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Growing evidence is revealing a central role for natural killer (NK) cells, cytotoxic cells

belonging to the broad family of innate lymphoid cells (ILCs), in acute and chronic forms

of renal disease. NK cell effector functions include both the recognition and elimination

of virus-infected and tumor cells and the capability of sensing pathogens through

Toll-like receptor (TLR) engagement. Notably, they also display immune regulatory

properties, exerted thanks to their ability to secrete cytokines/chemokines and to

establish interactions with different innate and adaptive immune cells. Therefore, because

of their multiple functions, NK cells may have a major pathogenic role in acute kidney

injury (AKI), and a better understanding of the molecular mechanisms driving NK cell

activation in AKI and their downstream interactions with intrinsic renal cells and infiltrating

immune cells could help to identify new potential biomarkers and to select clinically

valuable novel therapeutic targets. In this review, we discuss the current literature

regarding the potential involvement of NK cells in AKI.
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INTRODUCTION

Acute kidney injury (AKI) is a life-threatening multifactorial clinical condition leading to a rapid
deterioration of the renal function associated with high morbidity, mortality (ranging from 25% to
more than 50% depending on severity), and healthcare costs. In a large number of patients, AKI
may be followed by irreversible and progressive chronic kidney damage (1–3).

Recent efforts have been made to standardize definitions and classification systems for AKI, and
in 2004, the Acute Dialysis Quality Initiative first proposed the Risk, Injury, Failure, Loss, and End-
Stage Renal Disease (RIFLE) criteria for diagnosis and classification of acute impairments in kidney
function, which included five stages ranging from small changes in kidney function or urine output
to kidney failure and end-stage renal disease (4). These criteria were subsequently refined into a
three-stage system and further disseminated by the Acute Kidney Disease Network in 2007 (5, 6).
In 2012, the KDIGO Clinical Practice Guideline for AKI consolidated these criteria into the most
recent definition and classification system for AKI (7). The current definition and classification of
AKI rely upon functional criteria including changes in serum creatinine (SCr) and urine output
(6, 8–10). However, despite the harmonization in clinical definition and staging, identification of
the complete biology and pathophysiology of AKI remains a major unmet need.
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To this purpose, several research strategies have been
undertaken to identify new cellular/biological elements
implicated in the AKI-derived organ damage networking.
Among them, the immune-inflammatory deregulation in
this condition has been emphasized. As largely reported, the
activation of immune-mediated mechanisms in AKI patients is
a common thread, with immune cells playing a prominent role
from initiating injury to promoting tissue repair (11, 12).

Renal epithelial cells, just after the acute offense, increase
the expression of damage-associated molecular pattern (DAMP)
molecules, Toll-like receptors (TLRs), and other alarmins (13–
17) that, all together, facilitate a rapid recruitment to the
site of injury of innate immune cells, including neutrophils,
activated and resident macrophages, and dendritic cells (DCs)
(18–21). Furthermore, in the last years, natural killer (NK) cells,
extravasated from the vascular system to the site of injury, have
been shown to play a role in the propagation of the immune
response and the recruitment of adaptive immune cells (22–24).

In this review, we focus on NK cell populations found in the
kidney, and we discuss their role in the induction and progression
of AKI.

NATURAL KILLER CELLS

NK cells are cytotoxic cells belonging to the broad family of
innate lymphoid cells (ILCs) (25–28). Their effector functions
range from the recognition and elimination of virus-infected
and tumor cells to the secretion of cytokines/chemokines;
importantly, they also display immune regulatory properties,
exerted through interactions with different innate, and adaptive
immune cells (29–31). In addition, they display the capability of
sensing pathogens through TLR engagement and also to develop
a kind of immunological memory (32–34). In order to exert
these heterogeneous functions, NK cells use a large array of
receptors able to sense stimuli from the microenvironment and,
consequently, to mediate appropriate responses (35–37).

The recognition and elimination of abnormal cells can be
fulfilled through receptor–ligand interactions involving several
inhibitory and activating receptors and different types of
ligands expressed on target cells. NK cells express multiple
inhibitory surface receptors involved in the interaction with
major histocompatibility complex (MHC) class I molecules and
responsible for the “missing-self ” recognition. The “missing-
self hypothesis,” formulated by Ljunggren and Kärre (38)
in the early 90s, postulated that NK cells can detect the
absence of self MHC class I molecules on target cells. In
humans, human leukocyte antigen (HLA) class I molecules
expressed on autologous healthy cells allow the delivery of
a negative signal, thus sparing normal cells from NK cell-
mediated killing. On the other hand, virus-infected or tumor
cells can lose or downregulate HLA class I expression, and
the lack or dampening of the inhibitory interaction makes
them susceptible to an NK cell-mediated attack. The main
HLA class I-specific inhibitory NK cell receptors include killer
immunoglobulin (Ig)-like receptors (KIR), leukocyte Ig-like
receptor, subfamily B member 1 (LIR1)/Ig-like transcript 2

(ILT2), and the cluster of differentiation 94 (CD94)/NK group
2 member A (NKG2A) heterodimer. Collectively, they can
recognize different HLA-A, -B, -C alleles, and non-classical
HLA-E molecules, representing an efficient system to detect
alterations in HLA class I expression (39–43). Later on, it
was shown that recognition and killing of target cells by NK
lymphocytes requires additional signals, mainly delivered by
activating receptors (37, 44–47).

Besides CD16 (FcγRIII), representing the first characterized
activating NK cell receptor and responsible for antibody-
dependent cell-mediated cytotoxicity (ADCC), a variety of
surface receptors and co-receptors, involved in the so-called
natural cytotoxicity, were discovered over the years. The
receptors playing a major role in the recognition of abnormal
cells are represented by natural cytotoxicity receptors (NCRs,
namely, NKp46, NKp30, and NKp44), NKG2D, and DNAX
accessory molecule 1 (DNAM-1) (45, 48–55). While the
ligands specific for NKG2D and DNAM-1 were identified
long time ago and have been extensively characterized,
ligands recognized by NCR started to be defined later,
and the knowledge about NCR-ligand interactions is still
incomplete (49, 56–61).

The best characterized ligands for activating NK receptors
include molecules that are scarcely expressed on healthy/normal
cells and that can be induced or upregulated following cellular
stress, neoplastic transformation, and/or viral infection (52, 53,
55, 62–65). While many of these ligands are surface-expressed
molecules, also nuclear proteins have been shown to bind to
activating NK receptors following translocation to the target
cell surface (66, 67). More recently, the landscape of NK
cell receptor ligands has become even more heterogeneous
in view of the finding that some NK cell receptors can
also bind to secreted soluble factors, circulating molecules
belonging to the complement system, or extracellular matrix
components (68–70).

Given the multiplicity of receptor–ligand interactions, the
engagement of NK cell receptors by specific ligands can result
in opposite signals dictating the outcome of NK cell-mediated
effector functions. NK cells can also respond to cytokines,
including interleukin (IL)-12, IL-15, and IL-18 (mainly produced
by myeloid cells upon inflammatory stimuli), and, in turn,
release cytokines and chemokines, such as tumor necrosis factor
(TNF)-α, interferon (IFN)-γ, granulocyte-macrophage colony-
stimulating factor (GM-CSF), and CC-chemokine ligand 4
(CCL4) (30, 31, 71, 72).

Finally, the immunoregulatory role of NK cells has been
deeply explored, starting from the characterization of NK–
DC cross-talk (73–75). In this context, NK cells participate
both in DC maturation and in the “DC editing” process
through the recognition and killing of immature DCs that lack
appropriate levels of MHC class I molecules. On the other
hand, DC can favor NK cell proliferation and effector functions
(76). More recently, the relevance of NK cells in immune
regulation was further investigated, demonstrating the ability of
NK cells to establish interactions also with other innate immune
cells, i.e., macrophages and granulocytes, as well as with T
lymphocytes (77–81).
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HETEROGENEITY OF NATURAL KILLER
CELLS

A further level of complexity arises from the heterogeneity of NK
cells, i.e., the existence of different NK cell subsets characterized
by distinct phenotypic and functional features and from their
different localizations in the body (30, 72, 82, 83).

Human Natural Killer Cells
In humans, NK cells were initially divided into two populations
based on the expression of CD56 and CD16 surface markers
(84). CD56brightCD16dim/neg NK cells usually express the
inhibitory HLA-E-specific receptor CD94/NKG2A but not KIR
and low or undetectable CD16; they are poorly cytotoxic,
being characterized by low intracellular levels of perforin and
granzymes A and B, but can secrete high amounts of cytokines
(primarily IFN-γ and TNF-α) in response to IL-2, IL-12, IL-15,
and IL-18 (85, 86). According to their expression of chemokine
and homing receptors (i.e., CCR7, CXCR3, CXCR4, and CD62-
L), CD56bright NK cells are mainly found in secondary lymphoid
organs (SLOs), particularly in lymph nodes and tonsils, and
also constitute a detectable fraction of NK cells in different
organs and tissues (87). On the other hand, the CD56dimCD16pos

NK cell population is the predominant subset in peripheral
blood, expresses NKG2A and/or KIR, and displays a high
cytolytic potential and cytokine secretion capability following
recognition of target cells expressing ligands for triggering NK
receptors (88–90). Besides being more abundant in peripheral
blood, the CD56dim subset represents a remarkable fraction of
NK cells found in spleen, bone marrow, and in certain non-
lymphoid organs, such as lungs and kidney. CD56dim NK cells
can be further classified in different subsets based on distinct
differentiation stages, the terminally differentiated one being
represented by a KIRpos CD57pos CD16bright subset which may
express the activating HLA-E-specific receptor CD94/NKG2C
(30, 91–96).

In addition, in recent years, it has also been discovered
that, similar to adaptive T lymphocytes, also NK cells can
undergo a process of clonal-like expansion and develop a kind
of immunological memory. This concept was initially explored
in the context of cytomegalovirus (CMV) infection, which
was shown to modify the composition of the total NK cell
repertoire and to drive a clonal-like expansion of given NK
subsets (32, 97–100). In humans, these “memory” NK cells are
distinguished by the expression of self HLA class I-binding KIRs,
the terminal differentiation marker CD57, and the activating
receptor complex CD94/NKG2C (101–103).

Finally, in the last decade, tissue-resident NK (trNK) cells were
characterized as an additional NK cell population, resembling
CD56bright NK cells populating secondary lymphoid tissues but
displaying markers of tissue residency/retention and mainly
localized in non-lymphoid tissues (104–108). In view of these
findings, the “traditional” CD56dim and CD56bright NK cell
subsets, mediating a potent cellular cytotoxicity and able to
produce IFN-γ, are often defined as conventional NK (cNK) cells.

The discovery of tissue residency markers, such as CD69,
CD49a (α1 integrin), and CD103 (αE integrin), was essential

for the characterization of these trNK cells. CD69, which
for a long time has been considered an activation marker
for T and NK cells, plays an important role in retaining
cells in tissues, thus representing a marker of local residency,
both in humans and in mice (109–111). In particular, CD69
inhibits sphingosine-1 phosphate receptor 1 (SIP1), specific for
sphingosine-1 phosphate (SIP), which normally promotes the
egress of lymphocytes from tissues into the blood. NK cells
localized in different tissues have been shown to express CD69,
while cNK cells derived from peripheral blood generally do
not express this marker. CD103 and CD49a play a similar role
in retaining cells in tissues, and their expression is induced
by transforming growth factor-β (TGF-β) (112). Indeed, CD69,
CD103, and CD49a markers allow to distinguish trNK cells from
circulating cNK cells that are transiently recruited into tissues.
Another possible mechanism related to tissue retention involves
chemokines and chemokine receptors. While trCD56bright NK
cells found in lymphoid organs and liver are characterized by
CXCR6 and CCR5 expression, circulating CD56bright NK cells
mainly express CCR7 (24, 107, 113).

Murine Natural Killer Cells
In mice, NK cells are phenotypically characterized by the
expression of several surface markers including CD161 (NK1.1),
NKp46, the family of MHC class I-specific Ly49 receptors, and
CD49b (α2 integrin, DX5) (35, 42, 114–118). While circulating
cNK cells are defined as NKp46+ CD49a− CD49b+, trNK cells
display an NKp46+ CD49a+ CD49b− phenotype (108, 119).
Similar to human NK cells, cNK cell maturation in the mouse
is a stepwise process, characterized by four stages according
to CD11b and CD27 expressions (120, 121), with terminally
mature NK cells being CD27−CD11b+ and also expressing
KLRG1. Recent studies based on single-cell RNA-sequencing
approaches have provided a more detailed view of murine NK
cell developmental stages (122, 123). Five subsets have been
identified on the basis of different genetic signatures, including
the least mature NK and most mature NK clusters and three
clusters defined as transitional NK subsets, which may represent
intermediate steps of maturation or unique NK subsets that
diverge late during development.

NATURAL KILLER CELLS AND INNATE
LYMPHOID CELLS

NK cells are not the only innate lymphocytes, being included in
the family of innate lymphoid cells (ILCs) that are involved in
homeostatic functions and in innate immune responses against
different classes of pathogens (27, 28, 124, 125).

While cytokine release is a common feature of all ILCs, NK
cells are the only cytotoxic cells among the ILCs. Initially, ILCs
were divided into three main groups according to the expression
of key transcription factors and distinct cytokine profiles. More
recently, a greater heterogeneity of ILCs was appreciated, and
these cells have been consequently classified into five subsets (NK
cells, ILC1, ILC2, ILC3, and LTi cells) based on their development
and function (27). NK cells share some features with ILC1,
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being characterized by the expression of T-bet transcription
factor and the production of type I cytokines, such as IFN-γ
and TNF-α. NK cells are the main ILCs found in peripheral
blood, spleen, and bone marrow, whereas non-NK ILCs are
more abundant in other secondary lymphoid tissues, including
mucosa-associated lymphoid tissue (MALT) (126, 127). Notably,
co-expression of T-bet and Eomesodermin (Eomes) transcription
factors, besides cytotoxic potential, discriminates NK cells from
ILC1. A further degree of complexity exists among ILC1 in
relation to the heterogeneous expression of several markers. For
instance, while ILC1 had been originally described as CD56−,
the expression of CD56 can identify a subgroup of tonsil and
intraepithelial ILC1 (ieILC1) characterized by cytotoxic granule
expression and the ability to produce IFN-γ (125, 128, 129).
In addition, CD56 can also be expressed by a subset of ILC3
(125, 130). ILC2 express GATA binding protein 3 (GATA3)
transcription factor, display the ability to produce T helper type 2
(TH2)-like cytokines (i.e., IL-4, IL-5, and IL-13), and are tissue-
resident. ILC3 are characterized by retinoic acid receptor-related
orphan nuclear receptor gamma (ROR-γt) expression, produce
TH17-like cytokines, and are abundant in the mucosae; based
on the expression of NKp44 in humans (and of NKp46 in
mice), they can be further divided into two subsets (131). LTi
cells share with ILC3 the expression of ROR-γt transcription
factor, but they have a distinct developmental path and are
involved in the formation of secondary lymphoid structures
(132). Since tissue residency is a general hallmark of ILCs, it
has to be considered that some old studies analyzing NK cells in
tissues should actually be reevaluated in view of recent findings
concerning ILCs.

As for other organs, the presence of ILCs has been investigated
in the kidney, revealing that group 2 ILCs represent the prevalent
ILC population, both in mice and in humans, and can be
expanded and activated by the epithelial cell-derived cytokines
IL-25 or IL-33 (133–136). Notably, these cells can exert a
protective effect in AKI through the induction of alternatively
activated (M2) macrophages.

NATURAL KILLER CELLS IN THE KIDNEY

The high heterogeneity of NK cells became more evident
especially when their tissue localization was analyzed in different
body compartments. It is now well-established that NK cells are
found not only as circulating cells in peripheral blood, where they
represent about 5–15% of lymphocytes, but also in SLOs as well as
in different organs and tissues, in which specific NK cell subsets
have been characterized (87, 105, 137).

NK cell trafficking from blood to tissues or lymphoid
organs is coordinated by chemokines and their respective
receptors, dictating the migration of different NK cell subsets
to given compartments or to inflammatory sites (22–24).
Notably, depending on the organ or tissue, NK cells can exhibit
unique phenotypic characteristics and develop specific functional
properties. trNK cells exhibit differences in terms of trafficking
and tissue retention. Interestingly, trNK cells residing in different
districts share some common features but also peculiar properties

that might reflect the influence of the local microenvironment
in shaping these cells (104–106, 108, 119). The body districts
with the highest prevalence of NK cells are the liver (137–144),
lungs (145–147), and uterus (148–151). NK cells have also been
found in several other organs including the kidney, intestinal
mucosa, breast tissue, synovia, pleural and peritoneal fluids,
skin, salivary glands, and adipose tissue (105, 137, 152–154).
Notably, the relative distribution of CD56bright and CD56dim

NK cell subsets is heterogeneous in different tissues; while in
most cases, CD56brightperforinlow cells (non-cytotoxic) represent
the prevalent subset, the lungs contain a higher proportion of
CD56dim perforinhigh NK cells, and the kidney is populated by
intermediate levels of these two NK cell populations.

NK cells represent about 25% of lymphocytes in the healthy
human kidney, with an enrichment in the CD56bright NK cell
subset as compared with peripheral blood (137, 155–157). Until
recently, however, information on tissue-resident lymphocyte
populations, and in particular on trNK cells in the kidney, had
been relatively limited. Although the presence of both innate
and adaptive lymphocytes in this district was known for a long
time, it was not clear whether these cells displayed features of
tissue residency, similar to what was previously observed in other
organs and tissues. In recent years, several studies helped to
clarify this issue both in mice and in humans. In this context,
parabiosis experiments performed in mouse models proved to
be very effective in demonstrating the presence of trNK cells in
the kidney.

The study by Victorino et al. in the mouse showed that about
15–20% of NK cells in the kidney are represented by a tissue-
resident CD49a+ DX5− NK cell population reminiscent of trNK
cells harbored in other organs, such as the liver and uterus
(158). The discrimination between trNK cells and ILC1 residing
in non-lymphoid tissues is crucial, in view of the similarities
between these two cell populations, including the CD49a+DX5−

phenotype. Studies performed in different tissues allowed to
establish that most murine ILC1 are CD127+ (IL-7Rα+) and do
not express the Eomes transcription factor, while murine trNK
cells are CD127− and depend on Eomes for their development.
In addition, CD200R1 surface marker has been associated with
ILC1 but not with NK cells (27, 127, 159, 160). Finally, trNK
cells display some cytotoxic capability thanks to the expression,
albeit at low/moderate levels, of perforin and granzymes, whereas
ILC1 (except for ieILC1) are non-cytotoxic cells. Although not
all these markers have been analyzed so far in renal NK cells, it
is conceivable that trNK cells in the kidney may share several
markers with trNK cells that have been better characterized in
other tissues.

The murine kidney also harbors a substantial number of
CD49a− DX5+ NK cells that are considered cNK cells passing
through the organ. Contrary to cNK cells, kidney trNK cells
do not require NFIL3 and Tbet transcription factors for their
development and express lower levels of Asialo-GM1 (AsGM1)
as compared to CD49a−DX5+ cNK cells; this finding suggests
that NK cell depletion by anti-AsGM1 antibodies could be
incomplete/inefficient and gives the possibility to investigate
trNK cell function in animal models. Indeed, selective (by anti-
AsGM1mAb) or total (by anti-NK1.1mAb) depletion of NK cells

Frontiers in Immunology | www.frontiersin.org 4 August 2020 | Volume 11 | Article 1484

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Cantoni et al. NK Cells and Acute Kidney Injury

allowed to assess the predominant role of trNK cells in a model
of ischemic AKI (see below).

In addition, NK cells residing in the kidney are very efficient
in producing IFN-γ, and this property has been shown to play
an important role in progressive tubule-interstitial fibrosis and
chronic kidney disease (CKD) (155). IFN-γ can induce the
production of profibrotic factors, such as transglutaminase 2
(TG2) and the heparan sulfate proteoglycan syndecan-4 (sdc4)
that contribute to the accumulation of extracellular matrix,
thus favoring the development of renal fibrosis. This issue
has been recently explored in a murine model of aristolochic
acid nephropathy (AAN), in which the presence of trNK cells
positively correlated with the progression of tubule-interstitial
fibrosis (161).

Also in humans, healthy kidney harbors a relevant NK cell
compartment: NK cells represent approximately 25% of total
lymphocytes; both CD56bright and CD56dim NK cells can be
found, with a higher proportion of CD56bright NK cells in the
kidney (about 37% of total NK cells) as compared to peripheral
blood (>10%) (137). Interestingly, a recent study, analyzing
kidney biopsies from patients with different renal diseases,
revealed the existence of a CD56bright NK cell population with
tissue residency features (CD69 expression) and the ability to
release IFN-γ (155).

NATURAL KILLER CELLS IN ACUTE
KIDNEY INJURY

AKI is a clinical condition characterized by acute impairment
of kidney function and induced by different causes, including
ischemia, sepsis, and toxic insults (1, 162–164). In particular,
ischemia–reperfusion injury (IRI) is one of the most frequent
events leading to severe AKI.

A common hallmark of severe AKI is the occurrence of
acute tubular necrosis. In the kidney, different parenchymal cells,
including tubular epithelial cells (TECs) and endothelial cells,
can respond to DAMPs or to pathogen-associated molecular
patterns (PAMPs) through several TLRs and/or inflammasome
components and thus contribute to renal inflammation. Indeed,
several DAMPs, released as a consequence of tissue damage,
or PAMPs expressed by infectious agents, can activate not only
innate immune cells but also non-immune cells. Several studies
concerning the role of TECs in kidney injury confirmed an active
role for these cells both in the induction and in the regulation of
inflammatory responses (13–17, 165, 166).

The expression of TLR2 and TLR4 on TECs allows these cells
to sense endogenous inducers of inflammation and subsequently
to be activated to produce several cytokines and chemokines
(167). In particular, TLR2 involvement has been assessed in
kidney IRI, where hypoxic conditions can induce tubular necrosis
and the consequent release of endogenous TLR ligands, which
will act at both autocrine and paracrine levels (i.e., on endothelial
cells and on innate immune cells) (13, 16, 168, 169). DAMPs
are also recognized by renal DCs, which contribute to the
inflammatory response and to neutrophil recruitment by the
secretion of inflammatorymediators, cytokines, and chemokines.

FIGURE 1 | Role of natural killer (NK) cells in acute kidney injury. (A) Following

acute kidney injury, damage-associated molecular patterns (DAMPs) released

by damaged tubular epithelial cells (TECs) or pathogen-associated molecular

patterns (PAMPs) derived from infectious agents are recognized by pattern

recognition receptors expressed on TECs that in turn release osteopontin

(OPN) and CCR5 chemokines able to recruit NK cells. (B) TEC–NK cell

cross-talk occurs through different receptor–ligand pairs. NKG2D ligands

(NKG2D-L), upregulated on TECs, engage NKG2D on NK cells, inducing both

cytotoxic activity and interferon (IFN)-γ production. On the other hand,

CD137–CD137L interaction stimulates in TECs the secretion of chemokines

attracting neutrophils. (C) TECs are killed by NK cells through the release of

cytotoxic granules, while activated neutrophils are responsible for tissue

damage due to reactive oxygen species (ROS) and lytic enzymes.
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Tubular Epithelial Cell–Natural Killer Cell
Interactions
Of particular interest is the interplay occurring between NK cells
and TECs in the context of kidney injury, especially in view
of the finding that NK cells are recruited in the earliest stages
of IRI, already 4 h after injury (Figure 1) (170). The injured
TECs release high-mobility group box protein 1 (HMGB1), an
endogenous TLR2 ligand released following tissue damage that
stimulates CCR5 chemokine production through TLR2 in an
autocrine manner. CCR5 chemokines (CCL3, CCL4, and CCL5)
in turn mediate recruitment of NK cells that induce TEC to
release CXCL1 and CXCL2 chemokines, responsible for the
accumulation of neutrophils in the kidney (169). Overall, TECs
play a critical role in the induction and orchestration of acute
renal inflammation by regulating the sequential migration of
NK cells and neutrophils into the kidney during the early phase
of IRI.

The involvement of NK cells in IRI was further supported
by the finding that, in mice, the expression of ligands for
the activating receptor NKG2D (Rae-1, MULT-1, and H60), is
increased during kidney IRI and is paralleled by a concomitant
rapid NK cell infiltration in injured kidney (171–173). This
seems mediated by HMGB1 through engagement of TLR4
and subsequent MyD88-dependent signaling (174). The role of
TLR4 was further confirmed by in vitro experiments showing
RAE-1 and MULT-1 upregulation on isolated TECs following
lipopolysaccharide (LPS) exposure (173).

Both in murine and human TECs, the expression of ligands
specific for activating NK cell receptors has been demonstrated,
suggesting that these receptor–ligand interactions could be
involved in the recognition and killing of TECs. Thus, activated
spleen-derived murine NK cells were shown to efficiently kill
syngeneic TECs in vitro mainly through the engagement of
NKG2D activating receptor by Rae-1 ligand expressed on TECs
and by the use of perforin (172).

Similarly to what was observed in murine models, human
NK cells display the in vitro ability to kill TECs (HK-2 cell

line) exposed to hypoxia, a condition mimicking ischemic AKI,
following the interaction of NKG2D receptors with MHC class I
chain-related protein A (MICA), whose expression is upregulated
in human TECs by hypoxia-inducible factor-1 alpha (HIF-1α)
transcription factor (175). One possible mechanism of MICA
upregulation in hypoxic conditions involves TGF-β, a cytokine
playing multifunctional roles in inflammation, injury, and tissue
repair and induced in the kidney and in TECs, following ischemic
injury (176, 177). It is of note, however, that TGF-β expression
has been shown to correlate with limitation of renal IRI, better
TEC survival, and protection against NK cell-mediated killing
(177, 178).

These effects can be explained by the fact that TGF-β,
besides increasing MICA surface expression on TECs, also
induces higher levels of soluble MICA, a well-known mechanism
of modulation of NK cell-mediated cytotoxic activity (62,
179). In addition, TGF-β exerts a regulatory role on NK
cell function mainly through the downregulation of different
activating receptors, including NKG2D and NKp30 (180, 181).
In view of these findings, the modulation of surface and soluble
MICA expression could represent a useful strategy to reduce
renal injury.

Although themechanisms responsible for NK cell recruitment
and activation in renal IRI have not been fully elucidated, a role
for osteopontin (OPN) has been demonstrated. OPN is a secreted
glycoprotein expressed in different immune cells, including
NK cells, and exerting pro-inflammatory functions (182–184).
Notably, mRNA and protein OPN expression is increased in the
kidney shortly after IRI (185–187), and OPN has been shown to
promote ischemic kidney injury (186, 187).

The role of OPN, however, is still debated since a protective
effect for OPN both in kidney IRI and in tissue repair was
reported (188). Interestingly, it has been shown that TECs display
the ability to secrete high levels of OPN, which in turn can
induce a rapid NK cell migration with an indirect, still undefined,
mechanism, possibly involving the induction of chemokines or
other chemotactic factors able to recruit NK cells. In addition,

TABLE 1 | NK cell populations described in human and murine kidney.

Human NK cells

Phenotype Main observations References

CD45posCD3negCD94posCD56dim perforinhigh

CD45posCD3negCD94posCD56bright perforinlow
NK cells: 25% of total lymphocytes in the kidney

CD56bright subset: 37% of total NK cells

(137)

CD3negCD56dimCD16pos

CD3negCD56brightCD16neg/lowCD69pos
CD56bright subset involved in tubulointerstitial fibrosis

CD56bright subset: IFN-γ production

(155)

Murine NK cells

Phenotype Main observations References

CD45posCD3negDX5pos NK cells involved in kidney IRI (172, 187, 189)

CD45posCD3negNK1.1pos NK cells involved in kidney IRI (191)

NK1.1posNKp46posCD49aposDX5negAsGM1low (trNK)

NK1.1posNKp46posCD49anegDX5posAsGM1high (cNK)

cNK and trNK cells described in the kidney

trNK cells involved in kidney IRI

(158)

CD3negNKp46posDX5neg (trNK)

CD3negNKp46posDX5pos (cNK)

trNK cells involved in tubulointerstitial fibrosis

trNK cells: accumulation in fibrotic tissue and IFN-γ production

(161)

NK, natural killer; IRI, ischemia–reperfusion injury; cNK, conventional NK cells; trNK, tissue-resident NK cells; AsGM1, Asialo-GM1; IFN-γ, interferon-γ.
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OPN can activate NK cells and increase their cytotoxic activity
against primary TECs (187).

More recently, the involvement of OPN in renal injury
following ischemia–reperfusion was further validated by Cen
et al. in an in vivo model. This study confirmed an OPN
increase following IRI, both at the mRNA and protein levels,
and demonstrated that neutralization of OPN by an anti-
OPN mAb resulted in a decreased NK cell infiltration in
the kidney associated with a reduced severity of renal injury,
lower levels of pro-inflammatory cytokines, and decreased
neutrophil infiltration (189). Interestingly, high OPN expression
was also observed in kidney grafts, and chronic transplant
kidney injury was abrogated in OPN-deficient kidney grafts after
transplantation, suggesting that OPN could play a role also in
kidney allograft injury (190).

The search for additional TEC–NK cell interactions involved
in renal IRI led to the characterization of the co-stimulatory
CD137–CD137 ligand (CD137L) axis. Previously, several reports
had already pointed to a role for CD137–CD137L interaction
in inflammation. CD137L expressed on professional APC can
co-stimulate TH1 helper T cells through the engagement of
CD137; on the other hand, reverse signaling induced on APC can
promote cytokine and chemokine secretion.

In the context of renal IRI, CD137 expression on activated
NK cells results in the transmission of a “reverse signal” on
TECs through the binding to CD137L; in turn, TECs produce
high levels of CXC chemokines, such as CXCL1 and CXCL2,
responsible for neutrophil recruitment and the subsequent acute
inflammatory response (191).

Indeed, in a mouse model of acute IRI, the expression of
CD137 on NK cells and CD137L on TECs was required for
kidney injury. In addition, NK cell depletion experiments
demonstrated the essential role of NK cells in neutrophil
recruitment and the resulting renal injury. Depletion of
neutrophils abrogated renal IRI as well, suggesting that
neutrophils were directly responsible for tissue damage
associated with renal IRI, while NK cells were responsible for
neutrophil recruitment. In this context, it is of note that NK cells
can be rapidly recruited in the kidney, within 4 h after IRI, and
upregulate CD137 surface expression, suggesting their important
role in the first phases of acute tissue damage.

The role of trNK cells as central mediators of ischemic tissue
injury was clearly demonstrated in a model of ischemic AKI
(158). The analysis of both cNK and trNK cells at 4 and 24 h after
reperfusion revealed that IRI did not modify either the relative
distribution or the original phenotype of these two cell subsets.
Notably, trNK cells were characterized by a higher expression of
several markers, including CD160, CD44, and TRAIL, suggestive
of a higher activation state, and by lower levels of KLRG1 and
CD244 inhibitory receptors. Based on their tissue residency and
activation state, trNK cells can exert a prominent role in the

early local response during IRI; it is conceivable that cNK cells
recruited into the tissue can further enhance tissue damage.

IRI is an inevitable event associated with kidney
transplantation. Being actively involved in the induction of
inflammatory responses, TECs play a major role in this process
(13, 17, 168, 192). Moreover, in kidney transplant rejection, TECs

represent one of the major targets of the alloreactive immune
response mediated by CD8+ T lymphocytes and NK cells. The
study by Demmers et al. analyzed the in vitro susceptibility of
primary donor-derived TECs activated by IFN-γ and TNF-α
to CTL- and NK cell-mediated killing. While unstimulated
allogeneic TECs were efficiently killed by both CD8+ T cells and
NK cells of the recipient, cytokine-activated TECs became more
resistant to NK cell-mediated killing presumably because of the
increased expression levels of HLA class I molecules. This study
also evaluated the effect of different immunosuppressive drugs
on immune-mediated TEC lysis, showing their limited efficacy in
vitro and differential inhibitory effects on CTL vs. NK cells (193).

CONCLUDING REMARKS

In recent years, the knowledge about blood-derived and tissue-
resident NK cells found in the kidney is improved, revealing once
again the complexity and the versatility of this ILC population
(Table 1). In this context, the role of NK cells has also been
addressed in immune-mediated pathologic conditions affecting
the kidney. For instance, it is now clear that NK cells are
involved in the pathogenesis of AKI, as demonstrated both in
animal models and in humans. In particular, the role of NK
cells in AKI can occur by distinct mechanisms, including (i) NK
cell recruitment and activation mediated by CCR5 chemokines
(directly) or OPN (indirectly) secreted by TECs; (ii) secretion
of neutrophil-attracting chemokines induced in TECs through
the CD137–CD137L axis; iii) NK cell-mediated killing of TECs
through NKG2D–NKG2D-L interactions.

Therefore, because of their major involvement in AKI
pathogenesis, NK cells could represent a novel target for future
strategies for this important clinical condition.
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