
ar
X

iv
:1

00
5.

18
40

v1
  [

gr
-q

c]
  1

1 
M

ay
 2

01
0

A new approach to reconstruction methods in f(R) gravity
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We present a new approach of the reconstruction method based on the use of the cosmic param-
eters instead of a time law for the scale factor. This allows the derivation and analysis of a set of
new non-trivial cosmological solutions for f(R)-gravity. A number of simple examples are given.

PACS numbers: 98.80.Cq

INTRODUCTION

The ΛCDM (or Concordance) Model [1] which is based
on the Friedmann-Lemâıtre-Robertson-Walker (FLRW)
metric is one of the greatest successes of General Rel-
ativity. It reproduces beautifully all the main observa-
tional results e.g., the dimming of type Ia Supernovae
[2], Cosmic Microwave Background Radiation (CMBR)
anisotropies [3], Large Scale Structure formation [4],
baryon oscillations [5] and weak lensing [6]). Unfortu-
nately, this model is also affected by significant fine-
tuning problems related to the vacuum energy scale and
therefore it is important to investigate other viable the-
oretical schemes compatible with cosmological observa-
tions.

A now widely studied alternative to the ΛCDM model
is based on gravitational actions which are non-linear in
the Ricci curvature R and/or contain terms involving
combinations of derivatives of R: the f(R) theories of
gravity [9–12]. Such models first became popular in the
1980’s because it was shown that they are derived from
fundamental physical theories (Like M-theory) and natu-
rally admit a phase of accelerated expansion which could
be associated with an early universe inflationary phase
[8]. The fact that the phenomenology of Dark Energy
requires the presence of a similar phase (although only a
late time - low energy one) has recently revived interest
in these theories. In particular, the idea that Dark En-
ergy may have a geometrical origin, i.e., that there is a
connection between Dark Energy and a non-standard be-
havior of gravitation on cosmological scales has resulted
in it becoming a very active area of research over the past
few years (see for example [13–18]).

Unfortunately efforts to obtain an understanding of the
physics of these theories are hampered by the complexity
of the fourth-order field equations, making it difficult to
obtain both exact and numerical solutions, which can be
compared with observations. Recently, however, progress
has been made in resolving this issue using a number of

useful techniques. One such method, based on the theory
of dynamical systems [19] has proven to be very successful
in providing a simple way of obtaining exact solutions
and a (qualitative) description of the global dynamics of
these models [20].

Another interesting technique is the so called recon-

struction method [21]. Here one assumes that the ex-
pansion history of the universe is known exactly and one
inverts the field equations to deduce what class of f(R)
theories give rise to a given FLRW model. The exis-
tence of such solutions is particularly relevant because in
FLRW backgrounds they typically represent asymptotic
or intermediate states in the full phase-space of all pos-
sible cosmological evolutions. In [22] it was found that
expansion histories based on a power-law solution for the
scale factor and a perfect fluid only exist for Rn gravity,
while in [23] it was shown that in order to reconstruct
a Λ CDM expansion history in f(R) gravity, it is neces-
sary to add additional degrees of freedom to the matter
sector.

A fundamental limitation of the reconstruction method
is that, because of the mathematical steps involved, only
very simple cosmic histories (i.e., single power law behav-
iors) can be successfully connected to a f(R)-theory in an
exact way [24]. On the other hand f(R)-theories of grav-
ity, being of order four in general admit a much richer
set of solutions, which have at most four different modes.
From this point of view it is clear how reconstructing
with a single power law behavior corresponds to a dra-
matic constraint on the form of the function f . As a
consequence one obtains by reconstruction, Lagrangians
which are often of little use due to their complexity.

In this paper we propose a modification of the clas-
sic reconstruction scheme able to generate more general
cosmic histories and able to give much simpler results
for the form of f(R). This will be done describing these
expansion histories by means of the cosmic parameters
rather than a function of time.
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FIELD EQUATIONS FOR f(R) FLRW MODELS

Let us consider the typical action for f(R)-gravity in
the c = 8πG = 1 units:

A =

∫

d4x
√
−g

[

1

2
f(R) + Lm

]

, (1)

where R is the Ricci scalar, f is general differentiable (at
least C2) function of the Ricci scalar and Lm corresponds
to the matter Lagrangian.
In a FLRW universe, the field equations take the form

3Ḣ + 3H2 = − 1

2f ′

[

ρ+ 3p+ f − f ′R+ 3Hf ′′Ṙ

+3f ′′′Ṙ2 + 3f ′′R̈
]

, (2)

3H2 =
1

f ′

[

ρ+
Rf ′ − f

2
− 3Hf ′′Ṙ

]

, (3)

i.e., the Raychaudhuri and Friedmann equations. Here H
is the Hubble parameter, which defines the scale factor
a(t) via the standard relation H = ȧ/a, the Ricci scalar
is

R = 6Ḣ + 12H2 (4)

and f ′, f ′′ and f ′′′ abbreviates ∂nf/(∂R)n for n = 1..3
respectively. The energy conservation equation for stan-
dard matter

ρ̇ = −3H (ρ+ p) (5)

closes the system.
It is interesting to note that the Raychaudhury equa-

tion can be obtained by adding the Friedmann equation
to its time derivative and using the Energy conservation
equation and the definition of the Ricci scalar. Hence,
any solution of the Friedmann equation automatically
solves the Raychaudhuri equation. Thus, in the recon-
struction process we only need to solve the Friedmann
equation, as that guarantees a solution to the other equa-
tions.

RECONSTRUCTION STRATEGIES

In this section we introduce, after reviewing briefly the
standard reconstruction method, a new way of obtain-
ing the form of the function f(R) starting from condi-
tions on the dynamics of the cosmic parameters. We also
give some specific examples with each of these strategies,
which shows that this can be a powerful tool for gener-
ating exact solutions in fourth order gravity.

The classical reconstruction method

In the classical reconstruction method [21], the func-
tion f(R) is derived from a given solution a = a(t). An

explicit reconstruction is possible if and only if the func-
tion R(t), as obtained by substituting the solution in
equation (4), is invertible analytically. That is, if we
have an explicit function g such that t = g(R). When
this is possible, we can write all the functions, (namely

a(t), H(t), ˙R(t)) in terms of the variable R and the Fried-
mann equation becomes

3H [g(R)]Ṙ[g(R)] f ′′ + f ′

{

3H [g(R)]2 − R

2

}

+
f

2

= ρ0g(R)−3(1+w) , (6)

where we have assumed the matter to be a perfect fluid
with equation of state p = wρ. The above equation is
now a second order differential equation for the function
f(R), the solution of which gives the class of theories of
gravity for which the given function a = a(t) is an exact
solution.
As an example let us consider the power law solution

a(t) = a0t
m [22], From (4) we see that the Ricci scalar

is invertible and is given by

R = 6m(2m− 1)t−2 ≡ αmt−2 . (7)

Solving the Friedmann equation we obtain the following
general solution [22]

f(R) = Amw

(

R

αm

)

3
2m(1+w)

+ C1R
3
4−

m
4 +

√
βm

4

+
2√
βm

C2R
3
4−

m
4 −

√
βm

4 , (8)

whereAmw and βm are constants depending on the values
of m and w and ρ0, and C1,2 are arbitrary constants of
integration. This is a lucky coincidence. Considering
more general solutions leads at best to a combination of
hypergeometric functions (see e.g. [21]).

Reconstruction from the condition ȧ = h(a)

Let us consider now consider the relation ȧ = h(a)
instead of a = a(t). This equation relates the Hubble
parameter to the scale factor. We can easily calculate
the Ricci scalar in this case as

R(a) = 6

(

1

2

(h2),a
a

+
h2

a2

)

. (9)

Like the previous case, an explicit reconstruction is pos-
sible if the function R(a), is invertible analytically, that
is, if we have an explicit function g such that a = g(R).
However, this inversion is now possible in cases which
were forbidden before.
The Friedmann equation can now be written as

3
h[g(R)]

g(R)
R,a[g(R)]h[g(R)]f ′′ + f ′

{

3
h[g(R)]2

g(R)2
+

Rf ′

2

}

+
f

2
= ρ0 g(R)−3(1+w) . (10)



3

The solutions to the above equation gives the class of
theories of gravity for which the condition ȧ = h(a) is
satisfied. This last relation can be then integrated to
obtain the corresponding scale factor :

t =

∫ a

0

da

h(a)
. (11)

As an example let us investigate for which class of model
a dust-like matter (w = 0) behaves in the following way

ȧ =
2Ω√
Λ

√

a− Λa2 . (12)

As one can easily see, this condition corresponds to a
cyclic universe with the scale factor

a(t) =
1√
Λ
sin2(Ωt) . (13)

Using equation (9), we get an analytically invertible Ricci
scalar

R(a) =
12Ω2(3 − 4Λa)

Λa
. (14)

Substituting everything in equation (10), we find the par-
ticular solution to be

f(R) = α1R+ α2R
2 + α3R

3 + α4 , (15)

where αn(n = 1..4) are constants depending on Λ, Ω and
ρ0.

Reconstruction from the condition Ḣ = h(H).

Following the line of reasoning above, one can also
imagine describing the scale factor as a differential equa-
tion for the parameter H e.g., Ḣ = h(H). In this case,
we can immediately find the Ricci Scalar in terms of the
Hubble parameter:

R(H) = 6h(H) + 12H2 (16)

and an explicit reconstruction is possible if the above
relation is analytically invertible, that is, we have an ex-
plicit function g such that H = g(R). The scale factor in
terms of the Ricci scalar can then be found solving the
integral

a(R) = exp

[
∫

g(R)dg(R)

h(g(R))

]

. (17)

Substituting for the above quantities, the Friedmann
equation becomes

3g(R)R,H [g(R)]h[g(R)]f ′′ + f ′

{

3g(R)2 − Rf ′

2

}

+
f

2
=

ρ0
a(R)3(1+w)

. (18)

Solving the above equation we obtain the f(R) theory
which admits a solution compatible with the condition
above. To solve for the scale factor as a function of time
we express this condition as a differential equation for
a(t):

6

(

ä

a
− ȧ2

a2

)

= h(
ȧ

a
) . (19)

Let us illustrate this with a simple example by assuming
a vacuum (ρ = 0) universe and let the condition be

Ḣ = m , (20)

where m is a constant. In this case we get a Ricci scalar
which is invertible and the solution of the Friedmann
equation gives the following theory of gravity:

f(R) = α1R+ α2R
2 + α3 , (21)

where the constants αn(n = 1..3) depends on m. Now
solving for the scale factor we obtain

a(t) = a0 exp
(m

2
(t2 − C1t)

)

, (22)

which, for m > 0, represents a universe bouncing in the
past.
Note that this solution, unlike the previous ones con-

tains two integration constants. This is the consequence
of the fact that Ḣ = h(H) is a second order differential
equation in a [25].

Reconstruction from the condition q̇ = h(q)

It is now clear how we can further generalize the above
strategy. One can now give a condition on the dynamics
of the decelaration parameter q = −äa/ȧ2.
Supposing q̇ = h(q), we can integrate to find the Hub-

ble parameter in terms of q as

1

H(q)
=

∫

1 + q

h(q)
dq . (23)

The Ricci scalar in terms of q is given by

R(q) = 6H(q)2(1− q) . (24)

For explicit reconstruction, the above equation should be
analytically invertible as in other cases, so that q = g(R).
We can then solve for the scale factor in terms of the Ricci
scalar as

a(R) = exp

(
∫

H(g(R))

h(g(R))
dg(R)

)

. (25)

Substituting into the Friedmann equation, we obtain

3H [g(R)]R,q[g(R)]h[g(R)]f ′′

+f ′

{

3H(g(R))2 − Rf ′

2

}

+
f

2
=

ρ0
a(R)3(1+w)

, (26)
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the solution of which gives the required theory.
As an illustration let us assume

q̇ = m(1 + q)
√
q , (27)

where m is a constant. Reconstructing the theory for a
universe filled with dust-like matter, we get the following
function f(R):

f(R) = αR
√

R− 3m2 , (28)

where α is a constant depending on ρ0. Using equation
(24), we can then solve for the scale factor as a function
of time, and is given by

a(t) = C1 sin

(√
3

2
mt

)

+ C2 cos

(√
3

2
mt

)

, (29)

which has oscillatory behaviour. Note that the solution
above has, as expected, three constants due to the fact
that q̇ = h(q) is a third order differential equation in a.

Reconstruction from the dynamics of higher order

parameters

Since the f(R) theories are of order four it is natural
to give a relation for the scale factor involving a fourth
order equation for a. This would involve naturally the
jolt parameter j = a···a2/ȧ3 [7]. It turns out that with
this parameter makes it difficult to achieve the results of
the previous section.
For this reason, in analogy with what is usually done

with the scale factor, we propose the following expansion
of the Hubble parameter:

H = H0 + Ḣ(t− t0) +
1

2
Ḧ(t− t0)

2 + ... , (30)

which allows us to define two new cosmic parameters:

Q =
Ḣ

H2
J =

ḦH

Ḣ2
. (31)

It is clear that Q = −(q + 1) and J = j+3q+2
(q+1)2 , so that

they are related to the standard parameters j and q.
We can easily check from the above definitions that

1

H

Q̇

Q2
= J − 2 . (32)

Let us now suppose that we would like to reconstruct
from the given condition

1

H
J̇ = h(J) . (33)

We then integrate the above conditions to find

1

Q(J)
=

∫

2− J

h(J)
dJ ; H(J) = exp

[
∫

Q(J)

h(J)
dJ

]

,

(34)

a(J) = exp

[
∫

dJ

h(J)

]

(35)

The Ricci scalar can now be written in terms of these
quantities as

R(J) = 6H(J)2(2 +Q(J)) . (36)

If the above relation is explicitly invertible, that is we
have J = g(R), then we can again substitute everything
into the Friedmann equation to give

3H [g(R)]R,J [g(R)]H [g(R)]h[g(R)]f ′′

+f ′

{

3H(g(R))2 − Rf ′

2

}

+
f

2
− ρ0

a[g(R)]3(1+w)
= 0 .(37)

Solving this equation gives the required theory.
As a specific example, let us assume the condition to

be

1

H
J̇ = J − 2 . (38)

Also for simplicity let us consider a universe filled with
dust-like matter. Solving the Friedmann equation we get
the following particular solution:

f(R) = α1R+ α2R
2 + α3R

3 + α4 , (39)

where αn(n = 1..4) are constants depending on ρ0. Now
solving for a(t), we obtain the following solution in inte-
gral form:

t =

∫ a(t)

0

dx√
x4 + 2x3 + C1

. (40)

It is clear that this solution, although given implicitly,
contains four different modes.

DISCUSSION AND CONCLUSION

In this paper we have presented a new approach to re-
construction methods for f(R)-gravity. Using the stan-
dard and some newly defined cosmic parameters, we have
been able to connect some non-trivial cosmic histories to
some relatively simple f(R) functions, solutions which
would have been harder to obtain through a direct in-
tegration of the field equations. Given the simplicity of
the functions f(R) obtained, one can proceed to examine
other features of these solutions such as the evolution of
cosmological perturbations in these models.
The few examples presented here are an indication of

the richness of the general behavior of f(R)-cosmology,
which so far could be grasped only via the dynamical sys-
tem approach. We are confident that this new method
will help uncover more details of the cosmology of these
theories and lead to a deeper understanding of their fea-
tures and structure.
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