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Abstract: In this study, the authors develop a new high-gain observer design method for non-linear systems. This new design
provides a lower gain compared to both the high-gain and the enhanced high-gain observer. The idea is to combine the
improved high-gain methodology with the linear matrix inequality based observer design technique to build a more general
observer that allows one to exploit the benefits of both approaches. A numerical example is given to show the effectiveness of
the proposed observer with different values of the Lipschitz constant and of the compromise index.

1 Introduction
Observer design for non-linear systems has been investigated for
many decades [1–10]. This is due to its important role in control
design systems, diagnosis, health monitoring, and other modern
applications like synchronisation of multi-agent systems and cyber-
attack detection. There are several methods developed in the
literature which can be classified into three categories: extended
Kalman filter, Luenberger observer, high-gain (HG) observer
methodology, and linear matrix inequality (LMI)-based techniques.
However, this paper focuses on HG observers only.

The design of HG observers was essentially motivated by its
simplicity to implement due to the use of only one single tuning
parameter. However, there are three limitations that make HG
observer weak and difficult to be used in sensitive industrial
applications. The first limitation is related to numerical issues
concerning large systems as high values of the observer gain are
required. The second limitation is the sensitivity to measurement
noise because high values of the observer gains amplify the noise
[11]. The third and last limitation is the peaking phenomenon
characterised by large amplitudes of the estimated states in the
transient.

To overcome these restrictions, several solutions have been
proposed in the literature. The main solutions are generally based
on a time-varying gain that is appropriately updated by taking into
account the stability and convergence requirements [2, 3, 5, 12,
13]. Recently, a new HG observer has been proposed in [14]. Their
contribution consists in limiting the power of the tuning parameter
to 2. However, the dimension of the observer is equal to 2(n − 1)
where n is the dimension of the original system, and the power n is
only distributed between different additional state variables
injected in the observer. Then this power n reappears in the bound
of the estimation error when the system is subject to measurement
noise. This particular design has been reconsidered in [15, 16] by
including saturations to avoid the peaking phenomenon. Another
recent HG observer with the same dimension as the original system
and where the observer's gain power is limited to 1 was proposed
in [17] for the same class of systems considered in [15]. As in [15,
16], nested saturation functions have been used to limit the peaking
phenomenon. In [18] a new structure of observers, called HG/LMI
observer, has been developed by combining the standard HG
methodology with the LMI technique [19]. This new observer has
the advantage to provide lower tuning parameter compared to the
previous HG observers, without using saturation functions or
filtering. In this paper, we develop a new state observer design for
systems with multi-non-linearities in triangular form or any system

that can be transformed into a triangular structure. The proposed
observer has the advantage of allowing more possibilities to choose
the design parameters. The idea consists in combining the
enhanced HG methodology [6] with the LMI methodology in order
to reduce more values of the observer gains. This structure has the
advantage to use multiple tuning parameters. Indeed, the observer
in [18] becomes a particular case of the observer proposed in this
paper by a special choice of the design parameters. It is shown
through a simple example that our approach reduces the peaking
phenomenon and decreases the sensitivity to high-frequency
measurement noise as compared with the HG observer. Note that
the system we consider in this paper is time invariant. For time-
varying systems with time-varying parameters and stochastic
noises, we refer the reader to [11].

2 Preliminaries and problem formulation
2.1 Preliminaries

Before formulating the problem, we introduce some useful
preliminaries for the developed approach. We will recall two
lemmas, from [6] and [19] respectively which are necessary for the
mathematical developments given in the next section.
 

Lemma 1: Let X and Y be two matrices of adequate dimensions.
Then the following inequality holds for any symmetric and non-
singular matrix S of appropriate dimension:

X⊤Y + Y⊤X ≤ 1
2(X + SY)⊤S−1(X + SY) .

The next lemma will be used to decompose any Lipschitz non-
linear function in a convenient way. Such decompositions play an
important role in the observer synthesis and allow enhancing the
standard HG observer. However, before stating the lemma, the
following definition taken from [19] is needed.

 
Definition 1: Consider two vectors

X ≜
x1

⋮
xn

∈ ℝnZ ≜
z1

⋮
zn

∈ ℝn .

For all i = 0, . . . , n, we define an auxiliary vector XZi ∈ ℝn

corresponding to X and Z as follows:
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XZi ≜

z1

⋮
zi

xi + 1

⋮
xn

i = 1, . . . , n,

XZ0 ≜ X .

(1)

 
Lemma 2: Consider a function Ψ:ℝn ⟶ ℝn. Then, the two

following claims are equivalent:

• Ψ is γΨ-Lipschitz with respect to its argument, i.e.

Ψ(X) − Ψ(Z) ≤ γΨ X − Z , ∀X, Z ∈ ℝn; (2)

• for all i, j = 1, . . . , n, there exist functions

ψi j:ℝn × ℝn ⟶ ℝ,

and constants γψi j ≤ 0, γ̄ψi j ≥ 0, so that ∀X, Z ∈ ℝn,

Ψ(X) − Ψ(Z) = ∑
i = 1

i = n

∑
j = 1

j = n
ψi jHi j X − Z , (3)

and −γΨ ≤ γψi j ≤ ψi j ≤ γ̄ψi j ≤ γΨ, where

ψi j ≜ ψi j XZ j − 1, XZ j , Hi j = en(i)en
⊤( j), (4)

and en(i) = 0⋯ 01
ith component 

0⋯0 T .

2.2 Problem formulation

Let us consider the class of non-linear systems which are
diffeomorphic to the form of the system studied in [20]:

ẋ = Ax + f (x),
y = Cx, (5)

where for t ∈ ℝ, x(t) ∈ ℝn is the state vector and y(t) ∈ ℝ is the
measured output. The matrices A ∈ ℝn × n, C ∈ ℝ1 × n, and the non-
linear function f :ℝn → ℝn are defined as follows:

A ≜

0 1 0 ⋯ 0
0 0 1 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 1
0 0 ⋯ 0 0

, C ≜ [ 1 0 ⋯ 0 ],

f (x) ≜

f 1(x1)
f 2(x1, x2)

⋮
f n − 1(x1, x2, …, xn − 1)

f n(x1, x2, …, xn)

.

It should be noticed that, as demonstrated in [21], all uniformly
observable systems can be transformed into system (5). Several
real-world models can be transformed into the triangular form [21,
22]. The references [20, 23] give more details about this family of
systems and its practical importance.

We need to introduce the following notations:

• ℝ ≥ 0
n = {(li)1 ≤ i ≤ n ∈ ℝn; li ≥ 0, ∀i = 1, …, n},

• ℝ > 0
n = {(li)1 ≤ i ≤ n ∈ ℝn; li > 0, ∀i = 1, …, n},

• ℝ > 0, ↑
n = {(li)1 ≤ i ≤ n ∈ ℝ > 0

n ; lk + 1 > lk, ∀k = 1, …, n − 1} .

As usually done for the class of systems (33), we introduce the
following Lipschitz assumption on f .

 
Assumption 1: The function f satisfies the global Lipschitz

condition, i.e. there exists a vector L f = (Li
f )1 ≤ i ≤ n ∈ ℝ ≥ 0

n  such that

f i(x̄1 + w1, x̄2 + w2, … + x̄i + wi)

− f i(x̄1, x̄2, …, x̄i) ≤ ∑
j = 1

i
Li

f wj ,

for all x̄ = (x̄i)1 ≤ i ≤ n, w = (wi)1 ≤ i ≤ n ∈ ℝn and i = 1, …, n.
Instead of the standard HG observer structure, we use in this

paper the enhanced structure previously proposed in [6]. Consider
the following state observer [6]:

ẋ = Ax^ + f (x) + G(γ, K) y − Cx , (6)

where x(t) ∈ ℝn is the estimate of x(t), for t ∈ ℝ, and

G(γ, K) ≜ γ1k1 γ2k2 ⋯ γnkn
T ≜ T(γ)K,

with

γ ≜ γ1 γ2 ⋯ γn
T ∈ ℝ > 0

n ,
K ≜ k1 k2 ⋯ kn

T ∈ ℝn,
T(γ) ≜ diag(γ1, γ2, …, γn) .

 
Remark 1: The observer structure (6) is considered with the

goal to get multiple tuning parameters contrarily to the standard
observer where only one tuning parameter needs to be selected in
the design procedure. The use of such a decomposition leads to the
involvement of a new matrix of decision variables in the design,
namely the matrix Z, which can be tuned to reduce the HG values,
as well explained in [6, Section III] by considering a lot of
numerical aspects.

As usual in the HG methodology, we consider the transformed
error

x~ ≜ T−1(γ) e, (7)

where e(t) ≜ x(t) − x^(t) is the estimation error. After developing
the computations, it follows that

x~̇ = γ1 A − KC + Ω(γ) x~

+T−1(γ) f (x) − f x − T(γ)x~ ,
(8)

where

Ω(γ) ≜

0 z1 0 ⋯ 0
0 0 z2 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 zn − 1

0 0 ⋯ 0 0

,

with

zi ≜ γi + 1

γ1γi
− 1, i = 1, 2, …, n − 1. (9)

The aim is to synthesise the observer parameters γi and ki such
that the error x~ converges exponentially to zero. Usually, this
problem is solved by using the standard HG observer methodology
[20]. However, in some situations (for instance, larger Lipschitz
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constants, high dimension of the systems), it leads to extremely
high values of the gains, which renders the observer very sensitive
to high-frequency measurement noise and causes the picking
phenomenon in the transient. To overcome this issue, various
improvements have been established in the literature, proposing
HG observers with constant or time-varying gains. Limiting our
study, in this paper, to observers with constant gains, some recent
methods proposed considerable solutions [6, 14, 18]; nevertheless,
the problem remains still open for further improvements. In this
paper, we will combine between [6] and [18] to propose a new
approach. To tackle this problem, a convenient decomposition of
the non-linearity and introduction of additional parameters are
required. This is the goal of the next section.

3 Observer synthesis methodology
3.1 Preliminary transformations

As stated above, the idea is to exploit the results of [6, 18] to
improve the solution of the observer gains. Borrowed from [18, Eq.
(54)], the first step consists in decomposing the non-linearity of the
system into two parts. From Lemma 2 and after some
rearrangements, there exist functions ψi j, scalars νψiki( j) ≤ 0 and
ν̄ψiki( j) ≥ 0 such that

f (x) − f x − T(γ)x~ = Δ f 1 + Δ f 2,

with

Δ f 1 ≜ ∑
i = 1

n

∑
j = 1

i − ji
γ jψi jen(i)x~ j,

Δ f 2 ≜ ∑
i = 1

n

∑
j = 1

ji
γki( j)ψiki( j)en(i)x~ki( j),

ki( j) ≜ i − ( ji − j), 0 ≤ ji ≤ i,

and

νψiki( j) ≤ ψi j ≤ ν̄ψiki( j) .

By analogy to [18], the first term Δ f 1 will be handled by the
enhanced HG observer (EHGO)-approach in [6], while the second
one, Δ f 2, will be associated with the linear part and will be
processed by the LMI method [19] as in [18].

Notice that the term T−1(γ)Δ f 2 can be rewritten as

T−1(γ)Δ f 2 = ∑
i = 1

n

∑
j = 1

ji γki( j)

γi
ψiki( j)en(i)x~ki( j) .

Now, we will introduce some notations needed to rewrite system
(8) under a suitable structure to apply the ideas of [18, 19]. Let us
introduce the following matrix function:

A(Ψγ) ≜ A + ∑
i = 1

n

∑
j = 1

ji
ψi j

γ en(i)en
⊤(ki( j)), (10)

where

Ψγ ≜ ψ11
γ … ψi ji

γ … ψn jn
γ T ∈ ℝd, (11)

and

ψi j
γ ≜ γki( j)

γ1γi
ψiki( j), d ≜ ∑

i = 1

n
ji .

Consequently, system (8) can be expressed as follows:

x~̇ = γ1 A(Ψγ) − KC + Ω(γ) x~ + T−1(γ)Δ f 1 . (12)

3.2 Preliminary results

Before stating the observer design conditions ensuring the
exponential convergence of the proposed state observer, we start by
introducing some preliminary results, which are necessary for the
proposed design procedure. We first define the convex set for any
fixed γ ∈ ℝ > 0, ↑

n :

ℋ~ γ ≜ Φ ∈ ℝd:
γki( j)νψiki( j)

γ1γi
≤ Φi j ≤

γki( j)ν̄ψiki( j)

γ1γi
. (13)

It is obvious that ℋ~ γ is a bounded convex. Indeed, from the fact
that the function f is Lipschitz, the scalars νψiki( j) and ν̄ψiki( j) are

bounded. On the other hand, since γ ∈ ℝ > 0, ↑
n , we have

γki( j)/γ1γi ≤ 1/γ1. It follows that

νψiki( j)

γ1
≤ Φi j ≤

ν̄ψiki( j)

γ1
,

which means that Φi j is bounded since γ1 > 0.
At this stage, the bounded convex set ℋ~ γ is not exploitable in

an LMI framework because the set of vertices depends on all the
parameters γi, i = 1, …, n. In other words, it depends on the
decision variables zi, i = 1, …, n − 1. To overcome this obstacle,
we need to define a new bounded and convex hyper-rectangle
independent of all these observer parameters. Before introducing
such a set, we first state the following lemma.

 
Lemma 3: Let γ ∈ ℝ > 0, ↑

n  and zi given by (9). If zi satisfies
zi ≤ 0, then there exists α ∈ ]0, 1] such that inequality (14) below
holds:

γki( j)

γ1γi
≤ 1

(αγ1)1 + ( ji − j) . (14)

 
Proof: From the definition of the variables zi in Section 2.2 and

the assumption zi ≤ 0, we get

γi = γ1
i ∏
k = 1

i − 1
(zk + 1), i = 2, …, n,

and

0 < 1 + zk ≤ 1, i = 1, …, n − 1.

It follows that

γki( j)

γ1γi
≤ γ1

1 + ( ji − j) ∏
k = i − ( ji − j)

i
(zk + 1)

−1

, (15)

and from the Archimedean property, we deduce that there exists
α ∈ ]0, 1] so that

0 < α ≤ zk + 1 ≤ 1. (16)

Hence, by exploiting (16) in (15) as (1/(1 + zk)) ≤ 1/α inequality
(14) is straightforwardly inferred. □

Now, we are ready to introduce a new bounded convex set
parameterised by two scalar variables, namely α given as in
Lemma 3 and a new tuning parameter σ > 0 to be included later in
the observer design procedure.

Let α and σ be two positive scalars. Define the bounded convex
set
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ℋα
σ ≜ Φ ∈ ℝd:

νψiki( j)

(σα)1 + ( ji − j) ≤ Φi j ≤
ν̄ψiki( j)

(σα)1 + ( ji − j) (17)

for which the set of vertices, ℋα
σ, is given by

Vℋα
σ ≜ Φ ∈ ℝd:Φi j ∈

νψiki( j)

(σα)1 + ( ji − j) ,
ν̄ψiki( j)

(σα)1 + ( ji − j) . (18)

The next lemma is useful and plays an important role in the design
procedure we proposed in this paper.

 
Lemma 4: Let γ ∈ ℝ > 0, ↑

n  and σ > 0 such that γ1 ≥ σ. Let
α ∈ ]0, 1] be a positive scalar given by (16). Then the following
inclusion holds:

ℋ~ γ ⊆ ℋα
σ . (19)

 
Proof: The proof is straightforward by using Lemma 3 and the

fact that the quantities νψiki( j) and ν̄ψiki( j) are negative and positive,
respectively. The inequality 1/γ1 ≤ 1/σ is also used and substituted
in (14). □

The next section is devoted to the stability analysis of the
estimation error dynamics. By using Lyapunov arguments and the
preliminary results provided above, new HG like synthesis
conditions will be established.

3.3 Stability analysis

To investigate the stability analysis of the estimation error
dynamics, we consider the Lyapunov function

V(x~) ≜ x~⊤Px~,

where P ∈ ℝn × n is a symmetric and positive-definite matrix. First,
let us consider the change of variable K

~ = PK. Therefore, after
developing the derivative of the function V(x~) along the trajectories
of (12), we obtain

V̇(x~) = γ1x~
⊤ A(Ψγ)⊤P + PA(Ψγ) − C⊤K

~⊤ − K
~
C

+Ω⊤(γ)P + PΩ(γ) x~ + 2x~⊤PT−1(γ)Δ f 1 .
(20)

Before presenting the stability conditions ensuring the
exponential convergence of the estimation error x~ to zero, we
provide some information on the term Δ f 1. This term will be
handled by using the HG methodology.

 
Lemma 5: Under the assumptions of Lemma 3, there exists a

positive scalar k f 1 such that

∥ T−1(γ)Δ f 1 ∥ ≤ 1
αγ1

jmin
k f 1 ∥ x~ ∥ , (21)

where

jmin = min
ji ≠ i

1 ≤ i ≤ n

ji .

 
Proof: We have

Δ f 1 = ∑
i = 1

n

∑
j = 1

i − ji
γ jψi jx~ j en(i),

T−1(γ)Δ f 1 = ∑
i = 1

n

∑
j = 1

i − ji γ j
γi

ψi jx~ j en(i) .

Therefore

∥ T−1(γ)Δ f 1 ∥2 = ∑
i = 1

n

∑
j = 1

i − ji γ j
γi

ψi jx~ j

2

.

Using Assumption 1 and Hölder's inequality, it follows that

∥ T−1(γ)Δ f 1 ∥2 ≤ ∑
i = 1

n

∑
j = 1

i − ji
Lj

f x~ j
γ j
γi

2

≤ ∑
i = 1

n
max

1 ≤ j ≤ i − ji
Lj

f 2 γi − ji
γi

2

∑
j = 1

i − ji
x~ j

2

≤ ( max
1 ≤ j ≤ n

Lj
f )2 ∑

i = 1

n
(i − ji)

γi − ji
γi

2

∥ x~ ∥2

≤ k f 1 max
1 ≤ i ≤ n

γi − ji
γi

2

∥ x~ ∥2 ,

(22)

where

k f 1 = l̄ f
n(n + 1)

2 − ∑
i = 1

n
ji , l̄ f = max

1 ≤ j ≤ n
L j

f .

Since zk ≤ 0, ∀k = 1, …, n − 1, then from Lemma 3, there exists
α ∈ ]0, 1] such that

γi − ji
γ1γi

≤ 1
(αγ1)1 + ji

.

By putting jmin = min ji ≠ i
1 ≤ i ≤ n

ji, we get

max
1 ≤ i ≤ n

γi − ji
γi

≤ 1
(αγ1) jmin

.

Then inequality (21) is inferred. This ends the proof. □
Now, we are ready to state the first theorem which provides

sufficient design conditions ensuring exponential convergence of
the estimation error to zero.

 
Theorem 1: Assume there exist P = P⊤ > 0, λ > 0, K

~ ∈ ℝn,
γ ∈ ℝ > 0, ↑

n  and σ > 0 such that

A(Ψ)⊤P + PA(Ψ) − C⊤K
~⊤ − K

~
C

+Ω⊤(γ)P + PΩ(γ) + λI < 0, ∀Ψ ∈ Vℋα
σ,

(23)

and

γ1 > max σ,
2k f 1λmax(P)

λα jmin

1
1 + jmin

, 1
α . (24)

Then the estimation error x~(t) is exponentially stable.
 
Proof: From the convexity principle and inclusion (19) for

γ1 ≥ σ, if (23) holds, we deduce that

V̇(x~) ≤ − γ1λ ∥ x~ ∥2 + 2x~⊤PT−1(γ)Δ f 1 . (25)

Let α ∈ ]0, 1] satisfying (16). Then, from Lemma 5, we have

2x~⊤PT−1(γ)Δ f 1 ≤ 2λmax P ∥ x~ ∥∥ T−1(γ)Δ f 1 ∥

≤ 2λmax P
αγ1

jmin
k f 1 ∥ x~ ∥2 . (26)
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It follows that

V̇(x~) ≤ − γ1λ − 2λmax P
αγ1

jmin
k f 1 ∥ x~ ∥2 . (27)

From the definition of V̇(x~) and after integrating from 0 to t, we
obtain

∥ x~(t) ∥ ≤ λmax P
λmin P ∥ x~0 ∥ e− γ1λ −

2λmax P

αγ1 jmin
k f1 t, (28)

which means that x~(t) converges exponentially to zero as t → + ∞
if

γ1 > λ −
2k f 1λmax P

αγ1
jmin

> 0.

On the other hand, to guarantee γ ∈ ℝn, ↑
n , we need to have γ1 ≥ 1

α ,
since γ1 satisfies (16). These conditions on γ1 lead to inequality
(24). To sum up, the conditions on γ1 are required for the following
reasons:

(1) γ1 ≥ σ is needed to ensure feasibility of inequality (23). It is
justified by inclusion (19);
(2) γ1 > 1/α is needed to guarantee γ ∈ ℝ > , ↑

n ;

(3) γ1 > (2k f 1λmax(P))/λα jmin
1/(1 + jmin)

 is required to ensure x~(t)
converges exponentially to zero, as t → ∞, according to (28).

This ends the proof. □

3.4 LMI formulation

Although Theorem 1 provides sufficient conditions to guarantee
the design of the observer parameters K and γ, it still not fully
exploitable at this stage because the matrix inequality (23) is not
numerically tractable. Indeed, (23) is not LMI and depends on the
parameter γ multiplied by the Lyapunov matrix P. To linearise (23)
and to render it to be independent of γ, we should separate the
coupling PΩ(γ) and use some mathematical tools to make γ vanish
from inequality (23). To start the linearisation procedure, we
consider the following decomposition of Ω(γ):

Ω(γ) ≜ Ω(Z) = A1ZA2,

where

Z = diag(z1, …, zn − 1) ∈ ℝ(n − 1) × (n − 1),

and

A1 ≜

1 0 ⋯ 0
0 1 0
⋮ ⋮ ⋱ ⋮
0 ⋯ 0 1
0 ⋯ 0 0

∈ ℝn × (n − 1),

A2 ≜

0 1 0 ⋯ 0
0 0 1 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 1

∈ ℝ(n − 1) × n .

Then a simple use of Lemma 1 leads to separate P from Ω(Z). To
satisfy (16), we should include the LMI constraints:

Z ≤ 0, (29a)

(α − 1)In − 1 − Z ≤ 0. (29b)

Hence we are ready to state the following main theorem, which
provides LMI-based synthesis conditions ensuring the exponential
convergence of the observer.
 

Theorem 2: If for a fixed α ∈ ]0, 1], there exist positive scalars
λ, σ, a symmetric positive-definite matrix P, diagonal matrices
S > 0 and W ≤ 0, and a vector K

~ ∈ ℝn, such that for all ψ ∈ Vℋα
σ

the following conditions are fulfilled:

A(ψ)⊤P + PA(ψ) − C⊤K
~⊤ − K

~
C + λI (*)

A1
⊤P + W A2 −2S

< 0 (30)

(α − 1)S − W ≤ 0, (31)

then the estimation error x~(t) converges exponentially towards
zero, as t → + ∞, if the observer parameters are selected as
follows:

K = P−1K
~, Z = S−1W , (32a)

γ1 > max σ,
2k f 1λmax(P)

λα jmin

1
1 + jmin

, 1
α , (32b)

γi = γ1
i ∏
k = 1

i − 1
(zk + 1), i = 2, …, n . (32c)

 
Proof: First, to get (30), we apply Lemma 1 on inequality (23)

of Theorem 1. Indeed, from Lemma 1, we have

Ω⊤P + PΩ = (A1P)⊤(ZA2) + (ZA2)⊤(A1P)

≤ 1
2(A1

⊤P + SZA2)⊤S−1(A1
⊤P + SZA2) .

Then, after using the Schur lemma and the change of variables
W = SZ, K

~ = PK, we get (30). Also, condition W ≤ 0 comes from
(29a). As for inequality (31), it stems from (29b) after multiplying
it by S. This ends the proof. □

3.5 Discussion on the performance of the proposed observer
design

The proposed observer design method is more general than those
proposed in the literature and related to HG methodology with
constant observer gain. Indeed, for particular cases, the design is
reduced to some recent methods. Although our idea is taken from
[6, 18], this combination is not systematic and has generated major
mathematical difficulties (see Lemmas 3–5) necessary for the
analysis of the stability of the dynamics of the error. We summarise
the particular cases in the following items:

1. If we take ji = 0 and zk < 0, we will get exactly the enhanced
HG proposed in [6]. Indeed, in such a case, we have jmin = 0,
k f 1 = k f  and A(ψ) ≡ A.
2. Likewise, if we have ji = 0 (then jmin = 0) and zk = 0, we get the
standard HG and Theorem 2 will be reduced to the main theorem
of the standard HG observer [20].
3. Notice also that the HG/LMI observer proposed in [18] is a
particular case of the result in Theorem 2 corresponding to jmin ≥ 1
and zk ≡ 0.

3.6 Observer design algorithm

The design procedure of the proposed observer can be summarised
in the following well-structured design algorithm (see Fig. 1). This
algorithm is solved by using Matlab LMI Toolbox and YALMIP.
 

Remark 2:
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1. Algorithm 1 (Fig. 1) is based on the use of the gridding
technique with respect to the parameter σ > 1. Such a technique
consists in scaling σ > 1 by defining τ ∈ ]0.5, 1], via the change of
variable τ = σ /(1 + σ). Then, we assign a uniform subdivisions of
the interval ]0.5, 1], and solve (30) and (31) for each subdivision.
Note that LMIs (30) and (31) are always feasible for any σ ≥ 1 (or
τ ∈ [0.5, 1[ and ϵ > 0). This issue has been addressed in [18, Eqs.
(46)–(47)]. However, the choice of ϵ has an impact on the value of
σ, which is explicitly related to the value of the HG parameter γ1.
Therefore, the smaller is ϵ, the smaller is the value of the obtained
parameter γ1. Of course, this could generate significant
computational complexity. This is the reason why we introduce the
stop test vgain ≤ ∥ G ∥.
2. The scalar α is fixed a priori. In the case of our illustrative
example, one set α = 0.95. Indeed, the smaller is the value of
1 − α > 0, the smaller is the value of the observer parameter γ1.

4 Illustrative example
This section is dedicated to a simple numerical example to show
the validity and effectiveness of the proposed design technique. We
show the benefits of combining the enhanced HG and the LMI
observer design method for different values of the compromise
index and the Lipschitz constant. We aim also to compare our
proposed approach, in particular, with the one developed recently
in [18] and the classical HG observer.

Consider the third-order system

ẋ = Ax + f (x),
y = Cx, (33)

where

A =
0 1 0
0 0 1
0 0 0

, C = 1 0 0 ,

and

f :ℝ3 → ℝ3; x ↦ 0, 0, k f

3 ∑
i = 1

3
sin xi .

The non-linearity f satisfies Assumption 1 with L1 = L2 = 0 and
L3 = k f .

Now, to design the observer parameters, we will follow all the
steps of Algorithm 1 (Fig. 1). Let us choose α = 0.95 and
vgain = 2e18. For the gridding, we choose ϵ = 10−3.

According to the values of the index jmin, γ f  and σ, we obtain the
following gains G* for different values of jmin and k f = 1 (see Table
1). 

Now we will provide some comparisons between the standard
HG (HGO), the enhanced HG observer (EHGO), the HG/LMI
observer and the proposed technique in Theorem 2.

Table 2 shows the numerical comparisons between the HG/LMI
observer proposed in [18] and the classical HG observer. The
superiority of the method compared to the authors' previous work

Fig. 1  Algorithm 1: EHG/LMI observer design
 

Table 1 Gains G* for different values of jmin and σ
jmin 0 1 2

σ — 2.3557 1.7548
G* 24.9

472.9
3739.5

7.8474
29.6747
48.6805

6.1598
18.4522
24.8470
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and in the papers [6, 18] is clearly illustrated. On the other hand, it
was demonstrated that the authors' previous work improves the
existing HG design techniques, namely the standard HG observer
and the Astolfi/Marconi observer.

The advantage of the compromise index jmin is shown for
different values of k f . We can see clearly that our method provides
a smaller gain as compared with the other methods. For example,
for fixed k f = 10, for jmin = 1, it suffices to solve two LMIs to
reduce significantly the gain from θ0 = 234.51 obtained by
classical HG into 10.2405. For jmin = 2, the same gain is reduced to
6.2993. This shows the importance of the introduction of
increasing values of the index jmin.

Fig. 2 shows the results of a simulation run in the presence of
an additive uniform random noise on the output when

t ∈ [0.5, 1] ∪ [3, 3.5] which is a Gaussian distributed random signal
with mean zero and variance 0.01, initial state equal to 5 5 5 T

and initial estimated state equal to −5 −5 −5 T for all the
discussed methods. 

Denote by x^ = x^1 x^2 x^3
T, x^Z = x^1, Z x^2, Z x^3, Z

T and
x^HG = x^1, HG x^2, HG x^3, HG

T the state estimates for system (33) by
using the observer design method proposed in [18], in the present
paper and the classical HG observer, respectively.

The curves of the absolute values x − x^i , x − x^i, Z  and
x − x^i, HG , i = 1, …, 3 are depicted in Fig. 2. We can see that the
errors converge towards zeros. Note, however, that the transient
performance of the new designed observer is better, although the
convergence speeds are almost the same. The proposed new
technique is able to avoid the peaking phenomenon. We also see a
significant improvement of the sensitivity to high-frequency
measurement noise; the estimated states are not so much disturbed
as the standard HG.

5 Conclusion
In this paper a general structure of state observer is proposed that
comprises many of the methods reported in the literature by
making particular choices on the observer design parameters.
Especially, we generalised the work presented in [18] with more
many possibilities of choosing the design parameters of the gain.
The stability of the estimation error is shown using a Lyapunov
function after having successfully established new HG-like
synthesis conditions. A numerical example was provided in order
to demonstrate the performances of the proposed approach.

The application of the proposed design procedure on practical
models is the objective of our future work with deep and refined
theoretical results.
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