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Abstract—This paper presents the results of an experimental 
validation of an equivalent modeling for microgrids. The main 
goal is to represent, with a simplified model, the dynamic 
response of a microgrid, in terms of active and reactive power 
exchanges at the point of common coupling, to variations of 
voltage and frequency. A nonlinear equivalent model with 
operational constraints is proposed. An identification procedure 
is used to define model parameters. To validate the approach, a 
set of experimental tests have been carried out on a real LV 
microgrid considering different configurations. Results show 
the effectiveness of the proposed technique and applicability to 
dynamic simulations.  

Keywords—dynamic equivalents, microgrids, gray-box 
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I. INTRODUCTION 

During last decades, the huge installation of distributed 
generation (DG) has drastically transformed the electric 
power system. One of the most significant differences from 
the past is the transformation of distribution networks, which 
have become active components of the power system. Indeed, 
they include generation and many inverted-interfaced devices, 
which can potentially implement dynamic responses to 
external disturbances. To realize consistent transient stability 
studies, it is therefore required to include in the power system 
models, the dynamic behavior of active distribution networks 
(ADNs). This issue is highly challenging, since the 
distribution system is complex, extremely large, and a detailed 
knowledge is not always available. Therefore, to build a 
highly detailed model of the distribution system, to be 
included in the overall power system model, is not possible; 
moreover, it would result to be useless, since the simulation of 
such an extremely large model could be hard and, in any case, 
not compatible with real time analysis. 

These considerations motivate the development of several 
approaches in defining equivalent models for ADNs. The idea 
is to derive a simplified Equivalent Dynamic Models (EDM), 
able to represent the dynamical response of the ADN. Recent 
literature proposes many different solutions [1]-[2]. 
Generally, measurement-based methods are preferred to other 
approaches since they do not require a detailed a priori 
knowledge of the ADN. In [3]-[4] artificial neural networks 
(ANNs) are used to identify EDMs for ADNs and microgrids, 
which can be considered as a special cases of ADNs. Prony 
analysis is applied in [5] and [6].  

All mentioned methods use the so called black-box 
approach, which does not assume any pre-established form of 
models. Differently, in the gray-box approach, a model 
structure is selected using the available information about the 

ADN. Gray-box models are recommended in [2] and [7] since 
black-box ones require more measurements to be identified, 
and are less adaptable to different network configurations. 

A gray-box model for ADNs is proposed in [8], and 
validated by simulations in [9]. An improved version is 
introduced in [10]. A similar approach is illustrated in [11] for 
grid-connected microgrids. In these papers, the proposed 
model is nonlinear, and the parameters identification is carried 
out using nonlinear optimization. In [12], a similar nonlinear 
model is proposed, but the identification process is made more 
consistent adding operational and modeling constraints, and 
defining a precise identification procedure that starts from the 
available information about the ADN. In [13], modeling 
constraints are included in the identification of an EDM for 
ADNs that includes inverter-interfaced generators. 

The mentioned gray-box approaches have been validated 
by simulation analysis, using highly detailed models to 
represent the real field. In this paper, the modeling and 
identification method introduced in [11] for ADNs is adapted 
to microgrids, that implement inverter-interfaced generators 
and/or loads, and it is validated with experimental data. 
Measurements are collected from a real LV microgrid that 
include a synchronous generator, two batteries, a photovoltaic 
(PV) power plant and static loads. Different configurations, 
including both islanded and grid-connected operating 
conditions are considered. Results prove the consistency and 
the accuracy of the proposed method.   

The paper is organized as follows. Section II recalls the 
modeling and identification methodology. Section III 
describes the experimental setup. Section IV presents results. 
Section V summarizes the conclusions of the paper. 

 

TABLE I.   NOMENCLATURE 

Symbol Description 

𝑻𝒅𝒔 
direct-axes time constant of equivalent Synchronous 
Machine (SM) [s] 

𝑯𝒔 inertia time constant of equivalent SM [s] 

𝑿𝒔 steady-state reactance of equivalent SM [pu] 

𝑿𝒔 transient reactance of equivalent SM [pu] 

𝑻𝒎𝒔 mechanical torque of equivalent SM [pu] 

𝑬𝒇 field voltage of equivalent SM [pu] 

𝑫 damping factor of equivalent SM [pu] 

𝑺𝒔
𝒏𝒐𝒎 nominal apparent power of equivalent SM [VA] 

𝜴𝒏𝒐𝒎 nominal angular velocity of the SM [rad/s] 

𝑷𝒁 , 𝑸𝒁 active and reactive powers absorbed by constant impedance 
component of the static load [W], [var] 

𝑷𝑰 , 𝑸𝑰 active and reactive powers absorbed by constant current 
component of the static load [W], [var] 

𝑷𝑷 , 𝑸𝑷 active and reactive powers absorbed by constant power 
component of the static load [W], [var] 
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II. METHODOLOGY 

Model definition and parameters identification represent 
the two main tasks of the proposed methodology, whose flow 
chart is illustrated in Fig. 1. The model definition is obtained 
through the selection of a proper model frame, based on the 
basic a priori knowledge, such as the type of sources available 
and their rated power. The parameters identification procedure 
defines the values of the parameters of the EDM previously 
defined, starting from measurements at the microgrid point of 
common coupling (PCC). At the end of this procedures, the 
microgrid EDM is fully defined, and it can be simulated to 
prove the effectiveness of the entire process. 

 
 

 
Fig. 1. Flow chart of the methodology. 

A. Model Definition 

The general frame of the microgrid EDM includes a ZIP 
load, a synchronous machine and a static source, which covers 
inverter driven generation, and inverter-interfaced loads. The 
model can potentially include an asynchronous machine [12], 
which is not installed in the experimental test site considered 
in this paper; therefore, it has not been included in this specific 
application. The basic system knowledge allows a first 
characterization of the EDM, through the proper 
customization of the general model frame, illustrated in the 
following Fig. 2.  

 
Fig. 2. General frame of the microgrid EDM. 

As shown in the figure, the microgrid exchanges the active 
and reactive powers 𝑃 [W] and 𝑄 [Var] at the PCC. Positive 
values mean import, negative values mean export. Moreover, 
𝑉  [pu] is the bus voltage and 𝜔  [pu] is the grid angular 
velocity (frequency) at the PCC. The principal objective of the 
EDM is to reproduce 𝑃  and 𝑄  responses to voltage and 
frequency variations at the PCC. 

The equivalent synchronous machine (SM) is represented 
with a third-order dynamic model [1]: 

   𝐸  ̇ =   𝐸 − 𝐸 + Vcos(𝛿 )  (1)

  �̇� =   𝑇 − sin(𝛿 ) − 𝐷(𝜔 − ω)  (2)

  �̇� =   Ω (𝜔 − ω) (3)

where: 𝐸  [pu] is the voltage behind the transient reactance 
𝑋 , 𝜔  [pu] is the machine angular velocity, 𝛿  is the angle 
between 𝐸′ and 𝑉. 

The ZIP load implements the dependency of load to the 
voltage magnitude variation for the constant impedance, 
current and power components. Active and reactive power 
exchanges of the static source depend on voltage magnitude 
and frequency deviations. These dependencies have been 
modeled with linear relations, through parameters 𝑅 , 𝐷  and 
𝑅 , 𝐷 , in order to catch the most significant behavior of  
static sources, equipped with droop based controllers [14]. 
Therefore, the active and reactive power exchange at the PCC 
can be written as follows: 

  𝑃 = 𝑃 𝑉 + 𝑃 𝑉 + 𝑃 +𝑅 𝑉 + 𝐷 (𝜔 − 1) 

 −𝑆 sin(𝛿 )

 
(4) 

  𝑄 = 𝑄 𝑉 + 𝑄 𝑉 + 𝑄 + 𝑅 𝑉 + 𝐷 (𝜔 − 1) 

 +𝑆 cos(𝛿 ) −

 

(5) 

B. Parameters identification 

The vector 𝜃 , reported in (6), includes the entire set of 
parameters that has to be estimated by the identification 
procedure. It is composed by three subsets: vector 𝜃 , in (7), 
collects the equivalent SM parameters; vectors 𝜃 , in (8), and 
𝜃 , in (9), include parameters that define the system response 
to voltage and frequency variations respectively, excluding 
the SM dynamics: 

 𝜃 = [𝜃 𝜃 𝜃 ] (6)

 𝜃 = [𝑇 𝑋 𝑋 𝐻 𝑇 𝑆 𝐸 𝐷] (7)

 𝜃 = [𝑃 𝑃 𝑃 𝑄 𝑄 𝑄 ] (8)

 𝜃 = [𝐷    𝐷 ] (9)

In (8),  𝑃 = 𝑃 + 𝑅  and 𝑄 = 𝑄 + 𝑅 . Indeed, in (4) and 
(5) we can note that both the impedance constant component 
of the ZIP load and the static source introduce a proportional 
response to the voltage variation. 

The measurements set used in the identification process is 
composes by 𝑉, 𝜔, 𝑃, and 𝑄 at the PCC. Assuming to have a 
dataset composed by 𝑁  samples of each quantity, the 
parameters estimation is obtained by solving the following 
nonlinear constrained optimization problem: 

 
 𝜃∗ = min = ∑ , + ,  (10)

subject to: 

 0 < 𝑇 ≤ 𝑇 ,  (11)

 0 < 𝑋 < 𝑋  (12)

 0 < 𝐻 ≤ 𝐻 ,  (13)

 0 ≤ 𝑆  (14)

 0 < 𝐷 (15)

 0 ≤ 𝑇 ≤ 1 (16)

 0 < 𝑋 (cos(𝛿 , ) − 𝐸′ , ) + 𝑋 𝐸 − 𝑋 cos(𝛿 , ) (17)

 0 ≤ 𝑋 (𝐸 , − 1) − 𝑋 𝐸 + 𝑋  (18)

 0 ≤ −𝑋 𝑇 + 𝐸 , sin 𝛿 ,  (19)
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In (10), 𝑃  and 𝑄  are the active and reactive power 𝑘 -
sample of measurements, and 𝑃 ,  and 𝑃 ,  are the active and 
reactive power obtained by simulating the microgrid EDM, 
given a value for the parameter set 𝜃. 

Constraints (11)-(16) are modeling assumptions. All 
parameters are indeed forced to be positive, since they are 
defined as positive quantities. Moreover, 𝑇  and 𝐻  are 
limited by maximum values. Constraints (17)-(19) are 
obtained by combining operating constraints with the steady-
state equations of system (1)-(3) (the apex ‘0’ indicates steady 
state values). The operational constraints are that the SM field 
voltage 𝐸  is large enough to obtain that 𝐸 > 0 , (SM  
working as generator), and that 0 < 𝛿 ≤ 𝛿 , , with 
𝛿 , ∈ (0,90) deg. 

Notice that constraints (11)-(16) are all linear with respect 
to the model parameters in 𝜃 . Whereas (17)-(19) are 
quadratic but they can be easily transformed into linear 
inequalities by replacing 𝑋  and 𝑋  with the auxiliary 
variables 𝛼 = 𝑋 /𝑋  and  𝛼 = 1/𝑋 .   

To initialize the optimization, an initial value of the model 
parameters should be indicated. This step is fundamental since 
the problem is highly nonlinear and non-convex. Thus, many 
local minima could exist, and a correct initialization is crucial 
to obtain an accurate estimation of the parameters. 
Initialization is carried out using all a priori information about 
the microgrid, such as the total nominal power of generators 
and loads. Once initialized, each parameter  𝜗  is associated to 
a percentage confidence interval  𝑡𝑜𝑙% , and the following 
constraint is added to the optimization problem: 

 
 𝜗 1 −

𝑡𝑜𝑙𝜗𝑖
%

 
≤ 𝜗 ≤ 𝜗 1 +

𝑡𝑜𝑙𝜗𝑖
%

 
. (20)

 The parameters identification is finally realized by 
solving problem (10)-(20), using a proper solver for nonlinear 
optimization. In this work, the “interior-point” method, 
implemented by the MATLAB function fmincon, is used. 

 

III. EXPERIMENTAL SETUP 

In this section, we first describe the test facility used to 
validate the equivalent modeling approach introduced in 
Section II, and then we detail the experimental scenarios.  

A. Test facility description 

The Test Facility (TF) owned by RSE is a LV microgrid 
designed to perform studies and experimental tests on 
distributed energy resources (DERs) and smart grids 
methodologies [15]. 

The network is composed of a MV/LV transformer (800 
kVA) and 6 LV feeders, that can be extended using line 
segments (100, 150, and 200 m length). The maximum 
generated power is 350kVA, plus a co-generated thermal 
power equal to 200kWth.  

The following generators are installed on the TF: different 
types of PV plant (total of 25kWp), a solar-thermal plant 
(10kW), a micro-wind generator (2kWp), a CHP with a gas 
synchronous generator (50 kW), and a Diesel generator 
(7kVA). Moreover, there are battery energy storage systems 
(BESSs) (Litium, SoNick, Vanadium Redox, Lead Acid), 
programmable loads (resistive, inductive and capacitive), and 
a 400V-100kW AC/DC interface with a DC grid. 

The following Fig. 3 shows the block diagram and the 
composition of the portion of the TF used in this study, and 
the three configurations adopted to generate the experimental 
datasets, which are detailed in the next subsection. 

 
Fig. 3. Diagram of the portion of Test Facitily used in this study. Dashed 
lines define the aggregate which is represented by the EDM for each 
configuration. 

B. Experimental scenarios 

Three classes of configurations have been considered: 

Configuration A: TF in islanded mode with perturbations 
determined by the AC/DC inverter: the portion of TF 
considered as the system to be identified is the one within the 
red box in Fig. 3, the PCC is the point of connection with the 
DC grid, who plays the role of external grid. The AC/DC 
inverter operates in “grid forming” mode [16] and imposes 
frequency and voltage.    

Configuration B: TF in islanded mode with load 
variations: the portion of TF considered as the system to be 
identified is the one within the green box in Fig. 3, the PCC is 
the point of connection with the DC grid. 

Configuration C: TF connected to the main grid: the 
portion of TF considered as the system to be identified is the 
one within the blue box in Fig. 3, the PCC is the point of 
connection with the main grid. 

In all the configurations, inverters can be voltage or 
current controlled and they can implement equivalent droops 
according to the following equations [14]: 

 
Δ𝑉 =

𝑥

√𝑟 + 𝑥
𝑘 Δ𝑃 +

𝑥

√𝑟 + 𝑥
𝑘 Δ𝑄 (21) 

 
Δ𝑓 =

𝑥

√𝑟 + 𝑥
𝑘 Δ𝑃 +

𝑟

√𝑟 + 𝑥
𝑘 Δ𝑄 (22) 

where 𝑟, 𝑥, 𝑘  ad 𝑘  are parameters that can be defined by the 
TF user. 

Table II reports the details of all experimental scenarios. For 
each scenario, a dataset of measurements has been collected 
using a PMU with sampling time 𝑇  = 0.02s. Fig. 4, Fig. 5, and 
Fig. 6 show three examples of datasets, one for each 
configuration. 

IV. RESULTS 

The identification algorithm described in Section II has 
been applied to the datasets collected in Scenarios 1-8. In all 
these cases, only the first half (in terms of time) of 
measurements has been used for the EDM parameters 
identification. Two possible initial values of parameters have 
been used to initialize the optimization: 
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 CHP out of service (Scenarios 1-2 and 5-8): the initial 
conditions for the nominal power 𝑆  of the SM is equal 
to zero with a null confidence interval (𝑡𝑜𝑙% = 0). This 
means that the generator dynamics has no weight in the 
power exchange, and parameters to be identified are those 
in 𝜃  and 𝜃 .  

 CHP in service (Scenarios 3-4): 𝑆  is initialized with 
50kVA, which is the nominal power of  the  CHP.  In  this 
 

TABLE II.  EXPERIMENTAL SCENARIOS 

Configuration A 

Scenario 1 Li* inverter Voltage controlled 

 Ld* inverter Current controlled 

 Virtual impedance (Li) 𝑟 = 3,   𝑥 = 3,  𝑘  = 1,  𝑘  = 5 

 CHP Out of service 

 Experiment duration 785s 
   

Scenario 2 Li inverter Voltage controlled 

 Ld inverter Current controlled 

 Virtual impedance (Li) 𝑟 = 3,   𝑥 = 0, 𝑘  = 1, 𝑘  = 5 

 CHP Out of service 

 Experiment duration 752s 
   

Scenario 3 Li inverter Voltage controlled 

 Ld inverter Current controlled 

 Virtual impedance (Li) 𝑟 = 2,   𝑥 = 5, 𝑘  = 1, 𝑘  = 5 

 CHP 30 kW 

 Experiment duration 1623s 

Configuration B 

Scenario 4 Li-Ld-DC inverters Voltage controlled 

 Virtual impedance (Li-Ld) 𝑟 = 3,   𝑥 = 3,  𝑘  = 1, 𝑘  = 5 

 Virtual impedance (DC) 𝑟 = 3,   𝑥 = 3,  𝑘  = 0.1, 𝑘  = 0.5 

 CHP 30 kW 

 Load 27 kW 

 Experiment duration 394s 
   

Scenario 5 Li-Ld-DC inverters Voltage controlled 

 Virtual impedance (Li-Ld) 𝑟 = 3,   𝑥 = 3,  𝑘  = 1, 𝑘  = 5 

 Virtual impedance (DC) 𝑟 = 3,   𝑥 = 3,  𝑘  = 0.1, 𝑘  = 0.5 

 CHP Out of service 

 Load 5 kW 

 Experiment duration 291s 
   

Scenario 6 Li-DC inverters Voltage controlled 

 Ld inverter Current controlled 

 Virtual impedance (Li-DC) 𝑟 = 3,   𝑥 = 0,  𝑘  = 0.1, 𝑘  = 0.5 

 CHP Out of service 

 Experiment duration 935s 
   

Scenario 7 Li-DC inverters Voltage controlled 

 Ld inverter Current controlled 

 Virtual impedance (Li-DC) 𝑟 = 3,   𝑥 = 3,  𝑘  = 0.1, 𝑘  = 0.5 

 CHP Out of service 

 Experiment duration 935s 
   

Scenario 8 Li-DC inverters Voltage controlled 

 Ld inverter Current controlled 

 Virtual impedance (Li-DC) 𝑟 = 2,   𝑥 = 5,  𝑘  = 0.1, 𝑘  = 0.5 

 CHP Out of service 

 Experiment duration 935s 

Configuration C 

Scenario 9 Li-Ld-DC inverters Voltage controlled 

 Virtual impedance (Li-Ld-DC) 𝑟 = 3,   𝑥 = 0,  𝑘  = 1, 𝑘  = 5 

 CHP 30kW 

 Load 45kW 

 Experiment duration 1623s 
   

Scenario 10 Li-Ld-DC inverters Voltage controlled 

 Virtual impedance (Li-Ld-DC) 𝑟 = 3,   𝑥 = 3,  𝑘  = 1, 𝑘  = 5 

 CHP 30kW 

 Load 45kW 

 Experiment duration 1326s 

*Li: Lithium battery, Ld: lead battery, DC: AC/DC inverter 

case, the confidence interval is zero since the information 
is exactly known. The mechanical torque 𝑇  is 0.6p.u. 
and null confidence interval, since in all the cases, the CHP 
generates 30kW. Finally, based on an estimate provided 
by RSE, the inertia time constant of the CHP is within the 
interval [0.27 0.5] s. Thus, 𝐻  is initialized with 0.38 s 
with 10% of confidence.  

To study the capability of the identification procedure to 
provide an estimate of the inertia time constant, a test on 
Scenario 4 has been carried out using an erroneous 
initialization of 𝐻 : 5 s with a 100% confidence interval. 

 
Fig. 4. Scenario 3 (Configuration A): measurements dataset 

 

Fig. 5. Scenario 4 (Configuration B): measurements dataset. 

 
Fig. 6. Scenario 10 (Configuration C): measurements dataset. 
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A. Parameters indentification results 

Table III and Table IV report the values of the parameters 
identified for scenarios 1-8. Table III is about the parameters 
of the static component of the model, which have been 
identified for all scenarios.  Table IV is about the parameters 
of the dynamic component of the model (i.e. SM model), 
which have been identified only for scenarios 3 and 4, where 
the CHP is in service. As above mentioned, for Scenario 4, an 
identification test has been carried out using an erroneous 
initialization of the inertia time constant 𝐻 . In the two tables, 
and hereafter in the paper, the results obtained with this 
erroneous initialization are indicated with “4e”.  

TABLE III.  IDENTIFIED VALUES OF THE PARAMETERS IN 𝜃  AND 𝜃  

Sc. 𝑷𝒁 𝑷𝑰 𝑷𝑷 𝑫𝑷 𝑸𝒁 𝑸𝑰 𝑸𝑷 𝑫𝑸 

1 3.31 -6.39 3.07 1.98 0.00 0.20 -0.20 -2.50 
2 0.00 0.30 -0.30 0.53 0.00 0.01 -0.01 -3.14 
3 0.30 -0.46 0.18 2.75 0.59 -0.88 0.32 -2.27 
4 0.09 0.35 -0.43 2.43 0.96 -1.44 0.51 -2.50 

4e 0.09 0.32 -0.43 2.43 0.98 -1.43 0.52 -2.49 
5 0.01 0.49 -0.49 1.98 0.01 0.42 -0.42 -3.14 
6 0.00 0.37 -0.38 0.61 0.30 -0.58 0.28 -2.29 
7 1.34 -2.40 1.06 1.44 0.00 0.27 -0.26 -1.95 
8 0.07 0.01 -0.09 1.84 0.17 0.03 -0.20 -1.37 

TABLE IV.  IDENTIFIED VALUES OF PARAMETERS IN 𝜃  

Sc. 𝑫 𝑻𝒅𝒔  𝑯𝒔 𝑺𝒔
𝐧𝐨𝐦 𝑻𝒎𝒔  𝑬𝒇  𝑿𝒔  𝑿𝒔  

3 5.01 0.81 0.25 0.05 0.6 2.13 2.60 0.19 
4 5.70 0.76 0.26 0.05 0.6 2.12 2.20 0.18 
4e 4.75 0.72 0.20 0.05 0.6 2.15 2.49 0.11 

 
Notice that the values of parameters of the SM identified 

within the different scenarios are very similar each other. This 
means that the identification algorithm can uniquely detect the 
dynamical behaviour of the CHP. However, it is worth 
remarking that values computed with the erroneous 
initialization are different with respect to the ones calculated 
with the correct initialization, despite they have the same order 
of magnitude. From the one hand, this is not surprising since 
the model is nonlinear, and a full identifiability cannot be 
obtained. On the other hand, this does not mean that the model 
is not able to accurately reproduce the network dynamics but 
that, in some scenarios, estimation of parameters cannot be 
precisely carried out. 

 

B.  Identification and validation results 

Fig. 7 and Fig. 8 show the results of identification and 
validation obtained in Scenario 3 and Scenario 5, respectively.  
The measured profiles of 𝑃 and 𝑄 are compared with the ones 
reproduced by the EDM. We recall that the first half (in terms 
of time) of the measurements is used in the identification 
procedure, whereas the rest is used for validation. Observing 
the figures, in both the scenarios, the EDM appears to be able 
to represent the microgrid dynamics with a good accuracy. 

Power profiles in Fig. 7 and Fig. 8 are provided as 
examples of identification and validation results. To quantify 
the accuracy of the EDM in representing the system dynamics, 
the following root mean square errors (RMSEs) are computed: 

 

𝜎 = ∑ 𝑃 − 𝑃 ,   𝜎 = ∑ 𝑄 − 𝑄  (23)
 

 
Fig. 7. Scenario 3 (Configuration A): indentification and validation results.  

 
Fig. 8. Scenario 5 (Configuration B): identification and validation results. 

where 𝑃  and 𝑄  are active and reactive powers measured at 
the sampling time 𝑘 , and 𝑃  and  𝑄  are the active and 
reactive powers reproduced by the EDM, respectively. 

The following Table V reports the RMSEs obtained in 
scenarios 1-8. Under the item “Identification”, we have the 
RMSEs obtained with the first time half of datasets; under the 
item “Validation”, we report the RMSEs obtained with the 
second time half of datasets, not used in the identification.  

TABLE V.  RMSES FOR IDENTIFICATION AND VALIDATION 

 Identification Validation 

Sc. 𝝈𝑷 [kW] 𝝈𝑸 [kvar] 𝝈𝑷 [kW] 𝝈𝑸 [kvar] 

1 0.388 0.437 0.510 0.352 
2 0.227 0.630 0.238 0.534 
3 0.290 0.210 0.295 0.223 
4 0.173 0.146 0.181 0.149 
4e 0.180 0.145 0.183 0.152 
5 0.101 0.079 0.125 0.078 
6 0.109 0.114 0.171 0.125 
7 0.162 0.141 0.169 0.126 
8 0.221 0.134 0.212 0.126 

 

 

In scenarios 3-8, RMSEs are always lower than 0.3 kW for 
𝑃 and 0.2 kvar for 𝑄. In scenarios 1-2 RMSEs are lower than 
0.5 kW for active power and 0.6 kvar for reactive power. This 
consideration holds true both for identification and validation. 
Since in all scenarios the order of magnitude of active and 
reactive power variations are in lower than 1 kW and kvar, 
errors can be considered to be sufficiently low, meaning that 
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the EDM is able to reproduce the microgrid active and reactive 
power responses with a good accuracy. 

Also note that the difference between the RMSEs obtained 
in identification and validation is lower than 0.1 kW / 0.1 kvar 
in scenarios 1-2 and of the order of centimes of kW and kvar 
in scenarios 3-8. Finally observe that RMSEs obtained in 
scenario 4 and 4e are very close each other. 

C. Cross-validation results 

In this final part of the analysis, we evaluate the 
consistency and the scalability of the proposed EDM. The two 
EDMs identified with the dataset of Scenario 4, with correct 
and incorrect initializations (models 4 and 4e) have been 
applied to the other scenarios where the CHP is in service, i.e. 
Scenario 3 and scenarios 9 and 10. Notice that in these two 
last cases, differently from all other scenarios, the TF is 
connected to the main grid (Configuration C). 

Fig. 8 shows an example of the obtained results in the case 
of model 4e applied to Scenario 10. Table VI reports the cross-
validation RMSEs. These values are not different, in terms of 
order of magnitude, from the ones obtained for identification 
and validation (see Table V). It is therefore possible to 
conclude that the EDM shows a good accuracy of 
representation and the approach is consistent and scalable.  

 
Fig. 9. Cross-validation results. Active and reactive power measured in 
Scenario 10 and reproduced with the EDM indentified with the dataset of 
Scenario 4 with erroneous initialization (EDM 4e). 

TABLE VI.  RMSES FOR CROSS-VALIDATION 

Scenario Model 𝝈𝑷 [kW] 𝝈𝑸 [kvar] 

3 4 0.290 0.210 
3 4e 0.290 0.211 
9 4 0.488 0.226 
9 4e 0.488 0.233 

10 4 0.359 0.236 
10 4e 0.356 0.235 

 

 

V. CONCLUSIONS 

This paper has presented the results of experimental tests 
carried out on a real LV microgrid, to validate an equivalent 
modelling and identification technique. The proposed model 
is nonlinear, and it is associated to a set of operational and 
modelling constraints. Model parameters are identified by 

applying a suitably developed procedure and using the real 
measurements of voltage, frequency and active and reactive 
power collected from the LV microgrid. Different 
configurations of the system have been considered.  

Results show that the proposed equivalent model is able to 
accurately reproduce the dynamic response of the microgrid 
to external disturbances, and that it can be adapted without 
difficulties to different configurations. The use of this Gray-
box approach allows the use of this EDM to be included in 
other simulation tools. 
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