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Abstract We compute correlators of two heavy and two
light operators in the strong coupling and large c limit of
the D1D5 CFT which is dual to weakly coupled AdS3

gravity. The light operators have dimension two and are
scalar descendants of the chiral primaries considered in
arXiv:1705.09250, while the heavy operators belong to an
ensemble of Ramond–Ramond ground states. We derive a
general expression for these correlators when the heavy states
in the ensemble are close to the maximally spinning ground
state. For a particular family of heavy states we also provide a
result valid for any value of the spin. In all cases we find that
the correlators depend non-trivially on the CFT moduli and
are not determined by the symmetries of the theory; however,
they have the properties expected for correlators among pure
states in a unitary theory, in particular they do not decay at
large Lorentzian times.

1 Introduction

In the AdS/CFT context black holes are dual to ensembles
of “heavy” CFT states whose conformal dimension scales
as the central charge. A prototypical case is that of the
Strominger–Vafa [1] black hole which admits an AdS3 × S3

decoupling limit and a dual description in terms of a two-
dimensional SCFT [2] often dubbed D1D5 CFT. The key
breakthrough obtained in this approach is a precise account
of the Bekenstein–Hawking entropy formula and its general-
isations in terms of a microscopic counting for several BPS
configurations; see [3] for a recent review. It is very interest-
ing to go beyond the counting problem and ask if the detailed
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understanding of the microstates of supersymmetric black
holes can be used to shed any light on the conceptual puzzles
that arise when formulating quantum mechanics in a black
hole background. Of course this motivation underlines many
developments, including the fuzzball proposal [4,5] which
aims to use string theory to detect deviation from the stan-
dard general relativity picture of a black hole at the scales of
the horizon.

Here we use AdS/CFT duality as a tool to study a particu-
larly simple set of heavy operators OH in D1D5 CFT which
are the Ramond–Ramond (RR) ground states. This ensemble
is not dual to a macroscopic black hole at the level of two
derivative gravity,1 but it provides a good testing ground as
we know in detail the gravitational solutions dual to these
states [7–9]. It is possible to test the dictionary between the
RR ground states on the CFT side and the corresponding bulk
description in terms of smooth geometries [9–13]: the basic
idea is to exploit the AdS/CFT map between protected CFT
operators OL and the supergravity modes in the bulk and
then compare the 3-point CFT correlators 〈OHOHOL〉 with
the holographic results obtained from the dual microstate
geometries. Here the supergravity operators are indicated
with a subscript L because they are “light”, meaning that
their conformal dimension is fixed in the large central charge
limit c = 6N → ∞. This class of 3-point correlators is pro-
tected [14] and so it is possible to match directly the results
obtained in the weakly curved gravitational regime and those
derived at a different point in the D1D5 SCFT moduli space,
where the boundary theory can be described in terms of a
free orbifold.

While focussing on non-renormalised quantities is use-
ful to established a dictionary between BPS states in dif-
ferent descriptions, this type of observables is not best
suited to study interesting gravitational features of the black
hole microstates. So it is important to extend the analysis

1 See [6] for a critical discussion of this system.
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to non-protected quantities involving heavy operators. Two
dynamical quantities of this type have been under detailed
scrutiny: the entanglement entropy of a region in a non-trivial
state [15–17] and the HHLL 4-point function with two heavy
and two light operators

〈OH (z1, z̄1)ŌH (z2, z̄2)OL(z3, z̄3)ŌL(z4, z̄4)〉. (1.1)

In this paper we study this second observable2 focussing on
the large central charge limit c � 1. When the D1D5 SCFT
is at the free orbifold point in its moduli space, it is possi-
ble to calculate the correlator (1.1) exactly by using standard
techniques and to study the statistical properties of the result
when the heavy operator is chosen from an ensemble of RR
ground states [19,20]. In order to extract detailed information
on the dual gravitational theory, it is of course important also
to deform the SCFT away from the free orbifold point and
a possible avenue for doing this is to insert perturbatively
operators corresponding to the interesting superconformal
deformations (see [21] and references therein for a recent
discussion of this approach). Here we focus on the oppo-
site limit and discuss how to calculate (1.1) directly in the
strongly interacting regime where the SCFT is well approx-
imated by type IIB supergravity.

Notice that it is not straightforward to use the technology
of the Witten diagrams to calculate the correlators above,
since the heavy states correspond to multi-particle opera-
tors with a large conformal dimension and are not dual to a
single supergravity mode. We bypass this issue by exploit-
ing the known smooth geometries dual to the heavy states;
then we use the standard AdS/CFT dictionary to calculate
the HHLL correlators by studying the quadratic fluctuations
of the supergravity field dual to the light operators in the
asymptotically AdS geometry describing the heavy opera-
tors. This technique was developed [22,23] in several con-
crete examples in the AdS3/CFT2 context which is of interest
for this paper. In particular, these works discussed the case
where the light operator is a simple chiral primary opera-
tor (see (2.7)): [22] focussed on the case where the heavy
state is made out of many copies of the same supergravity
mode and found that the 4-point correlator at the gravity
point matched precisely the orbifold theory result, suggest-
ing that there is a non-renormalisation theorem for this type
of correlators; [23] considered a more complicated heavy
operator made out of two types of supergravity modes. This
second case provides the first explicit example of a dynam-
ical HHLL correlator, where the result in the SCFT strong
coupling region is radically different from the one valid at

2 There is a vast literature on holographic four point correlators in the
context of the AdS5/N = 4 SYM duality; see [18] for a detailed dis-
cussion of a modern approach to the problem and references to original
papers. Here we focus on the AdS3/CFT2 case and the HHLL correla-
tors of which much less is known.

the orbifold point. However, the quadratic equations around
the asymptotically AdS geometry were explicitly solved in a
particular approximation where the two constituents forming
the heavy multi-particle state are not on the same footing:
the modes carrying a non-trivial R-charge are much more
numerous than the modes with no R-charge. In this limit, the
HHLL correlators could be written in terms of the standard
D-functions that appear also in the evaluation of the standard
Witten diagrams.

In this work we generalise the analysis of [23] in several
directions. First we consider the bosonic light operator stud-
ied in [19,20] (see (2.5)) which is a superdescendant of the
chiral primary operator mentioned above. This implies that
the HHLL correlators derived in this paper should satisfy a
Ward identity linking them to the correlators computed in
[23] (see (2.12)); as a consistency check, when we specify
our new supergravity results to the heavy state considered
in [23], we show that the Ward identity is satisfied. On the
gravity side, the derivation of the HHLL correlators is dras-
tically simplified with respect to [23] because the gravity
perturbation dual to the light operator is described by the
scalar Laplace equation in six dimensions, while for the case
of the CPO one had to deal with a coupled system of a scalar
and a 3-form. This simplified set-up allows one to consider
more general heavy operators that are formed by many dif-
ferent types of supergravity modes. In one approach we still
keep the approximation where the heavy state constituents
include a large number N (++)

1 of R-charge carrying modes,

which we denote by |++〉1, and much smaller numbers N (0)
k

of different modes with no R-charge, denoted by |00〉k , with
k any positive integer. These states form an ensemble, whose
generic elements we represent schematically as

(|++〉1)
N (++)

1
∏

k

(|00〉k)N
(0)
k with N (++)

1 +
∑

k

kN (0)
k = c

6
.

(1.2)

Of course, these states have a large R-charge J ∼ N (++)
1 , but

their ensemble has interesting statistical properties [19,24]
and an entropy that scales like

√
c/6 − J . One of the results

of this paper is an explicit expression for the correlator (1.1)
with this type of heavy states, in the supergravity region of the
SCFT moduli space. In an alternative approach we focus on a
RR ground state that was considered also in [23] and is made
out of only the |++〉1 and |00〉1 modes. However, we keep the
ratio N (0)

k /N (++)
1 of the two constituents arbitrary and derive

an expression for the HHLL in terms of a Fourier series.
While we do not perform the transformation to configuration
space in general, we show explicitly that, when it is possible
to compare them, the results obtained in the two approaches
agree.

In summary our main results are:
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(i) the holographic computation of the correlator of the two
bosonic operators in (2.5) in a generic state of the ensem-
ble (1.2) in the limit N (0)

k 	 N (++)
1 (see (3.29));

(ii) the verification that the bosonic correlator computed
here is related via a supersymmetric Ward identity to
the fermionic correlator of [23];

(iii) the holographic computation of the same correlator in
a state with N (0)

k = 0 for k ≥ 2, exactly in the ratio

N (0)
1 /N (++)

1 (see (3.44) and (3.45)).

One of our main motivations for performing these compu-
tations is to contrast the correlators computed in pure states
with those computed in a “black hole” background. As we
mentioned above, the ensemble of BPS two-charge states
is not described by a regular black hole in classical super-
gravity, but by the singular geometry obtained by taking the
zero-temperature limit of the BTZ black hole. This geom-
etry shares some properties with black holes: in particular,
as we recall towards the end of Sect. 3.3, correlators com-
puted in this background vanish at large Lorentzian time,
albeit only polynomially. As first pointed out in [25], and
more recently emphasised in [26] in the AdS3 context, the
late-time decay of correlators is one of the manifestations of
the information loss problem. By contrast correlators in pure
states should not decay. It is easy to see that this is the case
for correlators computed at the orbifold point in a generic
D1D5 state [19,20]. The orbifold-point CFT, however, has
some special features that distinguish it from the point where
a weakly coupled gravitational description is applicable: in
particular there exist at the orbifold point an infinite series
of conserved (bosonic) currents, of which only the Virasoro
and the R-currents survive at a generic point. The presence
of these currents can certainly change qualitatively the late-
time behaviour of the correlators. In some cases, like the
ones considered in [22], even just the R-current is sufficient
to completely constrain the form of the correlator, and pre-
vent the vanishing at late times. A mechanism based on the
R-current, even if it applies uniformly on the moduli space,
can reasonably be argued to be non-generic [27]. The corre-
lator we consider in this paper, where the light operators are
the non-chiral primaries in (2.5), is not constrained by the
R-symmetry. This is confirmed by the fact that we verify in
Sect. 4 that only the conformal block of the identity3 con-
tributes to the correlator in the light-cone OPE limit. We can
use the exact strong coupling result obtained in Sect. 3.3 to
analyse the late-time structure of this correlator, and even in
this more generic case we find that it does not decay. Note that
this conclusion applies to a correlator computed in supergrav-
ity, and hence at leading order in the 1/N expansion. Since all

3 As explained in Sect. 4, it is convenient to use the Virasoro blocks
defined with respect to the “reduced” Virasoro generators, given by the
full Virasoro minus their R-current Sugawara contribution.

large N Virasoro blocks4 vanish at late times [29], the only
mechanism by which we can explain our findings is that even
our non-protected correlator receives contributions from an
infinite series of Virasoro primaries.5 These primaries can-
not be single-particle operators: such operators, indeed, are
either dual to protected supergravity modes, but then their
contribution appears already in the orbifold-point result, or to
string modes, which acquire large anomalous dimensions and
decouple when one moves towards the supergravity regime.
So the Virasoro primaries that contribute to our correlator at
strong coupling must be multi-particle operators. It would be
interesting to characterise more in detail such primaries and
study their anomalous dimensions and three-point functions
which, as in the AdS5/CFT4 case, are expected to receive
corrections of order 1/N in a generic point of the moduli
space.

We conclude this introduction by outlining the structure
of the paper. We begin in Sect. 2 by defining the ingredi-
ents of the correlators we consider and by recalling their
computation at the orbifold point in the CFT moduli space.
Section 3 contains the holographic derivation of the correla-
tors, which follows from the solution of the Laplace equa-
tion in the geometries dual to the RR ground states (1.2).
We first perform the perturbative computation in the limit
N (0)
k 	 N (++)

1 and then, for a particular state, the exact

computation in N (0)
1 /N (++)

1 . To clarify the CFT meaning
of the holographic result, we take in Sect. 4 various OPE
limits of the strong coupling correlator: we show that in the
light-cone OPE limit the only contribution comes from the
Virasoro block of the identity, but the usual Euclidean OPE
contains an infinite series of Virasoro primaries. In Sect. 5 we
examine the late-time behaviour of the correlator and find a
qualitative difference with the zero-temperature limit of the
thermal correlator. We summarise our results and present
possible future developments in Sect. 6. Some orbifold CFT
technology is reviewed in Appendix A. In Appendix B we
show that the linearised equation of motion describing our
light operators reduces to the Laplace equation in six dimen-
sions. Some of the computational details of the holographic
derivation of the correlators are explained in Appendix C.

2 Correlators with RR ground states

In this section we use the D1D5 CFT at the orbifold point to
describe the correlators under analysis. In this case the CFT
target space is (M4)

N/SN (where M4 can be T 4 or K3) and

4 For a derivation of Virasoro blocks in the limit of large central charge
from AdS3 gravity see [28].
5 The contribution of these primaries should be relevant also at finite
values of the central charge, as each exact individual Virasoro block is
still expected to decay at late times [30].
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the theory can be formulated in terms of N groups of free
bosonic and fermionic fields6

(
∂X AȦ

(r) (z), ψα Ȧ
(r) (z)

)
,
(
∂̄X AȦ

(r) (z̄), ψ̃ α̇ Ȧ
(r) (z̄)

)
, (2.1)

where (AȦ) is a pair of SU (2) indices forming a vec-
tor in the CFT target space, while (α, α̇) are indices of
SU (2)L × SU (2)R , which is part of the R-symmetry group;
finally r = 1, . . . N is a flavour index running on the vari-
ous copies of the target space on which the symmetric group
SN acts. As standard in orbifold constructions, beside the
untwisted sector where the fields on each copy are periodic,
there are twisted sectors (labelled by the conjugacy classes of
SN ) where a group of k copies form a “strand” and the peri-
odicities act non-diagonally on the index (r), as for instance
in (A.4).

As mentioned in the introduction we study the 4-point
functions with two primary light operators that are part of
a short supersymmetric multiplet and two heavy operators
that are RR ground states. The most general heavy state
in this sector is defined by a partition of SN determining
the strand structure and by the quantum numbers under the
SU (2)s mentioned above determining the fermionic vacuum
of each strand. We focus on the “elastic” case, where the
OPE between the two light operators and the one between
the two heavy operators contain the identity and so we have
hH = h̄H = c/24 and hL = h̄L . Then projective invariance
implies

〈OH (z1, z̄1)ŌH (z2, z̄2)OL(z3, z̄3)ŌL(z4, z̄4)〉
= 1

z2hH
12 z2hL

34

1

z̄2h̄H
12 z̄2h̄L

34

G(z, z̄), (2.2)

where G is a function of the projective invariant cross-ratio

z = z14z23

z13z24
, z̄ = z̄14 z̄23

z̄13 z̄24
(2.3)

and zi j = zi − z j . In order to easily isolate G from the
correlators one can take the gauge z2 → ∞, z1 = 0 and
z3 = 1, which implies z = z4:

〈ŌH |OL(1)ŌL(z, z̄)|OH 〉 ≡ C(z, z̄)

= 1

(1 − z)2hL

1

(1 − z̄)2h̄L
G(z, z̄). (2.4)

This type of correlators was first discussed at the orbifold
point in [19] where the light states were identified with one
of the 16 untwisted marginal operators corresponding to the
deformations of the T 4. For the sake of concreteness we can
choose

6 We summarise the definitions and the basic properties of the orbifold
D1D5 CFT in Appendix A.

OL → Obos =
N∑

r=1

ε Ȧ Ḃ√
2N

∂X1 Ȧ
(r) ∂̄X

1Ḃ
(r) ,

ŌL → Ōbos =
N∑

r=1

ε Ȧ Ḃ√
2N

∂X2 Ȧ
(r) ∂̄X

2Ḃ
(r) . (2.5)

With the above choice of light and heavy operators the cor-
relator at the orbifold point depends only on the strand struc-
ture, but not on the particular quantum numbers of the RR
ground state considered (this simply because the elemen-
tary bosonic and fermionic fields in (2.1) commute). A stan-
dard way to calculate this correlator is to diagonalise the
boundary conditions (as summarised in Appendix A) and
then to take the linear combination of the contributions of
each strand (A.12)

Cbos = 1

N

N∑

k=1

NkCbos
k

= 1

N

N∑

k=1

Nk∂∂̄

⎡

⎣ 1 − zz̄

(1 − z)(1 − z̄)
(

1 − (zz̄)
1
k

)

⎤

⎦ ,

(2.6)

where Nk here is the number of strands of length or winding
k (regardless of their particular RR ground state) and we
used (A.11). We can express the result in terms of the cylinder
coordinates w (z = e−iw and z̄ = eiw̄) by using (A.12) for
Cbos
k , and in this case we obtain Eq. (4.11) of [19].

It is interesting to compare this result with the correla-
tors where the light operator OL is the following chiral pri-
mary [19,22,23]:

OL → Ofer =
N∑

r=1

−iε Ȧ Ḃ√
2N

ψ1 Ȧ
(r) ψ̃ 1̇Ḃ

(r) ,

ŌL → Ōfer =
N∑

r=1

−iε Ȧ Ḃ√
2N

ψ2 Ȧ
(r) ψ̃ 2̇Ḃ

(r) . (2.7)

It is again straightforward to calculate the correlator at the
orbifold point by diagonalising the boundary conditions of
the fermions; see Appendix A of [22] for our conventions.
However, in this case the result depends on the particular RR
ground state of each strand. The contribution of a strand of
length k and SU (2)L × SU (2)R quantum numbers j = j̄ =
1/2 is

Cfer
k
(

1
2

1
2

) = 1

|z|
1 − zz̄

(1 − z)(1 − z̄)
(

1 − (zz̄)
1
k

) . (2.8)

The contribution from strands with general R-charge quan-
tum numbers is given by (A.14) and the generic correlator
with fermionic light operators is

123
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Cfer = 1

N

N∑

k=1

8∑

s=1

N (s)
k Cfer

k (s), (2.9)

whereCfer
k (s) is defined in (A.13), s runs over the eight different

RR ground states (four with j, j̄ = ±1/2 and four with
j, j̄ = 0), N (s)

k is the number of strands of length k in the

state s, which has to satisfy the constraint
∑

s, k kN
(s)
k = N . It

is convenient to indicate each strand as ket-vectors displaying
its j, j̄ quantum numbers and its winding number k

| ± ±〉k, |00〉( Ȧ Ḃ)
k and |00〉k . (2.10)

The last type of strand is a scalar of all SU (2) mentioned at
the beginning of this section and will play a particular role
in the heavy states we consider in our supergravity analysis.
Then a general RR ground state is just an arbitrary tensor
product of the ket-vectors in (2.10) provided that the total
winding is N . Notice that, despite the fact that the fermionic
correlator is sensitive to the SU (2) quantum numbers of each
strand, the ∂ and ∂̄ derivative of |z|Cfer

k ( j j̄)
is independent

of j , j̄ and matches the structure in (2.6). Thus we have
Cbos = ∂∂̄

(|z|Cfer
)

when the heavy state is an arbitrary RR
ground state. We will now show that this is a consequence of
a simple Ward identity.

The bosonic operator Obos in (2.5) is a superdescendant
of the chiral primary Ofer in (2.7). At the orbifold point this
can easily be checked by using

∮

w∼z

dw

2π i

√
w G1

1(w)ψ2Ċ (z) = √
z ∂X1Ė (z) ε ĖĊ

∮

w∼z

dw

2π i

√
w Gα

A(w) ∂XBḂ(z) = δBA

(
√
z ∂ψα Ḃ(z) + ψα Ḃ

2
√
z

)

= δBA ∂z

(√
z ψα Ḃ(z)

)
, (2.11)

which follow from the OPE contractions summarised in
Appendix A, with similar equations holding in the antiholo-
morphic sector. As usual, we can start for instance from the
bosonic correlator and write one operator, for example that
in z = 1, in terms of the supersymmetry variation in the
first line of (2.11); we then deform the contour of integration
so that it goes around all the other insertions in the correla-
tor (2.4). This explains why in (2.11) we inserted an extra
factor of

√
w, which makes the integration of the supercur-

rents around the RR states at z = 0,∞ well defined. Since
we are focusing on the case where OH are RR ground states,
the contributions from w ∼ 0 and w ∼ ∞ vanish and so the
only non-trivial terms come from w ∼ z and w̄ ∼ z̄, which
can be computed using the second line of (2.11). In summary
we obtain the relation mentioned above

〈ŌH |Obos(1)Ōbos(z, z̄)|OH 〉
= ∂∂̄

[
|z|〈ŌH |Ofer(1)Ōfer(z, z̄)|OH 〉

]
. (2.12)

This is clearly satisfied by the orbifold-point results (2.6)
and (2.9), but since this relation uses only the superconfor-
mal algebra, it holds at a generic point of the CFT moduli
space and in the next section we will check its validity in the
supergravity limit.

3 Bosonic correlators at strong coupling

The aim of this section is to study the HHLL correlators
discussed above on the bulk side by using the supergravity
approximation of type IIB string theory on AdS3 × S3 ×
M. The case where the light operators are the chiral pri-
maries (2.7) was discussed in [23], so here we consider the
correlators with the bosonic light operators of dimension two
given in (2.5). While in the orbifold CFT description it was
easy to keep the RR ground states completely generic, in the
bulk analysis we will find it convenient to focus on a sub-
sector of these heavy states. First we focus on the states that
are invariant under the SU (2)s acting on the coordinates of
M4, which ensures that the dual solutions are invariant under
rotations of the four stringy-sized compact directions. Then
we focus on the case where the RR ground states are made of
a large number N (++)

1 of strands of the type |++〉1 (of wind-
ing one and j = j̄ = 1/2) while the remaining strands have
arbitrary winding k ≥ 1 but are in the unique RR state s = 0,
which is a scalar of all SU (2)s; we denote strands of this
type as |00〉k and their numbers as N (0)

k . These states form
the ensemble that was introduced in (1.2). On the bulk side
the restriction to this subset of states simplifies the 6D met-
ric (3.1). The family of D1D5 geometries dual to these states
has in fact played an important role in some recent super-
gravity developments [31–33]. At some point of our analysis
we will also assume that the numbers of |00〉k strands are
parametrically smaller than the number of |+ +〉1 strands
(N (0)

k 	 N (++)
1 ): this will allow the perturbative approach

in bk discussed in Sect. 3.2.
The heavy operators OH are described in the gravity

regime by 6D geometries that asymptotically approximate
AdS3×S3 and are everywhere regular and horizonless. Oper-
ators that are Ramond ground states both in the left and in
the right sector are dual to geometries carrying D1 and D5
charges but no momentum charge. The six-dimensional Ein-
stein metric dual to RR ground states that are invariant under
rotations in the four compact dimensions is [7–9]

ds2
6 = − 2√P (dv + β)(du + ω) + √

P ds2
4 , (3.1)

123
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with

P ≡ Z1Z2 − Z2
4 . (3.2)

We use light-cone coordinates

u ≡ t − y√
2

, v ≡ t + y√
2

, (3.3)

with t time and y the coordinate along S1, and denote by
ds2

4 the flat metric on R
4. Z1, Z2, Z4 are harmonic scalar

functions on R
4 and β, ω are one-forms with self-dual and

antiself-dual 2-form field strengths. Apart from the metric,
all other fields of type IIB supergravity are non-trivial in the
solution: their expressions are given in (B.2), but will not be
relevant for the correlator we compute here.

The form of the supergravity data Z1, Z2, Z4, β and ω

depends on the RR ground state and is generically compli-
cated. As mentioned above, we focus on the family of D1D5
states described in (1.2). The dual gravity solutions depend on
some continuous parameters: a, whose square is proportional
to N (++)

1 , and bk , whose square is proportional to kN (0)
k [13]:

N (++)
1 = N

a2

a2
0

, kN (0)
k = N

b2
k

2a2
0

with a2
0 ≡ Q1Q5

R2 .

(3.4)

Here R is the radius of the CFT circle and Q1, Q5 are the
supergravity D1 and D5 charges, related to the numbers n1,
n5 of D1 and D5 branes by

Q1 = (2π)4 n1 gs α′4

V4
, Q5 = n5 gs α′, (3.5)

with gs the string coupling and V4 the volume of T 4. The
condition that the total number of strands be N implies the
constraint

a2 +
∑

k

b2
k

2
= a2

0, (3.6)

which turns out to also be the regularity condition for the
metric. The metrics are more easily written in spheroidal
coordinates in which the flat R4 metric is

ds2
4 = 


(
dr2

r2 + a2 + dθ2
)

+ (r2 + a2) sin2 θdφ2

+ r2 cos2 θdψ2, 
 ≡ r2 + a2 cos2 θ. (3.7)

The remaining data encoding the metric are

Z1 = R2

Q5 


[
a2

0 +
∑

k,k′

bkbk′

2

ak+k′

(r2 + a2)
k+k′

2

sink+k′
θ cos((k + k′)φ)

+
∑

k>k′
bkbk′

ak−k′

(r2 + a2)
k−k′

2

sink−k′
θ cos((k − k′)φ)

]
,

Z2 = Q5



, (3.8a)

Z4 = R




∑

k

bk
ak

(r2 + a2)
k
2

sink θ cos(kφ), (3.8b)

β = R a2

√
2 


(
sin2 θdφ − cos2 θdψ

)
,

ω = R a2

√
2 


(
sin2 θdφ + cos2 θdψ

)
. (3.8c)

For generic values of bk the geometry is complicated, but it
can be shown to be regular and without horizon for any values
of the parameters, as far as the constraint (3.6) is satisfied.

3.1 The perturbation

To compute the correlator of two light and two heavy oper-
ators one should consider the wave equation for a pertur-
bation in the background (3.1). The bosonic light operator
OL = Obos is described by a minimally coupled scalar in
the 6D Einstein metric ds2

6 . We show in Appendix B that
such scalars arise by dimensional reduction from traceless
perturbations of the metric on T 4, and thus have the right
quantum numbers to be dual to the CFT operators ∂X (i ∂̄X j),
with i, j = 1, . . . , 4.

Following the logic of [22,23], the gravity computation of
the correlator requires solving the wave equation

�6B = 0, (3.9)

where �6 is the scalar Laplace operator with respect to ds2
6 ,

�6· ≡ 1√
g6

∂M

(√
g6 g

MN
6 ∂N ·

)
, (3.10)

with the boundary condition

B ∼ δ(t, y) + b(t, y)

r2 (3.11)

for large r . Since the background metric is regular every-
where, one should also require that B have no singularities
at any finite value of r . As the operator OL is an R-charge
singlet, only the projection of B on the trivial scalar spheri-
cal harmonic on S3 contributes to our correlator. The 4-point
function computed on the Euclidean plane is encoded in the
function b(t, y) via

123



Eur. Phys. J. C (2018) 78 :8 Page 7 of 17 8

〈OH (0)ŌH (∞)OL(1, 1)ŌL(z, z̄)〉
= 1

|1 − z|4G
bos(z, z̄) = (zz̄)−1 b(z, z̄), (3.12)

where

z = ei
t+y
R = e

te+iy
R , z̄ = ei

t−y
R = e

te−iy
R , (3.13)

with te ≡ i t the Euclidean time. The factor (zz̄)−1 on the
r.h.s. of (3.12) comes from the transformation of the primary
field ŌL(z, z̄) = (zz̄)−1 ŌL(t, y) from the cylinder to the
plane coordinates.

The Laplacian in (3.10) is most easily derived if one writes
the 6D metric as if one were performing a dimensional reduc-
tion on S3 [13,16,34]:

ds2
6 = V−2gμνdxμdxν

+ Gαβ

(
dxα + Aα

μdxμ
) (

dxβ + Aβ
ν dxν

)
, (3.14)

where

V 2 ≡ det G

(Q1Q5)3/2 sin2 θ cos2 θ
. (3.15)

We have split the 6D coordinates in the AdS3 coordinates
xμ, xν, . . . ≡ (r, t, y) and the S3 coordinates xα, xβ, . . . ≡
(θ, φ, ψ). The definition of gμν , Gαβ , Aα

μ depends of course
on the choice of coordinates: the coordinates are fixed at
the boundary by the requirement that the metric looks like
AdS3 × S3 asymptotically, but one is free to redefine the
coordinates in the space-time interior. For lack of a better
choice, we will stick to the coordinates defined in (3.7).

If one takes the solution in (3.8) and sets bk = 0 for any
k, one finds that gμν becomes the metric of global AdS3

gμνdxμdxν
∣∣∣
bk=0

= √Q1Q5

[
dr2

r2 + a2
0

− r2 + a2
0

Q1Q5
dt2

+ r2

Q1Q5
dy2

]

≡ √Q1Q5 ds2
AdS3

(3.16)

and Gαβ the metric of the round S3. When, like in this case,
the metric gμν does not depend on the coordinates of S3, the
6D Laplace equation (3.9) admits an S3-independent solution
which satisfies the simpler equation

�3B = 0, (3.17)

with �3 the Laplacian of gμν :

�3· ≡ 1√
g

∂μ

(√
g gμν∂ν ·

)
. (3.18)

In general, however, the 6D metric does not factorise and
gμν and Gαβ depend on both AdS3 and S3 coordinates. In
this situation solving the 6D equation (3.9) exactly seems
hard. When this happens one can resort to an approximation
scheme that was used already in [23]: we solve the wave equa-
tion perturbatively in bk , keeping only the first non-trivial
order O(b2

k ). In the following we will apply this perturbative
method to compute the correlator for generic bk . In the par-
ticular example in which b1 is the only non-vanishing mode,
we will be able to do better and perform the computation
exactly in b1.

3.2 Perturbative computation for generic bk

We consider here a generic state in the ensemble (1.2) and
compute the correlator in the limit N (0)

k 	 N (++)
1 , keeping

the first non-trivial term in an expansion in bk/a0. This con-
tribution already depends on the CFT moduli and hence it
contains non-trivial dynamical information. We perform the
bk-expansion keeping Q1, Q5 and R (and hence a0) fixed:
on the CFT side this means we are not varying the central
charge nor the size of the circle on which the CFT is defined.
At zeroth order in bk the metric is AdS3 × S3, and we will
expand the terms of order b2

k in the basis of spherical har-
monics of this unperturbed S3. We thus write the solution of
(3.9) as

B = B0 + B1 + O(b4
k ), (3.19)

where B1 quadratic in bk . The terms of order zero and two
of the wave equation give

�0B0 = 0, �0B1 = −�1B0, (3.20)

where �0 is the Laplacian of global AdS3

�0· ≡ 1

r
∂r

(
r(r2 + a2

0)∂r ·
)

− a2
0 R2

r2 + a2
0

∂2
t · +a2

0 R2

r2 ∂2
y ·,
(3.21)

and �1 is the order b2
k contribution to the Laplacian �3

defined in (3.17). The first equation in (3.20), together with
the asymptotic boundary condition (3.11) and the regular-
ity condition, implies that B0 is the usual bulk-to-boundary
propagator of dimension � = 2 in global AdS3:

B0(r, t, y) = KGlob
2 (r, t, y|t ′ = 0, y′ = 0)

=
⎡

⎣1

2

a0√
r2 + a2

0 cos(t/R) − r cos(y/R)

⎤

⎦
2

.

(3.22)
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The second equation in (3.20) is an equation for B1. If the
metric gμν is a non-trivial function on S3, the B1 that solves
this equation has components along non-trivial S3 spherical
harmonics, which we should project away for the purpose of
extracting the bosonic correlator. In particular all terms in the
solution (3.8) that are proportional to bkbk′ for k 
= k′ depend
non-trivially on φ as cos((k − k′)φ) and source non-trivial
spherical harmonics in B1: hence they do not contribute to
the correlator at quadratic order in bk . We can thus simplify
the computation by focusing on a single k-mode at a time.
The metric gμν derived from the solution where a single bk
is non-vanishing is

g(k)
t t√

Q1Q5
= −r2 + a2

R2a4
0

(
a2 + b2

k

2

r2



Fk

)
,

g(k)
yy√

Q1Q5
= r2

R2a4
0

(
a2 + b2

k

2

r2 + a2



Fk

)
, (3.23a)

g(k)
rr√

Q1Q5
= 1

a4
0(r2 + a2)

(
a2 + b2

k

2

r2



Fk

)

×
(
a2 + b2

k

2

r2 + a2



Fk

)
, (3.23b)

with

Fk ≡ 1 −
(
a2 sin2 θ

r2 + a2

)k
. (3.24)

We see that, unless k = 1, even for a single mode gμν depends
non-trivially on the S3 coordinate θ . To compute B1, one
should expand the Laplacian of g(k)

μν up to order b2
k (�(k) =

�0 + b2
k �(k)

1 + O(b4
k )) and project on the trivial spherical

harmonic. One finds

〈Jk〉 ≡ −〈�(k)
1 B0〉 = − r

(r2 + a2
0)

∂r B0 + a2
0 R2

(r2 + a2
0)2

∂2
t B0

+ R2

2a2
0

Sk (∂2
t B0 − ∂2

y B0), (3.25)

where

Sk ≡
k∑

p=2

(
a2

0

r2 + a2
0

)p

〈sin2p−2 θ〉 =
k∑

p=2

1

p

(
a2

0

r2 + a2
0

)p

,

(3.26)

and the bracket 〈·〉 denotes the average on S3. In deriving
(3.25) we have also used �0B0 = 0. The second equation
in (3.20) is then easily integrated using the AdS3 bulk-to-
bulk propagator GGlob

2 (r′|r, t, y), and summing over all the
modes:

B1(r, t, y) = −i
∑

k

b2
k

∫
d3r′√−gAdS3 G

Glob
2 (r′|r, t, y) 〈Jk(r′)〉,

(3.27)

where r′ ≡ {r ′, t ′, y′} is a point in AdS3 and gAdS3 the metric
of global AdS3.

According to (3.12), the correlator is determined by the
large r limit of B1, which follows from the asymptotic limit

of GGlob
2 (r′|r, t, y): GGlob

2 (r′|r, t, y) → a2
0

2πr2 K
Glob
2 (r′|t, y).

Moving from Lorentzian cylinder to Euclidean plane, one
finds that the order b2

k contribution to the 4-point function is

〈OH (0)ŌH (∞)OL(1, 1)ŌL(z, z̄)〉|b2
k

= −
∑

k

b2
k

2π

∫
d3w

√
ḡ K2(w|z, z̄) 〈Jk(w)〉, (3.28)

where ḡ is the metric of Euclidean AdS3 and K2(w|z, z̄)
the usual bulk-to-boundary propagator in the Poincaré coor-
dinates w. The integral in (3.28)), with the source 〈Jk〉
given in (3.25), can be expressed in terms of D-functions
using standard methods: we summarise the various steps in
Appendix C. Including also the free contribution at bk = 0,
the final result for the strong coupling limit of the bosonic
correlator up to order b2

k can be written in the suggestive form

Cbos
O(b2)

(z, z̄) = ∂∂̄

⎡

⎣ 1

|1 − z|2 +
∑

k

b2
k

a2
0

(
−1

2

1

|1 − z|2

+
k∑

p=1

|z|2 D̂pp22

π p

⎞

⎠

⎤

⎦ . (3.29)

Comparing this result with the Ward identity (2.12) linking
bosonic and fermionic correlators, one is lead to the following
natural guess for the correlator with fermionic light operators:

Cfer
O(b2)

(z, z̄) = 1

|z|

[
1

|1 − z|2 + b2
1

a2
0

N

2

+
∑

k

b2
k

a2
0

⎛

⎝−1

2

1

|1 − z|2 +
k∑

p=1

|z|2 D̂pp22

π p

⎞

⎠

⎤

⎦ . (3.30)

The term of order N is the disconnected contribution to the
correlator, which cannot be predicted by the Ward identity
since it is annihilated by the operator ∂∂̄(|z|·).

Specialising (3.30) to the heavy state considered in [23],
which has b1 = b 
= 0 and bk = 0 for k > 1, one can
verify that the above result is in perfect agreement with eq.
(3.58) of [23] (thanks to eq. (D.12a) of the same paper): this
checks that the Ward identity is satisfied for this particular
heavy state, and provides a quite non-trivial validation of our
computations. One can also check that the bosonic correlator
(3.29) has the expected symmetry under the exchange of the
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points z3 and z4. This transformation permutes OL with ŌL

and, according to the definition (2.5), amounts to exchange
the M4 index A = 1 with A = 2; since the heavy opera-
tors we consider are invariant under transformations of the
compact space M4, the correlator should be left invariant.
From the definition of z (2.3) one sees that the transformation
z3 → z4 is equivalent to z → 1/z and thus one should have
that

Gbos(z, z̄) = Gbos(z−1, z̄−1). (3.31)

That the result (3.29) has this property follows from the sym-
metry of the D̂-functions,

D̂pp22(z
−1, z̄−1) = |z|4 D̂pp22(z, z̄). (3.32)

3.3 Exact computation for bk = b δk,1

The solution in which only the mode b1 ≡ b is non-vanishing
is particularly simple: one sees indeed from (3.23) and (3.24)
that F1 = 
/(r2 + a2) and thus the 3D metric gμν is θ -
independent. One can thus look for an exact solution of the
3D Laplace equation (3.17):

r2 + a2

r(r2 + a4/a2
0)

∂r [r(r2 + a2)∂r B]

− a2
0

r2 + a4/a2
0

∂2
τ B + a2

0

r2 ∂2
σ B = 0, (3.33)

where we have defined

τ ≡ t

R
, σ ≡ y

R
. (3.34)

Our analysis here will follow the one in appendix B of [22].
The solution of (3.33) that is regular at r = 0 and that has
the asymptotic behaviour (3.11) for large r is

B = 1

(2π)2

∑

l∈Z

∫
dω eiωτ+ilσ g(ω, l)

(
r√

r2 + a2

)|l|

× 2F1

( |l| + γ

2
,
|l| − γ

2
, 1 + |l|; r2

r2 + a2

)
, (3.35)

where

g(ω, l) =
�
(

1 + |l|+γ
2

)
�
(

1 + |l|−γ
2

)

�(1 + |l|) (3.36)

and

γ ≡
√
a2

0 ω2 − 1
2 b

2 l2

a
. (3.37)

The function b(t, y) defined in (3.11) is extracted from the
large r limit of B:

b(τ, σ ) = a2

a2
0

∑

l∈Z

∫
dω

(2π)2 eiωτ+ilσ
[
−|l|

2

+ l2 − γ 2

4

(
H

( |l| + γ

2

)
+ H

( |l| − γ

2

)
− 1

)]
,

(3.38)

where H(z) is the harmonic number, which is related to the
digamma function ψ(z) as

H(z) = ψ(z + 1) + γE =
∞∑

n=1

(
1

n
− 1

n + z

)
. (3.39)

Discarding contact terms proportional to δ(τ ) and/or δ(σ )

and their derivatives, and using the identity

l2 − γ 2 = a2
0

a2 (l2 − ω2), (3.40)

one can write

b(τ, σ ) = ∂2
τ − ∂2

σ

4
bF (τ, σ ), (3.41)

where

bF (τ, σ ) =
∑

l∈Z

∫
dω

(2π)2 eiωτ+ilσ
∞∑

n=1

(
2

γ − |l| − 2n

− 2

γ + |l| + 2n

)
. (3.42)

The ω-integral is performed along Feynman’s contour;
assuming τ > 0 the contour has to be closed on the upper
half plane, so we pick the poles on the negative real axis:

ωn = − a

a0

√

(|l| + 2n)2 + b2l2

2a2 . (3.43)

The correlator on the plane is found by transforming from
the (τ, σ ) coordinates to the (z = ei(τ+σ), z̄ = ei(τ−σ))

coordinates and using (3.12). Dropping an irrelevant overall
normalisation one finds

Cbos(z, z̄) = ∂∂̄
(
|z| Cfer(z, z̄)

)
, (3.44)

with Cfer(z, z̄) = Cfer(τ, σ )/|z|, where the factor 1/|z| fol-
lows from the transformation of the operator in z, and
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Cfer(τ, σ ) = a

a0

∑

l∈Z
eilσ

∞∑

n=1

exp

[
−i a

a0

√
(|l| + 2n)2 + b2l2

2a2 τ

]

√
1 + b2

2a2
l2

(|l|+2n)2

.

(3.45)

In our computation the fermionic correlator Cfer(τ, σ ) is
determined only up to terms that are annihilated by the deriva-
tives in (3.41). We have chosen these ambiguous terms such
that Cfer(τ, σ ) agrees7 up to terms of order O(b2) with the
correlator computed in [23]. In order to verify that the O(b2)

expansion of the Cbos(z, z̄) and Cfer(z, z̄) above agrees with
the result obtained via the perturbative method in (3.29)
and (3.30) one can start by expanding each term of the series
for small b at fix a0 up to order b2

Cfer(τ, σ ) ∼
∑

l∈Z
eilσ

∞∑

n=1

eilσ ei(|l|+2n)τ

[
1

+ b2

2a2
0

(
−1

2
− l2

2(|l| + 2n)2 + 2iτ(|l| + n)n

|l| + 2n

)]
. (3.46)

The terms in the round parentheses can be written as ratios of
polynomials in the combinations l and |l|+2n that appear in
the exponentials. Then it is possible to reduce the sums over
l and n in terms of derivative or integrals (with respect to
τ and σ ) of the geometric series. In particular, the presence
in the denominator of a factor of (|l| + 2n)2 implies that
we have to integrate twice with respect to τ . It is easy to
see that the first integration yields logarithms and the second
one dilogarithms, producing exactly the terms proportional
to Li2 in the D̂ function present in (3.30). With some patience
it is possible to check that also all other terms of (3.30) are
reproduced by performing the sums for the remaining terms
in (3.46).

4 CFT interpretation of the bulk correlator

A natural way to make contact with the CFT interpretation
is to study the OPE limits. For instance the leading terms of
the z, z̄ → 1 limit (corresponding to the OPE where the two
light operators are close) do not receive contributions8 from
the D̂pp22 with p > 1. By using the definition of Appendix C,
it is straightforward to check that, in this OPE limit, the sin-
gular terms obtained from the round parenthesis in (3.29)
and (3.30) are

7 Note that in (3.44) we have not included the disconnected contribution
to the correlator; this contribution can be computed in the free theory
and is given by the O(N ) term in (3.30) at all values of b2/a2

0 .
8 It is easy to see this from (C.6) by rewriting ∂|z12|2 in terms of ∂z and
∂z̄ and checking that each Jacobian brings a factor of |1 − z|2.

⎛

⎝−1

2

1

|1 − z|2 +
k∑

p=1

|z|2 D̂pp22

π p

⎞

⎠ ∼ − 1

4(1 − z)
− 1

4(1 − z̄)

(4.1)

and so do not contribute to the bosonic correlator (3.29). The
two singular terms above capture the contributions to the
fermionic correlator of the SU (2)R and SU (2)L currents.
After substituting the result (4.1) in (3.30), we can easily
extract the contribution due to the exchange of the SU (2)L
current by focussing on the term proportional to 1/(1 − z̄)

Cfer
O(b2)

∼ 1

1 − z̄

[
1

2
− 1

4

∑

k

b2
k

a2
0

]
= a2

2a2
0

1

1 − z̄
, (4.2)

where in the last line we used (3.6). This provides a check of
the relative normalisation between the free contribution and
the terms proportional to b2

k : at order 1/(1 − z̄) the two com-
bine to produce a result proportional to a2, which is related
to the number of strands with j = 1/2. This is the only type
of strands in the state considered in Sect. 3 that can con-
tribute to the exchange of the SU (2)L currents; in particular,
the OPE (4.2) is saturated by the exchange of J 3 and, since
the correlator factorises into two protected 3-point functions
〈OH ŌH J 3〉 〈J 3OL ŌL〉, it is straightforward to check also
the overall normalisation just by using the free theory result
for the 3-point building blocks.

It is possible to extend the result above and focus on the
leading term in the (1− z̄) expansion, but keep all corrections
in (1 − z). In Minkowskian signature this corresponds to a
light-cone OPE where y → t . Also in this case, only the
terms proportional to D̂1122 are relevant and we obtain

Cbos
O(b2)

∼ 1

|1 − z|4
{

1 −
∑

k

b2
k

a2
0

[
1 + 1

2

1 + z

1 − z
ln z

]}
.

(4.3)

It is interesting to compare this result with the contribu-
tion of the (holomorphic) Virasoro block of the identity, but
this has to be done with some care. While the heavy oper-
ators have conformal weight hH = h̄H = c/24 (being RR
ground state), it is convenient to factor out the contribution
of the Sugawara part of the stress tensor that is due to the
SU (2)L × SU (2)R R-currents. The reason for doing this is
the following: it is possible to take linear combinations of a
Virasoro descendant (such as L−2|0〉) and an affine descen-
dant constructed with the Sugawara stress tensor (such as
LSug

−2 |0〉) to construct a Virasoro primary (i.e. a state annihi-
lated by Ln for n > 0). So, if we try to interpret the corre-
lators (3.29) and (3.30) in terms of the full Virasoro blocks,
primaries such as the ones mentioned above would appear
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as new “dynamical” contributions. However, their contribu-
tions are completely fixed by the symmetries of the theory,
so it is more convenient to analyze the bulk results above in
terms of the Virasoro blocks generated by L [0] = L − LSug

times the blocks generated by the R-symmetry currents. This
approach is particularly apt for the bosonic correlator (3.29),
since it is not constrained by the R-symmetry at all. By indi-
cating with a superscript [0] all quantities after factoring out
the Sugawara contributions, we have h[0]

L = h̄[0]
L = 1 and9

h[0]
H = h̄[0]

H = N

4
− 〈J 2〉

N
= N

4

⎡

⎣1 −
(
N (++)

1

N

)2 ⎤

⎦ , (4.4)

where J 2 is the Casimir operator of the SU (2)L algebra and
in our case, is sensitive just to the strands with j, j̄ 
= 0.
Thus we should compare (4.3) with the contribution of the
HHLL identity Virasoro block with the h[0]

H and h[0]
L above,

and c ∼ 6N (since subtracting the Sugawara sector does
not change the leading N contribution of the D1D5 CFT).
By using the results of [29], we see that the leading term
in (1 − z̄) expansion of the leading N contribution of such
Virasoro block reads

Cbos
Id ∼ 1

(1 − z̄)2

[
zα−1

(
α

1 − zα

)2
]

∼ 1

|1 − z|4

×
{

1 −
∑

k

b2
k

a2
0

[
1 + 1

2

1 + z

1 − z
ln z

]}
, (4.5)

where in the second step we used

α =
√

1 − 24h[0]
H

c
= N (++)

1

N
= a2

a2
0

= 1 −
∑

k

b2
k

2a2
0

(4.6)

and took the approximation b2
k 	 a2

0 up to the order b2
k/a

2
0 .

This shows that the light-cone OPE (4.3) of the strong cou-
pling correlator (3.29) is entirely saturated by the L [0] Vira-
soro descendants of the identity (4.5), at least in the O(b2)

approximation. Of course, the full correlator away from the
light-cone limit receives contributions from other L [0] Vira-
soro blocks. By expanding (3.29) for z → 1 and z̄ → 1
and comparing with the same expansion of the (left times
right) identity Virasoro block, one sees that the first primaries
beyond the identity that appear in the OPE have conformal
dimension h = h̄ = 2. As we argued in the introduction
these primaries should be multi-particle operators.

9 To be precise, the heavy operators dual to the 2-charge geometries are
linear combinations of terms with different values of h[0]

H and h̄[0]
H [9,10].

It is possible to calculate the contribution of each term to the correlator
as done for instance in [13] for the 3-point functions, but the result at
order b2 coincides with that of the term with the average number of
j = j̄ = 1/2 strands.

In the case of the heavy state discussed in Sect. 3.3, it
is possible to show that light-cone OPE reproduces the L [0]
identity Virasoro block even at finite values of b. Consider
first the fermionic correlator in (3.45). The light-cone OPE
is captured by the modes with l � n, so we can approximate
each term in the series (3.45) by expanding the square roots
and by neglecting all terms proportional to 1/ l; then, when
zα is not too close to 1, the leading contribution in the z̄ → 1
limit is captured by

Cfer(τ, σ ) ∼ a2

a2
0

∞∑

l=0

eil (σ−τ)
∞∑

n=1

e
−2 i a2

a2
0
nτ

= α
1

1 − z̄

1

1 − |z|2α
. (4.7)

By inserting this approximation in (3.44) we have

Cbos(z, z̄) ∼ ∂∂̄

(
1

1 − z̄

α

1 − |z|2α

)

∼ 1

(1 − z̄)2 zα−1
(

α

1 − zα

)2

, (4.8)

where we focussed just on the leading contribution in the limit
z̄ → 1. As mentioned above, this result agrees with (4.5) even
at finite values of b1.

5 Late-time behaviour of the exact correlator

For finite b we were not able to resum the series in (3.45).
However, it is still possible to extract useful information
already from (3.45), and in particular one can analyze the
behaviour of the correlator for large values of the Lorentzian
time τ . The aim is to compare the late-time behaviour of the
correlator in a pure heavy state with that of the correlator in
the naive D1D5 geometry

ds2 = √Q1Q5

[
dr2

r2 + r2

a2
0

(
−dτ 2 + dσ 2

)]
, (5.1)

which is the limit of the BTZ black hole when both the left
and the right temperatures are vanishing, and represents the
dual of the statistical ensemble of the RR ground states. Fol-
lowing [19], it is convenient to focus on the correlator of the
two bosonic operators (2.5) in this geometry divided by the
vacuum 2-point function and the result is

Gbos
BTZ(τ, σ ) = 1

4(σ+ − σ−)2

[
sin2 σ+

2
+ sin2 σ−

2

−4 sin σ+−σ−
2 sin σ+

2 sin σ−
2

(σ+ − σ−)

]
, (5.2)
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where σ± ≡ σ ± τ . For large τ this correlator vanishes like

Gbos
BTZ(τ, σ ) ∼ 1

τ 2 . (5.3)

This large-time decay is a signal of information loss [25]: the
decay in (5.3) is polynomial rather than exponential, because
the naive geometry (5.1) is a degenerate zero-temperature
limit of a regular finite-temperature black hole.

Let us now consider the correlator in the pure heavy state
characterised by bk = bδk,1 studied in Sect. 3.3. The result of
the previous section implies that, for generic values of σ =
σ0, the correlator given in (3.45) has the same singularities at
τk = σ0+2πk as the vacuum correlator. Indeed in this regime
the leading contribution to the sum comes from the modes
with l � n and so, close to τk the fermionic and bosonic
correlators are well approximated by (4.7) and (4.8). Then,
as expected for a pure state, we see that Gbos

b1
or Gfer

b1
tend to

a finite value when τ → τk for every k:

Gfer
b1

∼ α
1 − e2iσ0

1 − e2iασ0e2π iαk
,

Gbos
b1

∼ α2e2iσ0(α−1)e2π iαk
(

1 − e2iσ0

1 − e2iασ0e2π iαk

)2

. (5.4)

This is in contrast with what happens in the case of the naive
geometry (5.3) where Gbos

BTZ goes to zero at late times.
Since the geometries (3.8), dual to the pure states (1.2),

reduce to the naive D1D5 geometry (5.1) in the limit a → 0,
it is interesting to ask if the non-unitary correlator (5.2)
emerges as the a → 0 limit of the pure state correlator (3.44)
and (3.45). When a 	 b, one can distinguish two contribu-
tions to the series in (3.45):

a0

a
|l| � 2n : Cfer ∼ a2

a2
0

∑

l,n

(
1 + 2n

|l|
)
ei(lσ−|l|τ) ; (5.5a)

a0

a
|l| 	 2n : Cfer ∼ a

a0

∑

l,n

eilσ e
−i a

a0
2nτ

, (5.5b)

where we have used a
a0

∼
√

2a
b . The terms in the first line

of the equation above give the sum of a function of σ + τ

and a function of σ − τ , and hence do not contribute to the
bosonic correlator. We thus keep only the second type of
contributions, which give

Cfer(σ, τ ) ∼ a

a0

∑

l∈Z
eilσ

∞∑

n= a0
2a |l|

e
−i a

a0
2nτ + . . .

= a

a0

1

1 − e
−2i a

a0
τ

[
1

1 − ei(σ−τ)
+ 1

1 − e−i(σ+τ)
− 1

]
+ . . . ,

(5.6)

where the dots are the terms that do not contribute to Cbos. No
matter how small a/a0 is, as far as a is non-zero the correlator

in (5.6) and the bosonic correlator derived from it have an
oscillating non-vanishing behaviour for large enough τ , as
was found10 in (5.4) for finite a. However, if one observes
the correlators at times τ 	 a0/a, one can approximate (5.6)
as

Cfer(σ, τ ) ∼ 1

2iτ

[
1

1 − ei(σ−τ)
+ 1

1 − e−i(σ+τ)
− 1

]
+. . . ,

(5.7)

and one obtains precisely the “naive” correlator given in
(5.2). We conclude that the correlator in the naive geome-
try (5.1) approximates the correlators in pure states in the
limit a 	 a0 and for times τ shorter than a0/a.

6 Summary and outlook

In this paper we used the supergravity approximation of type
IIB string theory to derive, via the AdS3/CFT2, the strong
coupling expression for the HHLL correlators (2.4) where
the two light operators are the bosonic states in (2.5) and the
heavy operators belong to the ensemble of RR ground states
in (1.2). As reviewed in Sect. 2, at the orbifold point in the
superconformal moduli space, it is straightforward to calcu-
late these correlators in full generality. This was exploited
in [19,20] to extract interesting properties of the correla-
tors for generic RR ground states. Of course, in order to
study the problem in a regime where weakly coupled AdS
gravity is a valid approximation, one needs to deform the
orbifold description and move to a region where the CFT
is strongly coupled. Here we bypassed this challenging task
by working directly with the supergravity description, and
to make the computation feasible we restricted to the regime
(N (0)

k 	 N (++)
1 ) where the states are close to the RR ground

state with maximal R-charge. For a particular family of states
(with N (0)

k = 0 for k ≥ 2) we were able to compute the cor-
relator at strong coupling for all values of the R-charge (even
if only in the form of a Fourier series), including the limit
in which the R-charge becomes vanishingly small. To make
contact between the gravity results ((3.29), (3.30) and (3.44),
(3.45)) and the CFT point of view, we started to look at dif-
ferent OPE limits of the correlator. In the light-cone OPE
limit the only contributions to the bosonic correlator come
from the Virasoro descendants of the identity, as expected
(see for instance the discussion in Appendix A of [27]) for
generic correlators in a CFT where the stress tensor is the
only conserved current. In the usual Euclidean OPE, how-
ever, other primaries beyond the identity contribute, the first

10 Note, however, that one cannot directly compare the τ → σ limit of
(5.6) with (5.4) or with (4.7), because both results are not valid when
zα is close to 1.
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ones appearing at dimension h = h̄ = 2 for the bosonic
correlator. Summing over these primaries crucially changes
the qualitative late-time behaviour of the correlator: while
each individual classical Virasoro conformal block vanishes
at late times, we verify in Sect. 5 that our correlator has an
oscillatory behaviour for arbitrarily large time, as expected
in a unitary theory without information loss. Note that this
results holds also for states that are far from the maximally
spinning ground state, for which the correlator is dynamical
and not fixed by the symmetries.

We thus see that correlators in pure states are consistent
with unitarity both at the orbifold and at the supergravity
point, but the exchanged operators that guarantee the uni-
tary behaviour are different at the two points. While in the
free theory correlators receive contributions from an infinite
series of conserved currents that are lifted at a generic point
in the moduli space, contributions from new primaries appear
in the strong coupling result. Since, in all known cases, non-
protected single trace operators acquire divergent anomalous
dimensions in the supergravity limit, these primaries must be
multi-particle operators, i.e. operators made by products of
fields evaluated on different copies of the CFT. Multi-particle
operators generically have anomalous dimensions and three-
point functions that acquire moduli-dependent corrections
in the 1/N expansion, and hence they can give finite con-
tributions to correlators that are not visible at the orbifold
point. One of the most immediate and potentially interesting
developments of our work is a closer analysis of these multi-
particle operators. An extension of the techniques developed
in the AdS5/CFT4 context (see for instance [35,36]) should
allow us to extract the first corrections to the anomalous
dimensions and the three-point functions from the super-
gravity correlators, thus investigating the consistency of our
results and gaining a better understanding of the mechanism
by which information is encoded in the dynamical correla-
tors.

The analysis in this article has been limited to RR ground
states, for which we have complete control over the dual
supergravity geometries. Though these states have interest-
ing statistical properties and an entropy that scales like a posi-
tive power of the central charge, they represent a “degenerate”
toy model for a black hole, in the sense that the ensemble of
such states is not described by a black hole with a finite hori-
zon in classical supergravity. It would thus be significant to
extend our analysis to states with an excited left (or the right)
sector. In particular a family of such states has recently been
constructed [31–33], of which a subset is known [34] to have
factorizable 6D metric, in the sense explained in Sect. 3. It
would be interesting to see if the general mechanism for infor-
mation conservation suggested by our study is confirmed in
an ensemble dual to a regular black hole, or if new quali-
tative features emerge. Another interesting extension of our
method is to HHLL correlators in higher-dimensional CFTs.

A natural set-up is provided by the LLM geometries [37],
which are dual to 1/2 BPS operators of N = 4 SYM with
conformal dimension and spin of order N 2. Investigations in
this direction are already under way.
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Appendix A: The orbifold D1D5 CFT

For the orbifold D1D5 CFT we follow the conventions
of [22]. In particular, in deriving the Ward identity (2.12)
we used the explicit form of the left and right supercurrents

Gα
A(z) ≡

N∑

r=1

∂XAȦ (r)ψ
α Ȧ
(r) , G̃α̇

A(z) ≡
N∑

r=1

∂̄XAȦ(r)ψ̃
α̇ Ȧ
(r) ,

(A.1)

and the OPE between the elementary fields

ψα Ȧ
(r) (z) ψ

β Ḃ
(s) (w) ∼ −εαβ ε Ȧ Ḃ δr,s

z − w
,

∂X AȦ
(r) (z) ∂XBḂ

(s) (w) ∼ εABε Ȧ Ḃ δr,s

(z − w)2 (A.2)

where the SU (2) indices are raised and lowered by using the
ε tensor with the convention ε12 = −ε21 = ε21 = −ε12 =
+1, for instance

∂XAȦ = εABε Ȧ Ḃ ∂XBḂ, ∂X AȦ = εABε Ȧ Ḃ ∂XBḂ (A.3)

and similarly for the antiholomorphic fields.
In a twisted sector, the boundary conditions mix different

copies of the CFT to form a strand of length k, which means
that we have the following periodicities:

∂X AȦ
(r)

(
e2π iz

)
= ∂X AȦ

(r+1)(z),

∂̄X AȦ
(r)

(
e−2π i z̄

)
= ∂̄X AȦ

(r+1)(z̄), (A.4)

with the identification ∂X AȦ
(k+1) ≡ ∂X AȦ

(1) and ∂̄X AȦ
(k+1) ≡

∂̄X AȦ
(1) and r = 1, . . . , k. It is possible to diagonalise the
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boundary conditions by taking linear combinations of the
fields for different values of (r). We label the independent
fields of this new basis with the index ρ = 0, . . . , k − 1,

∂X1 Ȧ
ρ (z) = 1√

k

k∑

r=1

e2π i rρk ∂X1 Ȧ
(r)(z),

∂X2 Ȧ
ρ (z) = 1√

k

k∑

r=1

e−2π i rρk ∂X2 Ȧ
(r)(z), (A.5a)

∂̄X1 Ȧ
ρ (z̄) = 1√

k

k∑

r=1

e−2π i rρk ∂̄X1 Ȧ
(r)(z̄),

∂̄X2 Ȧ
ρ (z̄) = 1√

k

k∑

r=1

e2π i rρk ∂̄X2 Ȧ
(r)(z̄), (A.5b)

with the (diagonalised) monodromy conditions in the ρ basis
now being

∂X1 Ȧ
ρ

(
e2π iz

)
= e−2π i ρ

k ∂X1 Ȧ
ρ (z),

∂X2 Ȧ
ρ

(
e2π iz

)
= e2π i ρ

k ∂X2 Ȧ
ρ (z), (A.6a)

∂̄X1 Ȧ
ρ (e−2π i z̄) = e2π i ρ

k ∂̄X1 Ȧ
ρ (z̄),

∂̄X2 Ȧ
ρ (e−2π i z̄) = e−2π i ρ

k ∂̄X2 Ȧ
ρ (z̄). (A.6b)

Then the standard mode expansion following from (A.6) are

∂X1 Ȧ
ρ (z) =

∑

n∈Z
α1 Ȧ

ρ,n+ ρ
k
z−n−1− ρ

k ,

∂X2 Ȧ
ρ (z) =

∑

n∈Z
α2 Ȧ

ρ,n− ρ
k
z−n−1+ ρ

k , (A.7a)

∂̄X1 Ȧ
ρ (z̄) =

∑

n∈Z
α̃1 Ȧ

ρ,n+ ρ
k
z̄−n−1− ρ

k ,

∂̄X2 Ȧ
ρ (z̄) =

∑

n∈Z
α̃2 Ȧ

ρ,n− ρ
k
z̄−n−1+ ρ

k . (A.7b)

Notice that we can use (A.5) and rewrite the k terms belong-
ing to a single strand in the operators (2.5) as a sum over ρ

k∑

r=1

∂X AḂ
(r) (z)∂̄X AĊ

(r) (z̄) =
k−1∑

ρ=0

∂X AḂ
ρ (z)∂̄X AĊ

ρ (z̄). (A.8)

Then by the commutation relations in the twisted sector,

[
αAȦ

ρ1,n, α
B Ḃ
ρ2,m

]
= εABε Ȧ Ḃ n δn+m,0 δρ1,ρ2 , (A.9)

we can easily calculate the 2-point correlator on a strand of
length k,

k〈0|∂X11̇
ρ (z1) ∂X22̇

ρ (z2)|0〉k

= 1

(z1 − z2)2

(
z1

z2

)− ρ
k
{

1 − ρ

k

(
1 − z1

z2

)}
, (A.10)

with similar formulae holding for the antiholomorphic sector.
Then the contribution from such strand to the correlator (2.2)
with the light operators in (2.5) is

Cbos
k (z, z̄) = 1

(1 − z)2(1 − z̄)2

k−1∑

ρ=0

|z| 2ρ
k

∣∣∣∣1 − ρ

k

(
1 − 1

z

)∣∣∣∣
2

= ∂∂̄

⎡

⎣ 1 − zz̄

(1 − z)(1 − z̄)
(

1 − (zz̄)
1
k

)

⎤

⎦ . (A.11)

As explained in Sect. 2, the possibility of writing the result as
in the second line follows from a Ward identity with a corre-
lator where the light operators are (anti)-chiral primaries. It
is also interesting to write the result in terms of z = e−iw and
z̄ = eiw̄. By including a factor of e−i(w−w̄), which follows
from the Jacobian necessary to transform the correlator from
the plane to the cylinder coordinates, one has

Cbos
k (w, w̄) = 1

16k sin2
(

w−w̄
2k

)
[

1

sin2
(

w
2

) + 1

sin2
(

w̄
2

)

− 2 sin
(

w−w̄
2

)

k tan
(

w−w̄
2k

)
sin
(

w
2

)
sin
(

w̄
2

)
]

. (A.12)

By following a similar approach it is straightforward to
calculate the contribution of a strand of length k to the cor-
relator with the fermionic light operators (2.7)

Cfer
k ( j j̄)

= 1

|z|
|z| 2

k − |z|2
(1 − z)(1 − z̄)

(
1 − |z| 2

k

) + f( j, j̄)(z, z̄),

(A.13)

where fk ( j, j̄) is the ρ = 0 contribution which depends on
the SU (2)L × SU (2)R quantum numbers

f( j, j̄) = z j z̄ j̄

(1 − z)(1 − z̄)
, with j, j̄ = ±1

2
,

f(0,0) = 1

2|z|(1 − z)(1 − z̄)

(
1 + |z|2 + |1 − z|2

)
.

(A.14)

Appendix B: Wave equation

The CFT operator ∂X (i ∂̄X j), with i, j = 1, . . . , 4, is dual to
a deformation hi j of the T 4 metric. For simplicity we restrict
here to a traceless deformation δi j hi j = 0. We derive here
the linearised equation satisfied by hi j in the background of
a generic two-charge microstate. When the background is
that of the naive D1D5 geometry, it is know that hi j is a

123



Eur. Phys. J. C (2018) 78 :8 Page 15 of 17 8

minimally coupled scalar (see for example [38]). We show
that this remains true for a generic D1D5 microstate.

The deformed 10D string metric is

ds2
10 =

√
Z1Z2

P ds2
6 +

√
Z1

Z2
(δi j + hi j ) dzidz j , (B.1)

where P is defined in (3.2) and ds2
6 is the 6D Einstein metric

given in (3.1). The background solution also contains the
dilaton �, the RR 1-form F1, the NSNS and RR three-forms
H3 and F3 and the self-dual RR 5-form F5:

e2� = Z2
1

P , F1 = d

(
Z4

Z1

)
, (B.2a)

H3 = −dû ∧ dv̂ d

(
Z4

P
)

− Z4

P (dv̂ ∧ dω

− dû ∧ dβ) + ∗4dZ4, (B.2b)

F3 = dû ∧ dv̂

P
(
Z2

Z1
dZ1 − Z4

Z1
dZ4

)

− 1

Z1
(dv̂ ∧ dω − dû ∧ dβ) + ∗4dZ2 − Z4

Z1
∗4 dZ4,

(B.2c)

F5 = −dû ∧ dv̂

P ∧ ∗4 (Z4 dZ2 − Z2 dZ4)

+ d

(
Z4

Z2

)
∧ dz1 ∧ dz2 ∧ dz3 ∧ dz4, (B.2d)

where for brevity we have denoted

dû ≡ du + ω, dv̂ ≡ dv + β, (B.3)

and ∗4 is the Hodge dual done with ds2
4 .

We would like to derive the equations of motion at first
order in hi j . The only non-trivial equation is Einstein’s equa-
tion:

e−2� (RMN + 2∇M∇N�)

+ 1

4
gMN

(
FP F

P + 1

3! FPQRF
PQR

)

− 1

4

1

4! FMPQRSFN
PQRS

− 1

2
FMFN − 1

4
e−2�HMPQHN

PQ

− 1

2

1

2! FMPQFN
PQ = 0,

(B.4)

where the Ricci tensor RMN , the covariant derivatives and the
raising of indices are referred to the string metric; we have
omitted to write the subscripts indicating the form degree
since the explicit presence of the indices leaves no space to

confusion. The second line of (B.4) does not receive correc-
tions in hi j ; the first line is non-trivial only when both indices
M , N are along T 4. One finds

δRi j = −1

2

√
P

Z2

[
�6hi j + P

Z2
1

∂μ

(
Z2

1

P

)
∂μhi j

+1

2

(
Z2

Z1
�6

(
Z1

Z2

)
+ P

Z2
1

∂μ

(
Z1Z2

P

)
∂μ

(
Z1

Z2

))
hi j

]
, (B.5)

δ(∇i∇ j�) = 1

4

P3/2

Z2
1 Z2

∂μ

(
Z2

1

P

)[
∂μhi j + 1

2

Z2

Z1
∂μ

(
Z1

Z2

)
hi j

]
,

(B.6)

FP F
P + 1

3! FPQRF
PQR =

√
P

Z1Z2
2

[
∂μZ2∂μZ2 − PZ2

Z3
1

∂μZ1∂μZ1

+ Z2

Z1
∂μZ4∂μZ4 − 2

Z4

Z1
∂μZ2∂μZ4

]
, (B.7)

1

4! δ
(
Fi PQRS Fj

PQRS
)

=
√
PZ2

Z2
1

∂μ

(
Z4

Z2

)
∂μ

(
Z4

Z2

)
hi j , (B.8)

and of course δgi j =
√

Z1
Z2

hi j . Here �6 is the scalar Lapla-

cian of the 6D Einstein metric ds2
6 and the 6D indices

μ are raised and lowered with ds2
6 . The warp factors Z1

and Z2 of a generic two-charge microstate are harmonic:
�6Z1 = �6Z2 = 0. Exploiting this property, the variation
of the first two terms of (B.4) can be simplified to

e−2�
[
δRi j + 2δ(∇i∇ j�)

] = −1

4

P3/2

Z3
1Z2

[
2Z1�6hi j

+
(
Z1

Z2
2

∂μZ2∂
μZ2 − 1

Z1
∂μZ1∂

μZ1

)
hi j

]
. (B.9)

Substituting (B.9), (B.7) and (B.8) in the first line of (B.4)
one can verify that at first order in hi j the equation reduces
to

�6hi j = 0, (B.10)

i.e. hi j is a minimally coupled scalar in 6D.

Appendix C: Bulk integrals

We describe here the steps that lead from (3.28) to (3.29).
The manipulations we perform are standard in Witten dia-
grams computations and are similar to the ones described in
Appendix E of [23].

The first term of the source 〈Jk〉 in (3.25) can be conve-
niently rewritten as

− r(
r2 + a2

0

)∂r B0 = 1

2a2
0

(
B−∂μB+ + B+∂μB−

)
∂μB0,

(C.1)
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where we have introduced

B± ≡ a0√
r2 + a2

0

e±te/R, (C.2)

and it is understood that indices are raised and lowered with
the Euclidean version of the AdS3 metric gAdS3 . B+ and B−
are the bulk-to-boundary propagators with � = 1 evaluated
at the points z = ∞ and z = 0. It is convenient to start from
the version of (3.28) written on the Euclidean cylinder:

〈OH (te =−∞)ŌH (te =∞)OL(0, 0)ŌL(te, y)〉|b2
k

=

= −
∑

k

b2
k

2π

∫
d3r′

e

√
ḡ KGlob

2 (r′
e|te, y) 〈Jk(r′

e)〉

= −
∑

k

b2
k

2πa2
0

⎛

⎝ I1 + I2
2

− I3 −
k∑

p=2

1

2 p
Ĩp

⎞

⎠ ,

(C.3)

where

I1 ≡
∫

d3r′
e

√
ḡ B0(r′

e|te, y) ∂ ′μB0(r′
e|0, 0) B−(r′

e) ∂ ′
μB+(r′

e),

(C.4a)

I2 ≡
∫

d3r′
e

√
ḡ B0(r′

e|te, y) ∂ ′μB0(r′
e|0, 0) B+(r′

e) ∂ ′
μB−(r′

e),

(C.4b)

I3 ≡
∫

d3r′
e

√
ḡ B0(r′

e|te, y) R2∂2
t ′e B0(r′

e|0, 0)
a4

0

(r ′2 + a2
0)2

, (C.4c)

Ĩ p ≡
∫

d3r′
e

√
ḡ B0(r′

e|te, y) R2(∂2
t ′e + ∂2

y′ )B0(r′
e|0, 0)

a2p
0

(r ′2 + a2
0)p

.

(C.4d)

These integrals can be written in terms of the same D-
functions Dp1 p2 p3 p4 that appear in the computations of Wit-
ten’s diagrams. The D-functions that we need in this paper
can be computed by starting from

D1111(z1, z2, z3, z4) = π

|z13|2|z24|2(z − z̄)

×
(

Li2(z) − Li2(z̄) + ln |z| ln
1 − z

1 − z̄

)
, (C.5)

where zkl = zk − zl and z is given in (2.3). Each pair (kl) of
subscripts can be increased by one by taking the derivative
with respect to the corresponding |zkl |2; hence one has

Dp1+1 p2+1 p3 p4 = − p̂ − d

2p1 p2

∂

∂|z12|2 Dp1 p2 p3 p4 (C.6)

and its permutations (with p̂ =∑i pi and, in our case, d =
2). It is also convenient to introduce the rescaled functions

D̂p1 p2 p3 p4 = lim
z2→∞ |z2|2p2 Dp1 p2 p3 p4(0, z2, 1, z). (C.7)

As explained11 around (E.10) of [23], one has

I1 + I2 = 2|z|2 D̂2222. (C.8)

I1 can be computed as in (E.8) of [23] by writing the integral
in Poincaré coordinates w ≡ {w0, w, w̄}:

|z|−2 I1 =
∫

d3ww−1
0

(
w0

w2
0 + |w − z|2

)2

∂w0

(
w0

w2
0 + |w − 1|2

)2
w0

w2
0 + |z|2

=
∫

d3ww−1
0

(
w0

w2
0 + |w − z|2

)2 [
2w0

(w2
0 + |w − 1|2)2

− 4w3
0

(w2
0 + |w − 1|2)3

]
w0

w2
0 + |z|2

= 2D̂1122 − 4D̂1232. (C.9)

Therefore

|z|−2 I2 = 2D̂2222 − 2D̂1122 + 4D̂1232. (C.10)

The computation of I3 follows (E.14):

I3 = R∂te
I1 − I2

2

= (z∂ + z̄∂̄)
(
|z|2(2D̂1122 − 4D̂1232 − D̂2222)

)

= 2|z|2
|1 − z|4

(
2(1 + |z|2)D̂3311 − π

)
,

(C.11)

where the last identity follows from a computation that uses
the explicit expression of the D̂-functions. Finally

Ĩ p = R2(∂2
te + ∂2

y )

∫
d3r′

e

√
ḡ B0(r′

e|te, y)B0(r′
e|0, 0)

a2p
0

(r ′2 + a2
0)p

= 4∂∂̄(|z|2 D̂pp22). (C.12)

Substituting the above expressions for the integrals in (C.3),
transforming to the Euclidean plane and adding the trivial
contribution 1/|1 − z|4 from bk = 0, one finds the correlator

1

|1 − z|4G
bos(z, z̄) = 1

|1 − z|4

+
∑

k

b2
k

πa2
0

⎡

⎣ 1

|1 − z|4
(

2(1 + |z|2)D̂3311 − π
)

−1

2
D̂2222 +

k∑

p=2

1

p
∂∂̄(|z|2 D̂pp22)

⎤

⎦ . (C.13)

11 With respect to [23], we have renamed the integrals and the bulk-
to-boundary propagator B0 has now � = 2, instead on � = 1. The
definition of the functions D̂ is the same as given in eq. (D.2) of [23].
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The first line can be rewritten in a more suggestive form by
making use of the identity

1

|1 − z|4
(

2(1 + |z|2)D̂3311 − π
)

− 1

2
D̂2222

= ∂∂̄

[
−π

2

1

|1 − z|2 + |z|2 D̂1122

]
,

(C.14)

which can be verified explicitly as in (C.11). Substituting this
identity in (C.13) one arrives at (3.29).
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