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Abstract: State observers for systems having Lipschitz nonlinearities are considered for what concerns
the stability of the estimation error by means of a decomposition of the dynamics of the error into the
cascade of two systems. First, conditions are established in order to guarantee the asymptotic stability
of the estimation error in a noise-free setting. Second, under the effect of system and measurement
disturbances regarded as unknown inputs affecting the dynamics of the error, the proposed observers
provide an estimation error that is input-to-state stable with respect to these disturbances. Lyapunov
functions and functionals are adopted to prove such results. Third, simulations are shown to confirm
the theoretical achievements and the effectiveness of the stability conditions we have established.
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1. Introduction

Whenever there is the need to monitor the time behavior of internal system variables that are not
accessible, observers are usually considered, but the demonstration of stability of the estimation error
may be difficult to ensure whether the dynamic and measurement equations include nonlinear terms.
Here, we address the problem of analyzing the input-to-state stability (ISS) of the estimation error for
a class of Lipschitz nonlinear systems by using both Lyapunov functions and Lyapunov functionals,
where the estimation error and system/measurement disturbances are regarded as state and input,
respectively.

The first results dealing with observers for systems with nonlineartrace back to the beginning
of the seventies [1,2]. The next works were focused on state transformations able to turn into a
dynamics being linear in the new coordinates [3–6]. Variable-structure observers were proposed in
[7,8] during the eighties but the big advance occurred later based on [9,10], where the nonlinearity
in the dynamics of the estimation error is elegantly treated by using a high gain (see, for recent
results [11,12], and the references therein). Therefore, these estimators are still denoted as “high-gain
observers” and successfully employed for the purpose of output feedback control (see [13] and the
references therein). Starting with [14,15], attention has been paid to the development of observers by
taking advantage of suitable triangular structures due to a change in the state coordinates (see, e.g.,
[16]) and of effective methods of observer construction by accounting for disturbances affecting the
system [17].

In this paper, novel results concerning the stability of the estimation error of observers for a class
of systems with Lipschitz nonlinear terms are presented. The stability of the error is proved in by
exploiting the ISS property of cascaded systems (see, for an overview, [18]). Such results are also
proved by means of Lyapunov functions and functionals, in line with the previous literature [19–23] on
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the use of ISS to analyze the stability of the estimation error. The proposed observers may be designed
by using linear matrix inequalities (LMIs) [24]. As compared with recent results on ISS for the stability
analysis of state observers [25,26], the novel contribution concerns the investigation of Lyapunov
functional instead of Lyapunov functions. This goal is pursued by resorting to the decomposition of
the dynamics of the error, which holds for systems with Lipschitz nonlinearities. The use of the Schur
complement and LMIs allow to overcome the difficulties to solve the Riccati equations (see, e.g., [27])
required to design the estimators.

The paper is structured, as follows. Section 2 presents the proposed class of observers and the
related stability analysis in the absence and presence of disturbances, and a method of design relying
on LMIs [28]. Section 3 illustrates the results that we achieved by simulations. Finally, conclusions and
ideas for future work are summarized in Section 4.

We conclude this section with the following definitions. The symbol | · | stands for the usual the
Euclidean norm in Rn . For a square matrix S , S > 0 ( S < 0 ) indicates that this matrix is positive
definite (negative definite); λmin (S) , and λmax (S) denote the minimum and maximum eigenvalues
of the symmetric positive or negative definite matrix S, respectively. The symbol “ess sup” denotes
the essential supremum. The Schur complement provides the following equivalent conditions:(

R S
S> T

)
> 0 if and only if T > 0 , R− S T−1 S> > 0 if and only if R > 0 , T − S> R−1 S > 0

with R, T, and S denoting square matrices and rectangular matrix, respectively [24]. A continuous
function α : [0, a) → [0,+∞) is of class K if it is strictly increasing and α(0) = 0 and of class K∞

if a = +∞ and lim
r→+∞

α(r) = +∞; a continuous function β : [0, a) × [0,+∞) → [0,+∞) is of class

KL if, for each fixed s, the mapping β(r, s) belongs to class K with respect to r and, for each fixed r,
the mapping β(r, s) is decreasing with respect to s and lim

s→+∞
β(r, s) = 0.

2. Stability Analysis in a Noise-Free Case

Let us focus on nonlinear systems that are given by

ẋ = A x + f (x)
y = C x

, t ≥ 0 (1)

where x(t) ∈ X ⊆ Rn is the state and y(t) ∈ Y ⊆ Rp is the output. The n× n matrix A and the p× n
matrix C are given by

A = block diag
(

A1, · · · , Ap
)

Ai =


0 1 0
0 0 1
...

...
...

. . .
0 0 0 . . . 0 1
0 0 0 . . . 0 0

 ∈ Rni×ni

C = block diag
(
C1, · · · , Cp

)
Ci = (1 0 . . . 0) ∈ Rni

and
p

∑
i=1

ni = n. The solution of (1) exists and is unique for all t ≥ 0 under the Lipschitz assumption for

x 7→ f (x).

Assumption 1. The function f : X → Rn is Lipschitz in x, namely there exists k f > 0, such that

| f (x1)− f (x2)| ≤ k f |x1 − x2|
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for all x1, x2 ∈ Rn.

Remark 1. The proposed approach (detailed in the following) may be applied to a wider class of nonlinear,
essentially observable systems being diffeomorphic to (1). Toward this end, in [29] conditions are presented to
guarantee the existence of a diffeomorphism that turns nonlinear systems of quite general class into systems
like that in (1). Therefore, an estimator for (1) becomes a stable observer in the original coordinate by using the
inverse of this diffeomorphism.

Let us consider
˙̂x = A x̂ + f (x̂) + L (y− C x̂) , t ≥ 0 (2)

as full-order state observer for (1), where x̂(t) ∈ Rn is the estimate of x(t) at time t and L ∈ Rn×p

is a suitable gain matrix to select. The gain L must be selected in such a way to make the estimation
error e(t) := x(t)− x̂(t) asymptotically stable. Thus, we analyze the dynamics of the estimation error,
given by

ė = (A− LC) e + f (x)− f (x̂) , t ≥ 0

by decomposing e(t) into two components that are given by e1(t) ∈ Rn and e2(t) ∈ Rn with
e(t) = e1(t) + e2(t) and

Σ1 : ė1 = (A− LC) e1 + f (x)− f (x− e1 − e2)

Σ2 : ė2 = (A− LC) e2
, t ≥ 0 (3)

where e1(0) = 0 and e2(0) = e(0). Therefore, the stability of the observer is analyzed by studying the
subsystems Σ1 and Σ2 in cascade.

Notice that, even if Σ1 is asymptotically stable with a null input, the asymptotic stability of Σ2

does not ensure the global stability. The stability of systems in cascade depends on the converging-input
bounded-state (CIBS) property [30–32]. In case Σ1 with a zero input and Σ2 are globally asymptotically
stable and Σ1 is CIBS, it follows that the cascade of Σ1 and Σ2 is globally asymptotically stable.
To prove the results that are shown later, some technical lemmas are required.

Lemma 1. Under Assumption 1, consider the system

ė1 = (A− LC) e1 + f (x)− f (x− e1) (4)

where e1(t) ∈ Rn. Subsequently, independently of x(t) given by (1), (4) is globally asymptotically stable if
there exist α > 0, a gain matrix L, and a symmetric positive definite matrix P, such that(

(A− LC)>P + P(A− LC) + α k2
f I P

P −αI

)
< 0 . (5)

Proof. As | f (x) − f (x − e1)| ≤ k f |e1|, it turns out that k2
f |e1|2 − | f (x)− f (x− e1)|2 ≥ 0 for all x,

e1 ∈ Rn. Thus, consider the following Lyapunov functional

V = e>1 Pe1 + α
∫ t

0
k2

f |e1(τ)|2 − | f (x(τ))− f (x(τ)− e1(τ))|2 dτ . (6)

This functional is well-defined, as it is positive definite and equal to zero if and only if e1 = 0.
From (6), it follows that

V̇ = e>1
[
(A− LC)>P + P(A− LC)

]
e1 + e>1 P [ f (x)− f (x− e1)] + [ f (x)− f (x− e1)]

> Pe1

+ αk2
f e>1 e1 − α [ f (x)− f (x− e1)]

> [ f (x)− f (x− e1)]



Mathematics 2020, 8, 1424 4 of 11

and so the derivative of V is negative definite if (5) is satisfied. Moreover, note that lim
e1→+∞

V(e1) = +∞.

As a consequence, one can apply the Barbashin–Krasivskii theorem (see, e.g., [33], Theorem 3.2, p. 110)
to conclude the proof. �

Lemma 2. Under Assumption 1, let us consider the system

ė1 = (A− LC) e1 + f (x)− f (x− e1 − e2) (7)

where e1(t) ∈ Rn with e1(0) = 0 and e2(t) ∈ Rn are treated as state and input, respectively. Subsequently,
independently of x(t) solution of (1), there exists a compact set K ⊂ Rn, such that e(t) ∈ K for all t ≥ 0 if
α > 0, a gain matrix L, and a square matrix P > 0 exist, such that(

(A− LC)>P + P(A− LC) + α k2
f I P

P −αI

)
< 0 . (8)

Proof. First, note that it is necessary for A− LC to be a Hurwitz matrix if (8) holds. Note that the
Lyapunov functional

V = e>1 Pe1 + α
∫ +∞

t
| f (x(τ))− f (x(τ)− e2(τ))|2 dτ . (9)

is well-defined, as 0 ≤ | f (x) − f (x − e2)| ≤ k f |e2| and, since A − LC is a Hurwitz matrix, e2(t)
converges exponentially to zero. The time derivative of (9) is

V̇ = e>1
[
(A− LC)>P + P(A− LC)

]
e1 + e>1 P [ f (x)− f (x− e1 − e2)]

+ [ f (x)− f (x− e1 − e2)]
> Pe1 − α [ f (x)− f (x− e2)]

> [ f (x)− f (x− e2)] . (10)

We have

| f (x)− f (x− e1 − e2)| = | f (x)− f (x− e2) + f (x− e2)− f (x− e1 − e2)|
≤ | f (x)− f (x− e2)|+ | f (x− e2)− f (x− e1 − e2)| (11)

and, hence, after applying a square to both sides of (11) and multiplying by α, a little algebra yields

−α| f (x)− f (x− e2)|2 ≤ −α| f (x)− f (x− e1 − e2)|2

+ 2α| f (x)− f (x− e2)| | f (x− e2)− f (x− e1 − e2)|+ α| f (x− e2)− f (x− e1 − e2)|2 .

By means of the above inequality, from (10) it follows that

V̇ ≤ e>1
[
(A− LC)>P + P(A− LC)

]
e1 + e>1 P [ f (x)− f (x− e1 − e2)]

+ [ f (x)− f (x− e1 − e2)]
> Pe1 − α| f (x)− f (x− e1 − e2)|2

+ 2α| f (x)− f (x− e2)| | f (x− e2)− f (x− e1 − e2)|+ α| f (x− e2)− f (x− e1 − e2)|2

where the function x 7→ f (x) is Lipschitz from Assumption 1. Thus, the last two terms of the previous
inequality can be bounded from above, as follows:

2α| f (x)− f (x− e2)| | f (x− e2)− f (x− e1 − e2)| ≤ 2αk2
f |e1| |e2| ,

α| f (x− e2)− f (x− e1 − e2)|2 ≤ αk2
f |e1|2 .
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Thus, we have

V̇ ≤
[
e>1 ( f (x)− f (x− e1 − e2))

>
]

Q

[
e1

f (x)− f (x− e1 − e2)

]
+ 2αk2

f |e1| |e2| (12)

where

Q :=

(
(A− LC)>P + P(A− LC) + α k2

f I P
P −αI

)
.

Since there exists M1 > 0 such that |e2(t)| ≤ M1|e(0)| and (8) guarantees that Q is negative
definite, (12) yields

V̇ ≤ −λmin(Q)
[
|e1|2 + | f (x)− f (x− e1 − e2)|2

]
+ 2αk2

f M1|e(0)| |e1|

≤ −λmin(Q)|e1|2 + 2αk2
f M1|e(0)| |e1| . (13)

As e1(0) = 0, from (13), we obtain |e1(t)| ≤ ē := 2αk2
f M1|e(0)|/λmin(Q) for all t ≥ 0,

i.e, the trajectories given by e1(t) remains in the closed ball with center in the origin and radius
ē. This closed ball can be chosen as the compact set K. �

Theorem 1. Under Assumption 1, (2) for system (1) provides an estimation error asymptotically stable to zero
if there exist α > 0, a gain matrix L, and a square matrix P > 0, such that(

(A− LC)>P + P(A− LC) + α k2
f I P

P −αI

)
< 0 . (14)

Proof. First, note that, using Lemma 1, (14) guarantees that e1 = 0 is a globally asymptotically stable
equilibrium point for Σ1 when e2 = 0. Thus, the domain of attraction of Σ1 is all Rn. Owing to (14),
from Lemma 2 it follows that there exists a compact set K to such that e1(t) ∈ K for all t ≥ 0,
whereas e2(t) converges to zero. Owing to ([32], Theorem 1, p. 313) we conclude that e1(t) → 0,
i.e., e1(t) + e2(t) = e(t)→ 0. �

Using the Schur complement, (14) turns out to be equivalent to(
A>P− C>Y> + PA−YC + α k2

f I P
P −αI

)
< 0 (15)

where α, Y ∈ Rp and P ∈ Rn×n symmetric and positive definite are the unknowns; it follows that
L = P−1Y.

From now on we focus on the ISS tools to deal with system and measurement disturbances
affecting the system equations. Using ISS, it is straightforward to extend the usual way to treat global
stability w.r.t. perturbation in the state together with input-output stability from linear to nonlinear
systems [18]. Specifically, in our case, the input is given by the plant and measurement disturbances,
whereas the estimation error that is provided by the observer is the state. Thus, let us consider
system (1) subject to disturbances, i.e.,

ẋ = A x + f (x) + Dw
y = C x + Ew

, t ≥ 0 (16)

where t 7→ w(t) ∈ Rq is a measurable, additive, locally essentially bounded function; D ∈ Rn×q and
E ∈ Rp×q. Therefore, the dynamics of the estimation error is, as follows:

ė = (A− LC) e + f (x)− f (x̂) + (D− LE)w , t ≥ 0 .
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As in the case of the disturbance-free setting (3), we decompose the error into two components,
e1(t) ∈ Rn and e2(t) ∈ Rn, such that e(t) = e1(t) + e2(t) and

Σ′1 : ė1 = (A− LC) e1 + f (x)− f (x− e1 − e2)

Σ′2 : ė2 = (A− LC) e2 + (D− LE)w
, t ≥ 0

where e1(t) = 0 and e2(t) = e(0). Therefore, the stability of the observer is analyzed by studying the
cascaded systems Σ′1 and Σ′2.

In line with previous literature, observer (2) is said to be ISS if there exists a function β of class
KL and a function γ of class K∞, such that

|e(t)| ≤ β (|e(0)|, t) + γ

(
| ess sup

0≤τ≤t
w(τ)|

)
, t ≥ 0 .

The following results holds.

Theorem 2. Under Assumption 1, consider observer (2) for system (16), Subsequently, if there exist square
matrices P > 0 and Q > 0 and a gain matrix L, such that (A− LC)>P + P(A− LC) + α k2

f I P

P −α

2
I

 < 0 , (17)

then observer (2) is ISS with respect to the estimation error.

Proof. It is based on standard ISS results. To this end, notice that the ISS of system Σ′2 follows
immediately from the fact that it is linear. Because the existence of an ISS-Lyapunov function is a
necessary and sufficient condition for ISS to hold [34], in our case for Σ′1, there must exist V : Rn → R
being positive definite, radially unbounded, and smooth, such that, for some functions αi, i = 1, 2, 3, 4
of class K∞,

α1 (|e1|) ≤ V(e1) ≤ α2 (|e1|) (18)

V̇ ≤ −α3 (|e1|) + α4 (|e2|) , (19)

for all e1, e2 ∈ Rn. Therefore, we may rely on the ISS–Lyapunov function V(e1) = e>1 Pe1, for which
conditions (18) are easy to prove. As to (19), the time derivative of V, is given by

V̇ = e>1
[
(A− LC)>P + P(A− LC)

]
e1 + 2 [ f (x)− f (x− e1 − e2)]

> Pe1 . (20)

Because 2 [ f (x)− f (x− e1 − e2)]
> Pe1 ≤ 2| [ f (x)− f (x− e1 − e2)]

> Pe1| ≤ 2k f |e1 + e2||Pe1| ≤
2k f (|e1|+ |e2|)|Pe1| and

2k f |e1||Pe1| ≤ αk f |e1|2 +
1
α
|Pe1|2

2k f |e2||Pe1| ≤ αk f |e2|2 +
1
α
|Pe1|2

for any α > 0, (20) yields

V̇ = e>1

[
(A− LC)>P + P(A− LC) + αk f I +

2
α

PP
]

e1 + αk f |e2|2 .
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Using the previous inequalities, it is straightforward to get that (19) holds. Moreover, thanks to
the Schur complement, (17) turns to be equivalent to

(A− LC)>P + P(A− LC) + αk f I +
2
α

PP < 0 . (21)

Thus, because both Σ′1 and Σ′2 are ISS, it is immediate to conclude thanks to the pretty well-known
result on the cascade of two systems that are both ISS is ISS [35]. �

Using again the Schur complement, (21) can be transformed into the equivalent LMI(
A>P− C>Y> + PA−YC + α k2

f I P
P − α

2 I

)
< 0 (22)

with α, Y ∈ Rn×m and P > 0 as unknowns and the gain L = P−1Y.

Remark 2. Theorem 2 allows to trivially prove the estimation error with zero disturbances is asymptotically
stable. Note that Theorem 2 provides the condition (17), which is stronger than (14) in Theorem 1. Such a result
can be explained, since the ISS property obviously implies global asymptotic stability when the input is null [36].
Obviously, an ISS filter performs like an asymptotically stable observer if system and measurement disturbances
are zero.

3. A Numerical Example

We focus on a Lipschitz system given by two cascaded Van der Pol oscillators with the first and
third state variable as outputs [26], i.e.,{

ẋ = A x + f (x) + Dw
y = C x + Ew

with x ∈ R4, w ∈ R4, y ∈ R2, and

A =


0 1 0 0
−1 1 1 0

0 0 0 1
1 0 −1 1

 f (x) =


0

−0.1x2
1x2

0
−0.1x2

3x4

 D =


0 0 0 0

0.5 0 0 0
0 0 0 0
0 0.5 0 0


C =

(
1 0 0 0
0 0 1 0

)
E =

(
0 0 0.1 0
0 0 0 0.1

)
.

Thus, the observer equation is

˙̂x = A x̂ + f (x̂) + L(y− C x̂)

where the gain L ∈ R4×2 to be chosen. We computed this gain by solving (22) with Yalmip [37]:

L =


11.7112 10.3330

9.2570 8.8383
10.3330 11.7112

8.8383 9.2570

 P = 107


0.9896 −0.8115 0.2453 −0.5994
−0.8115 1.1471 −0.5994 0.7118

0.2453 −0.5994 0.9896 −0.8115
−0.5994 0.7118 −0.8115 1.1471


and α = 9.9912× 108, thus with ISS Lyapunov function V(e) = e>Pe.

Figures 1 and 2 illustrate the results of two simulations with the transient behavior of the state
variables and their estimates, where the state variables are plotted in blue color with the corresponding
estimates in dashed red. The first one in Figure 1 is a noise-free simulation, while truncated random
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Gaussian noises are considered in the second run of Figure 2, which exhibits a bounded estimation
error, as foreseen because of the ISS property. Generally speaking, it is not difficult to construct
examples of system and observer, for which ISS does not hold (see, e.g., [25,26]). From this point of
view, the considered class of the Lipschitz nonlinear system is more easily tractable, owing to the linear
structure, which allows to apply ISS and derive stability conditions that are given by LMIs.
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Figure 1. Simulation result without disturbances with states and estimated states in blue and
red, respectively.
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Figure 2. Simulation result with zero-mean, truncated Gaussian noises wi with variance equal to 1,
i = 1, 2, 3, 4 with states and estimated states in blue and red, respectively.



Mathematics 2020, 8, 1424 9 of 11

4. Conclusions

In this paper, we have explored the use of ISS to investigate the stability of the estimations error
provided by observers for system with Lipschitz non-linearities. This assumption turns out to be
fundamental to bound the time derivative of Lyapunov functions and functionals from above. Thus,
the extension to attack the same problem without the Lipschitz hypothesis seems to be nontrivial and
needs to be replaced by other assumptions that allow to apply the proposed decomposition. In this
respect, the adoption of metrics different from the Euclidean one [38–40] as well as of non-quadratic
Lyapunov functions [41,42] may be the target of future investigations.

The proposed stability analysis has shown meaningful connections with the ISS theory
(see, e.g., [43]), although some problems are still open. For example, an explicit evaluation of
the sensitivity of the estimation error (i.e., the ISS gain of the disturbances) will be the target of
future work. Another open question worth addressing is the converse of the sensitivity evaluation,
i.e., the assignment of a desirable ISS gain by adopting a suitable observer structure.
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39. Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer International
Publishing: Cham, Switzerland, 2019.

40. Ciric, L. Some Recent results in Metrical Fixed Point Theory; Technical Report; University of Belgrade:
Beograd, Serbia, 2003.

41. Hosseinzadeh, M.; Yazdanpanah, M. Performance enhanced model reference adaptive control through
switching non-quadratic Lyapunov functions. Syst. Control Lett. 2015, 76, 47–55. [CrossRef]

42. Lu, C.; Hua, L.; Zhang, X.; Wang, H.; Guo, Y. Adaptive sliding mode control method for Z-axis vibrating
gyroscope using prescribed performance approach. Appl. Sci. 2020, 10, 4779. [CrossRef]

43. Angeli, D. A Lyapunov approach to incremental stability. IEEE Trans. Autom. Control 2002, 47, 410–421.
[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.sysconle.2014.12.001
http://dx.doi.org/10.3390/app10144779
http://dx.doi.org/10.1109/9.989067
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Stability Analysis in a Noise-Free Case
	A Numerical Example
	Conclusions
	References

