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Abstract—The issue of single range based observability
analysis and observer design for the kinematics model of a 3D
vehicle eventually subject to a constant unknown drift velocity
is addressed. The proposed method departs from alternative
solutions to the problem and leads to the definition of a linear
time invariant state equation with a linear time varying output.
Simple necessary and sufficient observability conditions are
derived. The localization problem is finally solved using a novel
outlier robust predictor - corrector state estimator. Numerical
simulation examples are described to illustrate the performance
of the method as compared to a standard Kalman filter.

I. INTRODUCTION
The problem of single range based localization is relevant

in several land [1], [2], arial [3] and marine robotics [4] [5]
application. In essence, the problem consists in estimating an
agent’s position exploiting knowledge about its motion model
(typically its kinematics model where the velocity is a known
input), a range measurement from a point and eventually
other sensor readings related to the vehicle’s attitude. The
challenge of using single range information for localization is
related to the fact that traditional trilateration algorithms used
in systems as the Global Positioning System (GPS), long
base line (LBL) or ultra short base line (USBL) underwater
navigation systems are ill posed when only range from a
single point should be known. Yet indeed fusing information
from a motion model of the agent (including velocity and
attitude) and a single range measurement can be sufficient
to estimate the position of the agent. Finding the conditions
on the agent’s motion state that allow to estimate its position
from a single range measurement is an observability problem
that needs to be tackled in order to eventually design an
observer. Given that range is a nonlinear function of the
position, even if the motion model of the vehicle should
be linear, the observability issue is inherently nonlinear. A
major contribution on observability for nonlinear systems
is [6] where the fundamental ideas and results about local
and weakly local observability are described: single range
localization studies building on differential geometric tools
need to tackle the difficulties related to local and weakly local
observability as opposed to the global observability concept
known for linear systems. Such issues are clearly addressed,
by example, in references [7], [8] and [9].
Single range aided localization is particularly relevant in

cooperative navigation applications where a team of vehicles
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needs to perform collaborative motion control tasks while
possibly performing relative localization exploiting intra-
vehicle communication to measure relative ranges. Such
problems arise in several underwater robotics scenarios [10]
[11] [12] as well as in more general settings [13]. Moreover,
the problem of range based localization is technically similar
to the problem of source localization where a vehicle know-
ing its own position is asked to estimate the position of a
source (or target) from which it acquires range measurements
[14] [15]. The localization solution described in this paper
was partially inspired by the work in [15].
The single range navigation problem is of particular in-

terest for underwater navigation applications where range
measurements are typically acquired through acoustic time of
flight based sensors: the data so collected is often corrupted
by outliers. Indeed the issue of designing outlier robust
underwater navigation systems is of great importance and
it has been addressed, for example, in [16] [17] [18] [19].
The single range navigation problem here addressed is solved
using a novel outlier robust state estimation filter building on
an entropy based residual loss function [20]. The resulting
state estimator has a predictor / corrector structure and its
performance is compared to a standard Kalman filter in
simulation.
The paper is organized as follows: a brief state of the art

analysis relative to the single range observability problem
is addressed in section II. Then the main ideas and meth-
ods used to solve the single range observability problem
are described in section III. A Kalman filter solution for
estimating the state is described in section IV where numer-
ical simulation results are also reported. The novel outlier
robust state estimator is described in section V that includes
some numerical simulation examples. Finally, conclusions
are summarized in section VI.

II. ALTERNATIVE APPROACHES FOR SINGLE RANGE
OBSERVABILITY ANALYSIS

A milestone contribution in the area of single range
localization is given by the work of Batista et al. [21]
[22]: they propose to study the single range localization
problem of an agent subject to a constant, but unknown,
drift velocity through an augmented state approach. The
original nonlinear system (where the state belongs to R6

and is made of the agent’s position and unknown drift
velocity components) is transformed in a linear time varying
(LTV) system in R9 through an augmented state technique.
This leads to the remarkable result of allowing to study
the global observability properties of the system with well
known Gramian based tools of LTV systems theory [23] and
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of designing a Kalman filter for global state estimation. The
LTV system derived in [21] [22] is of the form

ż = A(t,u(t), y(t)) z+B u(t) (1)
y(t) = C z (2)

namely, the system matrix A(t) explicitly depends, among
the rest, on the output y(t) that is the range measurement.
More precisely, the A(t) matrix is a function of terms
proportional to 1/y(t): this poses both fundamental as well
as implementation issues. From a theoretical perspective,
assuming that the output y(t) should be affected by additive
noise, the dependency of A(t) from y(t) implies that some
of its entries are stochastic and that the model uncertainty on
the state equation (1) could not be possibly assumed to be
only additive as is usually done within the theory of Kalman
filtering. As a consequence assuming additive gaussian noise
on the state and output equations (1) - (2), the associated
Kalman state estimator is not guaranteed to be optimal in
the usual sense. Indeed the numerical examples provided in
[22] confirm that the Kalman filter estimates converge to
the true state variables, but there is no a priori guarantee
that the estimate is optimal in terms of estimate covariance.
A second potential difficulty arising from the structure of
equations (1) - (2) is related to the eventual stability analysis
of the Kalman filter on equations (1) - (2) coupled with a
motion controller. Indeed the presence of the output y(t) in
the matrix A(t) does not allow to exploit in a straightforward
fashion the standard separation principle used within linear
systems theory to study the convergence and stability of state
estimation filters coupled with feedback controllers.
As for the implementation of the Kalman filter described

in [22], given the dependency of some entries of A(t) from
1/y(t), it is necessary to assume that y(t) �= 0 at all times.
Indeed in [22] it is assumed that y(t) has strictly positive,
finite, lower and upper bounds: yet in real application scenar-
ios with unpredictable sensor noise and outliers one would
need to pre-filter the output in order to guarantee the absence
of numerical issue related to exceedingly small or null y
readings.
In the light of the above observations and inspired by the

work in [15] and [22], this paper describes an alternative
approach to address the single range localization problem.
As a result, the same problem addressed in [22] is globally
solved by introducing an LTV system of the form

ż = A z+B u(t) (3)
y(t) = C(u(t)) z (4)

namely where the state equation is completely linear time
invariant (LTI) and has dimension 8 rather than 9. The
output equation is still LTV, but has a very simple structure.
The proposed method does not build on state augmentation
techniques, but rather exploits the structure of the original
state equations expressed in an inertial frame as opposed to
the body frame formulation used in [22]. Within the proposed
solution, given the LTI nature of the state equation (3), the
difficulties related to the dependency of A(t) in equation

(1) from 1/y(t) are completely removed. Also notice that
the output matrix C(t) in equation (4) within the solution
presented in this paper depends on the input u(t), but not on
the output y(t): as a consequence an additive measurement
noise would not affect the entries of C(t) nor of A and B
hence preserving the optimality of a Kalman filter as a state
estimator as long as noise is gaussian (and the input u(t)
is perfectly known, i.e. noise free). Indeed, as in [22], the
localization problem can be globally solved with a standard
Kalman filter with dimension 8 instead of 9. Moreover, given
the extremely simple structure of equations (3) - (4), the
observability analysis is extremely simple and it allows to
derive necessary and sufficient observability conditions on
the agent input (i.e. its velocity).

III. SINGLE RANGE LOCALIZATION IN THE PRESENCE OF
CONSTANT AND UNKNOWN CURRENTS

Consider an agent (or a vehicle, in the following) with
position given by vector x and a source (or navigation
reference) with fixed inertial position s. Denoting with

r := s− x (5)

the relative position of the source with respect to the agent
it is assumed that this can access the measurement y given
by squared norm of r, namely

y = �r�2. (6)

Moreover, denoting with {I} and {B} an earth fixed and
body fixed frames respectively, it is assumed that the agent
has access to a measurement of its attitude, namely it can
measure the rotation matrix IRB ∈ SO(3) thanks to an on
board navigation system (Attitude and Heading Reference
System - AHRS). The agent velocity is given by a super-
position of a drift term vf and a controlled (input) term
vr that model a constant ocean current and a commanded
velocity with respect to the water respectively. In practice the
velocity term vr for underwater vehicles can be measured by
an on board navigation sensor as a Doppler Velocity Logger
(DVL). The resulting agent motion model expressed in the
{I} frame is thus

ẋ = vr + vf (7)
v̇f = 0 (8)
ṡ = 0. (9)

Consequently, the agents state equations in terms of the
relative position r expressed in the fixed frame {I} result
in:

ṙ = −vf − vr (10)
v̇f = 0 (11)
y = �r�2. (12)

The problem addressed in the paper can thus be formulated
as follows
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Problem formulation

Given the linear state equations (10 - 11) for the state
vector (r�,v�

f )
� and the nonlinear scalar output y in

equation (12) determine the conditions on the input vr

that guarantee observability of the state and design a state
estimator for (r�,v�

f )
� that is robust to possible outliers

in the output y.

This problem corresponds to the one addressed in [22] with
the only difference that here it is formulated in the inertial
frame {I} rather than in the body fixed frame {B}. Yet
it should be noticed that the available information in the
two set-ups is identical as both formulations require to have
access to the rotation matrix IRB ∈ SO(3). In particular, in
the present paper IRB is needed to recover vr in the {I}
frame from its measurement in the {B} frame through a
DVL (or other on board navigation sensors as GPS).
To tackle the formulated observability problem consider

the integral of equation (10)

r(t)− r0 = −vf t−
� t

0

vr(τ)dτ =

= −vf t− Ivr
(t) (13)

having defined Ivr
(t) ∈ R3×1 as

Ivr
(t) :=

� t

0

vr(τ) dτ (14)

and
r0 := r(t)|t=0 .

Equation (13) allows to compute

(r(t) + Ivr
(t))

�
(r(t) + Ivr

(t)) = (r0 − vf t)
�
(r0 − vf t)

implying

�r(t)�2 + �Ivr
(t)�2 + 2 I�

vr
(t)r(t) =

= �r0�2 + �vf�2 t2 − 2 (r�0 vf )t (15)

namely

�r(t)�2 − �r0�2 + �Ivr (t)�2 =
= −2 I�

vr
(t)r(t)− 2 (r�0 vf )t+ �vf�2 t2. (16)

Notice that the left hand side of equation (16) is made of all
known terms and it can be used as a new output map

ȳ(t) = �r(t)�2 − �r0�2 + �Ivr (t)�2
= y(t)− y0 + �Ivr (t)�2 (17)

and the right hand side of equation (16) can be expressed as
a linear time varying (LTV) term in the new state variable
z ∈ R8×1

z = (r�, (r�0 vf ), �vf�2,v�
f )

�, (18)

i.e.

ȳ(t) = C(t) z =

=
�
−2 I�

vr
(t) − 2 t t2 01×3

�
z. (19)

Given the definition of z in equation (18) and the model (10)
- (11), its dynamic equation is linear time invariant (LTI):

ż = A z+B vr (20)

namely

ż =
d

dt




r
(r�0 vf )
�vf�2
vf


 =

=




03×3 03×1 03×1 −I3×3

01×3 0 0 01×3

01×3 0 0 01×3

03×3 03×1 03×1 03×3







r
(r�0 vf )
�vf�2
vf


+

+




−I3×3

01×3

01×3

03×3


 vr. (21)

The range-only localization problem of estimating r and the
current velocity vf from a measurement of �r�2 in equations
(10) - (12) is hence reduced to a state estimation problem
on a linear time invariant state equation (20) - (21) with an
LTV output map (19), namely

�
ż = A z+B vr

ȳ(t) = C(t) z.
(22)

The LTI state equations, moreover, have a very simple
structure. As anticipated in section I, notice that this results
is similar to the one described in [22], but with a few
significant differences: the state matrix A does not depend
on the output and is actually LTI rather than LTV. Only the
output map is time varying and depends on the vehicle’s
velocity. Moreover the state vector has dimension 8 rather
than 9. As a consequence, the Gramian observability matrix
to be used for observability analysis has a simpler structure
as well as the resulting observer that can be chosen to have
a Kalman filter structure.
Estimating z will result in estimating both r and the

current velocity vf . Moreover, in case that the absolute
position s of the source should be known a priori, by
estimating r the absolute position of the vehicle could also
be computed as x = s− r.

A. Observability analysis in the presence of currents

The observability properties of system (22) can be studied
through the observability Gramian

G(t) =

� t

0

eA
�τ C�(τ)C(τ) eAτdτ. (23)

Given the structure of the A matrix in equation (21), no-
tice that A2 = 08×8 implying that the exponential matrix
exp(At) is simply

eAt = I8×8 +At (24)

such that C(t) exp(At) results in

C(t) eAt =
�
−2 I�

vr
(t) − 2 t t2 2t I�

vr
(t)

�
(25)
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and

exp(A�τ)C�(τ)C(τ) exp(Aτ) =

=




4 Ivr I
�
vr

4τ Ivr −2τ2 Ivr −4τ IvrI
�
vr

4τ I�
vr

4 τ2 −2τ3 −4τ2 I�
vr

−2τ2 I�
vr

−2 τ3 τ4 2τ3 I�
vr

−4τIvr I
�
vr

−4τ2Ivr 2τ3Ivr 4τ2Ivr I
�
vr




(26)

where the dependency of Ivr
from t has been omitted for

the sake of notation compactness.
As for the observability conditions, following standard

results for LTV systems [23], the model in equation (22)
will be completely observable in the time interval [0, t] if
and only if the Gramian given by equations (23) and (26)
has full rank. Moreover, the structure of equation (26) implies
that a necessary condition for the complete observability of
(22) in the time interval [0, t] is that

G11(t) := 4

� t

0

Ivr
(τ) I�

vr
(τ)dτ (27)

has full rank, i.e. three. Overall, the observability properties
in the presence of constant currents can be summarized as
follows.

Main Result - Observability conditions for the continuous
time case with constant current.
The model in equations (19) - (21) is observable on [0, t]
if and only if the velocity signal vr guarantees that the
Gramian in equations (23) and (26) has full rank. Moreover
a necessary condition for full observability on [0, t] is that
the matrix G11(t) ∈ R3×3 in equation (27) has rank 3.

Proof of the Main Result
The necessary and sufficient conditions on the Gramian
in equations (23) and (26) follow from standard LTV
systems theory [23]. As for the necessary condition on
the rank of the matrix G11(t) ∈ R3×3 in equation (27)
it results that if G11(t) should not be full rank on [0, t],
there would exist a constant vector ν ∈ R3×1, ν �= 0 such
that Ivr

(τ)�ν = 0 ∀ τ ∈ [0, t]: this implies that any
vector parallel to z∗ = (αν�, 0, 0, β ν�)� ∈ R8×1 for
any constant α, β ∈ R would belong to the kernel of the
Gramian (23) - (26) that, hence, would not be full rank.
This proves that rank(G11(t)) = 3 : G11(t) ∈ R3×3 is
defined in equation (27) is a necessary condition for the
observability in [0, t] of the model in equations (19) - (21).

Notice that the Main Results allow to consider optimal
design issues of the vehicle’s input vr: in Kalman filtering
theory, in fact, the observability Gramian is related to the
estimate covariance and to the Fisher information matrix.
Building on the Main Result, one could formulate optimal
design problems for the input vr aiming at maximizing, by
example, metrics as the norm or the determinant, or the
condition number of the resulting Fisher information matrix.

IV. KALMAN FILTER DESIGN

With reference to the model in equation (22) assume that
it is discretized and affected by state and output zero mean
mutually independent disturbances respectively ωk and εk
with covariances

cov(ωk) = E
�
ωkω

�
k

�
= Qk (28)

cov(εk) = E
�
ε2k
�
= Rk. (29)

Denoting with x̂k|k the Kalman estimate at step k and with
x̂k+1|k the model prediction, the localization Kalman filter
can be designed.
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Fig. 1. Kalman filter estimation including currents: real (in green) and
estimated (in red) components of x.
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Fig. 2. Kalman filter estimation including currents: real (in green) and
estimated (in red) components of the current velocity vf .

In particular, a numerical experiment is performed us-
ing the same agent velocity profile vr used in the
examples presented in [14] and [22] namely vr =
(2 cos(t),−4 sin(2t), cos(t/2))� (m/s). The target s is s =
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(2, 3, 1)� (m), the current is assumed null, vf = 0 (m/s),
and the initial position of the agent is x0 = (2, 2, 0)

� (m)
such that the inertial position of the agent by x(t) = (2 +
2 sin(t), 2 cos(2t), 2 sin(0.5t))� (m). Notice that, by direct
calculation, the above vr input satisfies the observability con-
dition given in the Main Result. The covariances on the state
z and output ȳ(t) employed in the Kalman filter are Q =
(1e−2)diag([1, 1, 1, 1e−4, 1e−6, (1e−2), (1e−2), (1e−2))
and R = 1 respectively with proper units (i.e. [m2] for
position variables and [(m/s)2] for velocity variables). The
filter is initialized with a position x̂0 = (−30, 20, 30)�[m]
as opposed to the real initial position x0 = (2, 2, 0)

�[m] and
a current estimate v̂f = (0.1,−0.1, 0.1)�[m/s] as opposed
to the real null current. Denoting with Ts the sampling time
(that was (1/750)[s] in the described example), the Kalman
filter equations result in:

Ad = (I8×8 + TsA) (30)
Bd = TsB (31)
ẑk+1|k = Ad ẑk|k +Bd vrk (32)

Pk+1|k = Ad Pk|k A
�
d +Qk (33)

K =
�
P−1
k+1|k + C�

k+1R
−1
k+1 Ck+1

�−1

C�
k+1R

−1
k+1 (34)

ẑk+1|k+1 = ẑk+1|k +K(ȳk+1 − Ck+1 ẑk+1|k) (35)

where Qk and Rk were constant and equal to the values
reported above.
The resulting time evolution of the agent position x = s−r

and its estimate x̂ = s− r̂ are plotted in figure 1 while the
current estimate is plotted in figure 2.

A. Discussion

As already noticed, the proposed solution allows to design
a Kalman filter for state estimation on a system where all
the system matrices (A, B and C(t)) are not affected by
measurement noise as they do not depend from the output.
This preserves the optimality of the Kalman filter as a state
estimator in case of additive gaussian noise on the output and
state equations. Yet the new output ȳ(t) in equation (17) de-
pends on the very first measurement y(0). This dependency
can impact on the robustness of the solution as a single bad
measurement (as an outlier) at t = 0 will affect the output for
ever. A remedy to this issue can be found by periodically re-
setting the initial measurement y(0) with y(t). In the discrete
time case this would correspond to periodically mapping
y0 −→ yk∗ as if the measurement had started at step k∗

while the state estimate x̂k|k continues its update dynamics.
A detailed analysis of this implementation detail goes beyond
the scope of this paper and will not be addressed further,
but it will be subject to future investigation. Besides this
issue, notice that outliers are likely to be present in the
range measurements in particular when acoustic sensors are
employed. As a consequence the use of an outlier robust
estimator rather than a standard Kalman filter is eventually
better suited for the current application.

V. OUTLIER ROBUST STATE ESTIMATION

Whatever the application of the single range localization
is (land, aerial or marine), the range measurements are often
contaminated by outliers, namely data points that cannot be
modeled by a single (eventually Gaussian) probability distri-
bution function. If the noise were purely Gaussian, a Kalman
filter would provide the optimal solution. Unfortunately, most
often this is not the case and robustness to outliers is a key
issue. To address this, one class of approaches exploits the
equivalence between the Kalman filter and a weighted least
square regression problem. It is known that the Kalman filter
can be derived as a solution to the following minimization
problem:

ẑk+1|k+1 = arg min
zk+1

1

2
(zk+1 − ẑk+1|k)

TP−1
k+1|k(zk+1 − ẑk+1|k)+

+
1

2
(ȳk+1 − Ck+1zk+1)

TR−1
k+1(ȳk+1 − Ck+1zk+1)

(36)

where Rk+1 is the covariance associated to the measure-
ment ȳk+1 and Pk+1|k is the covariance of the (model)
predicted state ẑk+1|k. In [24], [25] and [26] the authors
solve this minimization problem in a robust manner replacing
the second term of the objective function by robustifying
functions used in the methodology of M-estimation (e.g., the
Huber function [27]). They express the solution as a weighted
least square approximation, where each weight indicates its
contribution to the state estimate. The robustness is achieved
trying to give a finite weight to single residuals that exceed a
threshold. Each residual contributes to the objective function
based on its only value regardless the overall distribution.
Other approaches as [28] and [29] model the observation
noise through a heavy-tailed distribution assigning outliers
a non-negligible probability: interestingly the resulting esti-
mators still result in a weighted [28] or iterative re-weighted
[29] least squares solution. A robust alternative technique is
here proposed based on the robust parameter identification
method known as LEL (Least Entropy-Like) [20]. The basic
idea is to estimate the state minimizing the following non
linear objective function

ẑk+1|k+1 = argminzk+1
Jk+1

Jk+1 =
1

2

�
(zk+1 − ẑk+1|k)

TP−1
k+1|k(zk+1 − ẑk+1|k)

�

� �� �
Jdynamical model

+

+ αHk+1(r1, . . . , rk+1)� �� �
JLEL

(37)
where ri = ȳi − Ciẑi, i = 1, . . . , k + 1 denotes the i-th
residual and Hk+1(·) represents an entropy based residual
loss function. Define D as the least squares cost

D =

k+1�

j=1

rj
2 (38)
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and the relative squared residual qi as

if D �= 0⇒ qi :=
ri

2

k+1�
j=1

rj2
: qi ∈ [0, 1] and

k+1�

i=1

qi = 1,

(39)
the residual loss function has the following form:

Hk+1 =




0 if D = 0

− 1
log(k+1)

k+1�
i=1

qi log qi otherwise.
(40)

The main difference respect to the Kalman filter and the
methods based on M-estimators relies on the structure of the
second term of the objective function (37). The aim of such
loss function is to give a ’global’ measure of the scatter of
the relative squared residuals. The idea behind the estimator
is to make the relative squared residuals ’as little equally
distributed as possible’. If this is the case, ’most’ residuals
are small (with respect to the normalization constant D, i.e.
the Least Squares cost) and ’a few’ of the residuals are large.
Data points corresponding to these large residual are outlier
candidates. It is worth highlighting that the structure of the
LEL entropy-based loss function can not be resembled to
the methodology of M-estimators. Indeed according to the
definition of M-estimators, the contribution to the objective
function of the i-the residual does not depend on the other
residuals. This is not the case of the proposed estimator, since
all residuals contribute to the objective function of the i-the
residual through the relative squared residual qi.
It should be noticed that Hk+1(·) ∈ [0, 1] by construction,

so the parameter α in (37) is to be regarded as a tuning factor
needed to make the two terms of Jk+1 comparable.
In order to find the solution of the minimization problem

(37), Hk+1(·) can be approximated in a neighborhood of ẑk
with a quadratic function by means of its second order Taylor
series expansion. Thus, setting the gradient of such second
order Taylor expansion with respect to zk+1 equal to zero,
the filter equations result in:

ẑk+1|k = Adẑk +Bdvrk (41)

Pk+1|k = AdPk|kA
T
d +Qk (42)

Kk+1 = (P
−1
k+1|k + αH[Hk+1(ẑk)])

−1αH[Hk+1(ẑk)] (43)

ẑk+1 = ẑk+1|k +Kk+1(ẑk − ẑk+1|k) +

−(P−1
k+1|k + αH[Hk+1(ẑk)])

−1α∇Hk+1(ẑk) (44)

Pk+1|k+1 = (P
−1
k+1|k + αH[Hk+1(ẑk)])

−1 (45)

where the gradient and hessianH(·) of the LEL cost function
computed about the point ẑk have been denoted respectively
as

∇zk+1
Hk+1(·)|zk+1=ẑk

= ∇Hk+1(ẑk) (46)
H[Hk+1(·)]|zk+1=ẑk

= H[Hk+1(ẑk)] (47)

Notice that besides the term

− (P−1
k+1|k + αH[Hk+1(ẑk)])

−1α∇Hk+1(ẑk) (48)

in equation (44), the resulting state estimator filter has a
predictor - corrector structure as the standard Kalman filter.
Indeed the term in equation (48) will be null if ẑk is a local
minima of Hk+1. The prediction equations are responsible
for projecting forward (in time) the current state and error
covariance estimates to obtain the a priori estimates for
the next time step, whereas the corrector equations are
responsible for robust incorporating a new measurement into
the a priori estimate to obtain an improved a posteriori
estimate. Moreover, this method is characterized by a low
computational effort making it suitable for real-time applica-
tions. Further details about the implementation and derivation
of the filter are omitted due to the lack of space.
In order to illustrate the robustness properties of the

algorithm, it has been tested on the same numerical exper-
iment performed in the previous section with the addition
of some outliers in the range measurements to make them
more realistic. Indeed, in the case of acoustic sensors for
range acquisitions, a significant source of non-Gaussian noise
is multipath, therefore to obtain a realistic simulation the
outliers have been generated reproducing this phenomena.
Specifically, the outliers has been assigned as a multiple-
valued of the real range according to the following measure-
ment model:

yi(t) = (µi�ri(t)�)2 + �i (49)
�i ∼ N(0, R) (50)

µi =

�
1 for inliers
2 for outliers. (51)

In the numerical experiment each measure has been re-
produced as outlier (µi = 2) with probability 0.1%. On
top of such outliers, a set of 50 consecutive outliers has
been reproduced at time 40 seconds in order to test the
performance of the filter in extreme conditions. The resulting
evolution of the agents position and its estimate through both
filters are plotted in figure 3 together with the estimate of
the current and the measured output. The plots in figure 3
show how sensitive the standard Kalman filter is to outliers
as compared to the proposed LEL filter that exhibits a much
better performance when outlying data occur (either isolated
or consecutive). Notice that the Kalman filter generating the
estimates in figure 3 is the ideal one, i.e. the measurement
and state noise covariance matrices used to compute the
Kalman gain are precisely the ones used in the model.
Besides the reported results, additional extensive simula-

tions have been performed confirming that the LEL state
estimation filter outperforms the Kalman estimator in terms
of outlier robustness.

VI. CONCLUSIONS
The problem of single range based localization for the

kinematics model of a 3D vehicle was addressed in this
paper. The problem is relevant in several filed robotics ap-
plications, particularly in underwater scenarios where ranges
are measured acoustically and alternative radio frequency
based localization devices as GPS are not available. Single
range based localization techniques allow to avoid using
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Fig. 3. Kalman and LEL filter estimations in presence of outliers: real and estimated components of x and vf ; observed noisy output data with outliers.

trilateration based devices such as long base line (LBL)
transponders that are very demanding in terms of cost and
deployment effort. The vehicle is assumed to be equipped
with standard on board navigation sensors as a doppler ve-
locity logger DVL and an attitude heading reference system
AHRS allowing to access the linear and angular vehicle
velocities as well as the system’s attitude, i.e. the rotation
matrix IRB from body frame {B} to the earth fixed frame
{I}. The localization problem addressed is equivalent to
the one presented in [22] and it explicitly accounts for the
effects of a constant, but unknown, ocean current that is

estimated together with the vehicle position. The proposed
solution allows to address the observability analysis and the
state estimation filter design on a linear time invariant state
equation defined on R8 with a time varying scalar output
equation. In this respect the proposed solution resembles the
one in [22] where the original problem was transformed in
a linear time varying state equation defined on R9 with a
linear time invariant scalar output equation. Yet contrary to
this previous solution, the state equation matrix A does not
depend on the inverse of the output y(t) hence preserving the
optimality of the Kalman filter in case of additive gaussian
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noise on the state and output equations. Moreover, the simple
structure of the derived linear system for observability analy-
sis allows to define straightforward necessary and sufficient
observability conditions. To cope with possible outliers in
the range measurements, a robust predictor - corrector state
estimator has been proposed. Such filter builds on the novel
Least Entropy-Like (LEL) parameter estimation paradigm
illustrated in [20] that significantly departs from alternative
robust state estimators based on M-estimators or heavy-tailed
noise distributions.
The proposed solution can be applied in underwater coop-

erative navigation applications, sensor networks and source
localization problems.
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