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Abstract: Several regions in the High Arctic still lingered poorly explored for a variety of 
mineralization types because of harsh climate environments and remoteness. Inglefield Land is an 
ice-free region in northwest Greenland that contains copper-gold mineralization associated with 
hydrothermal alteration mineral assemblages. In this study, Landsat-8, Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER), and WorldView-3 multispectral remote 
sensing data were used for hydrothermal alteration mapping and mineral prospecting in the 
Inglefield Land at regional, local, and district scales. Directed principal components analysis 
(DPCA) technique was applied to map iron oxide/hydroxide, Al/Fe-OH, Mg-Fe-OH minerals, 
silicification (Si-OH), and SiO2 mineral groups using specialized band ratios of the multispectral 
datasets. For extracting reference spectra directly from the Landsat-8, ASTER, and WorldView-3 
(WV-3) images to generate fraction images of end-member minerals, the automated spectral 
hourglass (ASH) approach was implemented. Linear spectral unmixing (LSU) algorithm was 
thereafter used to produce a mineral map of fractional images. Furthermore, adaptive coherence 
estimator (ACE) algorithm was applied to visible and near-infrared and shortwave infrared (VINR 
+ SWIR) bands of ASTER using laboratory reflectance spectra extracted from the USGS spectral 
library for verifying the presence of mineral spectral signatures. Results indicate that the boundaries 
between the Franklinian sedimentary successions and the Etah metamorphic and meta-igneous 
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complex, the orthogneiss in the northeastern part of the Cu-Au mineralization belt adjacent to Dallas 
Bugt, and the southern part of the Cu-Au mineralization belt nearby Marshall Bugt show high 
content of iron oxides/hydroxides and Si-OH/SiO2 mineral groups, which warrant high potential 
for Cu-Au prospecting. A high spatial distribution of hematite/jarosite, chalcedony/opal, and 
chlorite/epidote/biotite were identified with the documented Cu-Au occurrences in central and 
southwestern sectors of the Cu-Au mineralization belt. The calculation of confusion matrix and 
Kappa Coefficient proved appropriate overall accuracy and good rate of agreement for alteration 
mineral mapping. This investigation accomplished the application of multispectral/multi-sensor 
satellite imagery as a valuable and economical tool for reconnaissance stages of systematic mineral 
exploration projects in remote and inaccessible metallogenic provinces around the world, 
particularly in the High Arctic regions. 

Keywords: Landsat-8; ASTER; WorldView-3; the Inglefield Mobile Belt (IMB); copper-gold 
mineralization; High Arctic regions 

 

1. Introduction 

The application of multispectral satellite imagery for mineral prospecting in remote and 
inaccessible metallogenic provinces is noteworthy for mining companies and the mineral exploration 
community for reconnaissance stages of systematic exploration projects. Many regions in the High 
Arctic remain poorly investigated for mineral exploration due to cold climate environments and 
remoteness, especially the northern part of Greenland containing Zn-Pb and Cu-Au mineralization 
[1–3]. The visible and near-infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) 
bands of multispectral remote sensing data contain unprecedented spectral and spatial capabilities 
for detecting hydrothermal alteration minerals and lithological units associated with a variety of ore 
mineralization [4–22]. Numerous investigations successfully used Landsat data series, Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and the Advanced Land Imager 
(ALI) multispectral data with moderate spatial resolution for the reconnaissance stages of mineral 
exploration around the world [23–29]. 

Landsat-8 carries two-sensors, including the Operational Land Imager (OLI) and the Thermal 
Infrared Sensor (TIRS). These two instruments collect data for nine visible, near-infrared, shortwave- 
infrared bands (from 0.433 to 2.290 μm) and two thermal-infrared bands (from 10.60 to 12.51 μm). 
The OLI bands have a 30 m spatial resolution, while the TIRS have a 100 m spatial resolution, which 
acquire in 185 km swaths and segmented into 185 × 180 km scenes. The data have a high signal to 
noise (SNR) radiometer performance, and 12-bit quantization of the data permits measurement of 
subtle variability in surface conditions [30,31]. High radiometric sensitivity in the TIR bands shows 
great potential for mapping exposed lithological units in polar regions through variation in 
temperature as felsic to mafic rocks show a modified response to solar heating due to different 
mineral compositions [31–33]. ASTER contains three VNIR bands from 0.52 to 0.86 μm with 15-m 
spatial resolution, six SWIR bands from 1.6 to 2.43 μm with 30-m spatial resolution, and five TIR 
bands from 8.0 to 14.0 μm with 90-m spatial resolution. Each scene of ASTER cuts 60 × 60 km2 [34]. 
Iron oxide/hydroxide, hydroxyl-bearing, and carbonate mineral groups can be detected using VNIR 
and SWIR bands of ASTER due to diagnostic spectral absorption features of transition elements (Fe2+, 
Fe3+ and REE) in the VNIR region and Al-OH, Mg-OH, Fe-OH, Si-OH, CO3, NH4, and SO4 groups in 
the SWIR region [35–37]. Discrimination of silicate lithological groups is feasible using TIR bands of 
ASTER due to different characteristics of the emissivity spectra derived from Si–O–Si stretching 
vibrations in the TIR region [18,38–41].  

The multispectral commercial WorldView-3 (WV-3) sensor contains the highest spatial, spectral 
and radiation in the VNIR (eight bands with 1.2 m spatial resolution) and SWIR (eight bands with 3.7 
m spatial resolution) portions among the multispectral satellite sensors, presently. WV-3 swath width 
is 13.2 km [42–45]. The VNIR and SWIR bands of WV-3 are worthy of particular attention for inclusive 
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research related to detailed mineral exploration at district scale, particularly for remote and 
inaccessible regions in the High Arctic where availability of field data is limited. Recently, some 
investigations successfully used the VNIR and SWIR bands of WV-3 for mineral exploration and 
mapping of hydrothermal alteration zones and lithologies [14,19,32,46–49]. These studies established 
the efficiency of spatial resolution of the WV-3 dataset and emphasized the high capability of the 
VNIR and SWIR spectral bands as a valuable multispectral remote sensing data for detailed 
geological mapping and hydrothermal alteration mineral detection at district scale (1:10,000). The 
integration of multispectral/multi-sensor satellite imagery contains great applicability as a cost-
effective tool compared to geophysical and geochemical techniques for mapping hydrothermal 
alteration minerals and lithological units at regional, local, and district scales in remote and 
inaccessible metallogenic provinces around the world.  

Inglefield Land is an ice-free region (78°N–79°N and 72°30′W–66°W) in northwest Greenland 
(Figure 1), which contains copper-gold mineralization hosted by garnet-sillimanite paragneiss, 
orthogneiss, and mafic-ultramafic rocks [1–3,50–52]. A few geological investigations were carried out 
in Inglefield Land by the Geological Survey of Denmark and Greenland (GEUS) during years 1994 
(an airborne geophysical survey) and 1995 (fieldwork geological mapping, mineralization studies, 
and a regional stream-sediment geochemical survey). A set of thematic maps with digital data in 
geographic information system (GIS) format were generated using the data acquired from these two 
field seasons [53,54]. From July to August 1999, fieldwork conducted in Inglefield Land by the GEUS 
(as part of a multidisciplinary Kane Basin 1999 project) was directed to the exploration of  several 
remarkable gold mineralizations in the northeastern part of the Inglefield Mobile Belt (IMB) [55,56]. 
Since there is no remote sensing study available for hydrothermal alteration mineral and lithological 
mapping in the northeastern IMB, this study represents the first investigation on multispectral/multi-
sensor satellite imagery for copper-gold prospecting in this region.  

 
Figure 1. Geological map of the Inglefield Land. Cu-Au mineralized belt in the northeastern part of 
Inglefield Land shown as a yellow color semi-transparent polygon (modified after [3,42]). 
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In this research, Landsat-8, ASTER, and WV-3 data were used for hydrothermal alteration and 
lithological mapping at regional, local, and district scales in the northeastern Inglefield Mobile Belt 
(IMB), Northwest Greenland (Figure 1). Mineralization in Inglefield Land is characterized by copper-
gold ore associated with hydrothermal alteration assemblages such as hematite, jarosite, biotite, 
sericite, chlorite, epidote, and quartz (silicification), which overprint the altered areas (rust zones) 
and wall-rocks [2,3]. Typical landscape in the Cu-Au mineralization belt (rust zones) is extensive 
gossan in hilly terrain and meter-sized pyrrhotite mounds covered by gossan [3]. Consequently, this 
research has three main purposes: (1) to map hydrothermal alteration minerals associated with 
copper-gold mineralization in the northeastern IMB using Landsat-8, ASTER, and WV-3 satellite 
imagery at regional, local, and district scales; (2) to implement specialized/standardized image 
processing algorithms to VNIR/SWIR/TIR bands of multispectral/multi-sensor satellite imagery that 
are amendable for mineral detection and analysis; and (3) to establish the applicability of 
multispectral/multi-sensor satellite imagery as a valuable and cost-effective approach compared to 
costly geophysical and geochemical techniques for mining companies and the mineral exploration 
community for reconnaissance stages of systematic exploration projects in remote and inaccessible 
metallogenic provinces, specifically in the High Arctic regions. 

2. Geological Setting of Inglefield Mobile Belt (IMB) 

The IMB in northwest Greenland (approximately 7000 km2) (Figure 1) forms the northern 
boundary of the Rae Craton and continues to the west across the Smith Sound into the Ellesmerian 
Belt in Canada [57,58]. It consists of quartzo-feldspathic gneisses, meta-igneous, and supracrustal 
rocks of the Palaeoproterozoic age [59–61]. The IMB is subdivided into two terranes by the E-W 
striking Sunrise Pynt Shear Zone, including (i) the Central Terrane and (ii) the Southern Terrane 
(Figure 1) [58]. The Central Terrane comprises of the Etah Group and Etah Meta-igneous Complex 
[57]. The Etah Group is characterized by paragneiss, marble, calc-silicate rocks, ultramafic rocks, 
amphiboloite, and quartzite [57–59]. The Etah Meta-igneous Complex consists of orthogneiss, 
tonalite, diorite, granodiorite and minor gabbro, monzogranite, and syenite [58]. 

The Southern Terrane is interpreted as the margin of the Rae Craton, where Paleoproterozoic 
sedimentation occurred probably in a passive margin setting [58]. In the Southern Terrane in Prudhoe 
Land, Paleoproterozoic rocks overly and intrude to Neoarchean rocks of the Rae Craton [58]. The 
Prudhoe Land Supracrustal Complex consists of garnet-mica schist, quartzite, marble, mafic 
granulite, and ultramafic rocks [55]. The IMB is unconformably overlain by an unmetamorphosed 
cover containing the successions of two sedimentary basins (Figure 1), including (i) the sedimentary–
igneous rocks of the Mesoproterozoic Thule Basin that also includes basaltic sills and (ii) the Lower 
Palaeozoic sedimentary rocks of the Franklinian Basin [56,62]. The Cambrian rocks of the Franklinian 
Basin only remained in the IMB [60,61]. 

The copper-gold mineralization is delimited within an NE-trending structural belt (~70 × 4 km) 
in the northeastern part of Inglefield Land (Figure 1). This crustal-scale structural belt consists of 
sulphide + graphite-bearing bands, hydrothermal alteration zones (including hematite, jarosite, 
biotite, chlorite, epidote, sericite assemblages, and silicification) and quartzo-feldspathic gneiss that 
named rust zones [1,2,63,64]. Sulfide mineralization typically comprises of pyrrhotite, pyrite, 
chalcopyrite, graphite, and cubanite that endured intense supergene alteration. Mylonitic or 
cataclastic textures were also reported locally in the rust zones. Gossans strike for several meters to 
up to 5 km in the mylonite and cataclasite [2,3]. Gold in several rock samples was assayed up to 12.5 
ppm Au and was characteristically associated with copper (up to 4 wt%) and enriched in Zn, Mo, Ni, 
Co, Ba, La, and Th [2,3]. 

3. Materials and Methods 

3.1. Satellite Remote Sensing Data and Characteristics 

Landsat-8, ASTER, and WV-3 data were used in this research for mapping and detection of 
hydrothermal alteration minerals and lithological units associated with copper-gold mineralization 
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in the northeastern IMB at regional, local, and district scales. Technical characteristics of the Landsat-
8, ASTER, and WV-3 sensors are shown in Table 1. Landsat-8 and ASTER data are successfully used 
in numerous mineral exploration projects around the world [6–12,15,16,27]. WV-3 is a high-spatial 
resolution commercial multispectral satellite sensor with eight VNIR (0.42 to 1.04 μm) and eight 
SWIR bands (1.2 to 2.33 μm), which was launched on 13 August 2014, by DigitalGlobe Incorporated 
from Vandenberg Air Force Base [43]. It provides high spatial resolution in panchromatic, VNIR, and 
SWIR with a nominal ground sample distance of 0.31 m, 1.24 m and 3.7 m, respectively (Table 1) 
(www.digitalglobe.com). Comparison between the spectral bands of WV-3 with Landsat-8 and 
ASTER emphasizes their priority and high potential for detailed mapping of alteration minerals in 
the VNIR and SWIR regions (Figure 2). Iron oxides/hydroxide minerals can be comprehensively 
mapped and discriminated by VNIR bands of WV-3 [14,19,47]. Additionally, SWIR bands of WV-3 
contain excellent capability for detailed mapping of Al-OH, Mg-Fe-OH, CO3, and Si-OH key 
hydrothermal alteration minerals [44,45,47,49]. 

Table 1. Technical characteristics of the Landsat-8, Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER), and WorldView-3 (WV-3) sensors [31,43,65]. 

Sensors Subsystem Band 
Number 

Spectral Range 
(μm) 

Ground 
Resolution (m) 

Swath 
Width(m) 

Landsat-
8 

VNIR 

1 0.433–0.453 

30 

185 

2 0.450–0.515 
3 0.525–0.600 
4 0.630–0.680 
5 0.845–0.885 

SWIR 
6 1.560–1.660 

15 7 2.100–2.300 
Pan 0.500–0.680 

TIR 
9 1.360–1.390 

100 10 10.30–11.30 
11 11.50–12.50 

ASTER 

VNIR 
1 0.520–0.600 

15 

60 

2 0.630–0.690 
3 0.780–0.860 

SWIR 

4 1.600–1.700 

30 

5 2.145–2.185 
6 2.185–2.225 
7 2.235–2.285 
8 2.295–2.365 
9 2.360–2430 

TIR 

10 8.125–8.475 

90 
11 8.475–8.825 
12 8.925–9.275 
13 10.25–10.95 
14 10.95–11.65 

WV3 VNIR 

Costal (1) 0.400–0.450 

1.24 13.1 

Blue (2) 0.450–0.510 
Green (3) 0.510–0.580 
Yellow (4) 0.585–0.625 

Red (5) 0.630–0.690 
Red edge (6) 0.705–0.745 
Near-IR1 (7) 0.770–0.895 
Near-IR2 (8) 0.860–1.040 
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SWIR 

SWIR-1 (9) 1.195–1.225 

3.70 

SWIR-1 (10) 1.550–1590 
SWIR-1 (11) 1.640–1.680 
SWIR-1 (12) 1.710–1.750 
SWIR-1 (13) 2.145–2.185 
SWIR-1 (14) 2.185–2.225 
SWIR-1 (15) 2.235–2.285 
SWIR-1 (16) 2.295–2.365 

 

Figure 2. Comparison of the spectral bands of WV-3 with Landsat-8 and ASTER in the visible and 
near-infrared (VNIR) and shortwave infrared (SWIR) regions [46]. 

In this study, two Landsat-8 scenes (LC80350032018233LGN00 and LC80350042018233LGN00) 
covering Inglefield Land were acquired from the U.S. Geological Survey Earth Resources 
Observation and Science Center (EROS) (https://earthexplorer.usgs.gov/). The data set attributes of 
these images are summarized as follows: acquisition date: 21 August 2018, collection category: T1 
(terrain corrected), Path/Raw: 035/003 and 035/004, scene cloud cover: 11.97% and 2.18%, sun 
elevation: 22.115 and 23.400 and sun azimuth: −158.241 and −163.695. An ASTER scene 
(AST_L1T_00307022003234340) covering the northeastern IMB was obtained from the EROS, USGS 
Global Visualization Viewer (GloVis) (https://glovis.usgs.gov/). It is a level 1T product which is 
cloud-free and it was acquired on 3 July 2003. The ASTER Level 1 Precision Terrain Corrected 
Registered At-Sensor Radiance (AST_L1T) data contains calibrated at-sensor radiance, which 
corresponds with the ASTER Level 1B (AST_L1B), that has been geometrically corrected, and rotated 
to a north up UTM projection (https://lpdaac.usgs.gov). Some WV-3 scenes were obtained by courtesy 
of the DigitalGlobe Foundation (www.digitalglobefoundation.org). The VNIR imagery (M2AS-
059185278010_01_P001) of the northeastern IMB was granted by the DigitalGlobe Foundation 
(Copyright 2019 DigitalGlobe, Inc., Longmont CO USA 80503-6493), which was cloud-free, standard 
level 2 A and acquired on 25 August 2018. The Level 2A standard WV-3 imagery product contains a 
uniform Ground Sample Distance (GSD), which is radiometrically corrected, sensor corrected, and 
geometrically projected to the Universal Transverse Mercator (UTM) with the World Geodetic 
System 84 (WGS-84) datum [66,67]. The Environment for Visualizing Images (ENVI) 
(http://www.exelisvis.com) version 5.2 and ArcGIS version 10.3 (Esri, Redlands, CA, USA) software 
packages were utilized for processing Landsat-8, ASTER, and WV-3 datasets.  

3.2. Pre-Processing of the Datasets 

The Landsat-8 images were pre-georeferenced to the UTM zone 19 and 20 North projection using 
the WGS84 datum. The ASTER and WV-3 images were also pre-georeferenced to UTM zone 19 North 
projection using the WGS-84 datum. Atmospheric correction is required to eradicate the impact of 
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atmospheric attenuation from remote sensing imagery and to re-scale the radiance at the sensor data 
to the surface reflectance data. The absolute radiometric correction and conversion to the top-of-
atmosphere (TOA) spectral radiance are required for the WV-3 relative radiometrically corrected 
images [66]. Hence, these corrections were applied to WV-3 VNIR data used in this study. Crosstalk 
correction [68] was applied to ASTER data and layer staked of VNIR + SWIR bands with 15-meter 
spatial dimensions was generated. The Fast Line-of-sight Atmospheric Analysis of Hypercubes 
(FLAASH) algorithm [69] were applied to the remote sensing datasets used in this research by 
implementing the sub-arctic summer (SAS) atmospheric and the Maritime aerosol models [70]. 
ASTER TIR (radiance at the sensor) data without atmospheric corrections were used in this analysis 
for retaining the original radiance signature. 

3.3. Image Processing Algorithms 

3.3.1. Directed Principal Components Analysis (DPCA) Technique 

The DPCA is a direct information extraction technique to analyze the principal component (PC) 
eigenvector loadings for selecting the most appropriate PC that focuses the most noteworthy 
information of interest [71–73]. The magnitude and sign of eigenvector loadings specify whether 
interesting information is characterized by a bright (positive loading) or a dark pixel (negative 
loading) in the DPCA image [74]. To map hydrothermal alteration mineral assemblages, including (i) 
hematite and jarosite (iron oxide/hydroxide group), (ii) biotite and sericite (Al/Fe-OH group), (iii) 
chlorite and epidote (Mg-Fe-OH group), and (iv) silicification (Si-OH group (opal/chalcedony) and/or 
SiO2 group) in the study area, some specialized band ratios were defined to be used as input datasets 
for running the DPCA. The variance due to similarities in the spectral responses of the interfering 
component and the component of interest appear in eigenvector loadings of similar signs on input 
band ratio images. The DPCA contains strong eigenvector loadings of different signs on the input 
band ratio images, showing a specific contribution of the component [73,74]. 

For mapping hydrothermal alteration minerals associated with rust zones in the copper-gold 
mineralization belt, spectral characteristics of hematite, jarosite, biotite, muscovite, chlorite, epidote, 
chalcedony (hydrous-silica), and opal (hyalite) were considered to identify using the DPCA 
technique. Figure 3A–C shows laboratory reflectance spectra of hematite, jarosite, biotite, muscovite, 
chlorite, epidote, chalcedony (hydrous-silica), and opal (hyalite) resampled to response functions of 
VNIR + SWIR bands of Landsat-8, ASTER, and WV-3, that were extracted from the USGS spectral 
library version 7.0 [75]. For mapping the alteration mineral groups using Landsat-8 spectral bands, 
several band ratio indices were adopted and developed [7,8,76]. Band ratio indices of 4/2 (all iron 
oxides), 6/4 (ferrous iron oxides), 6/5 (ferric oxides), and 6/7 (hydroxyl bearing alteration) can be 
allotted as significant indicators of Fe3+, Fe2+, Al/Fe-OH, Mg-Fe-OH, and Si-OH groups using Landsat-
8 spectral bands (see Figure 3A). Additionally, the normalized difference snow index (NDSI), Al-OH-
bearing alteration minerals index (Al-OH-MI) and thermal radiance lithology index (TRLI) were used 
for mapping snow/ice, cloud, water, alteration OH minerals, and land and lithologies [7]. For 
mapping iron oxide/hydroxide mineral groups using Landsat-8 bands, three band ratios were 
developed on the basis of the laboratory spectra of the minerals [77,78]. Hematite, jarosite, goethite, 
and limonite tend to have strong absorption features in 0.4 to 1.1 μm (absorption features of Fe3+ near 
0.45 to 0.90 μm and Fe2+ near 0.90 to 1.2 μm) [77,78] coincident with bands 2, 4, and 5 and high 
reflectance at 1.56 μm to 1.70 μm equivalent with band 6 (Figure 3A). As a result, bands 2, 4, 5, and 6 
of Landsat-8 can be used for detecting Fe3+/Fe2+ and Fe-OH iron oxides (4/2), ferrous iron oxides (6/4), 
and ferric oxides (6/5). Hydroxyl-bearing (Al-OH and Fe, Mg-OH) alteration has spectral absorption 
features in 2.1–2.4 μm and reflectance in 1.55–1.75 μm [35], corresponding band 7 (2.11–2.29 μm) and 
band 6 (1.57–1.65 μm) of Landsat-8 (Figure 3A), respectively. Therefore, band ratio of 6/7 can map 
hydroxyl bearing alteration. The DPCA was applied to the Landsat-8 band ratio indices (4/2, 6/4, 6/5, 
and 6/7) using a covariance matrix for obtaining the image eigenvectors and eigenvalues.  
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Figure 3. Laboratory reflectance spectra of hematite, jarosite, biotite, muscovite, chlorite, epidote, 
chalcedony (hydrous-silica), and opal (hyalite) resampled to response functions of VINR + SWIR 
bands of Landsat-8 (A), ASTER (B), and WV-3 (C) that were extracted from the USGS spectral library 
version 7.0 [75]. Cubes indicate the position of the VINR + SWIR bands of Landsat-8, ASTER, and 
WV-3 in the range of 0.4 μm to 2.5 μm.  
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Several band ratio indices were tested for mapping the alteration mineral groups using ASTER 
spectral bands (see Figure 3B). The band ratios of 2/1 and 4/2 were selected to map Fe3+/Fe2+ iron 
oxides; (5 + 7)/6 was adopted to detect Al/Fe-OH minerals; (7 + 9)/8 was assigned to identify Mg-Fe-
OH minerals [79]; and (6 + 8)/7 were developed to map Si-OH minerals, respectively. Bands 1 
(0.520–0.600 μm), 2 (0.630–0.690 μm) and 4 (1.600–1.700 μm) of ASTER cover the spectral absorption 
and reflectance features of iron oxide/hydroxide minerals. Thus, band ratios of 2/1 and 4/2 can be 
utilized for detecting Fe3+/Fe2+ iron oxides. Al-OH absorption features at 2.17 to 2.20 μm [35,77,78] 
are corresponded with bands 5 and 6, whereas Mg-Fe-OH absorption features are situated in 2.30 to 
2.35 μm [35,77,78] that are equivalent with bands 7 and 8 of ASTER (Figure 3B). Si-OH absorption 
features are mostly concentrated at 2.20 to 2.30 μm, which are coincident with bands 6 and 7 of 
ASTER (Figure 3B). Subsequently, relative absorption band depth (RBD) [80] of these bands can be 
used to map Al/Fe-OH ((5 + 7)/6), Mg-Fe-OH ((7 + 9)/8), and Si-OH ((6 + 8)/7) minerals. The DPCA 
was implemented to the band ratio indices (2/1, 4/2, (5 + 7)/6 and (7 + 9)/8) using a covariance matrix 
for the spatial selected subset covering the Cu-Au mineralization belt and surrounding areas. 
Furthermore, for mapping silica-rich rocks containing SiO2 group, Quartz Index (QI) = 11 × 11/10 × 
12, Carbonate Index (CI) = 13/14, and Mafic Index (MI) = 12/13 were selected [81] and applied to TIR 
bands of ASTER. These lithologic indices were defined by Ninomiya et al. [81] for discriminating 
quartz, carbonate, and mafic-ultramafic rocks, especially for mapping lithological units in arid and 
semi-arid regions. The DPCA was employed to these indices. Eigenvector matrix was calculated 
using a covariance matrix for the spatial selected subset covering the Cu-Au mineralization belt and 
surrounding areas.  

The VNIR spectral bands of WV-3 contain the high capability to map Fe3+ and Fe2+ iron oxides 
(gossan), ferric, and ferrous silicates. Considering the laboratory reflectance spectra of selected 
minerals (see Figure 3C), the band ratio indices of 4 + 2/3 to map Fe3+ iron oxides, 6 + 8/7 for identifying 
Fe2+ iron oxides, 3 + 5/4 to detect ferric silicates (chlorite/epidote), and 5 + 7/6 for enhancing ferrous 
silicates (biotite) were developed. These indices were used to implement the DPCA using a 
covariance matrix for the spatial selected subset covering the southern part of the Cu-Au 
mineralization belt. The DPCA statistical results were also calculated for the WV-3 band ratio indices. 

3.3.2. Linear Spectral Unmixing (LSU) 

The LSU is a sub-pixel image processing algorithm, which is utilized to define the relative 
abundance of materials that can be diagnosed within optical imagery based on the materials’ spectral 
properties [82–84]. The reflectance at each pixel of the image is presumed to be a linear combination 
of the reflectance of each material (or end-member) existing within the pixel. It is advocated in this 
algorithm that the pixel reflectance could be shown as a linear mixture of individual component 
reflectance multiplied by its relative fractions [85]. For extracting reference spectra directly from the 
Landsat-8, ASTER, and WV-3 images to generate fraction images of end-members using the LSU, the 
automated spectral hourglass (ASH) approach was implemented [86,87]. This approach contains the 
minimum noise fraction (MNF), the pixel purity index (PPI) and automatic end-member prediction 
from the n-Dimensional Visualizer to extract the most spectrally pure pixels (end-members) from the 
image [88,89]. Additionally, the continuum-removal process was performed to the extracted end-
members for isolating their spectral features [90]. Then, the end-members were compared with the 
USGS library reflectance spectra of target minerals, including hematite, jarosite, biotite, muscovite, 
chlorite, epidote, chalcedony (hydrous-silica), and opal (hyalite) (see Figure 3A–C). Umix unit-sum 
constrained was adjusted 1.0 for running the LSU algorithm. This weighted unit-sum constraint is 
then added to the system of simultaneous equations in the unmixing inversion process. Larger 
weights in relation to the variance of the data cause the unmixing to honor the unit-sum constraint 
more closely. To strictly honor the constraint, the weight should be many times the spectral variance 
of the data. It also permits proper unmixing of MNF transform data, with zero-mean bands [70]. For 
interactive stretching histogram, auto apply option was selected to have stretching or histogram 
changes applied to the images automatically. Rule image classifier tool was used for post 
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classification of the LSU rules images. Maximum value option was selected. Threshold value for 
classification of fraction images derived from the LSU algorithm was 0.750.  

3.3.3. Adaptive Coherence Estimator (ACE) 

The ACE is a target detection algorithm that carries out a partial unmixing approach to isolate 
feature of interest from the background and its input is a single score (abundance of the target) per 
pixel [91]. It is generated from the generalized likelihood ratio (GLR) approach, which is a 
homogenously most powerful invariant detection statistic [92,93]. The ACE is invariant to the relative 
scaling of input spectra and has a constant false alarm rate (CFAR) for such scaling [94]. 
Geometrically, it determines the squared cosine of the angle between a known target vector and a 
sample vector in a whitened coordinate space. The space is faded based on assessing the background 
statistics, which straightforwardly influences the presentation of the statistic as a target detector [95]. 
The standard formulation of the ACE detection statistic is defined as follows:  

T 1 2

T 1 T 1
[(t ) (x )]ACE(x)

[(t ) (t )][(x ) (x )]

−

− −

−μ Σ −μ=
−μ Σ −μ −μ Σ −μ

 (1) 

where t is a known target signature (reference spectra from a spectral library signature) and x is a 
data sample. The background is assumed to be a Gaussian distribution parametrized by u and ∑ 
which represent the mean and covariance, respectively. The ACE statistic is a number between zero 
and one, which can be interpreted as a measurement of the presence of t in x. The ACE can be 
estimated as the square of the cosine of the angle between x and t, in a coordinate space transformed 
by the background estimation. For example, if ACE produces 0.85, indicating a relatively strong 
presence of t in x. The key to effective ACE performance is accurate background estimation. 
Furthermore, the ACE does not need information about all the end-members within an image scene. 
In this study, the ACE algorithm was applied to VNIR + SWIR bands of ASTER covering the Cu-Au 
mineralization belt and surrounding areas. Laboratory reflectance spectra of hematite, jarosite, 
biotite, muscovite, chlorite, epidote, chalcedony (hydrous-silica), and opal (hyalite) extracted from 
USGS spectral library version 7.0 [75] were used for running the ACE algorithm. New covariance 
statistics were computed and subspace background was used. Background threshold was adjusted 
0.900. The results of ACE appear as a series of grayscale images, one for each selected end-member.  

4. Results  

4.1. Regional Lithological-Mineralogical Mapping in Inglefield Land Using Lansat-8 Data 

A regional view of the northwestern part of Greenland was generated using a mosaic of Landsat-
8 images (Figure 4). The NDSI, Al-OH-MI, and TRLI [7] were used for mapping snow/ice, cloud, 
water, land, and lithologies. The NDSI (B3 − B6/B3 + B6), Al-OH-MI (B6/B7) × (B7), and TRLI (B10/B11) 
× (B11) were assigned to Red-Green-Blue false-color composite, respectively (Figure 4). The ice/snow 
zones appear in magenta, red, and orange shades that correspond to the different snow/ice facies. 
Stratocumulus cloud coverage is represented as golden yellow especially in the east and northeastern 
parts (inland ice) of the mosaic image-map. Water is depicted in a dark blue color. The Inglefield 
Land and Washington Land in the west and northwestern parts of the scene appear in light blue and 
cyan shades. The shelf-platform carbonate of the Franklinian Basin in the Washington Land and 
northwestern parts of the Inglefield Land (adjacent to Smith Sound) typically contains cyan shade. 
The exposed lithologies, including the complex metamorphic rocks of the Central Terrane and the 
Southern Terrane and Mesoproterozoic sedimentary–igneous rocks of the Thule Basin manifest in a 
light blue tone (Figure 4). 
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Figure 4. A regional view of the northwestern part of Greenland generated using a mosaic of Landsat-
8 images as RGB false-color composite of the normalized difference snow index (NDSI), Al-OH-
bearing alteration minerals index (Al-OH-MI), and thermal radiance lithology index (TRLI). Yellow 
rectangle shows the location of the Cu-Au mineralization belt. 

Band ratio indices of B4/B2, B4/B6, and B6/B7 were assigned to the RGB false-color composite 
for mapping iron oxides/hydroxides, ferrous iron oxides, and hydroxyl bearing alteration zones in 
the IMB at the regional scale, respectively. Figure 5A shows the resultant image-map. Regarding the 
geology map of the IMB (see Figure 1), the sedimentary successions of the Franklinian Basin and 
Thule Supergroup appear typically in cyan, pink, orange, and rose blush. Carbonate and siliciclastic 
rocks are dominant lithological units in these two sedimentary basins, which are mostly represented 
as cyan color. It could be due to the fact that most of Al-OH, Mg-Fe-OH, CO3, and Si-OH mineral 
groups show high reflectance at 1.55–1.75 μm and strong absorption at 2.1–2.4 μm coincident with 
bands 6 and 7 of Landsat-8, respectively [7,76]. Pink, orange, and rose blush zones may contain 
dolomite (Fe2+ absorption at 0.9–1.2 μm; the equivalent of band 5 of Landsat-8) or iron 
oxides/hydroxides minerals. Basaltic sills in the Thule Basin are depicted in purple color (western 
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part of image-map) due to the high content of iron oxides/hydroxides minerals. Several golden yellow 
areas are recognizable at the boundaries between sedimentary successions and the Etah metamorphic 
complex rocks in the Central Terrane, which comprise Fe3+ and Fe2+ iron oxides/hydroxides. 
Paragneiss of the Etah Group manifests in magenta to tangerine tone in both the Southern and Central 
Terranes due to a strong amount of iron oxides/hydroxides, while Quaternary deposits appear as 
cyan color because of detrital clay minerals. Syenite of the Etah meta-igneous complex is 
characterized by brown color adjacent to the Sunrise Pynt Shear Zone. Orthogneiss in the western 
and northeastern parts of the IMB shows up in gray shade (Figure 5A). Syenite and orthogneiss 
probably contain a high amount of ferrous iron oxide minerals attributable to alteration products of 
primary mafic minerals such as biotite, hornblende, amphibole, and clinopyroxene (augite).  
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Figure 5. Landsat-8 image-maps of the IMB. (A) RGB false-color composite of B4/B2, B4/B6, and B6/B7 
band ratio indices covering the IMB. (B) Pseudocolor ramp of the DPCA3 rule image covering the 
IMB. (C) Pseudocolor ramp of the DPCA4 rule image covering the IMB. 
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Table 2 shows the eigenvector matrix of the Landsat-8 band ratio indices (4/2, 4/6, 6/5, and 6/7) 
derived from the DPCA for the selected subset covering the IMB. Analyzing the magnitude and sign 
of the eigenvector loadings derived from DPCA technique for the IMB selected subset scene (Table 
2) indicates the DPCA1 contains positive eigenvector loadings for all input band ratio indices. Thus, 
it does not have any unique contribution of input band ratio indices and the discrimination of 
alteration mineral groups is impossible. The DPCA2 has a strong negative contribution (−0.770751) 
for ferric oxides (B6/B5). However, it contains moderate loadings of other alteration mineral groups 
with the opposite sign (Table 2). Ferric oxides manifest as dark pixel in the DPCA2 image due to 
negative loading. The DPCA3 contains strong positive loadings of B4/B2 (0.686248) and B4/B6 
(0.714648) for iron oxides/hydroxides and ferrous iron oxides mineral groups, respectively (Table 2). 
However, the eigenvector loadings in the DPCA3 for ferric oxides (B6/B5) and hydroxyl bearing 
alteration (B6/B7) indices are weak and negative (−0.124892 and −0.052382). Therefore, the DPCA3 
image shows desired information related to Fe3+ and Fe2+ iron oxides/hydroxides as bright pixel. 
Figure 5B shows a pseudocolor ramp of the DPCA3 rule image. The high concentration of Fe3+/Fe2+ 
iron oxides/hydroxide minerals is observable in the boundaries between the Etah metamorphic 
complex rocks and sedimentary successions of the Franklinian Basin and Thule Supergroup in the 
Central Terrane. Moderate to low abundance of iron oxides/hydroxide minerals are associated with 
carbonate and siliciclastic rocks in both sedimentary basins. The southern part of the Cu-Au 
mineralization belt nearby Marshall Bugt contains high surface abundance of iron oxides/hydroxide 
minerals. The Etah group and meta-igneous complex rocks show moderate to low spatial distribution 
of iron oxides/hydroxide minerals. Some of the highly abundant iron oxides/hydroxide zones are 
located in Quaternary deposits and associated with Basaltic sills in the Thule Basin (Figure 5B). 

Table 2. Eigenvector matrix of the Landsat-8 band ratio indices derived from the directed principal 
components analysis (DPCA) for the Inglefield Mobile Belt (IMB) selected subset scene. 

Eigenvector B4/B2 B6/B4 B6/B5 B6/B7 
DPCA 1 0.412529 0.470934 0.624086 0.467501 
DPCA 2 0.459849 0.282028 −0.770751 0.339030 
DPCA 3 0.686248 0.714648 −0.124892 −0.052382 
DPCA 4 -0.383955 -0.433543 −0.029349 0.814713 

The Al-OH, Mg-Fe-OH, CO3 and Si-OH alteration mineral groups are mapped in the DPCA4 
image due to the great positive contribution of B6/B7 ratio index (0.814713) (Table 2). On the other 
hand, iron oxides/hydroxides (−0.383955), ferrous iron oxides (−0.433543), and ferric oxides 
(−0.029349) indices show moderate to weak eigenvector loadings with a negative sign in the DPCA4 
(Table 2). It is evident that the DPCA4 image shows the alteration OH mineral groups as bright pixels. 
A pseudocolor ramp of the DPCA4 rule image was generated (Figure 5C). High spatial distribution 
of the alteration OH mineral groups is mostly associated with carbonate and siliciclastic units of the 
Franklinian Basin and Thule Supergroup as well as Quaternary deposits in the Central Terrane. 
Moreover, orthogneiss of the Etah meta-igneous complex and marble, amphibolite, and calc-silicate 
rocks of the Etah group show a high surface abundance of alteration OH mineral groups. The central 
part of the Cu-Au mineralization belt contains a remarkable concentration of the alteration OH 
mineral groups, which might be related to amphibolite or alteration products of quartz diorite units. 
Paragneiss of the Etah Group includes low to moderate surface distribution of the alteration OH 
minerals.  

Figure 6A displays end-member spectra (n-D classes) extracted from the n-Dimensional analysis 
technique for a selected spatial subset of Landsat-8 covering the Cu-Au mineralization belt and 
surrounding areas. The n-D classes correspond to a set of unique pixels (a pure end-member), which 
are used to act as end-members for the LSU spectral mineral-mapping. Comparison of the extracted 
n-D classes with selected end-member reflectance spectra of the target minerals from the USGS 
spectral library (see Figure 3A) indicates that some of the n-D classes could be considered for the LSU 
spectral mineral-mapping. Some noticeable similarities between spectral signatures of the n-D classes 
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and the target minerals could be utilized for identifying iron oxide/hydroxide, clay mineral groups 
and ferrous silicates (biotite, chlorite and epidote). The n-D class #1 and n-D class #6 typically 
represent Al-OH/Si-OH absorption characteristics (Figure 6A). Muscovite, chalcedony, and opal 
show high reflectance in band 6 (1.560–1.660 μm) and strong absorption in band 7 (2.100–2.300 μm) 
of Landsat-8 (see Figure 3A). The n-D class #2 and n-D class #4 can be considered as snow/ice/cloud 
group because these classes show high reflectance in the visible wavelengths from 0.40 μm to 0.75 
μm (band 1 to band 4 of Landsat-8), lower reflectance in the near-infrared from 0.80 μm to 0.90 μm 
(band 5 of Landsat-8), and strong absorption in the short wave infrared from 1.57 μm to 1.78 μm 
(band 6 of Landsat-8) [96–98]. The n-D class #3 does not show any typical absorption features related 
to any geological materials and hydrothermal alteration minerals. The n-D class #5 contains some 
similar spectral signatures related to Mg-Fe-OH alteration minerals (ferrous silicates). Iron oxide 
(Fe+2/Fe+3) absorption features in bands 2 to 3 (0.50–0.60 μm) and bands 4 to 5 (0.70–0.90 μm) and Mg, 
Fe-OH absorption in bands 7 of Landsat-8 are recognizable for the n-D class #5 (Figure 6A). The n-D 
class #7 and n-D class #8 might be attributed to the iron oxide/hydroxide minerals because of Fe3+ and 
Fe-OH absorption features at 0.45 μm to 0.70 μm, 0.80-0.90 μm, and 2.20-2.30 μm coinciding with 
bands 2, 3, 4, 5, and 7 of Landsat-8.  
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Figure 6. (A) The n-D classes (end-member spectra) extracted for a selected spatial subset (Landsat-8) 
covering Cu-Au mineralization belt and surrounding areas. Landsat-8 band center positions are 
shown. (B) LSU mineral map produced from fraction images overlaid on band 5 of Landsat-8 for the 
selected spatial subset covering the Cu-Au mineralization belt and surrounding areas. 

Fraction images of the end-members resulted from the LSU algorithm manifest as a series of 
greyscale rule images (one for each extracted end-member). Considering the resultant fraction images 
and the n-D classes (extracted end-member spectra) for the Landsat-8 selected subset, it is evident 
that iron oxide/hydroxide minerals, clay minerals and ferrous silicates are main alteration mineral 
groups in the study area. For post-classification of the fraction images (excluding snow/ice/cloud 
group) the interactive density slicing tool was used to select colors for highlighting the high digital 
number (DN) value areas (bright pixels) in the grayscale rule images. The red color class was 
considered for iron oxide/hydroxide group, the green color class was selected for clay mineral groups, 
and the yellow color class was assigned for ferrous silicates, respectively. Figure 6B shows the LSU 
spectral mineral-map for the Landsat-8 selected subset covering the Cu-Au mineralization belt and 
surrounding areas. Iron oxide/hydroxide minerals (red pixels) are spectrally dominated in the image-
map, whereas clay minerals and ferrous silicates show less spatial distribution in the selected subset. 
Comparison to the geological map of the study zone, suggests that an iron oxide/hydroxide group is 
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typically concentrated in the southwestern part of the Cu-Au mineralization belt at the boundary 
between orthogneiss and paragneiss with the sedimentary succession of carbonate and basal 
siliciclastic rocks. However, an iron oxide/hydroxide group is also detected in the Franklinian Basin 
sedimentary succession (central north) and many other zones in orthogneiss and paragneiss of the 
Etah complex in the southwestern and southeastern parts of the scene (Figure 6B). The high surface 
abundance of clay minerals (green pixels) was mapped in orthogneiss, amphibolite, and quartz 
diorite units especially in the central part of the Cu-Au mineralization belt. Basal siliciclastic rocks of 
the Franklinian Basin show high concentrations of clay minerals in the central part of the scene. 
Ferrous silicates are lesser in the surface abundance and generally associated with an iron 
oxide/hydroxide mineral group (Figure 6B). 

4.2. Hydrothermal Alteration Mapping in the Northeastern IMB Using ASTER Data 

Analyzing the eigenvector matrix of the band ratio indices for mapping hydrothermal alteration 
minerals using VNIR + SWIR bands of ASTER (Table 3) shows that the DPCA technique detected the 
surface distribution of Fe3+/Fe2+ iron oxide/hydroxides, Al/Fe-OH, Mg-Fe-OH, and Si-OH minerals in 
some specific DPCA images with a strong contribution of the input band ratio components. Figure 
7A–E shows the pseudocolor ramp of the DPCA rule images covering the selected spatial subset of 
the Cu-Au mineralization belt and surrounding areas (similar size as the Landsat-8 LSU image-map).  

Table 3. Eigenvector matrix of the ASTER VNIR + SWIR band ratio indices derived from the DPCA 
for the selected subset covering the Cu-Au mineralization belt and surrounding areas. 

Eigenvector B2/B1 B4/B2 B5 + B7/B6 B7 + B9/B8 B6 + B8/B7 
DPCA 1 −0.219557 −0.347765 −0.900627 −0.123124 −0.067567 
DPCA 2 −0.547623 0.589087 −0.177962 −0.235635 −0.434915 
DPCA 3 0.263209 0.141891 −0.759215 0.418035 0.399283 
DPCA 4 −0.027870 −0.119071 0.531229 0.709489 −0.288482 
DPCA 5 −0.568874 0.044535 0.108190 0.314737 −0.750756 

The DPCA2 contains a strong contribution of Fe3+/Fe2+ iron oxide/hydroxides in the B2/B1 
(−0.547623) and B4/B2 (0.589087), while the contributions of Al/Fe-OH, Mg-Fe-OH, Si-OH minerals 
are weak to moderate with negative signs (−0.177962, −0.235635, and −0.434915, respectively) (Table 
3). Therefore, ferrous iron oxides (Fe+2) can be characterized as dark pixels due to the strong 
magnitude and negative sign of eigenvector loadings (−0.547623) in the DPCA2. Considering the 
eigenvector loadings in this DPCA (see Table 3), the contribution of other mineral groups as dark 
pixels, especially Si-OH minerals, is also feasible. These dark pixels were converted to bright pixels 
by multiplication to −1, and then a pseudocolor ramp of greyscale rule image was generated for the 
DPCA2. Figure 7A shows the resultant image-map of ferrous iron oxides (Fe+2) and silica-rich units. 
Referring to the geological map of the study area, high to moderate concentration of ferrous oxides/Si-
OH was mostly mapped in the sedimentary successions of the Franklinian Basin, which can be 
attributed to dolomite and basal siliciclastic rocks. In the Cu-Au mineralization belt, some small zones 
show a high to moderate spatial distribution of ferrous oxides/Si-OH components.   

In the DPCA2, ferric iron (Fe+3) oxide/hydroxides can be mapped explicitly as bright pixels due 
to strong and positive loadings of the B4/B2 (0.589087) (Table 3). Figure 7B shows the pseudocolor 
ramp of the DPCA2 for ferric iron components. High to moderate surface abundance of ferric iron 
components is typically detected at the contact of orthogneiss and paragneiss with the Franklinian 
sedimentary successions. However, high concentration of ferric iron was also mapped in association 
with orthogneiss and quartz diorite in the northeastern part of the selected subset near Dallas Bugt. 
Carbonate successions of the Franklinian Basin and paragneiss of the Etah Group generally show a 
moderate to high surface abundance of ferric iron in some parts of the selected subset (Figure 7B). 
Several small zones of high to moderate concentration of ferric iron were identified within the Cu-
Au mineralization belt, which can be considered as gossan zones (rust zones). The 4/2 band ratio of 
ASTER was documented as a reliable indicator for identifying gossan zones associated with massive 
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sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia and 
many porphyry copper deposits around the world [99,100]. 

 

Figure 7. Pseudocolor ramp of the ASTER (VNIR + SWIR) DPCA rule images covering the selected 
spatial subset of the Cu-Au mineralization belt and surrounding areas. (A) Ferrous iron oxides 
(Fe+2)/Si-OH image-map; (B) ferric iron (Fe+3) oxide/hydroxides image-map; (C) Al/Fe-OH minerals 
image-map; (D) Mg-Fe-OH minerals image-map; (E) Si-OH minerals image-map. 

Al/Fe-OH minerals can be robustly detected in the DPCA3 image as dark pixels due to a high 
negative contribution of the B5+B7/B6 (−0.759215) (Table 3). For inverting the dark pixels to bright 
pixels, the DPCA3 image was negated. The pseudocolor ramp of the DPCA3 is shown in Figure 7C. 
The high concentration of Al/Fe-OH minerals was only mapped in some small sites in the 
carbonate/siliciclastic units of the Franklinian Basin, Quaternary deposits, quartz diorite, and 
amphibolite of the Etah Group. The orthogneiss and paragneiss units show low to moderate 
distribution of Al/Fe-OH minerals. The central part of the Cu-Au mineralization belt contains 
moderate to high spatial distribution of the mineral groups, which is related to the quartz diorite and 
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amphibolite units (Figure 7C). The DPCA4 contains strong loadings of B7 + B9/B8 (0.709489) and B5 
+ B7/B6 (0.531229) with a positive sign (Table 3). Therefore, Mg-Fe-OH minerals can be mapped as 
bright pixels in the DPCA4 image. Although, this image might have some contribution of Al/Fe-OH 
minerals due to great and positive eigenvector loading of the B5 + B7/B6 component. Figure 7D shows 
a pseudocolor ramp of the DPCA4 image. High spatial distribution of Mg-Fe-OH minerals is typically 
concentrated in the Franklinian sedimentary successions and paragneiss units proximate to Marshall 
Bugt. However, the orthogneiss and quartz diorite units adjacent to Dallas Bugt also contain a strong 
surface abundance of the mineral groups. Few small locations inside the Cu-Au mineralization belt 
comprise high concentrations of Mg-Fe-OH minerals that are associated with rust zones (Figure7D). 

The B6 + B8/B7 component in the DPCA5 has strong weighting (−0.750756) with a negative sign, 
which can represent Si-OH minerals as dark pixels. Besides, the B2/B1 (ferrous iron oxides) shows 
high contribution (−0.568874) with a negative sign in the DPCA5 (Table 3). This image was negated 
for converting the dark pixels to bright pixels before applying pseudocolor ramp (Figure 7E). The 
resultant image-map shows spatial distribution of Si-OH minerals that may have some contribution 
of ferrous iron oxides. The high concentration of Si-OH minerals is characteristically mapped 
associated with quartz diorite and at the contact of orthogneiss and paragneiss with the Franklinian 
sedimentary successions. In the Cu-Au mineralization belt, the high concentration of Si-OH minerals 
was mapped in several localities associated with rust zones, especially in the southwestern part of 
the belt (Figure 7E). 

Table 4 shows the eigenvector matrix of the ASTER TIR band ratio indices, including Quartz 
Index (QI) = 11 × 11/10 × 12, Carbonate Index (CI) = 13/14, and Mafic Index (MI) = 12/13 [81], for the 
selected subset covering the Cu-Au mineralization belt and surrounding areas. Considering 
eigenvector loadings for mapping altered silica-rich rocks (containing SiO2 group), it is evident that 
the DPCA2 is able to detect altered silica-rich rocks as bright pixels because of the strong contribution 
of QI (0.792423) with a positive sign. The CI (−0.302209) and MI (−0.097008) components contain weak 
contributions with a negative sign in the DPCA2 (Table 4). Figure 8A shows a pseudocolor ramp of 
the DPCA2 for the QI component. High to moderate concentration of quartz content was mostly 
mapped at the contact of orthogneiss with the Franklinian Basin successions, orthogneiss, and quartz 
diorite units. The low surface abundance of quartz was recorded for paragneiss and amphibolite. 
Several zones containing intense concentration of quartz content were identified in the Cu-Au 
mineralization belt (Figure 8A).  

Table 4. Eigenvector matrix of the ASTER TIR band ratio indices derived from the DPCA for the 
selected subset covering the Cu-Au mineralization belt and surrounding areas. 

Eigenvector QI CI MI 
DPCA 1 −0.596505 −0.527385 −0.605018 
DPCA 2 0.792423 −0.302209 −0.097008 
DPCA 3 −0.106481 0.790280 −0.530590 

The DPCA3 shows strong loadings for the CI (0.790280) with a positive sign and the MI 
(−0.530590) with a negative sign, respectively (Table 4). Therefore, carbonate minerals can be detected 
as bright pixels and mafic minerals as dark pixels in the DPCA3 rule image. Figure 8B displays a 
pseudocolor ramp of the DPCA3 for the CI component. High to moderate concentration of carbonate 
minerals were identified in carbonate successions of the Franklinian Basin. The Etah meta-igneous 
complex (orthogneiss and quartz diorite) and the Etah Group (paragneiss and amphibolite) generally 
show a low to moderate surface abundance of carbonate minerals. The Cu-Au mineralization belt 
mostly locates in a low to moderate range of carbonate content zone (Figure 8B). Moreover, a 
pseudocolor ramp of the MI was generated using the negation of the DPCA3 rule image (Figure 8C). 
Quartz-rich zones (contact boundaries of sedimentary successions with metamorphic units) appear 
in a very low range of mafic content in the MI image-map (Figure 8C). Mafic minerals show high to 
moderate ranges in the entire image-map, which are mostly concentrated in the Franklinian Basin, 
paragneiss, and orthogneiss units (Figure 8C). 
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Figure 8. Pseudocolor ramp of the ASTER (TIR) DPCA rule images covering the selected spatial subset 
of the Cu-Au mineralization belt and surrounding areas. (A) Quartz Index (QI) image-map; (B) 
Carbonate Index (CI) image-map; (C) Mafic Index (MI) image-map. 

The end-member spectra (n-D classes) extracted from the n-Dimensional analysis technique for 
the ASTER selected spatial subset covering the Cu-Au mineralization belt and surrounding areas are 
shown in Figure 9A. The n-D classes were compared with the end-member spectra of target minerals 
from the USGS spectral library (see Figure 3B). Results indicate that some of the n-D classes contain 
recognizable features similar to the target minerals. The n-D class #1 has an identical spectral 
signature with chalcedony and opal (see Figures 3B and 9A). Strong absorption features in bands 7, 
8, and 9 could be attributed to Si-OH absorption characteristics. The n-D class #2 represents a 
combined spectral signature of jarosite and hematite due to Fe3+ (0.48 μm and 0.83–0.97 μm) and Fe-
OH (2.27 μm) absorption features [90], coinciding with bands 1, 2, 3, and 7 of ASTER. The n-D class 
#3 and n-D class #5 do not contain any prominent spectral signatures related to the alteration minerals 
and can be considered as an unaltered/unknown mineral group. Snow/ice spectral signatures are 
recognizable in the n-D class #4 and n-D class #10 (Figure 9A). Strong reflectance in the VNIR portion 
(0.520–860 μm; bands 1, 2 and 3 of ASTER) and low reflectance in the SWIR portion (1.60–2.430 μm; 
bands 4 to 9 of ASTER) specify the snow/ice spectral properties [96]. The n-D class #6 contains spectral 
characteristics close to chlorite and epidote, which shows a dominant Mg, Fe-OH absorption at 2.30–
2.35 μm [101] equivalent to bands 8 and 9 of ASTER. Biotite might be represented in the n-D class #7 
because of slight iron absorption and a major Mg, Fe-OH absorption (Figure 9A). The n-D class #8 
reveals mixed spectral features of hematite and jarosite. The n-D class #9 shows strong Al-OH spectral 
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absorption features at 2.20 μm [90], which is related to muscovite/kaolinite spectral signatures 
coinciding with band 6 of ASTER.  

Figure 9B shows the LSU classification mineral map derived from fraction images of end-
members (excluding snow/ice and unaltered/unknown groups) for the selected spatial subset 
covering the Cu-Au mineralization belt and surrounding areas. Results indicate that 
hematite/jarosite, muscovite/kaolinite, and biotite are spectrally strong, while chalcedony/opal and 
chlorite/epidote have a moderate contribution in total mixed spectral characteristics of the selected 
spatial subset. Comparison with the geological map of the study area (see Figure 1) suggests that 
muscovite/kaolinite is dominant in the Cu-Au mineralization belt, which is typically concentrated in 
the orthogneiss and amphibolite lithological units. In addition, a high surface abundance of biotite 
was mapped in both orthogneiss and paragneiss of the Etah meta-igneous complex and Etah group. 
The association of hematite/jarosite, chlorite/epidote, chalcedony/opal, and muscovite/kaolinite was 
identified in several parts of the central and southwestern sectors of the Cu-Au mineralization belt 
(Figure 9B), which are matched with the distribution of the main Cu-Au occurrences as documented 
by Pirajno et al. [2]. The Franklinian Basin sequences contain a high surface abundance of 
hematite/jarosite and chlorite/epidote and muscovite/kaolinite and a moderate to low surface 
abundance of chalcedony/opal and biotite. The high concentration of hematite/jarosite was mapped 
in the carbonate succession, while chlorite/epidote and muscovite/kaolinite were detected in the basal 
siliciclastic rocks. Chalcedony/opal is mostly concentrated at the contact between the Franklinian 
Basin sequences and Etah meta-igneous complex and Etah group. Low spatial distribution of biotite 
was detected in the basal siliciclastic rocks of the Franklinian Basin sequences (Figure 9B). 
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Figure 9. (A) The n-D classes (end-member spectra) extracted for a selected spatial subset (ASTER 
VNIR + SWIR) covering the Cu-Au mineralization belt and surrounding areas. ASTER band center 
positions are shown. (B) ASTER LSU classification mineral map for the selected spatial subset 
covering the Cu-Au mineralization belt and surrounding areas. 

4.3. Mapping Iron Oxide/Hydroxide Minerals in the Southern Part of the Cu-Au Mineralization Belt Using 
WV-3 Data 

A spatial selected subset of WV-3 imagery covering the southern part of the Cu-Au 
mineralization belt was considered (Figure 10) for mapping Fe3+ and Fe2+ iron oxides and ferric and 
ferrous silicates. Table 5 shows the eigenvector matrix of the WV-3 band ratio indices derived from 
the DPCA analysis, including B4 + B2/B3 (for mapping Fe3+ iron oxides), B6 + B8/B7 (for mapping Fe2+ 
iron oxides), B3 + B5/B4 (for mapping ferric silicates), and B5 + B7/B6 (for mapping ferrous silicates). 
The DPCA1 does not contain any specific contribution of band ratio indices with different signs (all 
of the eigenvector loadings are negative). Thus, this image-map contains spectral similarities and 
does not enhance any group of target minerals. The DPCA2 shows strong and positive eigenvector 
loading for mapping Fe3+ iron oxides (0.762743). However, the eigenvector loading for Fe2+ iron oxides 
(–0.369967) is weak and negative. The ferric (0.461865) and ferrous (0.262084) silicates have moderate 
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to weak contribution with positive signs in the DPCA2 image. Therefore, the DPCA2 image-map 
represents the Fe3+ iron oxides as bright pixels, which might contain a very low contribution of ferric 
and ferrous silicates. Figure 10A shows a pseudocolor ramp of the DPCA2 covering the southern part 
of the Cu-Au mineralization belt, which includes two Cu-Au mineralization occurrences that have 
been already documented by Pirajno et al. [2]. High to moderate concentration of Fe3+ iron oxides is 
mapped in the vicinity of Cu-Au mineralization occurrences (Figure 10A). Moreover, many other 
parts inside the Cu-Au mineralization belt show strong to moderate spatial distribution of Fe3+ iron 
oxides (Figure 10A), which could be considered as high potential zones for Cu-Au mineralization.  

 
Figure 10. Pseudocolor ramp of the WV3 (VNIR) DPCA rule images covering the selected spatial 
subset of the southern part of the Cu-Au mineralization belt. (A) Fe3+ iron oxides image-map; (B) Fe2+ 
iron oxides image-map; (C) ferric silicates image-map; (D) ferrous silicates image-map (WV-3 image, 
courtesy of the DigitalGlobe Foundation (www.digitalglobefoundation.org)). 
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Table 5. Eigenvector matrix of the WV-3 band ratio indices derived from the DPCA for the selected 
subset covering the southern part of Cu-Au mineralization belt. 

Eigenvector B4 + B2/B3 B6 + B8/B7 B3 + B5/B4 B5 + B7/B6 
DPCA 1 −0.155644 −0.927722 −0.174958 −0.290683 
DPCA 2 0.762743 −0.369967 0.461865 0.262084 
DPCA 3 0.049338 −0.949469 0.090503 0.396450 
DPCA 4 0.496839 −0.004738 −0.864801 0.072448 

The DPCA3 contains a significant contribution of Fe2+ iron oxides (–0.949469) and very low 
eigenvector loading of Fe3+ iron oxides (0.049338) and ferric silicates (0.090503), while a moderate 
contribution of ferrous silicates (0.396450) with a positive sign is present in this DPCA. Hence, the 
Fe2+ iron oxides will appear as dark pixels. The DPCA3 was negated (multiplication by −1) to generate 
the Fe2+ iron oxides as bright pixels. A pseudocolor ramp of the DPCA3 was generated to map Fe2+ 
iron oxides (Figure 10B). The high surface abundance of Fe2+ iron oxides was also detected proximate 
to the mineralization localities. For mapping ferrous silicates, a pseudocolor ramp was applied to the 
DPCA3 without negation (Figure 10C). Spatial distribution of ferrous silicates can be seen in many 
parts of the selected subset, especially in drainage systems and geological structures. However, a low 
concentration of the ferrous silicates is mapped close to the Cu-Au mineralization occurrences (Figure 
10C).  

The DPCA4 has a strong negative eigenvector loading of ferric silicates (−0.864801) and 
moderate positive contribution of Fe3+ iron oxides (0.496839), whereas eigenvector loadings for Fe2+ 
iron oxides (−0.004738) and ferrous silicates (0.072448) are meager. As a result, the ferric silicates will 
manifest as dark pixels in the DPCA4, which could be inverted to bright pixels by negation. The 
moderate contribution of Fe3+ iron oxides can affect the resultant map. Figure 10D shows a 
pseudocolor ramp for ferric silicates. In many parts, the surface abundance of ferric silicates is much 
stronger compared to ferrous silicates, especially adjacent to Cu-Au mineralization occurrences. The 
high concentration of ferric silicates shows a close spatial relationship with Fe3+ and Fe2+ iron oxides. 
The high to moderate surface abundance of ferric silicates was mapped nearby the Cu-Au 
mineralization localities in the selected subset (Figure 10D). 

End-member spectra (n-D classes) extracted from the n-Dimensional analysis technique for the 
WV-3 selected spatial subset of the southern part of the Cu-Au mineralization belt are presented in 
Figure 11A. Comparison with selected end-member reflectance spectra of the target minerals from 
the USGS spectral library (see Figure 3C) shows the presence of some n-D classes containing similar 
spectral characteristics with hematite, jarosite, ferric, and ferrous silicates. The n-D class #1, n-D class 
#3, n-D class #5, and n-D class #8 do not contain any particular spectral signature related to alteration 
minerals, which might be water/ice (snow/slush) or unknown geologic materials. The concentration 
of transition metal cations such as Fe3+ and Fe2+ can affect the intensities of absorption features [100]. 
Fe3+ produces absorption features near 0.45 to 0.90 μm, while broad absorption features near 0.90 to 
1.2 μm are related to Fe2+ [101]. The n-D class #2 has absorption features related to ferric iron (Fe3+), 
which corresponds with bands 5 (Red), 6 (Red edge), and 7 (Near-Infrared 1) of WV-3. It seems that 
this n-D class is related to ferric silicates. The n-D class #4 shows a similar spectral pattern with 
hematite (see Figures 3C and 11A). The n-D class #6 can be considered for jarosite. The n-D class #7 
can be attributed to the admixture of hematite and jarosite. Charge transfer absorption features 
between 0.48 to 0.72 μm and crystal-field absorption properties between 0.63 to 0.72 μm are 
documented for iron oxide/hydroxide minerals such as hematite, limonite, goethite, and jarosite [102–
104]. The n-D class #9 contains robust absorption features related to Fe2+, coinciding with bands 7 
(Near-Infrared 1) and 8 (Near-Infrared 2) of WV-3. Hence, it can be characterized by ferrous silicate.   

The LSU spectral mineral-map of the WV-3 spatial selected subset covering the southern part of 
the Cu-Au mineralization belt was generated using fraction images derived from the n-D classes 
contain end-member reflectance spectra of the target minerals. Figure 11B shows the resultant image-
map. In the vicinity of Cu-Au mineralization occurrences, high concentration of hematite, jarosite, 
and ferric silicates was identified. On the other hand, carbonates (calcite and dolomite) also appear 
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in association with ferric silicate, especially in the central and northwestern parts of the selected 
subset. Most of the ferrous silicates are detected in the drainage systems and geological structures. 
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Figure 11. (A) The n-D classes (end-member spectra) extracted for the WV-3 selected spatial subset 
covering the southern part of the Cu-Au mineralization belt. WV-3 band center positions are shown. 
(B) LSU mineral map produced from fraction images for the selected spatial subset covering the 
southern part of the Cu-Au mineralization belt (WV-3 image, courtesy of the DigitalGlobe Foundation 
(www.digitalglobefoundation.org)). 

4.4. ACE Analysis for Detecting End-Member Minerals Using VINR + SWIR Bands of ASTER 

For verifying the presence of mineral spectral signatures detected in the selected spatial subset 
covering the Cu-Au mineralization belt and surrounding areas, the ACE algorithm was applied to 
the VINR + SWIR bands of ASTER using laboratory reflectance spectra of hematite, jarosite, biotite, 
muscovite, chlorite, epidote, chalcedony (hydrous-silica), and opal (hyalite) extracted from the USGS 
spectral library [75]. Fraction images of the selected end-member were generated as a series of 
greyscale rule images using the ACE algorithm. To show the high fractional abundance (high DN 
value pixels) of the target minerals, a pseudo-color ramp of greyscale rule images was produced, one 
for each selected mineral (Figure 12). The ACE image-maps were visually compared with the LSU 
classification image-maps (see Figures 6B, 9B, 11B and 12). Results indicate that fractional abundances 
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of hematite, chlorite, epidote, chalcedony, and opal are high, whereas jarosite and biotite are low in 
the detected altered zones. Spatial distribution of muscovite is typically different from other target 
minerals in the identified altered zones and selected subset (Figure 12). However, some of the high 
abundance zones contain jarosite, chalcedony, and opal that are spatially matched with muscovite. 
Comparison of the DPCA image-maps and LSU classification image-map of ASTER (see Figures 7 
and 9B) with the ACE fraction images indicates a little spatial dissimilarity between the DPCA4 image 
(Figure 7D) for mapping Mg-Fe-OH minerals and fraction images of biotite, chlorite, and epidote 
(Figure 12). However, the LSU classification image-map (Figure 9B) shows a high spatial similarity 
with fraction images of hematite, jarosite, biotite, muscovite, chlorite, epidote, chalcedony, and opal.  
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Figure 12. Fraction images of the selected end-member minerals derived from the adaptive coherence 
estimator (ACE) algorithm for the selected spatial subset covering the Cu-Au mineralization belt and 
surrounding areas. Pseudo-color ramp was applied to greyscale rule images. 

4.5. Virtual Verification Assessment 

Confusion matrix (error matrix) and Kappa Coefficient [102–104] were calculated for the LSU 
classification image-maps derived from Landsat-8, ASTER, and WV-3 versus the ACE fraction 
images derived from VINR + SWIR bands of ASTER (Tables 6–8). In this analysis, the confusion 
matrix was assumed based on one-class per pixel classifications. The pixels were selected inside the 
altered zones with high digital number values. The spatial resolutions of the pixels were considered 
and resampled to a similar size to the ACE fraction images using a pixel aggregation (neighborhood 
averaging). Furthermore, highly dissimilar pixels were excluded using a standard deviation 
threshold. Finally, 160 pixels of Landsat-8, 300 pixels of ASTER, and 200 pixels of WV-3 were selected 
and analyzed, respectively (Tables 6–8). 
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Table 6. Confusion matrix for the LSU classification image-maps derived from Landsat-8 versus the 
ACE fraction images derived from VINR + SWIR bands of ASTER. 

LSU Classification  
Map Landsat-8 

Detected Pixel Spectra by the ACE Algorithm 
Iron Oxide/Hydroxides Clay Minerals Ferrous Silicates Totals User’s Accuracy 

Iron oxide/hydroxides 46 2 8 56 82% 
Clay minerals 2 48 4 54 88% 

Ferrous silicates 12 10 28 50 56% 
Totals 60 60 40 160  

Producer’s Accuracy 76% 80% 70%   
Overall accuracy = 76.25% Kappa Coefficient = 0.64  

Table 7. Confusion matrix for the LSU classification image-maps derived from ASTER versus the 
ACE fraction images derived from VINR + SWIR bands of ASTER. 

LSU Classification  
Map ASTER 

Detected Pixel Spectra by the ACE Algorithm 
Hematite/Jarosite Chlorite/Epidote Muscovite/Kaolinite Chalcedony/Opal Biotite Totals User’s Accuracy 

Hematite/jarosite 42 8 3 10 8 71 59% 
Chlorite/epidote 6 39 1 7 6 59 66% 

Muscovite/kaolinite 0 1 43 2 5 51 84% 
Chalcedony/opal 7 8 8 38 6 67 56% 

Biotite 5 4 5 3 35 52 67% 
Totals 60 60 60 60 60 300  

Producer’s Accuracy 70% 65% 71% 63% 58%   
Overall accuracy = 65.66%  Kappa Coefficient = 0.57  

Table 8. Confusion matrix for the LSU classification image-maps derived from WV-3 versus the ACE 
fraction images derived from VINR + SWIR bands of ASTER. 

LSU Classification  
Map WV-3 

Detected Pixel Spectra by the ACE Algorithm 
Hematite Jarosite Ferric Silictes Ferrous Silicates Totals User’s Accuracy 

Hematite 39 6 5 1 51 76% 
Jarosite 7 40 4 3 54 74% 

Ferric Silictes 3 4 38 9 54 70% 
Ferrous Silicates 1 0 3 37 41 90% 

Totals 50 50 50 50 200  
Producer’s Accuracy 78% 80% 76% 74%   

Overall accuracy = 77%  Kappa Coefficient = 0.69  

Table 6 shows confusion matrix for the LSU classification image-maps derived from Landsat-8 
versus the ACE fraction images derived from VINR + SWIR bands of ASTER. The overall accuracy 
and Kappa Coefficient are 76.25% and 0.64, respectively. Producer’s accuracy (omission error) 
indicates the probability of a reference pixel being correctly classified and user’s accuracy 
(commission error) shows the total number of correct pixels in a category, which is divided by a total 
number of pixels that were classified in the category [105,106]. The highest producer’s accuracy (80%) 
and user’s accuracy (88%) were achieved for the clay minerals class. However, the lowest producer’s 
accuracy (70%) and user’s accuracy (56%) were recorded for the ferrous silicates class. It shows that 
spectral mixing and confusion between the ferrous silicates and iron oxide/hydroxides classes is more 
feasible than the clay minerals class using Landsat-8 spectral bands. 

The overall accuracy of 65.66% and Kappa Coefficient of 0.57 were assessed for the LSU 
classification image-maps versus the ACE fraction images derived from VINR + SWIR bands of 
ASTER (Table 7). The muscovite/kaolinite class has the highest producer’s accuracy (71%) and user’s 
accuracy (84%). The biotite class shows the lowest producer’s accuracy (58%) and the 
chalcedony/opal class contains the lowest user’s accuracy (56%). So, the muscovite/kaolinite class 
pixels were strongly mapped compared to other mineral classes in this study. Spectral mixing has 
been recorded for pixels contain hematite/jarosite, chlorite/epidote, chalcedony/opal, and biotite 
mineral assemblages. Consequently, detecting the subtle spectral differences between alteration 
mineral classes are challenging and might have some confusion using ASTER data. Calculation of 
confusion matrix for LSU classification image-maps derived from WV-3 versus the ACE fraction 
images derived from VINR + SWIR bands of ASTER indicates the overall accuracy of 77% and Kappa 
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Coefficient of 0.69 (Table 8). Producer’s accuracy and user’s accuracy for ferrous silicates class pixels 
are 74% and 90%, respectively. The jarosite class pixels contain the highest producer’s accuracy (80%). 
The ferric silicates class pixels show the lowest user’s accuracy (70%). Results indicate some spectral 
mixing effects between mineral classes, but the overall accuracy (77%) and Kappa Coefficient (0.69) 
have a good potential for separating the classes using WV-3 VNIR spectral bands.  

5. Discussion  

Mineral exploration is very challenging in the Arctic regions due to cold and harsh environments 
and inaccessibility, especially in the northern part of Greenland that contains a variety of ore mineral 
resources [3,105]. Application of remote sensing satellite/airborne imagery for mineral identification, 
exploration, and prospecting in Greenland has been documented in the Sarfartoq carbonatite 
complex, southern West Greenland [106,107] and the Kap Simpson complex area, East Greenland 
[108] as well as the Franklinian Basin, North Greenland [8]. The Inglefield Mobile Belt (IMB), 
Northwest Greenland contains copper-gold mineralization hosted by garnet-sillimanite paragneiss, 
orthogneiss, and mafic-ultramafic rocks, which are confined in hydrothermal alteration zones (rust 
zones) [1–3]. In this study, the application of Landsat-8, ASTER, and WV-3 multispectral satellite 
remote sensing data were evaluated for mapping hydrothermal alteration minerals associated with 
Cu-Au mineralization in the IMB.   

Using ratio indices of Landsat-8 spectral bands (B4/B2, B4/B6, and B6/B7) discriminate a variety 
of sedimentary, metamorphic, and igneous lithological units at the regional scale based on different 
content of iron oxides/hydroxides, ferrous iron oxides, and hydroxyl minerals (see Figure 5A). The 
sedimentary successions of the Franklinian Basin and Thule Supergroup were mapped due to high 
amounts of Al-OH, Mg-Fe-OH, CO3, and Si-OH mineral groups related to carbonate and siliciclastic 
rocks and Fe2+ absorption that might be attributed to dolomitization. Basaltic sills of the Thule Basin, 
paragneiss of the Etah Group, and syenite and orthogneiss of the Etah meta-igneous complex were 
discriminated because of different surface abundance of Fe3+ and Fe2+ iron oxides/hydroxide minerals 
(see Figure 5A). Quaternary deposits were mapped owing to the high surface distribution of detrital 
clay minerals. The DPCA3 and DPCA4 images derived from Landsat-8 band ratio indices identified 
Fe3+/Fe2+ iron oxides/hydroxide minerals and Al-OH, Mg-Fe-OH, CO3, and Si-OH alteration mineral 
groups, respectively (see Figure 5B,C).  

In the DPCA3 image-map (Figure 5B), the boundaries between the Etah metamorphic complex 
rocks and sedimentary successions of the Franklinian Basin and Thule Supergroup in the Central 
Terrane, as well as the southern part of the Cu-Au mineralization belt nearby Marshall Bugt, show 
high surface abundance of iron oxide/hydroxide minerals. These locations are typically matched with 
the documented rust zones, which are identified as Cu-Au sulfide mineralization areas [1–3]. 
Furthermore, a high concentration of the OH-alteration mineral groups was mapped in the DPCA4 
image-map (see Figure 5C) that could be considered with some parts of the rust zones. The XRD 
analyses, as documented by Pirajno et al. [2] for mineralogy of rust zones indicate the presence of 
biotite, sericite, and chlorite. High spatial distribution of iron oxide/hydroxide minerals along the 
boundaries between the metamorphic complex rocks and sedimentary successions in the 
southwestern part of the Cu-Au mineralization belt was also detected in the LSU spectral mineral-
map of the Landsat-8 (see Figure 6B). Ferrous silicates (biotite, chlorite, and epidote) were typically 
mapped with iron oxide/hydroxide minerals, while clay minerals, detected in the central part of the 
Cu-Au mineralization belt, are mostly adjacent to the amphibolite and quartz diorite lithological units 
(see Figures 1 and 6B). 

Detailed maps of the spatial distribution of Fe3+/Fe2+ iron oxide/hydroxides, Al/Fe-OH, Mg-Fe-
OH, and Si-OH minerals in the Cu-Au mineralization belt and surrounding areas (see Figure 7) were 
generated by implementing the DPCA technique to ASTER band ratio components (B2/B1, B4/B2, B5 
+ B7/B6, B7 + B9/B8, and B6 + B8/B7). The DPCA2 mapped the Fe3+/Fe2+ iron oxide/hydroxide minerals, 
which are highly concentrated at the contact of metamorphic complex rocks with the Franklinian 
sedimentary successions and orthogneiss in the northeastern and southern parts of the Cu-Au 
mineralization belt (see Figure 7A,B). Numerous zones of high to moderate concentration of iron 
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oxide/hydroxide minerals were mapped inside the Cu-Au mineralization belt together with the rust 
zones. The occurrence of iron minerals such as rozenite, jarosite, cacoxenite, and jahnsite was 
reported in the Cu-Au mineralization belt as oxidation products of sulfide minerals associated with 
the rust zones [2]. The DPCA3 and DPCA4 images represented the spatial distribution of Al/Fe-OH 
and Mg-Fe-OH minerals, which show low abundances in the mineralization belt (Figure 7C,D). The 
DPCA5 detected Si-OH minerals and ferrous silicates, which are typically associated with quartz 
diorite and the contact between metamorphic complex rocks with the Franklinian sedimentary 
successions (Figure 7E). The high concentration of Si-OH minerals was mapped as associated with 
rust zones, particularly in the southwestern part of the mineralization belt. Pirajno et al. [2] 
documented the association of hydrolitic alteration assemblages (chlorite and biotite) and 
silicification that overprint the wallrocks and rust zones in the Cu-Au mineralization belt.  

The implementation of the DPCA to ASTER TIR band ratio indices (QI, CI, and MI) provided 
complementary information for mapping of altered, silica-rich rocks (containing SiO2 group), 
carbonates, and mafic minerals in the DPCA2 and DPCA3 (Figure 8A–C). The boundaries of 
orthogneiss with the Franklinian Basin successions and quartz diorite units show a high to moderate 
concentration of quartz content, which is matched with the DPCA5 derived from the ASTER VNIR + 
SWIR ratio indices (see Figure 7E). In the Cu-Au mineralization belt, several zones containing high 
concentration of quartz content were identified (see Figure 8A). Carbonate minerals were clearly 
detected in carbonate successions of the Franklinian Basin, while mafic minerals were mostly mapped 
in the paragneiss and orthogneiss units (see Figure 8A,B). Boundaries of sedimentary successions 
with metamorphic rocks show a very low range of carbonates and mafic minerals. According to 
Pirajno et al. [1,2] and Kolb et al. [3] Cu–Au mineralization in rust zones is restricted to the NE-
trending strip, which has a close spatial relationship with the contact of carbonate successions of the 
Franklinian Basin and the basement metamorphic rocks. 

Hematite/jarosite, muscovite/kaolinite, and biotite are spectrally dominated in the ASTER LSU 
classification mineral map (Figure 9A), whereas chalcedony/opal and chlorite/epidote have a 
moderate contribution in the total mixed spectral properties. The assemblage of hematite/jarosite, 
chlorite/epidote, chalcedony/opal, and muscovite/kaolinite was detected in many parts of the Cu-Au 
mineralization belt (Figure 9B), especially in the central and southwestern parts, where the main 
occurrences of Cu-Au mineralization were reported by Pirajno et al. [2]. Muscovite/kaolinite has a 
high surface abundance in the Cu-Au mineralization belt, which is typically concentrated in the 
orthogneiss and amphibolite lithological units. Chalcedony/opal is generally concentrated at the 
contact between the Franklinian Basin sequences and basement metamorphic complex (Figure 9B). 
The spatial distribution of the alteration minerals in the ASTER LSU classification image-map was 
comparable with ASTER DPCA image-maps, however, a detailed surface abundance of alteration 
minerals was more apparent in the LSU classification image-map (see Figures 7A–E and 9B).  

Fe3+ and Fe2+ iron oxides and ferric and ferrous silicates were comprehensively mapped in the 
southern part of the Cu-Au mineralization belt by applying DPCA to WV-3 band ratio indices (see 
Figure 10 and Table 5). High to moderate surface abundance of Fe3+ iron oxides was mapped near to 
Cu-Au mineralization occurrences (reported by Pirajno et al. [2]) in the DPCA2 image-map (Figure 
10A). Furthermore, ferric silicates and Fe2+ iron oxides were also mapped in the vicinity of Cu-Au 
mineralization occurrences, which are recorded in the DPCA3 and DPCA4 image-maps (Figure 10B–
D). A number of zones containing high to moderate spatial distribution of Fe3+ and Fe2+ iron oxides 
and ferric silicates are recorded as feasible Cu-Au mineralization occurrences. The LSU spectral 
mineral-map of the WV-3 shows spatial distribution of hematite, jarosite, ferric 
silicates/calcite/dolomite, and ferrous silicates (see Figure 11B). The high concentration of hematite, 
jarosite, and ferric silicates was mapped in the vicinity of Cu-Au mineralization occurrences, which 
is coincident with the DPCA image-map (see Figure 10). As stated by Pirajno et al. [2], the whole-rock 
XRD analyses of the rust zones have shown hydrous Fe sulfate and phosphate, jarosite, biotite, 
sericite, and chlorite, which are paralleled with the remote sensing results derived from WV-3 VNIR 
data. 
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The presence of hematite, jarosite, biotite, muscovite, chlorite, epidote, chalcedony, and opal in 
the selected spatial subset covering the Cu-Au mineralization belt and surrounding areas was 
verified using the ACE fraction images (see Figure 12). Hematite, chlorite, epidote, chalcedony, and 
opal show high surface abundances in the altered zones, while jarosite, biotite, and muscovite are 
lesser in the altered zones and they are mostly associated with specific lithological units in the study 
area. The DPCA image-maps of ASTER dataset show a little spatial dissimilarity with the ACE 
fraction images, especially in the DPCA4 image (Figures 7 and 12). High spatial similarity with 
fraction images was recorded in the LSU classification image-map (see Figure 9B). The overall 
accuracy and Kappa Coefficient calculated for the LSU classification image-maps derived from 
Landsat-8 versus the ACE fraction images derived from VINR + SWIR bands of ASTER were 76.25% 
and 0.64, respectively (see Table 6). The overall accuracy of 65.66% and Kappa Coefficient of 0.57 
were assessed for the ASTER LSU classification image-maps (see Table 7). Using ASTER datasets, 
muscovite/kaolinite was intensely mapped compared to hematite/jarosite, chlorite/epidote, 
chalcedony/opal, and biotite. On the other hand, spectral mixing for hematite/jarosite, 
chlorite/epidote, chalcedony/opal, and biotite was more feasible. 

The overall accuracy of 77% and Kappa Coefficient of 0.69 were calculated for the WV-3 LSU 
classification image-maps (see Table 8), which show a good potential for separating iron mineral 
classes. Subsequently, the virtual verification indicates that the alteration zones mapped by the 
Landsat-8, ASTER, and WV-3 datasets reveal a good rate of agreement (Kappa Coefficient of 0.57 to 
0.69) and reasonable accuracy (overall accuracy of 65.66% to 77%), which could be pondered for 
prospecting Cu-Au mineralization. As a result, the boundaries between the Etah metamorphic and 
meta-igneous complex and sedimentary successions of the Franklinian Basin in the Central Terrane, 
orthogneiss in the northeastern part of the Cu-Au mineralization belt adjacent to Dallas Bugt, as well 
as the southern part of the Cu-Au mineralization belt nearby Marshall Bugt, can be considered as 
high potential zones for Cu-Au prospecting in the IMB. 

6. Conclusions 

Landsat-8, ASTER, and WV-3 multispectral remote sensing datasets were processed, 
interpreted, and integrated for mapping hydrothermal alteration minerals and prospecting Cu-Au 
mineralization in the IMB, Northwest Greenland. Iron oxides/hydroxide minerals and Al-OH, Mg-
Fe-OH, CO3 and Si-OH/SiO2 alteration mineral groups were mapped by executing the DPCA, LSU, 
and ACE image processing techniques to the Landsat-8, ASTER, and WV-3 datasets. The 
discrimination of lithological units and the zones contain high concentration of iron oxides/hydroxide 
and clay minerals in the IMB were achieved using Landsat-8 data at the regional scale. The 
information extracted from Landsat-8 provides a synoptic view of alteration mineral zones in the IMB 
metallogenic province. Iron oxides/hydroxide minerals typically concentrated at the contact between 
sedimentary successions of the Franklinian Basin and Thule Supergroup with the Etah metamorphic 
and meta-igneous complex rocks. ASTER datasets helped to map the spatial distribution of Fe3+/Fe2+ 
iron oxide/hydroxides, Al/Fe-OH, Mg-Fe-OH, Si-OH/SiO2 mineral groups in the Cu-Au 
mineralization belt and surrounding areas, comprehensively. Fe3+/Fe2+ iron oxide/hydroxides and Si-
OH/SiO2 were also detected in the contact between sedimentary successions and metamorphic and 
meta-igneous rocks, orthogneiss, and quartz diorite. Intense concentration of iron oxide/hydroxides 
and Si-OH/SiO2 was identified within documented rust zones (Cu-Au mineralization).  

Furthermore, fraction abundance of hematite, jarosite, biotite, muscovite, chlorite, epidote, 
chalcedony, and opal was detected in the Cu-Au mineralization belt and surrounding areas using the 
VNIR + SWIR bands of ASTER. Hence, the rust zones contain the assemblage of hematite/jarosite, 
chalcedony/opal, and chlorite/epidote with little amount of muscovite/kaolinite. Using the WV-3 
dataset, Fe3+ and Fe2+ iron oxides and ferric and ferrous silicates were broadly mapped and 
discriminated in the southern part of the Cu-Au mineralization belt. High to moderate spatial 
distribution of Fe3+ and Fe2+ iron oxides and ferric silicates were detected in the rust zones. Strong 
fraction abundance of hematite, jarosite, and ferric silicates was also mapped in the rust zones. The 
virtual verification shows an appropriate overall accuracy and reasonable rate of agreement for 
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mapping alteration mineral zones using image processing techniques and remote sensing 
multispectral/multi-sensor satellite imagery. Consequently, high potential zones for Cu-Au 
prospecting were identified in the IMB, Northwest Greenland, including (i) the boundaries between 
the Etah metamorphic and meta-igneous complex rocks and sedimentary successions of the 
Franklinian Basin in the Central Terrane, (ii) orthogneiss in the northeastern part of the Cu-Au 
mineralization belt adjacent to Dallas Bugt, and (iii) the southern part of the Cu-Au mineralization 
belt nearby Marshall Bugt. It is recommended that these high prospective zones be considered for 
future comprehensive fieldwork and detailed geophysical and geochemical surveys in the IMB, 
Northwest Greenland. This investigation suggests the necessity of multispectral/multi-sensor 
satellite image processing analysis as a cost-effective tool for mining companies for reconnaissance 
stages of mineral prospecting before costly fieldwork, geophysical, and geochemical surveys in 
remote and inaccessible metallogenic provinces around the world. 
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