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Berberine affects mitochondrial 
activity and cell growth of leukemic 
cells from chronic lymphocytic 
leukemia patients
Silvia Ravera1,7, Fabio Ghiotto1,6,7, Claudya Tenca1, Elena Gugiatti1, Sara Santamaria1, 
Bernardetta Ledda2, Adalberto Ibatici3, Giovanna Cutrona6, Andrea N. Mazzarello4, 
Davide Bagnara1, Martina Cardillo6, Daniela Zarcone1, Zbigniew Darzynkiewicz5, 
Ermanno Ciccone1, Franco Fais1,6,7 & Silvia Bruno1,7*

B-cell chronic lymphocytic leukemia (CLL) results from accumulation of leukemic cells that are subject 
to iterative re-activation cycles and clonal expansion in lymphoid tissues. The effects of the well-
tolerated alkaloid Berberine (BRB), used for treating metabolic disorders, were studied on ex-vivo 
leukemic cells activated in vitro by microenvironment stimuli. BRB decreased expression of survival/
proliferation-associated molecules (e.g. Mcl-1/Bcl-xL) and inhibited stimulation-induced cell cycle 
entry, irrespective of TP53 alterations or chromosomal abnormalities. CLL cells rely on oxidative 
phosphorylation for their bioenergetics, particularly during the activation process. In this context, 
BRB triggered mitochondrial dysfunction and aberrant cellular energetic metabolism. Decreased ATP 
production and NADH recycling, associated with mitochondrial uncoupling, were not compensated 
by increased lactic fermentation. Antioxidant defenses were affected and could not correct the 
altered intracellular redox homeostasis. The data thus indicated that the cytotoxic/cytostatic action 
of BRB at 10–30 μM might be mediated, at least in part, by BRB-induced impairment of oxidative 
phosphorylation and the associated increment of oxidative damage, with consequent inhibition of cell 
activation and eventual cell death. Bioenergetics and cell survival were instead unaffected in normal 
B lymphocytes at the same BRB concentrations. Interestingly, BRB lowered the apoptotic threshold 
of ABT-199/Venetoclax, a promising BH3-mimetic whose cytotoxic activity is counteracted by high 
Mcl-1/Bcl-xL expression and increased mitochondrial oxidative phosphorylation. Our results indicate 
that, while CLL cells are in the process of building their survival and cycling armamentarium, the 
presence of BRB affects this process.

During their migration between peripheral blood and lymphoid tissues, CLL cells undergo iterative rounds of 
converting to quiescence while in the periphery and re-activation with subsequent clonal expansion while in 
lymphoid proliferation centers mostly within secondary lymphoid tissues, where multiple molecular interactions 
with antigen and microenvironment contribute to leukemic B cell survival and proliferation. Drugs that are both 
cytotoxic to resting CLL cells and that are also able to inhibit CLLs’ activation and subsequent proliferation in 
lymphoid microenvironment would be beneficial for the treatment of this still incurable disease.

CLL cells strongly rely for survival and proliferation on mitochondrial activity. Indeed, unlike normal B 
cells, CLL cells store lipids and generate energy by utilizing fatty acids in addition to  glucose1,2. Unlike other 
cancers, they do not appear to follow the Warburg effect, since they do not activate effective compensatory 
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lactate  production3. These observations corroborate the notion that CLL cells strongly depend on mitochondrial 
oxidative phosphorylation (OxPhos) for their  bioenergetics4,5. In particular, OxPhos and mitochondrial func-
tions are crucial for leukemic cell protection by the microenvironment and maintenance of intracellular redox 
 homeostasis6, and were proposed as potential targets for therapeutic interventions in CLL.

Berberine (BRB), an alkaloid with anti-hyperglycemic and hypolipidemic properties, was recently shown to 
inhibit cellular lipogenesis, and respiratory complex I activity, exerting antiproliferative activity against tumor cell 
lines and tumor  xenotransplants7–10, through mechanisms involving mitochondrial  functions11,12. We, therefore, 
explored the in vitro cytotoxic and cytostatic effects of BRB on circulating leukemic cells derived ex-vivo from 
the peripheral blood of CLL patients and cultured in the presence of activating microenvironment stimuli.

Results
The study was conducted on quiescent leukemic cells and on cells stimulated in vitro by lymphoid tissue-mim-
icking microenvironment stimuli (CD40L + IL-4 and CpG-ODN2006 + IL-15)13,14. CLL samples were derived 
from patients with heterogeneous clinical and molecular prognostic markers, including patients with aggressive 
disease (Binet B and C) or with unfavorable prognostic markers (i.e. unmutated IGHV, high CD38 levels, 17p 
deletion and TP53 or SF3B1 mutations) (Supplementary Table S1).

We observed a significant cytotoxic activity at concentrations of BRB ≥ 10 μM both on quiescent and stimu-
lated CLL cultures (Fig. 1A), which was associated with apoptosis as indicated by annexinV measurements 
(Fig. 1B). The drug was more cytotoxic when added at the beginning of activation (T0) than when it was admin-
istered to cells in overt proliferation (T48h). Since leukemic cell activation and cell cycle entry are crucial for CLL 
disease progression, we were particularly interested in the effects of BRB on the early stages of cell activation. In 
these samples, the presence of BRB affected the expected up-regulation of anti-apoptotic Bcl-2 family members 
Mcl-1 and Bcl-xL (Fig. 1C), known to be particularly relevant for chemoresistance in CLL  cells15–17. Also, BRB 
affected the stimulation-induced up-regulation of adhesion proteins and homing molecules (Supplementary 
Fig. 1S), known to activate Mcl-1 and Bcl-xL expression and to promote CLL disease  development18–21.

It is important to highlight that the analysis of protein expression by flow cytometry was restricted to viable 
leukemic cells only, gating out apoptotic cells by light scattering signals or propidium iodide uptake (see Materials 
and Methods). These CLL cells that have still intact plasma membrane and do not express activated caspase  313.

BRB affected cell cycle entry and proliferation, as demonstrated by observation on cell cycle associated param-
eters that increase their levels after microenvironment stimuli. The rise of the percentage of S + G2M phase cells 
48 h after stimulation was inhibited by BRB (Fig. 2A). The reduced rise of expression of Ki-67, the proliferation 
marker which is maximally expressed during late-S phase and in G2, is also consistent with an anti-proliferative 
effect of BRB (Fig. 2B). D3 and E type cyclins have a key role in CLL for the induction of G1 progression and 
G1/S  transition22,23. Their activation-induced increase was impaired by BRB (Fig. 2C).

Normal B lymphocytes were less sensitive to the alkaloid cytotoxic activity (Fig. 1D). Cell viability was totally 
unaffected at the doses that induced apoptosis in CLL cells. Cell proliferation of normal B cells was partly inhib-
ited when BRB was present during the initial activation stages, while it was virtually unaffected when BRB was 

Figure 1.  BRB affects CLL cell viability. (A) Left: Flow cytometric dot plots of Propidium Iodide (PI) 
fluorescence versus Forward Light Scatter (FSC) for the determination of live (intact plasma membrane, PI 
negative) and dead (disrupted plasma membrane, PI positive) cells, from one CLL patient harboring 17p13 
deletion. The cells were either quiescent or stimulated by CpG/ODN2006 + IL-15 and treated with BRB 10 and 
20 μM for 48 h. Drug treatment of activated cells started simultaneously with stimulation. Note that the increase 
of FSC (i.e. cell size) after stimulation was inhibited by the presence of BRB. Right: Cell viability by the PI 
exclusion test is summarized for leukemic samples from 20 CLL patients, either untreated or treated with BRB 
at the indicated concentrations, for 48 h. Cell activation was achieved either with CD40L-NIH-3T3 + IL-4 or 
CpG/ODN2006 + IL-15, as indicated. BRB treatment started at stimulation time (T0), or 48 h after stimulation 
(T48h). Statistical significance of differences evaluated by a two- sided Wilcoxon signed rank test. **P ≤ 0.01; 
***P ≤ 0.001; ****P ≤ 0.0001. (B) Left: flow cytometric AnnexinV-FITC/PI dot plots of leukemic cells from two 
CLL patients, harboring 17p13 deletion (left) and TP53 mutation (right), stimulated with CpG + IL-15, treated 
simultaneously with BRB and analyzed 48 h later. (C) Upper left: flow cytometric frequency histograms of Mcl-1 
and Bcl-xL expression in leukemic cells of three CLL patient, two of which harbored 17p13 deletion and other 
chromosomal abnormalities. Cells were unstimulated (Q, quiescent, dotted line) or stimulated (A, activated), 
in the absence (thin continuous line) or presence of 20 μM BRB (thick continuous line). The drug was added 
simultaneously to stimulation (CD40L-NIH-3T3 + IL-4) and cells collected 48 h later. Histograms contain only 
cells within the ‘live gate’, namely the flow cytometric ‘high-FSC/low SSC’ gate, that contains only cells with 
intact ∆Ψ, intact plasma membrane and no caspase 3 activation (see Materials and Methods  and13). Upper right: 
summary of data from samples of six CLL patients, both quiescent and activated. Statistical significance of 
differences evaluated by a two- sided Wilcoxon signed rank test. *P ≤ 0.05. Lower left: Expression of Bcl-xL and 
Mcl-1 by WB analysis, in leukemic cells from three CLL patients, in unstimulated (Q, quiescent) or stimulated 
(A, activated) cells in the absence or presence of BRB. The drug was added simultaneously to CpG + IL-15, and 
cells collected 18 h later. Lower right: Optical density of protein levels was quantitated by densitometric analysis 
and is reported relative to actin levels. Statistical significance of differences evaluated by one-way ANOVA 
followed by Bonferroni post hoc test. **P ≤ 0.01; *** P ≤ 0.001. (D) Cell viability on quiescent and stimulated 
normal B lymphocytes, purified from peripheral blood of 6 healthy donors, and treated with BRB for 48 h. BRB 
treatment started at the time of stimulation (T0), or 48 h after stimulation (T48h). No significant differences 
were observed.
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administered later on, i.e. on cells already in overt proliferation (Fig. 2D). This observation suggests that BRB 
might affect normal lymphocyte preferentially during the early stages of mitogenic stimulation while clearly 
proliferating cells remain resistant to its cytostatic effect.

Since CLL cells rely on mitochondrial OxPhos for their bioenergetics, we envisaged that the inhibitory effects 
of BRB on viability and cell proliferation might be mediated by induction of mitochondrial dysfunction and 
aberrant cellular energetic metabolism.

We observed that BRB inhibited the stimulation-induced increase of mitochondrial transmembrane potential 
(ΔΨ) (Fig. 3A), and induced ATP depletion with consequent AMP accumulation, occurring already 8 h after 
BRB addition (Fig. 3B). These observations are consistent with the notion that BRB exerts an inhibitory action 
on CLL via mitochondria likely through their respiratory chain activity, as previously demonstrated in other 
cellular  models12. In support of the above, by analyzing the effects of BRB on mitochondrial respiration, we 
found that BRB produced a dose-dependent inhibition of oxygen consumption in activated CLL cells, with both 
complex I–linked (pyruvate/malate) and complex II–linked substrates (succinate) (Supplementary Figure S2). 
The activity of  Fo-F1 ATP synthase, the enzyme that uses the proton gradient across mitochondrial membrane 
to produce ATP, was also affected by BRB (Supplementary Figure S2). However, the level of inhibition of ATP 
synthase activity was higher than the inhibition of oxygen consumption, as proven by the decreased P/O ratio 
(Fig. 3C) This indicated a mitochondrial uncoupling status occurring well before cellular dysfunction and even-
tual apoptosis. Thus, it can be inferred that oxygen consumption inhibition and ATP depletion provoked by BRB 
at concentrations ≥ 10 μM might have a role in the impairment of cell cycle entry and proliferation.

Alterations of the aerobic metabolism normally redirect cells to an increase of lactic fermentation, to restore 
at least in part ATP production and recycle the NADH produced during glycolysis. Indeed, we observed that the 
activity of lactate dehydrogenase (LDH) was higher in activated BRB-treated cells (Fig. 3D). However, the levels 
of the NADH/NAD+ ratio were also increased (Fig. 3E), indicating that the BRB-induced anaerobic glycolytic flux 
was not sufficient to convert all the coenzyme reduced during the glycolytic process. Indeed, NADH levels in BRB 
cells remained higher than in control ones, while regeneration of  NAD+ levels, necessary for proper glycolytic 
flux, was impaired (Fig. 3E). In other words, the tumor cells attempt to compensate the BRB-induced defect of 
aerobic metabolism by enhancing the anaerobic glycolysis, but the process of  NAD+ regeneration seems to be 
not efficient enough. Conversely to CLL, energetic and glucose metabolism features were unaffected in normal 
B lymphocytes by these concentrations of BRB (Supplementary Figure S3).

Uncoupled OxPhos promotes the generation of ROS. Twenty-four hours after the full signs of mitochondrial 
dysfunction elicited by BRB, we observed increased levels of reactive oxygen intermediates in stimulated CLL 
cells treated with BRB (Fig. 3A). CLL cell cultures previously conditioned with antioxidants were less sensitive 
to BRB for ROS generation and cell cycle entry (Fig. 4A). This oxidative stress, further corroborated by the 
observed increase of lipid peroxidation (Fig. 4B), was not counterbalanced by antioxidant defense mechanisms 
that appeared to be affected themselves by BRB treatment (Fig. 4C). We may envisage that the cytotoxic action 
of BRB at 10–30 μM might be mediated, at least in part, by BRB-induced surplus production of mitochondrial 
superoxide leading to oxidative damage, and eventually to cell death, as previously observed in tumor cell  lines7,24. 
ROS levels in normal B lymphocytes, instead, remained unaltered after BRB treatment (Supplementary S4).

The anti-Bcl-2 drug ABT-199/Venetoclax is a promising anti-CLL agent that demonstrated potent clinical 
activity also in CLL cases with poor  prognosis25. However, its cytotoxic activity is impaired when Mcl-1 and Bcl-
xL are  overexpressed26. Also, therapeutic resistance is recently  emerging27. This resistance was mainly ascribed 
to the evolution of leukemic clones that display increased Mcl-1 expression and reprogrammed cellular energy 
metabolism, with particular regard to enhanced OxPhos  activity28. We thus assayed combination treatments 
with BRB and ABT-199, given that our in vitro data indicate that BRB depressed leukemic cells’ activation and 
cell cycle entry possibly via altered mitochondrial activity and down-regulation of Mcl-1/Bcl-xL expression. 
Significant potentiation of ABT-199 cytotoxicity by BRB was observed in activated CLL cells (Fig. 5A). To 

Figure 2.  BRB affects CLL cell activation and cell cycle entry. (A) Left: flow cytometric DNA content 
histograms of leukemic cells from one CLL patient with mutated TP53. The cells were either quiescent or 
stimulated by CpG/ODN2006 + IL-15 and treated with BRB 20 μM for 48 h. Drug treatment of activated cells 
started simultaneously with stimulation. Right: Percentage of CLL cells in the S + G2M phase of the cell cycle, 
evaluated from flow cytometric DNA content histograms of samples from 17 CLL patients, stimulated and 
treated with BRB for 48 h. BRB treatment started at the time of stimulation (T0), or 48 h after stimulation 
(T48h). Statistical significance of differences by non-parametric t-test. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. (B) 
Left: flow cytometric DNA/KI67 bivariate plots of leukemic cells from one CLL patient with mutated SF3B1, 
treated with 20 μM BRB at the time of CpG + IL-15 stimulus and analyzed after 48 and 72 h. Right: Percentage 
of Ki-67 positive cells in leukemic cell cultures of three CLL patients, evaluated from flow cytometric DNA/KI67 
bivariate plots of samples stimulated and treated simultaneously with BRB for 48 h. Statistical significance of 
differences by non-parametric t-test. *P ≤ 0.05; **P ≤ 0.01. (C) Left: frequency histograms of cyclin D3 and cyclin 
E expression in leukemic cells from two CLL patients, either quiescent or stimulated by CpG/ODN2006 + IL-15 
and treated with BRB 20 μM for 48 h. Right: Percentage of cyclin D3 and cyclin E positive cells in CLL 
cultures stimulated and treated simultaneously with BRB for 48 h. Cells were processed for intracellular 
immunofluorescence and analyzed by flow cytometry within the ‘live’ gate. Statistical significance of differences 
by non-parametric t-test. **P ≤ 0.01. (D) Percentage of normal B lymphocytes residing in the S + G2M phase of 
the cell cycle, evaluated from flow cytometric DNA content histograms of samples from 6 healthy donors. Cells 
were stimulated and treated for 48 h with BRB either at beginning of stimulation (T0) or 48 h after stimulation 
(T48). Statistical significance of differences by non-parametric t-test. *P ≤ 0.05.

▸



5

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16519  | https://doi.org/10.1038/s41598-020-73594-z

www.nature.com/scientificreports/



6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:16519  | https://doi.org/10.1038/s41598-020-73594-z

www.nature.com/scientificreports/



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16519  | https://doi.org/10.1038/s41598-020-73594-z

www.nature.com/scientificreports/

elucidate whether BRB/ABT-199 drug combination was synergic or just additive, we performed cytotoxicity 
experiments at multiple drug concentrations and applied the Chou-Talalay model. Combination Index (CI) 
and isobolograms demonstrate a ‘synergic’, though not striking, effect for BRB/ABT-199 drug combination in 
most cases (Fig. 5B-C).

Based on the dose-effect curves of drugs alone and in combination it is possible to also calculate a Dose 
Reduction Index (DRI), namely a measure of how much the dose of each drug in a synergistic combination may 
be reduced for a given effect level compared with the doses of each drug alone. We found that BRB sensitized 
the activated CLL cells to the cytotoxic action of Venetoclax and significantly decreased the efficacious dose of 
Venetoclax by a factor ranging from 2 to 7 (Fig. 5D).

Discussion
In this study we addressed the in vitro effects of BRB on CLL cells, quiescent or stimulated by microenviron-
ment stimuli to become activated blasts that enter the cell cycle. We found that BRB was cytotoxic to quiescent 
CLL cells and, most strikingly, that the drug inhibited leukemic cell activation induced by microenvironment 
stimuli. These cytostatic effects of BRB on leukemic cells subjected to activation stimuli were demonstrated by 
inhibition of cell cycle entry and rise of proliferation-associated molecule expression. The stimulation-induced 
up-regulation of adhesion/homing molecule expression was also impaired by BRB. These molecules have a cru-
cial role in eliciting mitotic activity and cell homing when leukemic cells reside in lymphoid tissues and play a 
pivotal role in the development and progression of CLL. In particular, CD44 promotes disease progression and 
apoptosis resistance through Mcl-1 up-regulation18. Adhesion molecules CD54 (ICAM-1) and CD58 (LFA-3) are 
associated with CLL disease  progression19. CXCR4(CD184) and CD62L promote CLL cell survival and activation 
of leukemic cells when they are in lymph node and bone  marrow20,21.

These responses to BRB were recorded before cell death, since the flow cytometric analysis was restricted 
to viable cells only, indicating that BRB down-regulated the expression of these proteins before mitochondrial 
perturbation and cell death.

Sensitivity of CLL sample to BRB was not found to correlate with clinical parameters (Binet disease stage) 
nor with molecular prognostic markers (mutational status of the IGHV, CD38 expression). Whether this lack 
of correlation indicates that BRB sensitivity is invariant with respect to disease aggressiveness, or if it is simply 
due to a small sample size, will be disclosed by further study, which will expand the data and increases statistical 
robustness. Nevertheless, it has to be remarked that BRB affected viability and proliferation also of CLL cells from 
patients with markers of aggressive disease, such as those harboring 17p deletion, TP53 and SF3B1 mutations, 
or other chromosomal abnormalities known to confer chemoresistance.

The cytotoxic and cytostatic effects of BRB might be caused, at least in part, by the observed mitochondrial 
dysfunction and the associated oxidative stress production. It is not known whether mitochondrial structures 
are directly or indirectly affected by the drug. Nevertheless, it is notable that, in solid tumors, BRB administered 
at the μM-range concentrations was documented to accumulate selectively in  mitochondria29.

The BRB-induced defect of the mitochondrial aerobic metabolism was not compensated by enhanced anaero-
bic glycolysis and  NAD+ regeneration. It produced instead increased levels of mitochondrial superoxide, as 
reported in other cell types as  well7,24. Peripheral blood lymphocytes from healthy donors, either quiescent or 
activated, were instead insensitive to the cytotoxic action of BRB at the doses that were effective on CLL cells. This 
leukemia-selective action of the drug could depend on the equilibrium between its ROS generation effects and 
the cellular antioxidant ability to counterbalance the oxidative stress. Our data show that the basal levels of ROS 
and antioxidant defenses were lower in normal B lymphocytes than in CLL cells (Fig. 4 and S4), suggesting that 
mitochondrial metabolism is more efficient in normal than in leukemic cells. When treated with BRB, CLL cells 
displayed a lower antioxidant response in comparison to normal B cells. This could have induced the activation 
of a vicious cycle in which ROS determined a damage on the inner mitochondrial membranes, exacerbating the 
production of oxidative stress and the impairment of the OxPhos. By contrast, in normal B cells, the BRB-induced 

Figure 3.  BRB affects CLL cell energetic metabolism. (A) Left: Mitochondrial transmembrane potential ΔΨ 
evaluated by fluorescence of 3,3′-dihexyloxacarbocyanine iodide  (DiOC6) of CLL cells counterstained with 
Propidium Iodide to identify live/dead cells. The flow cytometric dot plots of DiOC6/PI fluorescence are 
displayed for one CLL sample stimulated in the absence or presence of 10 μM or 20 μM BRB and measured after 
18 and 48 h. The following subpopulations: can be identified  DiOC6pos/PIneg cells (intact ∆Ψ),  DiOC6neg/PIneg 
cells (dissipated ∆Ψ but still intact plasma membrane) and  DiOC6neg/PIpos cells (dead cells). We report the % 
of dead cells and the geometric mean of  DiOC6 for the  PIneg subpopulation (both  DiOC6pos + DiOC6neg, i.e. ΔΨ 
of the viable cells). Right: mean ΔΨ of viable cells in unstimulated CLL samples (quiescent) treated with BRB 
for 48 h, and stimulated samples treated for 18 h (n = 7) and 48 h (n = 15). Statistical significance of differences 
by non-parametric t-test. *P ≤ 0.05; **P ≤ 0.01. (B) Energy status evaluated as the ATP/AMP ratio of quiescent 
(n = 4) and stimulated (n = 4) CLL samples in response to 8 h or 48 h BRB treatment. (C) OxPhos coupling 
evaluated as the ratio between ATP synthesis and oxygen consumption (P/O ratio) on quiescent (n = 4) and 
stimulated (n = 4) CLL samples in response to 8 h or 48 h BRB treatment. Pyruvate + malate or succinate were 
used to activate the pathways triggered by Complex I or Complex II, respectively. (D) Lactate dehydrogenase 
activity (LDH) in quiescent (n = 4) and stimulated (n = 4) CLL samples in response to 48 h BRB treatment. (E) 
 NAD+ and NADH concentrations, and the consequent NADH/NAD+ ratio, estimated in quiescent (n = 4) and 
stimulated (n = 4) CLL samples in response to 48 h BRB treatment. For Panels (B–E), statistical significance 
of differences evaluated by one-way ANOVA followed by Bonferroni post hoc test. *P ≤ 0.05; **P ≤ 0.01; *** 
P ≤ 0.001;****P ≤ 0.0001.
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Figure 4.  BRB affects CLL cell redox homeostasis. (A) Left: flow cytometric frequency histograms of H2DCFDA fluorescence 
in leukemic cells from one CLL patient, stimulated, treated with BRB and analyzed after 48 and 72 h (protective NAC was 
added as internal control). Right: ROS levels of n = 6 quiescent and stimulated CLL samples in response to 48 h and 72 h 
BRB treatment, as assessed by flow cytometric fluorescence of H2DCFDA stained cells, analyzed after gating out dead cells. 
Statistical significance of differences by non-parametric t-test. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. (B) Malondialdehyde (MDA) 
level, evaluated as a marker of lipid peroxidation, in quiescent (n = 4) and stimulated (n = 4) CLL samples in response to 48 h 
BRB treatment, by the thiobarbituric acid reactive substances (TBARS)  method36. Statistical significance of differences by one-
way ANOVA followed by Bonferroni post hoc test. *P ≤ 0.05; **P ≤ 0.01. (C) Antioxidant defense evaluated in quiescent (n = 4) 
and stimulated (n = 4) CLL samples in response to 48 h BRB treatment, by measuring the Total Antioxidant Capacity (TAC). 
The concentration of small molecule and protein antioxidants is expressed in Trolox equivalents, using the vitamin E analog 
Trolox as an antioxidant standard. Statistical significance of differences by one-way ANOVA followed by Bonferroni post hoc 
test. *P ≤ 0.05; ***P≤ 0.001.
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Figure 5.  BRB potentiates the cytotoxic activity of Venetoclax on CLL cells. (A) BRB and/or ABT-199 cytotoxicity (42 h) 
on activated CLL cultures of three CLL patients. Cells displayed increased sensitivity to drug combinations, if compared 
to either drug alone, as demonstrated by the statistically significant difference evaluated by a two- sided Wilcoxon signed 
rank test. *P ≤ 0.05;** P ≤ 0.01. (B) Combination index (CI) curves and isobolograms computed by the Chou–Talalay model 
(CalcuSyn software, Biosoft, Cambridge) from dose–effect profiles of activated leukemic cells treated for 42 h with increasing 
concentrations of BRB (1–10 μM), ABT-199 (10–100 nM) or BRB/ABT-199 at constant ratios. CI measures drug interaction 
effects: additive: 0.9 ≤ CI ≤ 1.1, synergism: CI < 0.9 and antagonism: CI > 1.1. Isobolograms: the x- and y-axes represent the 
doses of ABT-199 and BRB, respectively. The intercepts of the three lines on x- and y-axes represent the dose of the same 
efficacy when the two drugs are used alone, which are here expressed as half, 75% and 90% effective dose (i.e. ED50, ED75 
and ED90). Additive: point on the line, synergism: point below the line, antagonism: point above the line. (C) CI values at the 
‘fractional effect levels’ LC75 and LC90 (concentration lethal to 75% and 90% of CLL cells, respectively). Dotted lines indicate 
CI = 0.9 and CI = 1.1. (D) Dose Reduction Index (DRI) values at  LC75 and  LC90 computed for samples of three CLL patients.
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increment of ROS production was balanced by an adequate antioxidant defense, avoiding the mitochondrial 
damage and the alteration of energy metabolism. further suggesting that mitochondrial metabolism is more 
efficient in normal than in leukemic cells.

It has also to be recalled that leukemic cells rely on OxPhos for their bioenergetics needs, more than normal 
cells  do2,4. Therefore, damage to the mitochondrial activity might lead to more dreadful consequences in CLL 
cells. Interestingly, CLL cells are also more addicted, for their survival and proliferation, to the protective activity 
of Bcl-2 anti-apoptotic proteins compared to normal  cells30. Oncogene activation, cell cycle checkpoint viola-
tion, genomic instability are insults that normally provoke death signals. Cancer cells counteract them by using 
apoptotic block mechanisms, one of which is the increased activity of anti-apoptotic proteins. The anti-apoptotic 
proteins of the Bcl-2 family sequester and hold in check large amounts of pro-apoptotic BH3-only proteins in CLL 
 cells30. Instead, the survival of nonmalignant cells does not normally depend on anti-apoptotic  proteins31 . Thus, 
CLL cells are more addicted to the protective activity of Bcl-2 anti-apoptotic members compared to normal cells, 
and are therefore more sensitive to agents that lower anti-apoptotic protein expression and trigger the consequent 
massive release of pro-death BH3-only  proteins30. Conversely, down-regulation of the anti-apoptotic proteins 
is not expected to exert dramatic effects on healthy cells. Although we did not demonstrate this hypothesis in 
our samples, we feel that it might provide an additional model that accounts for the differential sensitivity of 
leukemic and normal B cells to BRB.

Though normal B lymphocytes were almost unaffected by BRB at the doses cytotoxic for CLL cells, a cytostatic 
effect was observed at early stages of cell cycle entry. B cells overtly proliferating were instead unaffected. This 
suggests that the presence of BRB might slow down normal lymphocyte activation.

BRB was able to potentiate in vitro ABT-199 cytotoxicity. This may permit the use of ABT-199 at lower doses, 
which clinically would decrease treatment-derived morbidity and reduce therapy-derived acquisition of clinical 
resistance, which appears to be driven by a progressive up-regulation of Mcl-1 and an overall increased capacity 
for respiration and  OxPhos28.

BRB is a well-tolerated drug at the doses used for hypercholesterolemic and diabetic patients (1–2 g/die). At 
these doses the plasma concentrations of BRB and its bioactive metabolites is lower (10–50 nM) than the pres-
ently seen doses that displayed metabolic inhibition in our CLL  cells32. However, nanotechnological strategies 
to improve BRB delivery to tumors are recently being successfully  exploited33 and increased BRB cytotoxicity 
by 20-fold in preclinical murine  models34. Also, drug accumulation at concentrations several fold higher (up 
to 30-fold) than those in blood has been demonstrated in  tissues35. We may envisage that BRB may accumulate 
within lymphoid tissues, which is the site where CLL cells are being activated and where a BRB-containing 
milieu could hamper cell cycle entry of leukemic cells and therefore decrease the threshold of cellular sensitivity 
to anti-CLL drugs.

Materials and methods
Cells and cell cultures. CLL cells were obtained from peripheral blood of CLL patients, after informed 
consent according to the Declaration of Helsinki. Mononuclear cells separated by Ficoll density gradient 
centrifugation were assayed by flow cytometry (FACSCalibur, BD Biosciences, San Diego, CA) for standard 
diagnostic immunophenotyping. CLL cells were cultured in RPMI culture medium with 10% FBS at high cell 
density, 2–4 × 106/ml. CD40-activation was achieved by a CD40L-expressing NIH-3T3 murine fibroblast cell 
line produced in our laboratory + IL-4 (10 ng/ml) or by CpG/ODN2006 (hTLR9 ligand) (2 microg/ml) + IL-15 
(10 ng/ml). In vitro response to stimuli was confirmed flow cytometrically by expression of activation molecules, 
increased cell size (forward light scattering) and % cells in S + G2M cell cycle phases (DNA content histograms). 
It has to be mentioned that the experiments were done on CLL samples with at least 85–90% leukemic clone, and 
that the whole mononuclear cell population was used for the experiments. T cells, which are able to proliferate 
in vitro after the activation stimuli provided by activated leukemic B cells, were present during the experiments 
at very low proportion (rarely exceeding 10% of the whole cell population), indicating a minimal contribution 
to the proliferation data.

Normal B cells from healthy volunteers were purified by magnetic beads (negative-selection) and activated 
by co-culturing with CD40L-fibroblast + IL-4 or CpG + IL-15.

Flow-cytometric assays for apoptosis and proliferation. Multiparameter flow-cytometric analysis 
of cellular viability by propidium iodide (PI) exclusion assays, expression of surface (adhesion/homing) and 
intracellular (KI-67, cyclins and Mcl-1/Bcl-xL) proteins, Annexin V-FITC/PI fluorescence, mitochondrial trans-
membrane potential (∆Ψ) and cell cycle-phase distribution by DNA content were previously  described13,14.

The flow cytometric analysis of surface and intracellular molecule expression was always restricted to viable 
cells. Indeed, analysis was performed selectively on CLL cells within the flow cytometric ‘high-FSC/low SSC’ gate 
(called here the ‘live gate’), i.e. a gate that contains, in the case of the CLL cell systems, only cells with intact ∆Ψ, 
intact plasma membrane and do not express activated caspase  313. When PI staining was present, the positive PI 
fluorescence was also used to gate out dead cells from the analysis.

Oxygen consumption, ATP synthase activity, ATP/AMP, lactate dehydrogenase activity, 
NADH/NAD+. Oxygen consumption measures were conducted with a microelectrode (Unisense Microres-
piration, Denmark) and  Fo-F1 ATP synthase activity with a luminometer (Glomax 20/20, Luminometer -Pro-
mega, USA), in the presence of pyruvate + malate or succinate, to activate the pathways triggered by Complex I 
or Complex II,  respectively36. Intracellular ATP and AMP concentrations were evaluated spectrophotometrically 
following NADP reduction or NADH oxidation, while lactate dehydrogenase activity was assayed following 
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 NAD+  oxidation36.  NAD+ and NADH concentrations, and the consequent NADH/NAD+ ratio, were estimated 
in quiescent by a colorimetric NAD/NADH  assay36.

Ros and antioxidants. Cellular ROS levels were assessed by flow cytometric fluorescence of H2DCFDA 
stained cells. Lipid peroxidation was evaluated through measurements of malondialdehyde (MDA) by the thio-
barbituric acid reactive substances (TBARS)  method36. Antioxidant defense was evaluated using the Total Anti-
oxidant Capacity Assay Kit (cod: MAK187, Merck, Germany).

Western blot analysis. Expression of Mcl-1 and Bcl-xL was determined by Western blot, using standard 
procedures. Quiescent and activated CLL cells treated or not with 20 μM BRB were lysed in the presence of a 
protease inhibitor cocktail for mammalian cells and total protein was measured by Bradford assay. After SDS-
PAGE, performed according to the standard method on 4–20% precast gels (BioRad), proteins were transferred 
to a nitrocellulose membrane. The membrane was blocked for 1 h with Tris Buffered Saline (TBS) plus 0.15% 
Tween 20 (TBSt) containing 5% non-fat dry milk and incubated over-night at 4 °C with the following mouse 
monoclonal antibodies: anti-Mcl-1 (1:500, Santa-Cruz Biotechnology, sc-12756), anti-Bcl-xL (1:500, Santa-
Cruz Biotechnology, sc-8392) or anti-actin (1:10,000, Thermo-Fisher MA5-11869). After washing with TBSt, 
the membrane was incubated with an anti-mouse IgG antibody conjugated with horse radish peroxidase (HRP) 
(BioRad) and developed with Clarity Western ECL Substrate (BioRad). Bands were detected and analyzed for 
density using an enhanced chemiluminescence system (Alliance 6.7 WL 20 M, UVITEC, Cambridge, UK) and 
UV1D software (UVITEC). Bands of interest were normalized for actin level in the same membrane.

Combination cytotoxicity. Combination cytotoxicity of Berberine and ABT-199 (LC Laboratories, 
Woburn, MA, USA) was calculated by the Chou–Talalay  method37(CalcuSyn software, Biosoft, Cambridge). 
Combination index (CI), computed from dose–effect curves of drugs alone and in combination, represents 
a quantitative measure of the degree of drug interaction in terms of additive effect (0.9 < CI < 1.1), synergism 
(CI < 0.9), or antagonism (CI > 1.1) for cellular cytotoxicity. CI value usually differs for different “fractional effect 
level” at which it is calculated. Here we considered two levels of cytotoxicity and calculated CI values at  LC75 and 
 LC90 (i.e. concentration lethal to 75% and 90% of CLL cells).

The Dose Reduction Index (DRI), which indicates how many times the dose of ABT-199, when used in 
combination with a coordinated dose of BRB (at given molar ratio), can be reduced to reach a same Fractional 
Effect, was calculated with the CalcuSyn software from cytotoxicity profiles of the drugs alone and in combina-
tion, according to the Chou–Talalay  method37.

Statistics. Non parametric statistics was applied, using the GraphPad Prism version 5.00 statistical software 
(GraphPad Software Inc., La Jolla, CA). Details in Figure Legends.

Ethics approval. CLL samples were obtained from patients enrolled in the observational multicenter study 
(clinical trial.gov identifier NCT00917540). All experimental protocols were approved by the Comitato Etico 
Regionale (CER) Liguria and were performed according to the Declaration of Helsinki.

Informed consent. Informed consent was obtained from all CLL patients.

Data availability
All methods were carried out in accordance with relevant guidelines and regulations. Materials, data and associ-
ated protocols are fully available upon request.
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