
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319138308

Search Based Path and Input Data Generation for Web Application Testing

Conference Paper · August 2017

DOI: 10.1007/978-3-319-66299-2_2

CITATIONS

5
READS

215

3 authors:

Some of the authors of this publication are also working on these related projects:

ASPIRE View project

Timbre research: physical and perceptual relationships among sounds View project

Matteo Biagiola

Fondazione Bruno Kessler

5 PUBLICATIONS 13 CITATIONS

SEE PROFILE

Filippo Ricca

Università degli Studi di Genova

177 PUBLICATIONS 3,763 CITATIONS

SEE PROFILE

Paolo Tonella

Fondazione Bruno Kessler

294 PUBLICATIONS 7,731 CITATIONS

SEE PROFILE

All content following this page was uploaded by Matteo Biagiola on 27 September 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/319138308_Search_Based_Path_and_Input_Data_Generation_for_Web_Application_Testing?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/319138308_Search_Based_Path_and_Input_Data_Generation_for_Web_Application_Testing?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/ASPIRE-6?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Timbre-research-physical-and-perceptual-relationships-among-sounds?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matteo_Biagiola?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matteo_Biagiola?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Fondazione_Bruno_Kessler?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matteo_Biagiola?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Filippo_Ricca?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Filippo_Ricca?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_di_Genova?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Filippo_Ricca?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paolo_Tonella?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paolo_Tonella?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Fondazione_Bruno_Kessler?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paolo_Tonella?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matteo_Biagiola?enrichId=rgreq-936c8c0e405bfd3cd1f98d3444b04cfe-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEzODMwODtBUzo1NDMxNTM3MTM1NDkzMTJAMTUwNjUwOTM0NDIxMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Search Based Path and Input Data Generation
for Web Application Testing

Matteo Biagiola1,2, Filippo Ricca2, and Paolo Tonella1

1 Fondazione Bruno Kessler, Trento, Italy
biagiola,tonella@fbk.eu

2 University of Genova
filippo.ricca@unige.it

Abstract. Test case generation for web applications aims at ensuring
full coverage of the navigation structure. Existing approaches resort to
crawling and manual/random input generation, with or without a pre-
liminary construction of the navigation model. However, crawlers might
be unable to reach some parts of the web application and random in-
put generation might not receive enough guidance to produce the inputs
needed to cover a given path. In this paper, we take advantage of the
navigation structure implicitly specified by developers when they write
the page objects used for web testing and we define a novel set of genetic
operators that support the joint generation of test inputs and feasible
navigation paths. On a case study, our tool Subweb was able to achieve
higher coverage of the navigation model than crawling based approaches,
thanks to its intrinsic ability of generating inputs for feasible paths and
of discarding likely infeasible paths.

Keywords: web testing, test case generation

1 Introduction

The main goal of end-to-end test case generation when the program under test
is a web application is to ensure that the functionalities of the web application
are fully exercised by the generated test cases. Usually no explicit navigation
graph is available to guide the creation of test cases and to measure the degree
of navigation coverage achieved. Existing approaches resort to web crawling in
order to build the missing navigation model [1]. However, crawling is severely
limited in its ability to fully explore the navigation graph, which depends on
the input generation strategy. Such strategy is usually manual input definition,
random input generation, or a mixture of the two. Another limitation of crawling
based approaches is that not all paths in the crawled model are feasible (i.e.,
admit a test input that traverses them upon execution). As a consequence not
all test paths derived from the crawled model can be turned into test cases that
traverse the desired paths upon execution. When they don’t cover the test paths
for which they are generated, we say the test case is divergent (e.g., a step in a
test case triggers an error, hence preventing the execution of the next steps; the
app state does not allow the next action in the test path to be taken).

2 Matteo Biagiola1,2, Filippo Ricca2, and Paolo Tonella1

We address the problem of navigation graph construction by taking advan-
tage of a design pattern commonly used in web testing: the Page Object (PO)
design pattern. The purpose of POs is to encapsulate the details necessary to ac-
cess the web elements in a web page (e.g., CSS or XPath locators, text extraction
from HTML page, etc.) and to expose an abstract interface to developers, who
can use it to perform high level operations against the web application under
test. Such operations are exposed as methods of the PO class (e.g., a method
to login; another to select an item and add it to a cart; etc.). The key benefit
of this design pattern is the confinement of fragile web page access operations
(e.g., implementation details concerning locators) within a single class, the PO,
instead of spreading them across all test cases. This ensures higher maintain-
ability of the test code when the web application evolves [2]. There is however
another indirect benefit: when defining the POs for a web application, develop-
ers implicitly define also its navigation structure, since navigation methods in
POs return the next PO encountered after triggering the navigation action. We
resort to such property of POs to build the navigation graph to be covered by
the automatically generated test cases.

We address the problem of path feasibility by means of a novel search based
test generation algorithm (in particular, we use a genetic algorithm), which per-
forms path selection and input generation at the same time. In our algorithm,
a chromosome is a variable length sequence of navigation method invocations,
each with the actual parameter values required for the invocations. Chromo-
somes are evolved by means of custom genetic operators that ensure compliance
of the navigation sequences with the navigation graph and reachability of the re-
maining coverage targets. The fitness function that guides the generation of test
cases is based on the distance between the executed sequence and the current
set of coverage targets.

We have implemented our approach in the tool Subweb (Search based web
test generator) and we have evaluated its effectiveness on the AddressBook case
study, by comparing it with crawling based approaches. Subweb achieves higher
coverage with smaller test suites than crawling based approaches. Moreover, the
test cases generated by Subweb are feasible by construction, while on Address-
Book the test cases derived from the crawled model are divergent test cases 17%
of the times.

2 Related work

Several (semi-)automated web testing techniques have been proposed in the lit-
erature in the last few years, to reduce the human effort and the amount of
work required for test case creation [3,4,1]. Most approaches rely on web appli-
cation crawling for the construction of a navigation model and on graph visit
algorithms for the selection of navigation paths that ensure high coverage of
the model (e.g., transition coverage). Input data generation to turn the selected
paths into executable test cases is either manual or random [5]. The proposal
by Mesbah et al. [1] belongs to this category. They use a crawler, Crawljax,

Search Based Path and Input Data Generation for Web Application Testing 3

to derive a state flow graph consisting of states and transitions that model the
Ajax web application under test. Then, the tool Atusa uses the inferred model to
generate test cases with predefined invariants as test oracles. Another approach
for testing Ajax web applications has been proposed by Marchetto et. al. [4].
A Finite State Machine (FSM) that models the Ajax web application is built
using a combination of dynamic and static analysis. Differently from Atusa, the
adopted coverage criterion, used also in GUI-testing, is based on the notion of
semantically interacting events. An alternative to Atusa is Artemis, a frame-
work for automated testing of JavaScript web applications proposed by Artzi
et al. [3]. The distinctive feature of Artemis is the usage of feedback-directed
random testing [6].

There are several remarkable differences between our tool, Subweb, and
existing approaches. First, coverage of the navigation model and input data gen-
eration are handled jointly by Subweb. Existing approaches [4,1] first generate a
navigation model and then extract paths from it, without considering the prob-
lem that the generation of inputs for such paths might be difficult, requiring
manual intervention, or even impossible, if the selected paths are infeasible. An-
other key difference is that input generation is search-based in Subweb, while it
is either manual or random in existing approaches [3,4,1]. Finally, the abstrac-
tion from HTML pages to equivalence classes of pages that deserve separate test
generation resorts to heuristic in existing approaches [4,1], while Subweb takes
advantage of the abstraction defined by the developers when writing the POs
for the web application under test.

To the best of our knowledge, the only attempt to use POs for test case gen-
eration is the proposal contained in a workshop paper by Yu et al. [7]. Similarly
to Artemis, the proposed tool, called InwertGen, performs iterative feedback di-
rected random test generation using the tool Randoop [6]. The key difference
from our tool is that Subweb makes explicit use of the navigation model de-
fined by developers through POs and uses a search-based approach, instead of
a random one, to generate inputs that ensure high coverage of the navigation
model.

3 Navigation Model Specification via Page Objects

POs are widely used in web testing to decouple the implementation details that
depend on the web page structure from the test logics. The PO design pattern
was first proposed by Martin Fowler3 as an abstraction of the page under test
that can be reused across test cases [2]. In fact, different test cases can refer to
the same page object for locating and activating the HTML elements of the page
under test, without having to duplicate the HTML access instructions multiple
times, in different test cases.

While the main purpose of POs is to improve the modularization of the test
code, POs implicitly specify a navigation model for the web application under

3 https://martinfowler.com/bliki/PageObject.html

4 Matteo Biagiola1,2, Filippo Ricca2, and Paolo Tonella1

test. In fact, one of the best practices recommended for PO creation requires that
PO navigation methods return the PO of the next page upon invocation [8].
This means that POs specify the navigation structure of the web application
under test in terms of method invocations (i.e., operations executed within each
abstract web page) and page objects returned by the invoked methods (i.e., next
PO reached during navigation in the web application). We use such implicit
navigation model for automated test case generation.

3.1 Page objects

The API of a PO is application-specific and provides an abstraction of the con-
crete HTML page functionalities to the test case. Despite the term “page” object,
these objects are not necessarily built for an entire page. In fact, a PO may wrap
an entire HTML page or a cohesive fragment that performs a specific function-
ality. The rule of thumb is to group and model the functionalities offered by a
page as they are perceived by the user of the application.

1 public class ProductsPage implements PageObject {

2 public WebDriver driver;

3 public ProductsPage(WebDriver driver) {...}

4 public int getActiveCategory() {...}

5

6 public ProductDetailPage selectProduct(int id, int category) {

7 if((id >= 1 && id <= 6) &&

8 (category >= 1 && category <= 3) &&

9 (this.getActiveCategory() == category)) {

10 this.driver.findElement(By.id("product-" + id + "-" +

category)).click();

11 return new ProductDetailPage(this.driver);

12 } else {

13 throw new IllegalArgumentException("Invalid parameter values");

14 }

15 }

16 }

Fig. 1: PO example

Let us consider an example of e-commerce single page web application, named
Shopping Cart. Figure 1 shows the code of the PO ProductsPage

Among others, this PO contains method selectProduct that models the user
action consisting of the selection of a specific product from the product list dis-
played in the home page. The actual selection is performed at line 10 (if the pre-
condition at lines 7-9 is satisfied), where Selenium WebDriver’s APIs are used to
locate and operate some web elements inside the concrete HTML page of the web
application. Specifically, the web element of interest is located by its unique iden-
tifier, by means of the Selenium method findElement(By.id(...)). The action
performed on the web element located by id is a click (Selenium method click,
still at line 10). Since after the click navigation continues on the next page, which

Search Based Path and Input Data Generation for Web Application Testing 5

is modelled by the PO ProductDetailPage, method selectProduct returns a
new instance of the PO reached after the click, of type ProductDetailPage.

In general, PO methods may return values of any type (void, int, String,
etc.). However, a recommended best practice is that navigational PO methods
return the next PO encountered in the navigation (this if navigation does not
leave the current PO). We strictly require that the tester specifies the naviga-
tion among the pages of the application through the POs returned by navigation
methods, since we rely on them for the construction of the PO navigation graph.
In the following, we call a navigational method any PO method that returns a
PO. The second assumption that our technique makes on the way POs are writ-
ten is that navigational methods include preconditions, i.e., each navigational
method should specify the condition under which it can be safely executed. Such
condition may depend on the invocation parameter values, as well as the state
of the application, which is determined by the actions performed on the appli-
cation in the previous navigation steps. In Figure 1, the precondition of method
selectProduct deals with the proper selection of a product from the list of
products shown in the home page. Each product is uniquely identified by the
pair of parameters id and category. In the running example, the number of
products shown in ProductsPage is known statically (it is always 6, for each
category of products), while the category is the currently active category. So,
the valid value for the category parameter must match the value returned by
method getActiveCategory, while id can vary from 1 to 6. If the precondition
is not respected, an exception is thrown.

We think the assumptions we make on how POs should be written to be
processable by our technique are reasonable and do not impact to a significant
extent the normal way in which developers write POs. In fact, the requirement
that every navigational method returns the next PO is a best practice which is
commonly followed, although it is not enforced by the PO pattern. The inclu-
sion of preconditions is a bit more impactful, since in practice developers write
test code that respect preconditions by construction, making them not strictly
necessary. We think however that preconditions are a good programming prac-
tice, independently of the use of our technique. Moreover, in our experience (see
Section 5), when they have to be written from scratch, such activity does not
require much effort from the developers. In some cases it would be even pos-
sible to extract them automatically from the web application code (e.g., when
parameter ranges can be obtained by static code analysis).

3.2 Navigation Graph

Intuitively, the navigation graph is obtained from the POs by associating nodes
to page objects and edges to navigational methods. More specifically, given a
navigational method that, starting from a PO node, leads either to the same
PO or to another PO, such method induces either a self loop edge or an edge
to another node (corresponding to the returned PO) in the graph. Formally, we
can define the navigation graph and its relation with POs as follows:

6 Matteo Biagiola1,2, Filippo Ricca2, and Paolo Tonella1

Definition 1 (PO Navigation Graph). Given a set of page objects P , the
associated navigation graph G = 〈N,E〉 consists of a set of nodes N bijectively
mapped to P by function po : N → P and of a set of edges E that connect pairs
of nodes 〈n,m〉 such that the page object po(n) contains a return statement
whose returned type is po(m).

Algorithm 1: Navigation graph extraction

1 Procedure extractNavGraph(G, po)
Input:
G: navigation graph computed so far
po: page object to be analyzed
Output:
G: updated navigation graph

2 begin
3 n := getNodeByPO(G, po)
4 l := getNextPOsByStaticAnalysis(po)
5 v = ∅
6 for po′ ∈ l do
7 m := getNodeByPO(G, po′)
8 if m = NULL then
9 m := newNode(po′)

10 G.N := G.N ∪ {m}
11 v := v ∪ {m}
12 G.E := G.E ∪ {〈n,m〉}
13 for m ∈ v do
14 extractNavGraph(G, mapNodeToPO(m))

Algorithm 1 shows the recursive navigation graph extraction procedure. The
loop at lines 6–12 iterates over all POs that are possibly returned by the PO
under analysis. The set of such POs is obtained by static code analysis (line
4). When the returned PO is not already mapped to a graph node, a new node
is created (line 9) and added to the graph (line 10). An edge 〈n,m〉 from the
node n associated with the PO under analysis to the returned PO node m is
then added to the graph (line 12). Graph extraction continues recursively on all
newly created PO nodes (stored in variable v), i.e., all PO nodes not already
present in the initial graph G (lines 13–14).

4 Search Based Path and Input Data Generation

Given the navigation graph G = 〈N,E〉, we can extract or generate test paths
that exercise significant parts of the application. For instance, according to the
transition coverage adequacy criterion, all edges E must be traversed at least
once by the test paths. Formally, we can define a test path in the navigation
graph as p = 〈ns, es, pr〉, where ns ∈ N+ is a sequence of one or more graph

Search Based Path and Input Data Generation for Web Application Testing 7

nodes; es ∈ E∗ is a sequence of zero or more edges, such that | es |=| ns | −1
and if ei = 〈n,m〉 ∈ es, then ni = n ∈ ns, ni+1 = m ∈ ns; pr ∈ V ∗ is a sequence
of zero or more parameter names, equal to the parameter values required by the
method invocations associated with es.

Let us take a simple path p = 〈ns, es, pr〉 from the Shopping Cart running ex-
ample, with ns = 〈ProductsPage, ProductDetailPage〉, es = 〈selectProduct〉,
pr = 〈id, category〉. The precondition of method selectProduct (see Fig-
ure 1) constrains the valid ranges of parameters id and category . As a con-
sequence, not any arbitrary pair of integer values assigned to id and category

will execute the path of interest. More generally, given a path p and a parameter
sequence pr, we say p is feasible if there exists a parameter-value assignment
that executes path p; we say path p is infeasible if there does not exist any
parameter-value assignment that executes it. In order for a path p = 〈ns, es, pr〉
to be feasible, the conjunction of the constraints in the method preconditions as-
sociated with the edge sequence es must be satisfiable. Since some of the values
evaluated in the method preconditions may depend on the server/client side state
(e.g., this.getActiveCategory() in Figure 1), in general the problem of deter-
mining whether a path p is feasible or not is an undecidable problem. Moreover,
since feasibility depends on the server/client state, which is computed by arbi-
trarily complex programs, SAT solvers are generally not a viable tool to address
the path feasibility problem. For these reasons, we resort to a meta-heuristic
algorithm. The test generation problem that we address (for the transition cov-
erage adequacy criterion) is then to generate a set of feasible paths, as well as
the related parameter-value assignment, which, upon execution, ensure that all
navigation graph edges are traversed at least once.

4.1 Problem Reformulation

The problem of generating test cases that cover all navigation graph edges can be
reformulated as a standard branch coverage problem on an artificial class gen-
erated from the navigation graph and the POs. In fact, a path p = 〈ns, es, pr〉
consists of a method sequence (namely, the sequence of method invocations as-
sociated with es), for which suitable parameter values must be found. Hence, we
can solve the feasible path generation problem and the parameter input value
generation problem by applying the search based approaches that have been
proposed for object oriented testing [9], where method sequence and parameter
values are generated at the same time. This requires the creation of an artificial
class under test CUT whose methods are the methods associated with the navi-
gation graph edges and whose state is the currently visited web page and more
specifically, the currently instantiated PO for such web page.

Figure 2 shows the program transformation that creates class CUT. Its input
is a set of POs and its output is class CUT, containing a private field to store the
current page object, cp. Each PO method becomes a method of the new class,
whose return type becomes void. The method can be called only if current PO
cp is an instance of the PO where the method originally belonged to. When
this condition is satisfied, current page object is cast to its concrete type and

8 Matteo Biagiola1,2, Filippo Ricca2, and Paolo Tonella1

class cid1 implements PageObject {
public cid2 mid1 (pms1) {

if (pre1)
stbl1
return new cid2

else thst1
}

}
class cid2 implements PageObject { . . . }

⇒

class CUT {
private PageObject cp;

public void mid1 (
<mapParamTypes>(pms1)) {
if (cp instanceof cid1)

cid1 p = (cid1) cp

if (<replParam>(<replThis>(pre1)))
<replParam>(<replThis>(stbl1))
cp = new cid2

else thst1
else thst1

}
public void mid2 (

<mapParamTypes>(pms2) { . . . }
}

Fig. 2: Automated program transformation that generates class CUT from the
POs

assigned to local variable p. This variable must replace any occurrence of this
in the body of the original method, including its precondition pre1. This is
performed by function <replThis>. The instruction that returns a new PO in
the original code is transformed into a statement that assigns such new PO to
the class field cp (current page) of CUT.

To facilitate the job of the test generator, the original parameter types (e.g.,
Id:int) are mapped to a type with smaller range (e.g., Id ∈ [1 : 6]) by func-
tion <mapParamTypes>. Such a smaller range can be determined by static
analysis, in simple cases as those in Figure 1, or can be specified by the tester.
As a consequence, any occurrence of the original parameter identifiers must be
replaced with an accessor to the parameter value (e.g., x becomes x.value).
This is performed by function <replParam>. Figure 3 shows the result of the
transformation when it is applied to the PO in Figure 1.

1 public class CUT {

2 private PageObject currentPage;

3 public void selectProduct(Id id, Category category) {

4 if (this.currentPage instanceof ProductsPage) {

5 ProductsPage page = (ProductsPage) this.currentPage;

6 if(page.getActiveCategory() == category.value){

7 page.driver.findElement(By.id("product-" + id.value + "-" + category.value)).click();

8 this.currentPage = new ProductDetailPage(page.driver);

9 } else { throw new IllegalArgumentException("Invalid parameter values"); }

10 } else { throw new IllegalArgumentException("You are not in the right page"); }

11 }

12 }

Fig. 3: Excerpt of CUT generated from the POs of the Shopping Cart example

We apply search based test case generation as instantiated for object oriented
systems [9] in order to find the method sequences and parameter values that cover

Search Based Path and Input Data Generation for Web Application Testing 9

the last statements of the transformed method bodies, which correspond to the
statements returning a new PO in the original methods (i.e., this.currentPage
= new ProductDetailPage(page.driver) for selectProduct). In fact, cover-
age of all the statements that return the next PO in the navigation is equivalent
to covering all the edges in the navigation graph, i.e., to transition coverage.
In particular, we use a Genetic Algorithm (GA) and the evolved chromosomes
are test cases, i.e., sequences of method calls. The fitness function is the sum of
the branch distances of the yet uncovered branches [9]. On the other hand, the
standard genetic operators for object oriented test generation do not work prop-
erly in our case, because they do not take the structure of the navigation graph
into account. Hence, we have defined new crossover and mutation operators,
described in the next section. The initial population is obtained by performing
multiple random walks on the navigation graph.

4.2 Genetic Operators

We defined new genetic operators with the aim of modifying the chromosomes
during evolution, taking into account the constraints imposed by the navigation
graph.

Crossover: We have defined a crossover operator that works at test case
level, in addition to the usual test suite crossover operator [9]. Our new crossover
operator is shown in Figure 4a, where the notation Pi → Pj above the method
name mk() indicates that method mk() has PO Pi as starting node and PO Pj

as target node. Crossover is straightforward to apply if the cut point selected
on the two chromosomes is between method calls that refer to the same PO (in
Figure 4a, the cut point between m1() and m2() in both chromosomes refer to
the same PO, P1, which is the target of m1() and the source of m2()). When this
does not happen, the two different POs are connected by performing a random
walk in the hammock subgraph between them. To ensure reachability during the
random walk, head and tail of the new chromosome are possibly shortened, until
reachability holds between the two POs.

Mutation: We have maintained the test suite mutation operator [9], but we
have modified the delete and insert method call operators, which work at the test
case level. An example of how they manipulate the chromosome is provided in
figure 4b. The change method call operator is applicable only if the alternative
method has the same source and target POs as the original method call.

The delete operator randomly selects a starting method from the test case
and, given the target PO of the selected method (in Figure 4b, method m2() and
target node P2), it removes all the following method calls until it finds one with
a source node that is equal to the target node of the starting method. If it does
not find it, it deletes all the methods from the selected point until the end of the
chromosome (as in Figure 4b). This operation cannot remove all the statements
(at least one, the first method call, is always left), to avoid the generation of an
empty test case.

The insert operator always starts at the end of the test case (in Figure 4b,
method m2(), which has become the last method call after application of the

10 Matteo Biagiola1,2, Filippo Ricca2, and Paolo Tonella1

delete operator) and it selects a method corresponding to a yet uncovered branch
(e.g., m6()). Then it performs a random walk on the hammock subgraph between
the target node and the source node of the two selected methods (i.e., the ham-
mock subgraph between P2 and P5). The path obtained in such random walk is
appended to the chromosome (in Figure 4b, methods m8(), m4(), m7(), plus the
target method m6()). If the source node of the uncovered method is unreachable
from the end of the chromosome, the insert operator fails and does not change
the chromosome.

Insert and delete operations balance each other, by extending and shrinking
the chromosomes, hence providing a mechanism for bloat control (bloat occurs
when negligible improvements in the fitness value are obtained by extremely
large solutions).

(a) Crossover

(b) Mutation

Fig. 4: Crossover and mutation (with delete followed by insert)

5 Empirical Validation

The goal of the case study is to assess pros and cons of the proposed approach.
The baseline for comparison is the navigation graph produced by a state of the
art crawler, Crawljax [10], and the test cases derived from such graph. We have
formulated the following research questions:
RQ1 (Cost): What is the size of the page objects to be written manually and
what is the size and complexity of the Page Object method pre-conditions, required
by our approach?

To analyze the manual cost that a tester incurs when using our approach,
we measure the lines of code (LOC4) of all POs needed to model the subject

4 Non-commenting lines of code, calculated by cloc
(https://github.com/AlDanial/cloc)

Search Based Path and Input Data Generation for Web Application Testing 11

application. In particular, we are interested in the manual cost for writing the
preconditions, since they represent a requirement specific of our approach. We
measure the total number of preconditions, the total number of logical opera-
tors in such preconditions and the lines of code of methods used exclusively by
preconditions.
RQ2 (Navigation graph): How does the navigation graph specified through
POs differ from the navigation graph obtained through crawling?

Since the navigation graph extracted from the POs is specified directly by
the testers, we assume it as the reference and we measure the difference between
the crawled graph and such a reference, in terms of graph size, states/transitions
missing in the crawled graph and split/merged states/transitions in the crawled
graph as compared to the PO navigation graph. The purpose of this research
question is to understand whether crawling alone, with no human involvement
for PO definition, is able to produce a navigation graph close to the ideal one,
specified through the POs.
RQ3 (Test suite features): What is the size of the test suite generated by
Subweb as compared to that derived from the crawled navigation graph and
what is the proportion of divergent test cases?

Test case derivation from the navigation graph produced by Crawljax is sup-
ported by the tool Atusa [1], which is unfortunately unavailable. Hence, we have
reimplemented the test derivation algorithm of Atusa by following its description
in the reference paper [1]. We call our reimplementation Ext-Crawljax. We are
interested in comparing the size of the test suites produced by Subweb vs Ext-
Crawljax. A smaller size is preferable because it makes manual oracle creation or
validation easier for testers. Moreover, we measure the proportion of divergent
test cases (i.e., those that upon execution do not cover the test path for which
they were generated). In fact, the occurrence of divergences is detrimental to the
actually achieved coverage, with respect to the theoretical coverage guaranteed
by the test case derivation algorithm.
RQ4 (Coverage): What is the level of coverage reached by the test cases gen-
erated by Subweb in comparison with the coverage reached by the test cases
derived from the crawled navigation graph?

Regarding coverage, which represents the core objective of test generation, we
consider the transition coverage adequacy criterion, measured in the navigation
graph specified by testers through POs. This required to manually map states
and transitions in the crawled navigation graph to states and transitions in the
PO navigation graph.

5.1 Tool

We have implemented Subweb on top of EvoSuite [9]. In particular, we have
enabled the Whole Test Suite strategy, because we have multiple targets to
satisfy. We have modified EvoSuite in order to take the navigation graph into
account, both when generating the initial random population of individuals and
in the genetic operators, which must generate method sequences compliant with
the navigation graph.

12 Matteo Biagiola1,2, Filippo Ricca2, and Paolo Tonella1

We use Selenium WebDriver to instantiate the driver needed to launch and
send commands to the browser, when test cases have to be executed in order to
measure their fitness. The constructor of the class under test contains a method
that instantiates the Selenium driver and resets the state of the application (e.g.,
ensuring the database is initially empty).

5.2 Case study

AddressBook5 is a web-based address and phone book, contact manager and
organizer. It is written in PHP and it uses JavaScript for handling and modi-
fying HTML elements at runtime; moreover it is backed by a MySQL database.
The size of the application, shown in Table 1a, is non trivial. Moreover, this
application has been used as a case study in previous works [11].

We have removed a few features from the application, regarding uploads
and downloads of files (photos and text files for instance), as well as address
locations in a map, since they increase the navigation/testing time while being
straightforward to test.

5.3 Experimental Procedure

For the sake of fairness, we granted both tools, Subweb and Crawljax, an overall
execution budget of 2 hours and we ran both tools on the same subject 10
times, because both tools have non deterministic behaviour. In Subweb we
have disabled the minimization step of EvoSuite, because it requires multiple,
costly test case executions on the browser, which makes it too inefficient for
our purposes. In Crawljax, we use the default configuration with the default
parameter values. We only provide Crawljax with custom values for those form
inputs in the application that require very specific values.

To measure test case divergences, we transform each path obtained from the
crawled navigation graph into a JUnit test case. The JUnit test case fires a
sequence of events that should bring the application from the initial to the end
state of the path. If an event is a form submission, we insert all the needed input
values (either random or custom values, when necessary). The execution of such
test case is deemed divergent when a Selenium exception is thrown during the
execution. In fact, divergences happen if an element existing at crawling time
is no longer found at test time, when the application state is different, so that
the desired path cannot be followed. The missing element triggers a Selenium
exception.

5.4 Results

The data in Table 1a show that the 13 POs written manually account for 764
LOC in total. This is a small fraction of the overall application size (around 2%).
Preconditions, that are required exclusively by our approach, represent an even

5 https://sourceforge.net/projects/php-addressbook/

Search Based Path and Input Data Generation for Web Application Testing 13

smaller portion of the application size: precondition method LOC account for
0.2% of the application size, while the 16 preconditions use on average 3 logical
operator each. Moreover, the first author wrote the 13 POs in, approximately,
one day; however this metric clearly depends on many factors, the main one is
the level of confidence the developer has with the Page Object pattern.

App
PHP LOC 30223
JavaScript LOC 1288

POs
LOC 764
Total number 13
Navig. methods 73

Preconds
Method LOC 75
Total number 16
Logic operators 54

(a) RQ1

PO States 12
graph Transitions 73

States 329
Transitions 927

Crawled Missing states 0
graph Missing trans 5

Split state ratio 27
Split trans ratio 13

(b) RQ2

Subweb Test cases 54

Ext-Crawljax
Test cases 598
Divergent test cases 104 (17%)

(c) RQ3

Table 1: Size of application, POs and PO preconditions (a); size of PO vs crawled
graph, with missing/split states/transitions (b); number of test cases and diver-
gent test cases (c)

RQ1: Based on the size data collected on our case study, the manual cost
for writing POs and PO preconditions seems relatively low.

As shown in Table 1b, the crawled navigation graph is huge if compared to
the PO navigation graph (approximately ×27 states; ×13 transitions). While
it does not miss any state, despite its size it misses on average 5 transitions,
which are specified by testers, but are not covered during some executions of
crawling (5 is the average computed over 10 runs of Crawljax). No single case of
state/transition merge was observed, while, as expected from the larger graph
size, several states and transitions are split in the crawled graph.

RQ2: The crawled graph deviates from the ideal, manually specified, PO
graph to a major extent, because of its larger size, missing transitions and
split states/transitions.

Table 1c shows that Subweb generates much smaller test suites than Ext-
Crawljax. This is a consequence of the different navigation graph size. Moreover,
while Subweb generates non divergent test cases by construction, the crawling
based approach generates as many as 17% divergent test cases.

RQ3: The test suites produced by Subweb are approximately 11 times
smaller than the test suites produced by Ext-Crawljax. The latter include
a relatively large proportion of divergent test cases.

14 Matteo Biagiola1,2, Filippo Ricca2, and Paolo Tonella1

Figure 5 shows the box plots of the transition coverage reached by Subweb
and Ext-Crawljax. The mean coverage of Subweb is on average 13pp (percent-
age points) above the mean coverage of Ext-Crawljax and such a difference is
statistically significant according to the Mann-Whitney U test (at 5% signifi-
cance level), that we applied since we didn’t have a priori knowledge about the
distribution of the data.

Subweb
Mean 96%
Var 12%

Ext-Crawljax
Mean 83%
Var 39%

Mann-Whitney U test

p-value 4.70 · 10−4

Fig. 5: Transition coverage (percentage) reached by Subweb and Ext-Crawljax
in 10 runs; the two distributions differ in a statistically significant way according
to the Mann-Whitney U test.

RQ4: The test cases generated by Subweb achieve higher transition cover-
age than those generated by Ext-Crawljax.

5.5 Threats to Validity

Threats to the internal validity might come from how the empirical study was
carried out. Each test case was run starting from an empty database, under the
assumption that the tester is interested in the behaviour of the application when
no record has been persisted yet. If, on the contrary, a non empty database is
created at each test case start up, the traversal of paths for which populating
the database is a prerequisite becomes easier for both approaches.

Moreover, we didn’t use a case study with existing POs and measured the
effort needed to modify them in order to enable our technique; indeed it is
difficult to find open source projects with existing selenium tests using the PO
design pattern.

Threats to the external validity mainly regard the use of only one case study,
which prevents us from generalizing our findings to substantially different cases.
On the other hand, AddressBook is a non trivial application that has been used
in several previous works on web testing.

Search Based Path and Input Data Generation for Web Application Testing 15

6 Conclusions and Future Work

We have presented Subweb, a web testing tool for the joint generation of test
inputs and feasible navigation paths. Although Subweb requires a manual step
for POs writing, whereas a crawling-based approach is completely automatic, the
effort of such manual step is quite limited while, on the other hand, the achieved
advantages are major ones: the navigation graph is much smaller; correspond-
ingly, the test suites derived from the navigation graph have substantially smaller
size; by construction, test cases are never divergent, while this is not the case of
crawling-based test cases; finally, the transition coverage reached by Subweb is
on average higher (96% vs 83%).

In our future work, we will investigate techniques to support the automatic
generation of assertions starting from the generated test suite. Moreover, we plan
to evaluate Subweb on other web applications, in addition to AddressBook.

References

1. Mesbah, A., van Deursen, A.: Invariant-based automatic testing of ajax user inter-
faces. In: Proceedings of the 31st International Conference on Software Engineer-
ing. ICSE ’09, Washington, DC, USA, IEEE Computer Society (2009) 210–220

2. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Approaches and tools for automated
end-to-end web testing. Advances in Computers 101 (2016) 193–237

3. Artzi, S., Dolby, J., Jensen, S.H., Møller, A., Tip, F.: A framework for automated
testing of javascript web applications. In: Proceedings of the 33rd International
Conference on Software Engineering. ICSE ’11, New York, NY, USA, ACM (2011)
571–580

4. Marchetto, A., Tonella, P., Ricca, F.: State-based testing of ajax web applications.
In: Proceedings of the 2008 International Conference on Software Testing, Verifi-
cation, and Validation. ICST ’08, Washington, DC, USA, IEEE Computer Society
(2008) 121–130

5. Tonella, P., Ricca, F., Marchetto, A.: Recent advances in web testing. Advances
in Computers 93 (2014) 1–51

6. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: Proceedings of the 29th International Conference on Software En-
gineering. ICSE ’07, Washington, DC, USA, IEEE Computer Society (2007) 75–84

7. Yu, B., Ma, L., Zhang, C.: Incremental web application testing using page object.
In: Proceedings of the 2015 Third IEEE Workshop on Hot Topics in Web Sys-
tems and Technologies (HotWeb). HOTWEB ’15, Washington, DC, USA, IEEE
Computer Society (2015) 1–6

8. van Deursen, A.: Testing web applications with state objects. Commun. ACM
58(8) (July 2015) 36–43

9. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Transactions on Software
Engineering 39(2) (feb. 2013) 276 –291

10. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling ajax-based web applications
through dynamic analysis of user interface state changes. ACM Transactions on
the Web (TWEB) 6(1) (2012) 3:1–3:30

11. Leotta, M., Stocco, A., Ricca, F., Tonella, P.: Robula+: an algorithm for generating
robust xpath locators for web testing. Journal of Software: Evolution and Process
28(3) (2016) 177–204

View publication statsView publication stats

https://www.researchgate.net/publication/319138308

	Search Based Path and Input Data Generation for Web Application Testing
	Introduction
	Related work
	Navigation Model Specification via Page Objects
	Page objects
	Navigation Graph

	Search Based Path and Input Data Generation
	Problem Reformulation
	Genetic Operators

	Empirical Validation
	Tool
	Case study
	Experimental Procedure
	Results
	Threats to Validity

	Conclusions and Future Work

