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ABSTRACT
BackgroundCKD induces loss of muscle proteins partly by suppressingmuscle protein synthesis. Muscles
of mice with CKD have increased expression of nucleolar protein 66 (NO66), as do muscle biopsy spec-
imens from patients with CKD or those undergoing hemodialysis. Inflammation stimulates NO66 expres-
sion and changes in NF-kB mediate the response.

Methods Subtotal nephrectomy created amousemodel of CKDwith BUN.80mg/dl. CrossingNO66flox/flox

withMCK-Cremicebredmuscle-specificNO66 (MCK-NO66) knockoutmice. Experiments assessed the effect
of removing NO66.

Results Muscle-specific NO66 knockout in mice blocks CKD-induced loss of muscle mass and improves
protein synthesis. NO66 suppression of ribosomal biogenesis via demethylase activity is the mechanism
behind these responses. In muscle cells, expression of NO66, but not of demethylase-deadmutant NO66,
decreased H3K4me3 and H3K36me3 and suppressed pre-rRNA expression. Knocking out NO66 in-
creased the enrichment of H3K4me3 and H3K36me3 on ribosomal DNA. In primary muscle cells and in
muscles of mice without NO66, ribosomal RNA, pre-rRNA, and protein synthesis all increased.

Conclusions CKD suppresses muscle protein synthesis via epigenetic mechanisms that NO66 mediates.
Blocking NO66 could suggest strategies that counter CKD-induced abnormal muscle protein catabolism.

JASN 31: ccc–ccc, 2020. doi: https://doi.org/10.1681/ASN.2019121277

The loss of muscle proteins stimulated by CKD
results from an imbalance between mechanisms
that stimulate muscle protein degradation and/or
those that impair rates of protein synthesis. Iden-
tifying mechanisms that cause loss of muscle mass
is necessary because these losses of muscle mass
contribute substantially to the morbidity and mor-
tality associated with CKD.1 We and others have
discovered that complications of CKD including
metabolic acidosis,2,3 insulin resistance,3 and in-
flammation,5,6 as well as glucocorticoids and 2,4

angiotensin II, stimulate muscle proteolysis by ac-
tivating caspase-3 and the ubiquitin-proteasome
system (UPS).7,8 In contrast, mechanisms that

suppress the rates of muscle protein synthesis are
unclear.

How could muscle protein metabolism be im-
proved in patients with CKD? Currently, these
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patients are treated by restricting their dietary protein to reverse
the progressive decline in kidney function.9 However, the prob-
lem is complicated because an inadequate intake of nutrients
could jeopardize the maintenance of protein stores. In 1981,
the Food and Agriculture Organization/World Health Organi-
zation/UnitedNationsUniversity declared a recommended daily
allowance (RDA)of dietary protein of 0.8 g protein/kg per day. In
studies of elderly subjects, however,Wolfe and colleagues10 mea-
sured the adequacy of protein intake and concluded that an RDA
of 0.8 g protein/kg per day would be insufficient to raise the level
of protein synthesis and prevent the losses in protein storage.
They recommended that the RDA be almost doubled, with the
goal of increasing protein synthesis in muscle. In contrast, Bha-
sin et al.11 tested the adequacy of the RDA by measuring protein
turnover in elderly patients eating 0.8 versus 1.3 g protein/kg per
day; they concluded a protein intake.0.8 g protein/kg per day
would not increase lean body mass, muscle performance, or
physical functions. We studied the turnover of muscle proteins
in a subtotal nephrectomy model of CKD in rats and found the
rate ofmuscle protein synthesis was 34% lower in rats with CKD
versus pair-fed, control rats; the defect in protein synthesis was
not corrected by treating metabolic acidosis.12 Identifying the
mechanisms involved in impaired muscle protein synthesis is
required because correcting such defects could uncover strate-
gies to improve the complications of CKD.

What mechanisms could improve muscle protein metab-
olism? Nucleolar protein 66 (NO66) is a JmjC domain–
containing protein.13 Reportedly, NO66 exhibits histone
demethylase activity that is involved in the methylation of
H3K4 and H3K36.14–19 NO66 stimulates the osteoblast tran-
scription factor osterix that leads to the inhibition of the expres-
sion of osterix target genes14,17 and, during embryonic stem cell
differentiation, NO66 is recruited to the polycomb repressive
complex 2. These responses lead to loss ofH3K36me3, increased
levels of H3K27me3, and result in silencing of certain activated
genes.16 These findings are relevant because NO66 actually me-
diates the repression of genes. Moreover, mice with mesenchy-
mal deletion of NO66 exhibit an increase in bone formation.20

In contrast, we have found that mesenchymal overexpression of
NO66 in mice inhibits skeletal growth and bone formation,
demonstrating the presence of an important in vivo organogen-
esis role for NO66.21 Our experimental results demonstrated
that the expression of NO66 is increased in muscles of mice
with CKD and expression of NO66 inhibits muscle protein syn-
thesis by suppressing ribosomal DNA (rDNA) transcription via
a demethylase mechanism. Our results have uncovered a new
strategy that influencesmuscle protein mass in CKD and poten-
tially other catabolic conditions.

METHODS

Reagents
The antibodies used are listed in Supplemental Table 1. For cell
culture, DMEM and FBS were purchased from Cellgro

Mediatech (Manassas, VA). The NO66 expression plasmids
were obtained fromDharmacon (GEHealthcare Life Sciences,
Lafayette, CO). The mutant NO66 AKA plasmid was a gift
from Dr. K. M. Sinha et al.14 L-(14C[U]) phenylalanine was
purchased from PerkinElmer (Santa Clara, CA).

Animal Studies
Transgenic mice with a loxP-flanked (“floxed”)NO66 (NO66-
flox/flox) were a gift from Dr. De Crombrugghe (University of
Texas MD Anderson Cancer Center, Houston, TX).20 MCK-
Cre transgenic mice (the Cre recombinase gene is driven by
the creatine kinase promoter inmuscles) were purchased from
the Jackson Laboratory (Bar Harbor, ME).22 Mice with
muscle-specific NO66 knockout (KO) (MCK-NO66) were
created by crossing MCK-Cre mice with NO66flox/flox mice.

To create CKD in NO66flox/flox and in MCK-NO66 mice,
anesthetized male and female mice (10–12 weeks old) under-
went subtotal nephrectomy in two stages as described.23 In the
first stage, 60%–70% of the left kidney was removed and mice
were fed 6% protein diet (Harlan Teklab, Indianapolis, IN) to
minimize mortality from uremia. Seven days later, the right
kidney was removed and mice were continued on the 6% pro-
tein diet. Two weeks later, mice were fed a 40% protein diet
(Harlan Teklab) to induce advanced CKD.24 Sham-operated,
control mice underwent surgery without damaging the kid-
neys and were fed the same diets. Mice of the same sex were
housed in cages with a 12-hour light/dark cycle. NO66flox/flox

mice with CKD and MCK-NO66 mice with CKD were paired
based on their BUN and the amount of food eaten daily.

Isolation and Culture of Mouse Primary Myoblasts
We created global deletion of NO66 mice (NO662/2) by
crossing transgenic, Sox2-Cre mice with NO66flox/flox mice.
The muscle from these mice was used for RNA-sequencing
(RNA-seq) analysis and they were also used to isolate primary
mouse myoblasts as described.25 For isolation and culture of
mouse primary myoblasts, neonatal NO66flox/flox and global
NO66 KO (NO662/2) mice were euthanized by decapitation
and muscles were removed, placed in PBS, and minced with
razor blades. The resulting slurry was transferred into a sterile

Significance Statement

The morbidity and mortality of CKD arise from acceleration of
muscle protein degradation and suppression of muscle protein
synthesis. Responses such as caspase-3 mediation of apoptosis and
activation of the ubiquitin-proteasome system drive CKD-induced
proteolysis. However, CKD-induced mechanisms that impair pro-
tein synthesis in muscle are less well studied. This investigation re-
ports that CKD-stimulated, chromatin-modifying, nucleolar protein
66 (NO66) suppresses both ribosomal DNA transcription and
muscle protein synthesis via a demethylase mechanism. Notably,
muscle-specific knockout ofNO66 inmice improvedmuscle protein
metabolism despite the presence of CKD. Additionally, NO66 is
present in muscle biopsy specimens of patients with CKD or those
on hemodialysis. These findingsmight lead to clinical strategies that
counter CKD-induced muscle protein catabolism.
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tube with 2 ml of a collagenase/dispase/calcium chloride so-
lution per gram of tissue and then incubated at 37°C for
20 minutes before the slurry was gently triturated with a plas-
tic pipette to break up clumps. The slurry was filtered through
100-mm nylon mesh and then centrifuged for 5 minutes at
350 3 g. The pellet was resuspended in 4 ml of Ham F-10
medium (including 20% FCS, 2.5 ng/ml basic fibroblast
growth factor, and 100 U/ml penicillin/streptomycin) and
then plated in a 35-mm matrigel-coated cell culture dish.
Cells were incubated at 37°C in a 5% carbon dioxide incuba-
tor. Subsequently, cells were removed from the dish using
trypsin and preplated for 15 minutes on a matrigel-coated
dish before moving the remaining cells into a new matrigel-
coated dish. This procedure was repeated until no additional
fibroblasts were attached to the plates during 15 minutes of
observation. Myoblasts were cultured in F-10/DMEM-based
primary myoblast growth medium and, subsequently, myo-
blasts were differentiated into myotubes by replacing the
medium with 2% horse serum (HS).23 These cells were
transfected with plasmids using Invitrogen (Carlsbad, CA)
Neon Transfection System (the transfection rate with this
method can be .90%).26

Measurements of Myofiber Areas
Myofiber sizes were measured in cryo-cross sections of mus-
cles that had been immunostained with anti-laminin. Briefly,
cross sections of muscles were fixed in 4% paraformaldehyde
and permeabilized by incubating in 0.3% Triton X-100 in PBS
followed by blocking treatment with protein block (DAKO,
Carpinteria, CA) for 1 hour at room temperature. Sections
were incubated with anti-laminin diluted with Antibody Di-
lute (DAKO) overnight at 4°C, followed by incubationwith the
secondary antibody, which was conjugated to Alexa 568 (In-
vitrogen). The cross section of muscles were visualized using a
Nikon 80i microscope and images were acquired using a DS-
cooled camera with myofiber sizes measured in images using
NIS-Elements Br 3.0 software (Melville, NY).

Chromatin Immunoprecipitation Assay
Chromatin immunoprecipitation (CHIP) assays were per-
formed using a Millipore Kit as described.26 Briefly, DNA-
protein complexes from cultured muscle cells were crosslinked
in 1% formaldehyde (Sigma-Aldrich) for 10 minutes before
cells were washed three times with ice-cold PBS containing a
protease inhibitor (Sigma-Aldrich). The cells were lysed,
vortexed, and sonicated for 10 seconds at power setting 4
(VibraCell Sonicator). This procedure was repeated four
times to obtain DNA fragments ranging between 300 and
800 bp. After centrifugation, the protein-DNA lysate was
diluted tenfold in CHIP buffer and precleared for 1 hour
at 4°C using salmon sperm DNA and protein A/G agarose
beads. Each 100 ml of protein-DNA lysate was used as an
input control. Cellular lysates of protein-DNA were immu-
noprecipitated overnight at 4°C with antibodies against
H3K4me3, H3K36me3, NO66, P65, or H3. Lysates were

incubated with IgG overnight at 4°C and used as negative
control. This was followed by incubation with protein A/G
agarose beads at 4°C for 1 hour. As described in the kit,
immune complexes were washed and the immunoprecipita-
ted DNA was reverse crosslinked at 65°C for 4 hours in the
presence of 0.2 M sodium chloride. The DNAwas then puri-
fied using phenol/chloroform/isoamyl alcohol and subjected
to PCR amplification. The primer sequences are presented in
Supplemental Table 2.27 The quantitative PCR was normal-
ized using percentage of input.28

Measurements of Rates of Protein Synthesis and
Degradation in Skeletal Muscles
Extensor digitorum longus (EDL) or soleus muscles were
maintained at resting length during incubation in Krebs–
Henseleit bicarbonate buffer with 10 mM glucose as de-
scribed.23,29 The incorporation of L-(14C[U]) phenylalanine
into muscle protein and the release of tyrosine from muscle
were measured as rates of muscle protein synthesis and deg-
radation, respectively.24,30

The Rates of Protein Synthesis in Myotubes
Mouse C2C12 myoblasts (ATCC, Manassas, VA) were cul-
tured in DMEM (Cellgro Mediatech) supplemented with
10% FBS (Invitrogen) plus 100 U/ml of penicillin/streptomy-
cin. At a 80%–90% confluence of C2C12 cells or primary
muscle cells, the culture medium was switched to DMEM
with 2% HS for myotube formation. Myotubes were treated
with a cytokine mixture including IL-6 (100 ng/ml), TNFa
(10 ng/ml), and IFN-g (200 U/ml) for 24 or 48 hours. Treated
myotubes were incubated in DMEM containing 2% HS and
0.6 mM phenylalanine for 2 hours before they were placed in
the same media containing 0.5 mCi L-(14C[U]) phenylalanine
for 4 hours (we included 0.6 mM nonradioactive phenylala-
nine to the cell culture medium to equilibrate the extracellular
and intracellular phenylalanine pools as we and Gulve and
Dice reported30,31). Cells were then washed three times with
cold PBS and fixed with 10% TCA before they were collected
by centrifugation (13,000 rpm for 15 minutes). Pellets were
washed three times with ethanol/ether (1:1) before being sol-
ubilized overnight in 1 ml of 0.3 M sodium hydroxide. The
supernatant was analyzed by Liquid Scintillation. The protein
synthesis rate was calculated as nmol L-phenylalanine/mg
protein per hour.

Ribosomal RNA Analysis
Ribosomal RNA (rRNA) comprises approximately 80% of the
total cellular RNA. Thus, total RNA was used to evaluate
rRNA. Total RNA was extracted from soleus or EDL muscles
using an RNA extraction kit (Qiagen). The total RNAobtained
from 125 mg of muscle tissues was electrophoresed on a 1%
agarose gel with ethidium bromide and viewed under ultravi-
olet light. Using captured electrophoresis images, densitome-
try of 18S rRNA and 28S rRNA were determined using the
National Institutes of Health ImageJ software.
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Calculation of Muscle Protein Synthesis Capacity
Changes in muscle protein synthesis are dependent on the
efficiency of mRNA translation and/or the abundance of
ribosomes in muscles. The abundance of ribosomes in mus-
cle (calculated as the ratio of RNA to muscle) define the
protein synthesis capacity.32 RNA concentration was mea-
sured using a NanoDrop Spectrometer at 260 nm, whereas
the total RNA content per gram EDL or soleus muscle (RNA
in mg/muscle in g) was calculated as the muscle protein syn-
thesis capacity.

RT-PCR
RNA was extracted from cells or muscles using an RNA ex-
traction kit; cDNA was prepared using an iScript cDNA Syn-
thesis Kit (Bio-Rad). Duplicate PCR reactions were performed
using SYBR green (Bio-Rad) on a Bio-Rad CFX96 real-time
thermal cycle.6,33 The relative gene expression was calculated
from cycle threshold values using glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) as the internal control (Ct; relative
expression52[sample Ct 2 GAPDH Ct]). Primer sequences used
for RT-PCR are detailed in Supplemental Table 2.

RNA Sequence Assay
Total RNAwas extracted from the soleus muscles of NO66flox/flox

and global NO66 KO mice (NO662/2) using RNeasy Mini Kit
(Qiagen). RNA samples were sequenced using the standard
Illumina protocol to create raw sequence files (.fastq files) at
LC Sciences (Houston, TX). The ontology analysis and KEGG
pathways were evaluated by bioinformatics at LC Sciences.
RNA-seq data have been deposited in the ArrayExpress data-
base at EuropeanMolecular Biology Laboratory European Bio-
informatics Institute (EMBL-EBI; www.ebi.ac.uk/arrayexpress)
under accession number E-MTAB-7285.

Studies in Patients with CKD
For studies of muscle metabolism in patients with CKD, we
used procedures that were approved by the Ethical Committee
at the Department of Internal Medicine, University of Genoa,
in accordance with the Declaration of Helsinki regarding the
ethics of human research. Samples of abdominal muscles were
obtained from patients with CKD during the placement of
peritoneal dialysis catheters. The biopsy samples were ob-
tained before patients began dialysis treatments and they
were frozen at 280°C and stored until analyzed. Muscle bi-
opsy specimens of control subjects were obtained from other-
wise normal adults who were undergoing abdominal hernia

surgery. Patient information is provided in Table 1 and
Supplemental Table 3.

Muscle biopsy specimens from patients on hemodialysis
at Vanderbilt University Medical Center (VUMC) were ob-
tained as described.34 The studies were approved by VUMC
patient review board(s); written, informed consent was ob-
tained from participants before their inclusion in the study.
Patient characteristics included age $18 years and regular
maintenance hemodialysis treatments for .3 months pre-
scribed as an adequate dialysis dose (single-pool Kt/V.1.2)
of a thrice-weekly dialysis program using biocompatible he-
modialysis membranes. The information regarding the pa-
tients on hemodialysis is in Table 2 and Supplemental
Table 4.

Statistical Analyses
Results are expressed as means6SEM. GraphPad Prism 8 was
used for data analysis and graphing of figures. Significance
testing was performed using t test when results from two
groups were compared or two-way ANOVA when data from
three or more groups were evaluated. Statistical significance
was set at P,0.05. A minimum of three replicates was per-
formed for each experimental condition.

RESULTS

CKD Induces NO66 Expression in Skeletal Muscles of
Mice
It has been reported that NO66 suppresses both stem cell
functions and the differentiation of bone growth.16,21 Our
experiments were aimed at determining whether NO66 ex-
pression in skeletal muscles (Supplemental Figure 1) also in-
fluences the metabolism of skeletal muscle proteins. As shown
in Figure 1, A and B, our mouse CKDmodel was characterized
by higher BUN values and decreased body weights. CKD was
also associated with decreased weights of skeletal muscles in-
cluding soleus muscles with a higher proportion of red fibers
(Figure 1C), EDL muscles with a higher proportion of white
fibers (Figure 1D), and the mixed-fiber gastrocnemius and
tibialis anterior muscles (Supplemental Figure 2, A and B).
Consistent with these estimates of decreased muscle mass in
mice with CKD, we found that myofibers in soleus muscles
were smaller compared with sham-operated, control mice
(Figure 1E). In these mice, we also found that CKD increased

Table 1. The characteristics of patients with CKD

Characteristic Age (yr) Sex
Height
(cm)

Serum Creatinine
(mg/dl)

eGFR (ml/min per
1.73 m2)

BUN (mg/dl) Diabetes

Healthy controls 67.262.4 n520 M, n54 F 170.960.8 0.960.03 76.762.9 21.961.2 No
Patients with CKD 65.761.41 n523 M, n54 F 171.661.2 7.260.27 10.460.4 112.465.6 No
P value (CKD versus control) 0.63 0.66 2.28 3 10215 1.57 3 10211 5.82 3 10211

Data are average6SEM. M, male; F, female.
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bothmRNA and protein expression of NO66 (Figure 1, F andG).
Similar results were discovered in EDL muscles of CKD mice.

High Levels of NO66 are Present in Muscles of Patients
with CKD
To begin to assess the influence of NO66 on muscle protein
metabolism, we examined muscle biopsy specimens from
nondiabetic patients with CKD who were not being treated
with hemodialysis (Supplemental Table 3). These patients
with CKD exhibited significant increases in BUN and serum
creatinine and low eGFR values (Table 1). In muscles of these
patients with CKD, we found significant increases in the
mRNA expression of inflammatory cytokines (i.e., IL-6 and
TNFa) and atrophy genes (Atrogin-1 and MuRF-1) (Figure 2,
A–D). There were also significant increases in NO66 mRNA
and protein in muscles of patients with CKD (P,0.05, Fig-
ure 2, E and F). In addition, we examined NO66 protein from
patients on hemodialysis and discovered increases in NO66
versus control (Figure 2G, Supplemental Table 4, Table 2). We
conclude that patients with CKD as well as those being treated
by hemodialysis express NO66 in their skeletal muscles.

NF-kB Signaling Regulates NO66 Expression in Muscle
Next, we investigated mechanisms that could upregulate the
expression of NO66 in muscles of mice as well as patients with
CKD. Because CKD is associated with the expression of in-
flammatory cytokines, we initially hypothesized that CKD
stimulates the expression of inflammatory cytokines and these
in turn increase the expression of NO66 via an NF-kB signal-
ing pathway. Our conclusion was based on two factors: firstly,
CKD is associated with inflammation23,29 and, secondly, the
NO66 promoter contains two potential NF-kB binding sites
(2607, 59-GGAGAAGTCCC-39, 2597; 1332, 59–
GGGCTTATCCT-39, 1344) that were identified using the
Transfac program. To mimic CKD conditions previously, we
combined IL-6, TNFa, and IFN-g and found this cytokine
mixture stimulates NF-kB activity in muscles, resulting in in-
creased expression of proteasome subunits.35 The combina-
tion of cytokines was also shown to upregulate the expression
of SIRP-a in muscles, which causes dysregulation of intracel-
lular insulin signaling in mice with CKD.36 Using the same
concentration of cytokines,35,36 we treated C2C12 myotubes
with the cytokinemixture and determined that it increased the
expressions of both the NO66 mRNA (Figure 3A) and protein
(Figure 3B) while suppressing the expression of pre-rRNA
(Figure 3A). Notably, the cytokine mixture decreased the

rate of protein synthesis in myotubes (Figure 3C). To examine
whether the inflammatory cytokines stimulate NO66 via an
NF-kB pathway, we treated C2C12 myotubes with the NF-kB
inhibitor QNZ and found that QNZ suppressed the expression
of both NO66 mRNA and its protein in response to treatment
with the cytokine mixture (Figure 3, D and E). Results ob-
tained with CHIP assays also confirmed that NF-kB mediates
the expression of NO66. Specifically, we treated C2C12 myo-
tubes with the cytokine mixture for 24 hours. Cell lysates were
immunoprecipitated with an anti-P65 antibody or IgG (used
as negative control). DNA from the immunocomplex was sub-
jected to PCR analysis using primers covering two potential
NF-kB sites (see Supplemental Table 2 for primer sequences).
The “percentage to input” was used to calculate the enrich-
ment of P65 on the promoter of the NO66 gene. Our results
indicate the cytokine mixture increases P65 binding to the
promoter of NO66 (Figure 3F).

MCK-NO66 Mice Are Resistant to CKD-Induced Muscle
Protein Loss
To test for a pathophysiologic role of NO66 in muscle, we
created MCK-NO66 mice by crossing NO66flox/flox mice
with MCK-Cre transgenic mice. In MCK-NO66 mice versus
results from NO66flox/flox mice, NO66 protein is substantially
decreased in skeletal muscles but not in other tissues, includ-
ing spleen and kidneys. There is also a low level of NO66 in
heart tissue of MCK-NO66 mice versus that in NO66flox/flox

mice, but these differences did not reach a significant level
(Figure 4A). We then created the CKD model in mice and
found, in NO66flox/flox mice with CKD, NO66 protein and
mRNA were increased in muscles. However, NO66 protein
and mRNA were abolished in skeletal muscles of MCK-
NO66 mice even in the presence of CKD (Figure 4, B and C).

CKD caused a significant loss of body and muscle weight
(e.g., soleus and EDL muscles) in NO66flox/flox mice (Figure 4,
D and E). In contrast, the examination of MCK-NO66 mice
revealed no significant differences in body and muscle weight
between mice with CKD and the sham, control mice. Notably,
there were significant increases in body and muscle weight of
MCK-NO66mice with CKD versus NO66flox/flox mice with CKD
(Figure 4, D and E, Supplemental Figure 3, A and B). To confirm
the difference in muscle mass, we measured myofiber areas in
soleus muscles. The results indicate the average myofiber size in
MCK-NO66 mice with CKD were larger than in NO66flox/flox

mice with CKD (Figure 4F). Similar results were found in
mixed-fiber tibialis anterior muscles (Supplemental Figure 3C).

Table 2. The characteristics of patients on dialysis with CKD or healthy controls

Characteristic Sex Age (yr)
Weight
(kg)

BUN
(mg/dl)

Creatinine (mg/
dl)

Albumin
(g/dl)

Total Protein (g/
dl)

Diabetes

Healthy controls n56 M, n52 F 48.364.1 86.169.0 12.661.1 0.9460.1 460.03 6.760.1 No
Patients on dialysis with CKD n56 M, n52 F 47.364.6 90.367.0 40.264.2 9.5961.0 3.960.1 6.960.2 No
P value 0.44 0.36 0.000066 0.000016 0.28 0.17

Data are average6SEM. M, male; F, female.
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In soleus muscles of NO66flox/flox mice with CKD, the rate
of protein synthesis was significantly decreased (P,0.05,
Figure 4G) and the rate of protein degradation was increased
(P,0.05, Figure 4H). Similar results were found in EDL mus-
cles. In muscles of MCK-NO66 mice with CKD, the rate of
protein synthesis was not significantly different from those
measured in muscles of sham-operated control MCK-NO66

mice. CKD still stimulated the rate of protein degradation in
muscle ofMCK-NO66mice (Figure 4, G andH). However, the
rate of protein synthesis in muscles of MCK-NO66 mice with
CKD were substantially greater compared with that in NO66-
flox/floxmice with CKD (Figure 4G). Although CKD stimulated
protein degradation in MCK-NO66 mice (Figure 4H), the
muscle mass in MCK-NO66 mice was still greater than that
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fication is shown in the lower panel (n54 mice in each group). (G) Increased NO66 mRNA was identified in soleus muscles of CKD mice
(n510 mice in each group). *P,0.05 versus sham control.
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in muscles of NO66flox/flox mice with CKD (Figure 4E). These
results suggest that stimulation of protein synthesis is respon-
sible for the increase in muscle mass in MCK-NO66 mice.

To explore mechanisms by which NO66 could regulate
muscle mass in mice with CKD, we assessed changes in myo-
statin because its expression regulates muscle mass.23 We
found the expression ofmyostatinmRNAwas not significantly
different in muscles lacking NO66 versus control
(Supplemental Figure 4A). In addition, we transfected
C2C12 cells with plasmids that express NO66 and found no
significant change in the level of myostatin proteins compared
with results obtained from cells transfected with cDNA3
(Supplemental Figure 4B). Thus, NO66 does not cause muscle
wasting by increasing myostatin expression.

Loss of NO66 Stimulates Ribosomal Biogenesis in
Mouse Muscles
To identify genes that contribute to muscle mass in muscles
lacking NO66, we performed a transcriptome analysis (RNA-
seq analysis) using soleus muscles from 2-month-old
NO66flox/flox and global NO66 KO (NO662/2) mice. The
RNA-seq analysis identified 1955 (5.19%) upregulated genes
and 1306 (3.47%) downregulated genes when the results were
evaluated on a threshold of more than twofold changes of the
37,622 genes analyzed in the soleus muscles of NO662/2 mice
versus results from soleus muscles of control, NO66flox/flox mice
(ArrayExpress database at EMBL-EBI, number E-MTAB-7285).
A Gene Ontology analysis revealed the largest proportion of up-
regulated genes was involved in protein-metabolic processes
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(Supplemental Figure 5). Interestingly, a KEGG pathway anal-
ysis showed a significant proportion of the increased genes in
muscles of NO662/2mice were involved in ribosomal biogen-
esis signaling (Figure 5A). There are also 18 genes (Eif3j2,
Xpo1, Eif3a, Fmr1, Fxr1, Pnn, Ranbp2, Thoc1, Eif5b, Rpp38,
Nxt2, Upf2, Magohb, Eif2s2, Ncbp2, Upf3b, Trnt1, and Eif3j1)
overexpressed in muscles of NO662/2 mice that are catego-
rized as components of RNA transport (Figure 5A). These
genes are mainly involved in mRNA nuclear export for gene
expression processes, including control of transcription,
splicing, 39-end formation, and even translation. Notably, in
muscles lacking NO66, a pairwise analysis of the differential
expression of genes uncovered significant increases in genes
controlling eukaryotic translation-initiation factors (Eif3j2,
Eif3j1, Eif3e, Eif3a, Eif5b, and Eif2s2), exo-ribonucleases
(Xrn1 and Xrn2), and ribonuclease P protein subunits of
p38 (Rpp38), etc. (Figure 5B). Thus, the influence of NO66
on the regulation of ribosomal biogenesis could be a mecha-
nism that changes the rate of muscle protein synthesis.

To evaluate this possibility, we measured rRNA in muscles
via evaluation of total RNA. RNA isolated from 125 mg of
soleus muscle of NO662/2 mice was subjected to electropho-
resis on 1% agarose gel with ethidium bromide andwe found a
significant increase in 18S, 28S, and total rRNA when com-
pared with muscles of control NO66flox/flox mice (Figure 5C)
(similar results were present in EDL muscles). Notably, the
agarose gel image included a large ribosomal subunit (28S
RNA) plus a small ribosomal subunit (18S RNA). These
RNAs were present in a 2:1 ratio, although 28S and 18S rRNAs
are produced by cleavage of the same single RNA transcript.
Presumably, rRNAs detected on agarose gels depend on the
number of nucleotides present in each molecule. For example,
in humans, 28S rRNA has approximately 5070 nucleotides,
and 18S has 1869 nucleotides, which gives a 28S/18S ratio of
approximately 2.7.

Because the abundance of ribosomes influences the rate of
protein synthesis, we evaluated the translational capacity that
is based on the number of ribosomes per unit of muscle.32 In
this case, we found a higher level of rRNA per gram of muscle
in both the soleus and EDL muscles from NO662/2 mice
when compared with results from NO66flox/flox mice
(Figure 5D). Based on this association, we infer that the ab-
sence of NO66 in muscle participates in stimulating the ca-
pacity of muscle protein synthesis.

To evaluate the influence of NO66 on protein synthesis, we
measured the rate of protein synthesis in primary myotubes
that lack NO66. In these cells, there was a significant (P,0.05)
increase in ribosomal pre-rRNA and rates of protein synthesis

versus that in primary muscle cells isolated from NO66flox/flox

mice (Figure 5E). We also found overexpression of NO66 in
C2C12 myotubes results in suppression of protein synthesis
(Figure 5F). We conclude that NO66 inhibits ribosomal bio-
genesis, thereby decreasing protein synthesis in muscle cells.

NO66 Regulates rDNA Transcription via a
Demethylase Mechanism
To explore mechanisms by which NO66 could suppress pro-
tein synthesis, we tested whether NO66 regulates ribosomal
biogenesis via demethylase activity. This possibility was raised
because NO66 exhibits demethylase activity.14,16,37 For this
experiment, we isolated primary cells from muscles of
NO662 /2 and NO66flox/flox mice. Cultures of primary
NO662/2 myoblasts were transfected with plasmids that ex-
press NO66 or “demethylase-dead” NO66 (NO66AKA)14 us-
ing the InvitrogenNeon Transfection System. Cells transfected
with green fluorescent protein were used as a negative control.
RT-PCR and Western blotting analyses confirmed the mRNA
and protein levels, respectively, of NO66 in these cells (Fig-
ure 6, A and B). In cells expressing NO66 (but not the mutant,
NO66AKA) there were significant decreases in the trimethy-
lated levels of H3K4 and H3K36 (Figure 6A). In addition,
NO66 but not NO66AKA significantly (P,0.05) suppressed
pre-rRNA (Figure 6B, lower panel). Expression of NO66 (but
not of NO66AKA) significantly decreased the cellular trans-
lational capacity (i.e., the amount of RNA in mg/protein in g;
Figure 6C). The results suggest mutation of the demethylase
activity of NO66 will abolish the suppression of NO66 on
rDNA transcription. In short, NO66 can influence gene ex-
pression in a demethylase-dependent mechanism.

Next, we performed CHIP assays to examine whether his-
tone trimethylation of H4K4 or H3K36 on rDNA differs in
primary muscle cells from NO66flox/flox or NO662/2 mice us-
ing the primers listed in Figure 6D and Supplemental Table 2.
Results of these experiments indicate that, in cells lacking
NO66, there is enrichment of H3K4me3 and H3K36me3 in
rDNA (Figure 6, E and F). These results demonstrate NO66
expression in muscle cells causes demethylation of H3K4me3
and H3K36me3 in rDNA, resulting in suppression of rDNA
transcription.

DISCUSSION

For decades, CKD has been associated with increased protein
degradation and repressed synthesis of muscle proteins.38 We
and others have found that CKD induced muscle protein

*P,0.05 versus soleus-NO66flox/flox. (D) Protein synthesis capacity in both soleus and EDL muscles of NO662/2 mice is higher than that
in muscles of NO66flox/flox mice (n54 mice in each group). *P,0.05 versus soleus-NO66flox/flox; #P,0.05 versus EDL-NO66flox/flox. (E)
Primary muscle cells from NO662/2 mice exhibit increases in the expression of pre-rRNA plus increases in rates of protein synthesis
(n$4 repeat). *P,0.05 versus primary cell of NO66flox/flox. (F) NO66 overexpression in C2C12 myotubes suppressed the rate of protein
synthesis (n54 repeat). *P,0.05 versus green fluorescent protein (GFP)–C2C12. F/F, flox/flox.
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degradation via a mechanism of activation of proteolytic re-
sponses, caspase-3, and the UPS. However, CKD-induced
mechanisms that impair protein synthesis in muscle have
not been identified. Fujii et al.39 have demonstrated that pro-
tein synthesis inmuscle is suppressed in uremic rats and found

this metabolic defect is not improved by raising dietary pro-
tein. The influence of dietary protein is emphasized because
muscle protein losses in other conditions (e.g., aging) exhibit
impaired protein synthesis that is not corrected by increasing
dietary protein.11 Specifically, feeding high levels of protein to
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patients with kidney disease not only raises their production of
uremic toxins but this treatment also increases phosphate in-
take, resulting in accelerated complications of CKD.40 In con-
trast to the disappointing metabolic responses achieved by
raising dietary protein in catabolic conditions, protein metab-
olism can develop beneficial responses to exercise or the ad-
ministration of growth hormone, including increasing the
level of muscle protein synthesis.38,41 Unfortunately, exercise
is not widely prescribed for patients with CKD.42 Our exper-
iments identify a novel pathway that can increase muscle pro-
tein synthesis in models of CKD without relying on raising
nutrient intake or increasing exercise. We found that deletion
of NO66 in skeletal muscle prevents the suppression of protein
synthesis and loss of muscle mass. NO66 elimination does not
affect the rate of muscle protein degradation in mice with
CKD. In rats with CKD, however, we have shown that meta-
bolic acidosis activates the degradation of muscle proteins;
this response is reversed when acidosis is corrected. In con-
trast, however, treatment of acidosis did not improve the rate
of protein synthesis.12,24 We conclude that the control of mus-
cle protein degradation occurs independently of the activation
of protein synthesis. In addition, we speculate that strategies
directed at improving muscle protein synthesis and decreasing
protein degradation will greatly improve muscle mass in cat-
abolic conditions.

All cells of the body have essentially the same DNA, but
different organs and tissues serve vastly different functions.
These functions are determined by epigenetic responses. Epi-
geneticmodification encompasses three forms: (1) DNAmeth-
ylation; (2) post-translational modifications of nucleosomal
histones including their acetylation, methylation, phosphory-
lation, ubiquitinylation, and sumoylation; or (3) higher-order
chromatin structures. Specifically, histone modifications are
associated with gene activities, gene silencing, or insulation
between active and inactive gene regions. Environmental and
metabolic responses can cause histone modifications that ac-
count for approximately 80% of the risks for developing hu-
man or animal diseases. For example, widespread acceptance of
the Western diet is a leading cause of type 2 diabetes, whereas
smoking is a leading cause of several cancers and autoimmune
and respiratory diseases.43 In contrast, exercise is able to me-
diate changes in the skeletal-muscle epigenome.44 Our findings
represent another disorder that is related to histone modifica-
tion: CKD has elements of an inflammatory disease and it in-
duces the expression and function of NO66 via activation of
NF-kB. Specifically, an increase in NO66 can result in deme-
thylation of H3K4me3 and H3K36me3 in rDNA (Figure 7).
These responses led to a decrease in the expression of pre-rRNA
plus suppression of the rate of protein synthesis in muscle. Our
findings are consistent with the report that a decrease in H3K4
methylation can be associated with a decrease in the expression
of pre-rRNA, which leads to decreased activity of mouse em-
bryonic stem cells.27,45

Our findings are consistent with the conclusion that ribo-
somal biogenesis is a central mechanism regulating muscle

protein synthesis, thereby contributing to changes in muscle
mass.46 Ribosomal biogenesis is in turn regulated by signaling
pathways including mTORC1 or Wnt/b-catenin/c-myc that
can be stimulated by anabolic or catabolic conditions.47,48

The importance of ribosomal biogenesis in regulating cell
growth has mainly been demonstrated in yeast or tumor cells,
whereas only limited reports have been identified in skeletal or
cardiac muscles.49,50 Few studies have examined the regula-
tion of ribosome biogenesis in skeletal muscles,51 but no re-
ports have focused on the regulation of ribosomal biogenesis
in catabolic conditions. Our results are the first to document
that ribosomal biogenesis is regulated by NO66 in muscles of
mice and patients with CKD. In addition to the regulation of
ribosomal biogenesis, our data suggest that NO66 may affect
mechanisms besides rRNA transcription. This is suggested
because we found increases in components of RNA transport
in muscles lacking NO66. These genes are involved in gene
expression processes including transcription, splicing, 39-end
formation, and even translation that could influence responses
of muscle protein synthesis.

In summary, we have uncovered a CKD-mediated process
that silences rRNA genes. Our discoveries are significant be-
cause they have uncovered an epigenetic mechanism that im-
pairs muscle protein synthesis contributing to CKD-induced
protein energy wasting. Specifically, our results are indepen-
dent of other CKD-stimulated mechanisms, namely the in-
crease in muscle protein degradation after activation of UPS
and caspase-3.7,8 Understanding how this pathway is regulated
could uncover new strategies for preventing the loss of muscle
in CKD and other catabolic diseases.
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Figure 7. A model illustrating a mechanism that CKD suppresses
muscle protein synthesis. NO66 suppresses rDNA transcription
via a demethylase mechanism, leading to impairment of the rate
of protein synthesis.
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