þ kk ~xqk2
n o

; q ¼ 1; . . .;Q: ð10Þ

The reduced vector of target classes, ~yq, is obtained by

removing from y the target values associated with the rows

that have been disregarded in H. Reducing the size of the

input set clearly speeds up training. In addition, by sub-

sampling the training set one limits the correlation among

predictors, thus enhancing the generalization performance

of the overall ensemble.

To clarify the advantages of the sub-sampling process,

one might rewrite the optimization problem (10) in terms

of the full matrix:

min
x0

q

y0q �H0
qx

0
q

���
���
2

þkkx0
qk

2

� �
; q ¼ 1; . . .;Q: ð11Þ

In the matrices H0
q 2 RZ�N and y0q 2 RZ , the elements

corresponding to the rows/columns disregarded in the qth

sub-sampling iteration (10) nullify. Thus, the training

process (11), characterized by explicit sparseness, involves

a matrix H0
q with size Z � N. By contrast, the formulation

(10) just requires to train Q predictors, each associated with

one of Q sub-problems. To obtain the solution x0
q of the

complete problem (11), one augments each vector ~xq by

introducing null elements in correspondence of those

neurons that had been disregarded in the sub-sampling step.

Figure 2 illustrates the computation of x0
q from xq, in a

demo network with N ¼ 8 neurons. In the example, the

sub-sampling procedure shrinks the number of neurons to
~N ¼ 5, and the training algorithm works out the predicted

values ~xq for the 5 neurons. The overall predictor x0
q is

then worked out by padding the solution with zeros in

correspondence of the indices that have been excluded by

the sampling process.

The eventual predictor for the explicit space H is

obtained by summing up the Q linear predictors x0
q:

f ðxÞ ¼ hðxÞx� ¼
XN

n¼1

hnðxÞ
XQ

q¼1

x0
n;q

where hðxÞ ¼ fh1ðx; b1; b1Þ; . . .; hNðx; bN ; bNÞg
ð12Þ

The overall vector x� is assembled at the end of the

training process; hence, the computational cost of the

network training during the inference phase remains

unaffected, as compared with the basic ELM model.

Although the eventual predictor might appear similar to

a local ensemble, as in dropout regularization [43], the

proposed solution exhibits a few computational advan-

tages. First, the Q sub-networks all share the same input

space; as a result, the Q matrices ~Hq can all be derived

from H, which is only computed once. This reduces the

Fig. 2 Example showing the sub sampling mechanism and the

conversion from ~xq
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load that would be required by the explicit mapping of ~Hq

in each predictor. In addition, the overall prediction results

from the activation of one network rather than by adding

the predictions of all sub-networks. As a consequence, the

eventual prediction inherently embeds a weighting mech-

anism that characterizes refined ensemble strategies.

Algorithm 1 outlines the overall training procedure.

Figure 3 illustrates Algorithm 1 in a graphic form. The

three boxes in the graph correspond to the three steps of the

algorithm. After remapping the training data (Mapping box

in the figure), the matrix H is sub-sampled Q times and the

Q optimization problems are solved independently

(Learning box). The schema highlights the parallel

computations of the simpler Q problems, which can

therefore be supported by resource-constrained devices by

means of multiprocessing. The final step (Output box)

merges the individual linear separators to work out the

overall predictor x�.

3.2 Analysis of computational cost

Several issues hinder the training of a SLFNN on resource-

constrained devices. The expression (3) sets the computa-

tional cost for both the standard L2 regularized ELM and

the proposed approach. Nonetheless, solving (9) involves

Fig. 3 Flow graph of Algorithm

1

Algorithm 1 Drop out ensemble based learning algorithm
Input

• a labeled training set T = {(x, y)i; i = 1, ..., Z}
• number of neurons N
• number of iteration Q
• number on neurons subset Ñ
• number on training sample subset Z̃

0. Initialize
initialize a pool of N random neurons

1. Mapping
remap all the patterns x ∈ T by using the random neurons

h(x) = {h1(x, β1, b1), ..., hN (x, βN , bN )}

2. Learning
for q=1; q=<Q; q++ do

extract random sample H̃ ∈ H, ỹ ∈ y

train a linear predictor: ω̃q = (λI + H̃
T

H̃)−1H̃
T

ỹ
compute equivalent solution ω0

q
end for

3. Output compute linear predictor in the space

ω∗ =
Q

q

ω0
q
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an additional computational overhead; at the same time,

memory occupation and latency bring about the major

constraints and are affected by multiple factors.

3.2.1 Input data remapping

The first step in RBN training is the remapping of the input

data, which can be formalized as

H ¼ signðXtrain � bþ repmatðb; ½Z; 1�ÞÞ ð13Þ

where b 2 RZ�N and b 2 RN�1 are the network parameters,

and the repmat operator just appends the bias value, b, to

each training datum. The number of multiplications and

additions scales as OðZ � N � DÞ. When adopting linear

approximations [30], the computation of N � N nonlinear

terms requires a minimum of 2� N � N additional oper-

ations. The number of operations increases if one involves

more accurate approximations.

3.2.2 Optimization

Then, one tackles the actual optimization problem in the

remapped space. Two main sub-steps determine the asso-

ciate computational time: the matrix multiplication HTH

and the solution of the associate system of linear equations.

Different strategies can apply depending on the hardware

resources available: for example, the matrix multiplication

can be carried out in parallel.

In the ideal case of unbounded computational resources,

the matrix multiplication can complete in two clock cycles:

first, a set of Z parallel HW units carry out individual inner

products (to compute each element of the result); then, the

resulting individual terms feed an adder circuit having

Z inputs. By using N2 of such product/adder blocks and

assuming that each multiplication/addition completes in 1

clock cycle, the overall process completes in 2 clock

cycles. Such an unrealistic solution just sets an upper

bound to timing performance. Conversely, in an opposite,

worst-case HW configuration including one floating point

unit, the best known computational bound is OðN2:37286Þ
[24] for a pair of square matrices. Again, such a setup

seems unrealistic because the largest term in the compu-

tational cost scales as aN2:37286, where a[ [N2:37286 for

reasonable values of N. As a consequence, the method

proposed in [24] becomes convenient only when the

matrices are asymptotically large. The literature offers

several practical approaches, based on the number of

computational units, memory structures, and memory size.

Conventional solutions rely on the Strassen matrix multi-

plication algorithm, which scales as OðN2:807Þ [16]. A

speedup is obtained, for square input matrices, when the

matrix size is larger than 100; that algorithm also scales

efficiently for the rectangular matrices, H, that characterize

the training process.

The solution of a linear equation system is less prone to

a parallel approach. Existing algorithms scale as the third

power of the number of variables (i.e., the number of

neurons N). The literature shows that Singular Value

Decomposition (SVD) [17] yields satisfactory numerical

solutions, whose computational cost can be roughly

approximated by 12N3 [13]. The linear equation system in

Eq. (3) just involves a matrix ðHTH þ kIÞ that is Hermitian

and reasonably well conditioned. This allows to adopt

Cholesky decomposition as a reference model in terms of

memory and computational cost. This procedure scales as

N3=3 and proves more efficient than the conventional LU

factorization 2N3=3. A forward and backward substitutions

are eventually required to complete the procedure, intro-

ducing 2N2 additional operations.

3.2.3 Model selection

The model selection strategy heavily affects the overall

cost of the training process. A naive approach to model

selection would require to iterate a number of training

procedures, each characterized by as many settings of the

hyper-parameters.

When considering k, the pair of matrix multiplications

HTH and HTy in the expression (3) need not be recom-

puted for different values of k. Likewise, by using SVD

one need not work out again the matrices U, S, V, since the

summation with the diagonal matrix kI only affects the

elements of S [13]. SVD efficiently supports spectral reg-

ularization techniques [12], as well. On the other hand, the

Cholesky algorithm requires to carry out the complete

procedure for each setting of k.
The number of trials required to set the number of

neurons, N, is critical to determine the computational cost.

The eventual procedure benefits from the properties of

matrix multiplications, which allow one to avoid the re-

computation of the whole matrix HTH as part of the

learning process [13].

In typical on-board IoT applications, the number of

neurons and the size of the training set are not asymptoti-

cally large due to memory constraints. As a result, the

overall approximation of the cost function needs to be fine

grained. In the case of L2-regularized ELMs, the expres-

sion (14) gives an adequate approximation of the number

of floating point operations required for training:
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OL2ðN; ZÞ ¼ OðHTHÞ þ OðHTyÞ
þ kðOðHTH þ kIÞ þ OðlinsolveðHTH þ kI;HTyÞÞ
þ OðHvalxÞÞ

¼ N2 � Z þ N � Z þ k N þ a � Nn þ cþ Zval � N
	 


ð14Þ

where linsolve operator embeds the solution of the linear

equation system that is identified by (a � Nn þ c) and k is

the number of different settings for the hyper-parameter k.
For each value of k, the predictor is computed over the

validation set, marked with the subscript ‘‘val’’ in (14). The

proposed equation considers all the matrix–matrix and

matrix–vector operations involved in the solution of the

learning problem (1). One might argue that (14) does not

take into account the model selection for the parameter N;

this seems a reasonable assumption when addressing

resource-constrained devices, where N is limited due to

hardware constraints.

The computation of (9) also requires to work out

matrices P and S. Moreover, the model selection procedure

optimizes three hyper parameters: k; c and p. As a con-

sequence, the expression (14) actually sets a lower bound

to the computational complexity of both (9) and (6).

3.2.4 Overall computational cost

In the novel training procedure proposed in this paper, the

mapping phase matches the basic model. Instead, the

augmented cost function (11) involves the second phase of

the training process after remapping. Thus, the overall

computational cost of the approach proposed in this paper

can be written as

Odrop ¼ QðOL2ð ~N; ~ZÞÞ: ð15Þ

where ~N and ~Z are the size of the sub-sampled sets of

neurons and training data, respectively.

The expression (15) shows that the proposed approach is

most effective when Q is small. The term Q affects the

overall cost almost linearly, whereas the impact of quan-

tities ~Z\Z and ~N\N is quadratic and cubic, respectively.

In this regard, Fig. 4 shows the behavior of the cost

function (14) for different values of the parameters Z and

N. The graph confirms that the computational cost rapidly

decreases as Z and N decrease.

Interestingly, the eventual speedup of the training phase

presented in [51] becomes marginal as compared with that

obtained by the approach proposed in this paper. Further-

more, the forward phase of the predictors presented in [51]

requires time-consuming operations such as sorting. As a

result, the predictor [51] proves more computationally

demanding than traditional SLFNNs.

3.3 Comparison with related works

Ensemble approaches combined with RBNs [23, 25, 27]

usually aim to enhance generalization performance disre-

garding the associate computational cost. State-of-the-art

works do not set constraints on the number of neurons of

the overall ensemble. As a consequence, both memory

occupation and latency of the inference phase increase. The

solution proposed here, instead, aims to balance general-

ization performances and computational cost: it sets the

size of the hidden layer, N, a priori, based on the available

memory. Then, individual learners all sample the random

neurons from the same pool. Finally, learners merge into a

single network, i.e., the eventual classifier, having size

N. As a consequence, the inference phase has the same

computational cost of standard feed-forward networks with

N neurons.

The proposed approach outperforms state-of-the-art

dropout-based methods in terms of computational cost. In

[51], an additional fuzzy logic affected the computational

complexity of the training phase. Furthermore, the forward

phase of the predictors required complex operations such

as sorting; hence, the classifier proved less efficient than

traditional SLFNNs.

In [21], the authors introduced a novel regularization

term, and the cost function still involved the solution of a

linear equation system. This operation roughly scales as

N3. Conversely, in the proposed approach the training

procedure involves a subset of Q problems that scales as

~N
3
. The results presented in Sect. 4 will confirm that sat-

isfying results can be achieved with Q� ~N
3
\\N3. In

addition, Algorithm 1 highlights a crucial difference with

respect to the approach presented in [21], where the authors
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Fig. 4 Value of function OL2 for different combinations of parameter

Z and N, with c ¼ 13. The numerical values are normalized using the

values of the smallest considered network

f ¼ OL2ðN;ZÞ=OL2ð50; 100Þ
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focused on the minimization of (5) and forced the solution

x to be valid for any sub-network (obtained by dropout

procedure) and the original complete network. By contrast,

the procedure proposed in this work obtains the solution by

combining a set of independent learners. Using a subset of

training data, one might affect the regularization properties

of the dropout method. At the same time, the Q-indepen-

dent learners are expected to be orthogonal to a certain

extent. This in turn should increase the generalization

ability of the eventual ensemble and limit the risk of

overfitting accordingly [33].

When considering electronic implementations, the

method proposed in this paper addresses the efficient

deployment on inexpensive devices. The related design

approaches typically aimed efficient digital implementa-

tions of RBNs in configurable architectures. A very large-

scale integration (VLSI) architecture was the main target in

[3, 6]; the approach presented in [32] envisioned analog

implementations and combined a tri-state activation func-

tion with an offline pruning procedure to limit the predictor

complexity. The models proposed in [9, 10, 37, 50] tar-

geted FPGA implementations of the learning phase, either

online or in batch mode. Conversely, Decherchi et al. [7]

and Ragusa et al. [35] proposed a minimal implementation

of the forward phase of RBNs, while [32, 49] introduced an

effective scheme to reduce the memory requirements of the

eventual predictors.

4 Generalization performances

To evaluate the generalization effectiveness of the pro-

posed method, an experimental setup simulated a real use-

case, in particular the size of the mapping layer was

bounded by hardware constraints. Table 1 gives the main

features of the 11 involved benchmarks, which were

arranged in two sets: standard benchmarks and IoT

benchmarks.

The proposed approach was compared with a pair of

computational demanding solutions, namely an ELM with

L2 regularization [18] and a dropout ELM [21]. Those

algorithms represented the most interesting solutions in

terms of trade-off between computational cost, general-

ization performance, and impact of the hyper parameters.

In the following, the presentation of the experimental

results will always adopts a common format: for each

experiment, a pair of sub-figures (a) and (b) will give the

results obtained for different settings of the size, N, of the

hidden layer. In all tables, rows will correspond to the size

of the training sub-set ~Z, whereas columns will refer to ~N.

The table rows/columns will give the settings with respect

to the reference values, Z and N, respectively. Therefore,

the topmost row will mark a predictor trained with ~Z ¼
0:9Z and the leftmost column will indicate ~N ¼ 0:5N. The

title of each table will give the percentage classification

error, expressed in the range [0, 1] scored by both the

dropout regularized solution (Ios) [21] and the L2 regu-

larized network (L2), all holding N neurons. Table cells

will give the discrepancy between the test error (averaged

over 100 iterations) scored by the proposed method and the

error attained by Ios regularized method:

Ti;j ¼
1

100

X100

n¼1

ðIosn � Proposalnði; jÞÞ ¼ Ios� Proposal

ð16Þ

where Ti;j is the table element, Ios is the test error of the

baseline [21] method using the nth random extraction of

the hidden layer, and Proposalnði; jÞ is the test error scored
by the proposed method using the setting i, j and the pool

of neurons belonging to the nth random hidden layer.

Positive values will be characterized by a green cell

background and will indicate that the hardware-friendly

dropout strategy scored better results. The cells having a

red background, instead, will mark those tests in which the

proposed method did not outperform conventional ELMs.

Yellow background cells will denote those settings in

which the discrepancy between the comparisons was

marginal (less than 1%).

The statistical significance of the results was measured

considering the weak law of large numbers. All measures

marked in green and red were statistically significant

because jTi;jj[ j2rIosj þ j2rProposalj, where rIos and

rProposal are the standard deviations of Ios and Proposal,

respectively.

Each experiment involved: two settings of the hidden

layer size N ¼ f200, 1000g, 13 values of the hyper-pa-

rameter k ¼ 10i; i ¼ f�6;�5; . . .; 6g, 3 values of the

parameter ~N ¼ f0:5; 0:3; 0:1gN, and 5 values for parameter
~Z ¼ f0:9; 0:7; 0:5; 0:3; 0:1gZ. The datasets were always

Table 1 Dataset characteristics
Dataset Z D

QSAR 1052 41

Pima 768 8

CreditCard 29,965 24

Ozone 1847 73

Ionosphere 350 34

HTRU 17,898 9

Blood 533 5

Australian 690 39

MNIST 1000 81

Ds2os 357,952 11

Fog 121,603 10
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drawn by using a balanced configuration, in which the

number of patterns was normalized to the least numerous

class. Generalization performances were measured by

using standard hold-out procedure. The training set was

extracted by using 70% of the training data, whereas the

validation and test set included 20% and 10% of the data,

respectively. The parameter k was set accordingly to the

best result scored on the validation set. Generalization

performances are reported after measurements on test data,

i.e., data that had never been used during either training or

model selection. The following subsections illustrate the

outcomes of the experiments for standard machine learning

benchmarks and on IoT specific benchmarks.

Setting the iteration parameter Q = 10 limited the size of

the experimental section. Indeed, that setting corresponded

to the smallest value that proved sufficient in all the

benchmarks to obtain stable results. This choice did not

affect the validity of the results obtained on the test sets. As

a matter of fact, the implementation analysis always con-

sidered a worst-case scenario because, in most cases, the

smallest value of Q that reached good performances was

smaller than 10.

The reported results aim to confirm that the proposed

algorithm could yield satisfactory accuracy values (as

compared with the reference approaches) but at a smaller

computational cost of the training process.

4.1 Standard machine learning benchmarks

The first set of experiments included 8 popular benchmarks

for machine learning, all drawn from the UCI repository

[8], mostly to allow fair comparisons with existing

approaches.

The results on the QSAR dataset (Fig. 5) scored a lim-

ited gap (less than 3%) in performance between the pro-

posed approach and the two baseline comparisons.

Remarkably, the hardware-friendly dropout strategy

proved equivalent or even more effective in terms of

generalization performances.

The data presented in Fig. 6 refer to the Pima-Indians

dataset. The results were similar to those shown in Fig. 5

and confirmed that the proposed dropout scheme could

limit overfitting significantly in the presence of small sub-

networks. Remarkably, this configuration was most con-

venient in terms of hardware requirements.

Figure 7 gives the results obtained on the ‘‘Default of

credit card clients’’ dataset. Although the proposed strategy

seemed to yield lower performances, the gap always kept

quite small; it was smaller than 0:1% in six cases and lower

than 1% in the majority of the others. The minor degra-

dation in performances was largely compensated by the

hardware effectiveness of the supporting architecture.

The results on the Ozone dataset (Fig. 8) highlight the

crucial trade-off between the performances of the base

classifiers (i.e., the sub-networks trained independently)

and those of the overall eventual predictor. Small sub-

networks trained on small data chunks usually obtained

unsatisfactory results (up to 6% of error increment). Con-

versely, when the sizes of the sub-networks and of the data

chunks increased, the performances of the eventual clas-

sifiers got comparable or even better with the baseline

solutions, with gaps smaller than 1%.

The tests on the Ionosphere dataset (Fig. 9) exhibited a

similar trend for ~Z. Such a behavior was due to the fact that

this benchmark held a limited number of samples; con-

versely, when %Z exceeded 30%, the proposed approach

proved more convenient.

The differences between the comparisons were almost

negligible in all the configurations for the HTRU dataset

(Fig. 10). The gap was negligible also in profitable hard-

ware configurations, i.e., when both ~Z and ~N took on small

values.

When tested on the Blood dataset (Fig. 11), the present

approach proved to be the best solution in almost all con-

figurations. Finally, the results on Australian Credit Card

dataset (Fig. 12) confirmed that the proposed solution could

attain performances that always closely approximated

those achieved by the baseline algorithms.

4.2 Internet of Things benchmarks

These benchmarks belonged to a corpus of recent machine

learning papers for IoT, and covered a wide spectrum of
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configurations, ranging from small size to medium-/high-

size problems.

The MNIST dataset addressed the recognition of hand-

written digits; as in previous works [7], the research pre-

sented here used a reduced version of that dataset,

including 1000 patterns represented by 9� 9 grey-scale

images. The bi-class classification problem involved the

(most difficult) discrimination task between digits ‘‘3’’ and

‘‘8.’’ A similar setup was recently adopted in [48], pre-

senting an IoT learning algorithm for visual patterns.

Distributed smart space orchestration system (Ds2os)

was the second IoT-related benchmark and included a

collection of traces captured in a networking domain for

IoT.1 The data had been collected from the application

layer; hence, they differed significantly from the conven-

tional feature-based patterns used by network-traffic clas-

sifiers. The main dataset included various sources, such as

light controllers, thermometers, person detection sensors,

washing machines, batteries, thermostats, smart doors, and

smart phones. In compliance with the comparative

approach proposed in [15], the binary problem set in this

paper discriminated normal activity vs anomalies.

The freezing of gait (Fog) dataset [2] held the annotated

readings of 3 acceleration sensors (positioned at the hips

and legs) of patients affected by the Parkinson disease, who

could experience freezing of gait during walking tests.

The results for the IoT benchmarks are reported in

Figs. 13, 14 and 15. For the MNIST database, experimental

outcomes in Fig. 13 confirmed the method effectiveness.

The baseline comparisons only performed better in the case

%N ¼ 0:1, whereas in most cases, the differences in per-

formances never exceeded 1%. On the other hand, the

dropout strategy for IoT devices featured a considerable

speedup of the learning procedure.

The results in Fig. 14 for the Ds2os benchmark highlight

the role of the pool size, N. In the configurations involving

N ¼ 200 with small values of ~N, the proposed hardware-

friendly method exhibited a non-negligible loss in term of

accuracy. This drawback almost vanished in configurations

with N ¼ 1000, as the loss in accuracy always kept smaller

than 1%, with the already remarked advantage of a smaller

computational cost.

The results for the Fog dataset (as per Fig. 15) showed a

similar trend. The loss in accuracy proved significant when

N ¼ 200 and ~N\0:5N. In practical scenarios, however,

involving networks with a consistent set of neurons, the

accuracy values matched those attained by standard

approaches. From this viewpoint, the two basic procedures

L2 and Ios scored an improvement in accuracy of about 4%

when the pool size increased from 200 to 1000. In the latter

setup (N ¼ 1000), the proposed approach outperformed the

reference comparisons.

4.3 A summary of generalization results

Overall, generalization performances proved comparable

with the results reported in the literature, although a direct,

thorough comparison could not always be accomplished

due to differences in the experimental setups.

The outcomes of the experimental session can be sum-

marized as follows:
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1 https://www.kaggle.com/francoisxa/ds2ostraffictraces.
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• In the experiments involving the standard benchmarks,

the proposed approach attained generalization perfor-

mances comparable with those scored by the baseline

algorithms, (i.e., L2-regularized and dropout ELMs);

the latter comparisons, however, proved much less

efficient in terms of computational complexity.

• The experiments involving IoT benchmarks confirmed

that trend, with the only exception of the Distributed

smart space orchestrian system dataset. The gap

between the configurations with N ¼ 200 neurons and

those holding N ¼ 1000 neurons seems to suggest that

this issue might be solved by using a larger hidden

layer.

5 Implementation analysis

The implementations on embedded architectures involved

a pair of popular, commercially available devices for IoT

applications, that is, the Broadcom BCM2837B0 Quad-

Core Cortex-A53 (characterized by 1.4 GHz clock

frequency, 32 kB L1 e 512 kB L2), and an Allwinner H3,

Quad-Core Cortex-A7 (clock up to 1.2 GHz, equipped with

1 GB and 512 MB of RAM). These devices were selected

because they supported well-known IoT devices, namely

the Raspberry Pi 3b? and the NanoPi NEO AIR-Friendly

ARM.

The experimental setup took into account the impact of

the quantities ~Z and ~N on the latency of the proposed

method in IoT applications. The campaign simulated the

training process by using a toy procedure, and input data

were generated at random. The tests considered a pair of

settings of the training set size: Z ¼ f500; 2000g and two

configurations of the hidden layer: N ¼ f200; 1000g.
Generalization performances were not an issue here

because the proposed devices adopted the floating point

representation and the focus was on computational effi-

ciency. The algorithms were all implemented in Python by

using the Numpy library.

In the following, all the results will be arranged

according to the size of the input layer. Each figure will

include a pair of graphs, one for each setting of the train-

ing-set size, Z. The x-axis will group the results based on
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three settings of the hidden layer of the sub-networks:

f0:5N; 0:3N; 0:1Ng. Each group involved five configura-

tions of the parameter ~Z. As a consequence, the left-most

bar always will refer to the most demanding configuration,

whereas the right-most bars will mark the most prof-

itable settings. The y-axis will show the values of

h ¼ Tproposal
TL2

, where Tproposal is the training time of the pro-

posed approach and TL2 is the training time of a L2 basic

classifier. Thus, values of h\1 and h[ 1 will indicate that

the proposed solution proved faster or slower, respectively.

The horizontal red line will mark the case when h ¼ 1. The

L2 regularized network was adopted as a reference com-

parison because—according to the analytical analysis of

the computational cost—it proved more efficient than the

solution proposed in [21].

The first experiment involved the Quad-Core Cortex-A7

with 500 MB of RAM memory. The entire training process

was supported by core 1; hence, no parallelism was

exploited. This experimental setup simulated a heavily

constrained scenario; the amount of resources involved was

considerably smaller than those available on an average

smartphone. Figure 16 gives the results for the configura-

tion with N ¼ 200. The proposed approach proved extre-

mely convenient in term of latency. The cost always kept

lower than 10% in all the configurations with ~N ¼ 0:1N.

Interestingly, the advantage for the configuration with the

highest computational load, ~N ¼ 0:5N and ~Z ¼ 0:9Z,

approximated the best value 1. On the other hand, setting

Q ¼ 10 implied a worst-case analysis. Figure 17 considers

the same hardware setup with a different size of the hidden

layer, i.e., N ¼ 1000. The experimental result showed a

similar trend to the experiments reported previously.

The second set of implementation configurations

involved the Quad-Core Cortex-A53 with 1 GB of RAM

memory. As in previous tests, only one core of the Cortex-

A53 was enabled. The major difference in this setup was

the amount of memory (twice as much as compared with

the Cortex A-7 tests).

Figures 18 and 19 present the related outcomes. The

graphs show that the dropout-based strategy still attained

remarkable speed-up values for configurations with ~N ¼
0:1N and ~N ¼ 0:3N when Z ¼ 500. When Z ¼ 2000, the

speedup kept comparable with the performances scored in

the presence of limited training sets (i.e., less than 1000).

Simulations always addressed a worst-case analysis, in

which Q ¼ 10.

The final experimental setup involved configurations

that fully exploited the available hardware resources. The

proposed strategy relied on multi-threading; a thread was

instantiated for each sub-network. Such an approach

clearly implied a larger memory (RAM) consumption

(Q times bigger), since the threads were expected to run in

parallel. The number of available cores (4) set the corre-

sponding best possible speedup value. For this reason, only

the Quad-Core Cortex-A53 with 1 GB of RAM memory

was used for these experiments.

Figures 20 and 21 report on the results of the tests for

N ¼ 200 and N ¼ 1000, respectively. The reported results

point out the advantages in latency featured by the pro-

posed method in the configurations with 0.3N and

0.1N. The configuration 0.5N actually suffered from the

limited available RAM; this prevented an efficient execu-

tion of multiple tasks in parallel.

The outcomes of the experimental session about HW

implementation can be summarized as follows:

• In the presence of tight memory constraints, the

proposed solution scored remarkable speedup values

in almost all configurations.

• When more relaxed memory constraints were allowed,

as per Figs. 18 and 19, the speed-up performances still

proved significant when the networks sizes kept smaller

than 0.3N. In the other cases, the values assumed by

Q brought about a significant impact.

• When applying multiprocessing, as per Figs. 20 and 21,

the implementations confirmed that the amount of

shared memory influenced the speed-up performances.

Finally, it is worth noting that the configurations (involving
~N and ~Z) that resulted most profitable in terms of hardware

implementation also proved most effective in terms of

generalization performances.

6 Conclusions

The paper proposed a novel training procedure for RBN in

resources-constrained scenarios. The focus of the proposed

method was the trade-off between generalization perfor-

mances and the computational cost of the training phase.

The major outcome of the described research consists in

showing the feasibility and effectiveness of the proposed

method to implement the learning phase on IoT devices.

Extensive experiments have confirmed the satisfactory

generalization performances of the proposed strategy. In

particular, an extensive implementation analysis confirmed

the feasibility of the proposed approach in low-power

devices.
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Fig. 16 Latency measured on

single core of Quad-Core

Cortex-A7 with 500 MB of

RAM memory with N ¼ 200
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Fig. 17 Latency measured on

single core of Quad-Core

Cortex-A7 with 500 MB of

RAM memory with N ¼ 1000
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Fig. 18 Latency measured on

single core of Quad Core

Cortex-A53 with 1 GB of RAM

memory with N ¼ 200
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Fig. 19 Latency measured on

single core of Quad Core

Cortex-A53 with 1 GB of RAM

memory with N ¼ 1000
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Fig. 20 Latency measured on

multi thread of Quad Core

Cortex-A53 with 1 GB of RAM

memory multi thread with

N ¼ 200
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