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1. Introduction

We investigate the notion of well-posedness of a Bayesian statistical inference. For a given conditional probability
distribution, we refer to well-posedness as a continuity property with respect to the conditioning variable. Indeed, we aim
at quantitative estimates of the discrepancy between two inferences in terms of the distance between the observations.
Our problem could be compared with the Bayesian sensitivity analysis by specifying that we are working under fixed
prior and statistical model, the imprecision being concerned only with the data.

Few general results are available on this topic, even if it naturally arises – sometimes as a technical tool – in connection
with different Bayesian procedures, such as consistency (Diaconis and Freedman, 1986), Ghosal and van der Vaart (2017,
Chapters 6–9), mixture approximations (West, 1979; Regazzini and Sazonov, 2001), deconvolution (Efron, 2016), inverse
problems (Stuart, 2010) and computability (Ackerman et al., 2017). While the pioneering paper (Zabell, 1979), essentially
inspired by foundational questions, dealt with the qualitative definition of continuity for conditional distributions, more
recent studies highlight the relevance of modulus of continuity estimates. We refer, for instance, to the well-posedness
theory developed in Stuart (2010) and to different results found in Dashti and Stuart (2017), Cotter et al. (2009), Iglesias
et al. (2014) and Latz (2019). Our contribution moves in the same direction.

In this work, we confine ourselves to dealing with the posterior distribution. We introduce two measurable spaces
(X, X ) and (Θ, T ), representing the space of the observations and the parameters, respectively. We further introduce a
probability measure π on (Θ, T ), the prior distribution, and a probability kernel ν(· | ·) : X ×Θ → [0, 1], called statistical
model. We assume that:
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• X is a metric space with distance dX and X coincides with the Borel σ -algebra on X;
• Θ is a Polish space and T coincides with its Borel σ -algebra;
• the model is dominated: ∀ θ ∈ Θ , ν(· | θ ) ≪ λ, for some σ -finite measure λ on (X, X ).

For any θ ∈ Θ , we consider a density f (· | θ ) of ν(· | θ ) w.r.t. λ and we put ρ(x) :=
∫

Θ
f (x | θ )π (dθ ), since (x, θ ) ↦→ f (x | θ )

proves to be X ⊗ T -measurable. See Kallenberg (2002, Chapter 5) for details. In this framework, the well-known Bayes
theorem provides an explicit form of the posterior distribution, namely

π (B | x) =

∫
B f (x | θ )π (dθ )

ρ(x)
for any B ∈ T and x such that ρ(x) > 0. Thus, the Bayes mapping x ↦→ π (· | x) can be seen as a measurable function from
{x ∈ X | ρ(x) > 0} into the space of all probability measures on (Θ, T ) endowed with the topology of weak convergence.
Our main task is to find sufficient conditions on π and f (· | ·) such that x ↦→ π (· | x) satisfies a uniform continuity condition
of the following form: given a modulus of continuity w : [0, +∞) → [0, +∞) and a set K ⊆ {x | ρ(x) > 0}, there exists
a constant Lw(K ) such that

dTV (π (· | x), π (· | y)) ≤ Lw(K )w(dX(x, y)) ∀ x, y ∈ K (1)

holds, where dTV (π1, π2) := supB∈T |π1(B) − π2(B)| denotes the total variation distance.
In order to motivate the study of a property like (1), let us briefly discuss some of its applications to Bayesian

inference. By itself, uniform continuity is of interest in the theory of regular conditional distributions (Tjur, 1980, Sections
9.6–9), Pfanzagl (1979). Indeed, a natural approximation of the posterior is

π x(B) :=

∫
B×Ux

f (y | θ )π (dθ )λ(dy)
/∫

Θ×Ux

f (y | θ )π (dθ )λ(dy) (B ∈ T )

where Ux stands for a suitable neighborhood of x. Thus, (1) would express the approximation error dTV (π (· | x), π x).
Anyway, the main applications are concerned with the theory of n exchangeable observations, where x = (x1, . . . , xn),
y = (y1, . . . , yn) and the model f (· | θ ) is in product form, by de Finetti’s representation theorem. The main advantage
of an estimate like (1) arises when dX(x, y) is re-expressed in terms of a sufficient statistic (e.g., the empirical measure),
so that the asymptotic behavior of the posterior for large n could be studied by resorting to the asymptotic behavior of
such statistic. We believe that uniform continuity would represent a new technique to prove asymptotic properties of the
posterior distribution, like Bayesian consistency. See Sections 3.2 and 3.5. Finally, uniform continuity would represent also
a powerful technical tool to solve the problem of approximating the posterior by mixtures, on the basis of a discretization
of the sample space. See Regazzini and Sazonov (2001) and, in particular, Proposition 2 therein, where an estimate like
(1) would allow to quantitatively determine how fine the discretization should be in order to achieve a desired degree of
approximation.

2. Continuous dependence on data

In the sequel, we refer to a modulus of continuity as a continuous strictly increasing function w : [0, +∞) → [0, +∞)
such that w(0) = 0, and we consider the space of w-continuous functions. In particular, we say that g : K ⊆ X → R
belongs to Cw(K ) if

|g|Cw (K ) := sup
x,y∈K
x̸=y

|g(y) − g(x)|
w(dX(x, y))

< +∞.

If w(r) = rα , α ∈ (0, 1], we get the class C0,α(K ) of Hölder continuous functions.

Theorem 2.1. In the same setting of Section 1, suppose that R(K ) := infK ρ > 0 is fulfilled for some K ⊆ X and that, for a
suitable modulus of continuity w, there holds

Aw,f ,π,K :=

∫
Θ

|f (· | θ )|Cw (K )π (dθ ) < +∞. (2)

Then, (1) is satisfied with Lw(K ) =
Aw,f ,π,K

R(K )
.

Proof. First of all, by assumption (2), and since ρ(x) =
∫

Θ
f (x | θ )π (dθ ), there holds

|ρ(y) − ρ(x)| ≤

∫
Θ

|f (y | θ ) − f (x | θ )| π (dθ ) ≤ Aw,f ,π,K w(dX(y, x)) (3)

for any x, y ∈ K , so that ρ ∈ Cw(K ). The dual formulation of the total variation (see, e.g., Gibbs and Su (2002)) reads

dTV (π (· | x), π (· | y)) =
1
2

sup
|ζ |≤1

(∫
Θ

ζ (θ )π (dθ | x) −

∫
Θ

ζ (θ )π (dθ | y)
)
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for any x, y ∈ X, the supremum being taken among all continuous functions ζ : Θ → R such that |ζ (θ )| ≤ 1 for any θ ∈ Θ .
For any such ζ , define Φζ (x) :=

∫
Θ

ζ (θ )π (dθ | x) and note that the Bayes formula entails ρ(x)Φζ (x) =
∫

Θ
ζ (θ )f (x | θ )π (dθ ).

We shall prove the w-continuity of the map x ↦→ Φζ (x) on K . First of all, this map satisfies |Φζ (x)| ≤ 1 for any x ∈ X
since |ζ (θ )| ≤ 1. Then, for x, y ∈ K , there holds

|ρ(y)Φζ (y) − ρ(x)Φζ (x)| =

⏐⏐⏐⏐∫
Θ

ζ (θ )(f (y | θ ) − f (x | θ ))π (dθ )
⏐⏐⏐⏐ ≤ Aw,f ,π,K w(dX(y, x)), (4)

yielding ρΦζ ∈ Cw(K ). Since ρ ≥ R(K ) > 0 on K , and |Φζ | ≤ 1, for any x, y ∈ K we get

R(K )|Φζ (y) − Φζ (x)| ≤ |ρ(y)Φζ (y) − ρ(y)Φζ (x)| ≤ |ρ(y)Φζ (y) − ρ(x)Φζ (x)| + |ρ(y) − ρ(x)|. (5)

For any x, y ∈ K such that x ̸= y, (3)–(5) entail

R(K )
|Φζ (y) − Φζ (x)|

w(dX(y, x))
≤

|ρ(y)Φζ (y) − ρ(x)Φζ (x)|
w(dX(y, x))

+
|ρ(y) − ρ(x)|
w(dX(y, x))

≤ 2Aw,f ,π,K .

The latter estimate being uniform with respect to ζ , we conclude that
dTV (π (· | y), π (· | x))

w(dX(y, x))
=

1
2

sup
|ζ |≤1

|Φζ (y) − Φζ (x)|
w(dX(y, x))

≤
Aw,f ,π,K

R(K )

holds for any x, y ∈ K such that x ̸= y, proving the theorem. □

Remark 2.2. If λ(X) < +∞, we can take K = X in Theorem 2.1. If R(X) > 0, we get w-continuity on the whole X for the
map x ↦→ π (· | x), w.r.t. dTV .

Some examples may also be treated within the following simple

Corollary 2.3. In the same framework of Theorem 2.1, take K ⊆ X such that (2) holds. In addition, suppose there exist
g : Θ → R and h : X → R such that g > 0 on Θ , infK h > 0 and f (x | θ ) ≥ g(θ )h(x) for any θ ∈ Θ and x ∈ K. Then, (1) is

satisfied with Lw(K ) = Aw,f ,π,K ·

[
inf
x∈K

h(x)
∫

Θ

g(θ )π (dθ )
]−1

.

Let us now consider the Euclidean case, letting X ⊆ Rd have nonempty interior and K ⊆ X be an open set with
Lipschitz boundary. Usually, a Sobolev regularity might be simpler to verify, the Hölder regularity following then by
Sobolev embedding. For instance, for p > d, by Morrey inequality there exists a constant C1,d,p(K ) such that |g|C0,α (K ) ≤

C1,d,p(K )|g|W1,p(K ) holds for any g ∈ W 1,p(K ), with α = 1− d/p and |g|W1,p(K ) := ∥∇g∥Lp(K ). More generally, if 1 > s > d/p,
the fractional Sobolev embedding (see, e.g., Demengel and Demengel (2012)) states that

|g|C0,α (K ) ≤ Cs,d,p(K )|g|W s,p(K ) (6)

holds with a suitable constant Cs,d,p(K ), α = s − d/p and

|g|W s,p(K ) :=

(∫
K

∫
K

|g(x) − g(y)|p

|x − y|d+sp dx dy
) 1

p

< +∞

for any g ∈ Lp(K ). We readily obtain the following

Corollary 2.4. In the same framework of Theorem 2.1, let d/p < s ≤ 1 and let K ⊆ X ⊆ Rd be an open set with Lipschitz
boundary. Let Bp,s,f ,π,K :=

∫
Θ

|f (· | θ )|W s,p(K )π (dθ ) < +∞ and R(K ) := infK ρ > 0. Then, for α = s − d/p and w(r) = rα , (1)

is satisfied with Lw(K ) =
Cs,d,p(K ) Bp,s,f ,π,K

R(K )
.

3. Examples and applications

3.1. Exponential models

A remarkably interesting statistical model is the exponential family, which includes many popular distributions, such as
the Gaussian, the exponential and the gamma. For terminology and basic results about this family, see, e.g., Brown (1986).
For the sake of definiteness, we consider a σ -finite reference measure λ on (X, X ) and a measurable map t : X → Rk such
that the interior ∆ of the convex hull of the support of λ ◦ t−1 is nonempty and Λ :=

{
y ∈ Rk

⏐⏐⏐ ∫
X ey·t(x)λ(dx) < +∞

}
is a nonempty open subset of Rk. As for f (· | θ ), we resort to the so-called canonical parametrization, by which Θ = Λ,
θ = y,

f (x | θ ) = eθ ·t(x)−M(θ ), M(θ ) := log
(∫

X
eθ ·t(x)λ(dx)

)
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and, for any θ ∈ Θ , f (· | θ ) is a probability density function w.r.t. λ. Now, given a prior π on (Θ, T ) and a set K compactly
contained in the interior of X, we observe that

R(K ) := inf
x∈K

ρ(x) ≥

∫
Θ

inf
x∈K

f (x | θ )π (dθ ) =

∫
Θ

einfx∈K θ ·t(x)e−M(θ ) π (dθ ),

where the last term is positive if t is continuous. On the other hand, we have∫
Θ

|f (· | θ )|Cw (K ) π (dθ ) ≤ |t|Cw (K )

∫
Θ

|θ |esupz∈t(K ) θ ·y e−M(θ ) π (dθ ).

Therefore, if we suppose t ∈ Cw(K ) and that the integral
∫

Θ
|θ |esupz∈t(K ) θ ·y e−M(θ ) π (dθ ) is finite, we can invoke Theorem 2.1

to obtain the w-continuity on K of the posterior distribution.
We finally notice that, in connection with an exponential model, it is natural to choose a conjugate prior, yielding an

explicit form of the posterior (Diaconis and Ylvisaker, 1979). Thus, the LHS of (1) can be directly computed, claiming a
fair comparison with the RHS. Actually, nothing seems lost at the level of the modulus of continuity, though our constant
Lw(K ) is usually sub-optimal. To illustrate this phenomenon, we can take f (x | θ ) = θe−θx, with x ∈ X = [0, +∞) and
θ ∈ Θ = (0, +∞). Chosen a conjugate prior like π (dθ ) = e−θdθ , we observe that (1) holds with K = [0,M], for any
M > 0, and w(r) = r . But our constant Lw(K ) behaves asymptotically like M2 for large M , whilst the optimal one remains
bounded as M grows.

3.2. Exponential models for n exchangeable observations

Here, we adapt the result of Section 3.1 to the n-observations setting, assuming exchangeability. In this case x =

(x1, . . . , xn) ∈ Xn and the statistical model is of the form (Xn, Θ) ∋ (x, θ ) ↦→ f (x | θ ) =
∏n

i=1 f̃ (xi | θ ) for some
density f̃ (· | ·) : X × Θ → R. If f̃ belongs to the exponential family considered in Section 3.1, we have

∏n
i=1 f̃ (xi | θ ) =

exp
{
θ ·

(∑n
i=1 t(xi)

)
− nM(θ )

}
. By Neyman’s factorization lemma, we rewrite the model as

f (x | θ ) = exp{τn(θ ) · t̄n(Xn(x)) − M̄n(τn(θ ))},

for suitable functions Xn : Xn
→ Xk, τn : Θ → Rk, t̄n : Xk

→ Rk, M̄n : Rk
→ R, with Xn symmetric and k standing for the

dimension of Θ . We can recast the statistical model by considering τn as the new parameter, and Xn as the observable.
Indeed, we introduce

g(X, τ ) = exp{τ · t̄n(X) − Q̄n(τ )} exp{Q̄n(τ ) − M̄n(τ )},

where eQ̄n(τ ) :=
∫
Xk eτ ·t̄n(Z)λ⊗k(dZ) and λ is the reference measure on X. Letting ϕn(τ ) := exp{Q̄n(τ ) − M̄n(τ )}, we have

g(X, τ ) = h(X | τ )ϕn(τ ), where h(· | τ ) is a probability density with respect to the product measure λ⊗k, parametrized by
τ ∈ Rk. Given a prior π on (Θ, T ), the posterior πn(dθ | x) reads∏n

i=1 f̃ (xi | θ )π (dθ )∫
Θ

∏n
i=1 f̃ (xi | t)π (dt)

=
h(Xn(x) | τn(θ ))ϕn(τn(θ ))π (dθ )∫
Θ
h(Xn(x) | τn(t))ϕn(τn(t))π (dt)

=
h(Xn(x) | τn(θ )) π̄n(dθ )∫
Θ
h(Xn(x) | τn(t)) π̄n(dt)

,

where π̄n(dθ ) :=
ϕn(τn(θ ))π (dθ )∫
Θ

ϕn(τn(t))π (dt)
, provided that the denominator is finite. Then, if Theorem 2.1 can be applied in terms

of the new model h and prior π̄n, the thesis (1) reads

dTV (πn(· | x), πn(· | y)) ≤ Lw(K )w(dXk (Xn(x), Xn(y))) ∀x, y ∈ K ,

where dXk denotes the product distance. We stress that a bound in terms of dXk (Xn(x), Xn(y)) is statistically more
meaningful than a bound in terms of dXn (x, y), as the former agrees with the symmetry assumption coming from
exchangeability.

3.3. Global regularity for models with X ⊂ Rd

When λ(X) < +∞, we can check whether Theorem 2.1 holds with K = X, yielding a global uniform continuity. We
discuss the case X ⊂ Rd with λ = L d, the d-dimensional Lebesgue measure, forcing X to be bounded. Many popular
models do not satisfy the assumptions of Theorem 2.1 with K = X, but only with some K compactly contained in the
interior of X. This is the case of Beta and Dirichlet models. On the other hand, a model that fits the assumptions of
Corollary 2.3 is the Bradford distribution, given by

f (x | θ ) :=
θ

(1 + θx) log(1 + θ )
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with x ∈ X := [0, 1] and θ ∈ Θ := (−1, +∞). Such a model is used for the description of the occurrences of references
in a set of documents on the same subject (Leimkuhler, 1967). Choosing

g(θ ) :=

⎧⎪⎪⎨⎪⎪⎩
θ

log(1 + θ )
if θ ∈ (−1, 0]

θ

(1 + θ ) log(1 + θ )
if θ ∈ (0, +∞) ,

Corollary 2.3 entails global Lipschitz-continuity, i.e. (1) with Lw(X) =

∫
Θ
C1(θ )π (dθ )∫

Θ
g(θ )π (dθ )

and w(r) = r , where C1(θ ) :=

supx∈X |∂xf (x | θ )|, provided that π satisfies
∫

Θ
C1(θ )π (dθ ) < +∞.

3.4. Infinite-dimensional models

One of the merits of our approach consists in the fact that we can handle also complex statistical models of non
parametric type. Two noteworthy examples in Bayesian analysis are the infinite dimensional exponential family and the
infinite mixture models. See Giné and Nickl (2016) for a comprehensive treatment.

As for the first model, keeping in mind the Karhunen–Loéve theorem (Kallenberg, 2002, Chapter 13), we confine

ourselves to considering densities of the form f (x | θ ) = eθ (x)
(∫ T

0 eθ (y)dy
)−1

with X = [0, T ], with a fixed T > 0
and Θ = C([0, T ];R). See also (Lenk, 1991). After fixing a prior π , we show how Theorem 2.1 can be applied. First,
we deal with the condition on the infimum of ρ with K = X. In fact, we have infx∈X f (x | θ ) ≥

1
T e

−rT (θ ), where
rT (θ ) := supx∈X θ (x) − infx∈X θ (x) denotes the range of the (random) trajectory θ . Whence,

R(X) ≥
1
T

∫
Θ

e−rT (θ )π (dθ ) =
1
T

∫
+∞

0
e−sFrT (s) ds > 0 ,

where FrT stands for the density of rT with respect to the Lebesgue measure. To check (2), we consider a Hölder condition
with exponent γ ∈ (0, 1). Thus, we note that |f (· | θ )|C0,γ (X) ≤

1
T e

rT (θ )|θ |C0,γ (X). By Hölder’s inequality, for p > 1 and
1
p +

1
q = 1, we write∫

Θ

|f (· | θ )|C0,γ (X) π (dθ ) ≤
1
T

(∫
Θ

|θ |
p
C0,γ ([0,T ])

π (dθ )
) 1

p
(∫

+∞

0
eqsFrT (s) ds

) 1
q

.

By the fractional Sobolev inequality (6), for s =
γ p+1

p we have∫
Θ

|θ |
p
C0,γ ([0,T ])

π (dθ ) ≤ Cp
s,1,p(X)

∫
Θ

∫ T

0

∫ T

0

|θ (x) − θ (y)|p

|x − y|1+sp dx dyπ (dθ )

= Cp
s,1,p(X)

∫ T

0

∫ T

0

1
|x − y|1+sp

(∫
R2

|u − v|
p hx,y(u, v) du dv

)
dx dy,

(7)

where hx,y is the two-times density of θ . Typically, the Kolmogorov–Chentsov condition (Kallenberg, 2002, Chapter 3)∫
R2

|u − v|
p hx,y(u, v) du dv ≤ Q (p, λ)|x − y|1+λ (8)

holds for some λ > 0 and some Q (p, λ) > 0. See, e.g., Kallenberg (2002). If (8) is verified for λ > sp − 1 = γ p, then the
last term of (7) is finite. Summing up, if there exists q > 1 such that Zq(rT ) :=

(∫
+∞

0 eqsFrT (s) ds
) 1

q < +∞, and if (8) holds
for some λ > 0 and p = q/(q − 1), then, as soon as γ < min{1 −

1
p ,

λ
p }, (1) holds with w(r) = rγ and

Aw,f ,π,X =
1
T
Cs,1,p(X) Zq(rT )

(
Q (p, λ)

∫ T

0

∫ T

0
|x − y|λ−γ p−1 dx dy

) 1
p

.

The case of π equal to the Wiener measure deserves some attention. Indeed, (8) is satisfied with λ = p/2 − 1 and
p > 2 (Kallenberg, 2002, Chapter 13). Moreover, we have (see Feller (1951))

FrT (s) =
8

√
2π

+∞∑
k=1

(−1)kk2 exp
{
−

k2s2

2T

}
,

yielding Zq(rT ) < +∞ for all q ∈ R. Therefore, we obtain Hölder continuity of the posterior distribution for any exponent
γ < 1

2 .
The second model of interest, namely the so-called infinite dimensional mixture model, is based on a family of densities

of the form f (x | θ ) =
∫
R κ(x; t)θ (dt), with X = R and Θ equal to the space of all probability measures P(R) on (R, B(R)).
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The kernel κ consists of a family of densities (in the x-variable) parametrized by t ∈ R. A noteworthy case of interest is
the Gaussian kernel κ(x; t) =

1
√
2π

exp{−
1
2 (x− t)2}. Now, after fixing a prior π of nonparametric type (e.g. the Ferguson–

Dirichlet prior), the application of Theorem 2.1 is straightforward. First, for kernels in the form κ(x; t) = κ(x−t), condition
(2) holds even independently of π , provided that supx∈R |κ ′(x)| < +∞. For the condition on R(K ), for some compact K ⊂ R,
it is enough to assume that infx∈K

∫
R κ(x; t)θ (dt) > 0, where θ (B) :=

∫
P(R) θ (B)π (dθ ), B ∈ B(R).

3.5. Application to Bayesian consistency

We have seen in Section 3.2 that, in presence of exchangeable observations, the posterior can be written as

πn(dθ | x) =

∏n
i=1 f̃ (xi | θ )∫

Θ

∏n
i=1 f̃ (xi | t)π (dt)

π (dθ ) =
exp{n

∫
X log f̃ (y | θ )exn(dy)}∫

Θ
exp{n

∫
X log f̃ (y | t)exn(dy)}π (dt)

π (dθ )

where x = (x1, . . . , xn) and exn(·) :=
1
n

∑n
i=1 δxi (·) denotes the empirical measure. In the theory of Bayesian consistency,

one fixes θ0 ∈ Θ and generates from ν(· | θ0) a sequence {ξi}i≥1 of i.i.d. random variables. The objective is to prove that
the posterior piles up near the true value θ0, i.e. d

(
π (· | ξ1, . . . , ξn), δθ0

)
→ 0 in probability, for some weak distance d

(e.g., Prokhorov or bounded-Lipschitz metric (Gibbs and Su, 2002)) between probability measures on (Θ, T ), possibly
with an estimation of the convergence rate. To establish a link with our theory, we introduce the probability kernel

π∗

n (dθ | µ) :=
exp{n

∫
X log f̃ (y | θ )µ(dy) − Mn(θ )}∫

Θ
exp{n

∫
X log f̃ (y | t)µ(dy) − Mn(t)}π (dt)

eMn(θ )−Mnπ (dθ )

where µ ∈ M, a subset of probability measures containing in its closure both ν(· | θ0) and e
(ξ1,...,ξn)
n (·), with

Mn(θ ) := log
{∫

M
exp{n

∫
X
log f̃ (y | θ )µ(dy)}η(dµ)

}
for some measure η on M, and Mn := log

{∫
Θ
eMn(θ )π (dθ )

}
. In this notation, πn(dθ | x) = π∗

n (dθ | exn). Whence,

d
(
π (· | ξ1, . . . , ξn), δθ0

)
≤ d

(
π∗

n (· | ν(· | θ0)), δθ0

)
+ d

(
π∗

n (· | e(ξ1,...,ξn)
n ), π∗

n (· | ν(· | θ0))
)

.

As for the first term on the RHS, convergence to zero is well-known with explicit rates, as a consequence of the so-called
Kullback–Leibler property (Ghosal and van der Vaart, 2017, Definition 6.15). The second term on the RHS can be studied
under expectation, by splitting it as follows:

Eθ0

[
d
(
π∗

n (· | en), π∗

n (· | ν(· | θ0))
)
1En

]
+ Eθ0

[
d
(
π∗

n (· | en), π∗

n (· | ν(· | θ0))
)
1Ecn

]
(9)

with En := {D(e(ξ1,...,ξn)
n , ν(· | θ0)) ≤ ϵn}, where {ϵn}n≥1 is a vanishing sequence of positive numbers and D a weak distance

(e.g., Prokhorov or bounded-Lipschitz metric (Gibbs and Su, 2002)) between probability measures on (X, X ). If the
distance d is bounded, the second term in (9) is handled in terms of Pθ0 [D(en, ν(· | θ0)) > ϵn], and hence resorting to well-
known large deviations inequalities for empirical processes (Kallenberg, 2002, Chapter 27). Finally, if d ≤ dTV (see Gibbs
and Su (2002)), we can study the first term in (9) by applying Theorem 2.1, with K = {µ ∈ M | D(µ, ν(· | θ0)) ≤ ϵn} and
w(r) = rα for some α ∈ (0, 1]. The role of the local Hölder continuity is now functional to reducing the analysis of the
first term in (9) to that of Eθ0

[
D(e(ξ1,...,ξn)

n , ν(· | θ0))α
]
, whose rates of contraction are well-known (Fournier and Guillin,

2015).
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