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Abstract—Cellular connectivity for a massive number of Un-
manned Aerial Vehicles (UAVs) will overcrowd the radio spec-
trum and cause spectrum scarcity. Incorporating Cognitive Radio
(CR) with UAVs (Cognitive-UAV-Radios) has been proposed to
overcome such an issue. However, the broadcasting nature of CR
and the dominant line-of-sight links of UAV makes the Cognitive-
UAV-Radios susceptible to jamming attacks. In this paper, we
propose a framework to detect smart jammer, which locates
and attacks the UAV commands with low Jamming-to-Signal-
Power-Ratio (JSR). Smart jammer is more challenging than
the types of jammers that always require high power values.
Our work focuses on learning a Dynamic Bayesian Network
(DBN) to model and analyze the signals’ behaviour statistically.
A Markov Jump Particle Filter (MJPF) is employed to perform
predictions and consequently detect jamming signals. The results
are satisfactory in terms of detection probability and false alarm
rate that outperform the conventional Energy Detector approach.

Index Terms—UAV, CR, DBN, LTE, JAMMER

I. INTRODUCTION

Telecommunication researchers are focusing on Unmanned
Aerial Vehicles (UAVs) due to their attractive features such as
dynamic deployment ability, high mobility and availability of
Line-of-Sight (LoS) links facilitating wireless broadcast and
supporting high data rate transmissions [1]. UAVs are already
being studied for 4G LTE (Long Term Evolution) [2] and they
are expected to play an important role in the upcoming 5G
technology as mentioned in [3]. UAVs can be used as Flying
Base Stations for improving reliability, coverage and capacity
of wireless networks or as Aerial Users by connecting them
to a cellular system [4]. According to the Federal Aviation
Administration (FAA) report, the fleet of connected UAVs
will be more than doubled from an estimated 1.1 million in
2017 to 2.4 million units by 2022 [5]. This huge number of
connected UAVs will overcrowd the spectrum bands and lead
to spectrum scarcity. Incorporation of Cognitive Radio (CR)
and UAVs, which we refer to as the Cognitive-UAV-Radios
has been proposed to mitigate the spectrum scarcity problem
[6], [7].

CR can sense, learn and adapt to the environmental mod-
ifications by optimizing its operating parameters based on
observations and previous experiences. However, due to the
radio propagation and broadcasting nature, CRs are vulnerable
to jamming attacks [8]. Moreover, the situation could be worse

in CRs, where a smart jammer with cognitive abilities can es-
timate system parameters and manipulate radio spectrum, thus
forcing CR to learn wrong behaviours and take non-optimal
actions, consequently. In addition, due to the dominant LoS
communication links, UAVs are more vulnerable to terrestrial
jammers [9].

Several researchers investigated the problem of jamming
attacks on CRs and UAV communications [8], [10]–[12].
Accurate and timely detection of anomalies (e.g. jammer
attacks) is the first essential step to protect the Cognitive-UAV-
Radios effectively. Anomaly detection has been addressed
in several works through a machine learning data-driven
approach [13]–[16]. Authors in [13] proposed an unsupervised
anomaly detection method for the CR using long-short-term
memory mixture density networks applied to time series data
by considering only the In-Phase (I) components of digital
radio transmissions. However, discarding the Quadrature (Q)
components will impose some limitations on analysing how
the signal dynamics are changing with time at both I and Q
channels and causes confusion in identifying some samples
(e.g. two samples might have the same I with different Q
values). The work proposed in [14] uses an adversarial auto-
encoder relying on features (as power spectral density, signal
bandwidth and center frequency) which require an additional
effort to be extracted and could be inconvenient in the UAV
scenario. The methods proposed in [15], [16] are based on
video frame predictor and Convolutional Neural Networks
(CNN), respectively; this requires the generation of video
frames and waveforms images that can be unfeasible at the
UAV level, because of the battery and power consumption
limitations.

CR can detect, classify and predict efficiently after it has
achieved a certain degree of Self-Awareness (SA) (includes
spectrum awareness) [17]. A basic SA module should include
the following abilities: i) autonomous learning Generative
Models by simultaneously observing CR states and related
environmental changes; ii) deciding whether communications
between the device itself and other devices are occurring
according to a pre-learned normal behaviour (Abnormality
Detection); iii) applying Abnormality Mitigation strate-
gies or Incrementally learning new models that describe
different dynamic situations not included in pre-learned ex-
periences; iv) learning Interactive Models of the causality
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Fig. 1. Illustration of the system model

and interactions between different users (e.g. cognitive device
and jammer) or between multiple signals received by the
cognitive user (e.g. LTE and GPS signals). Introducing SA
to CR systems enhances the physical layer security through
radio spectrum anomalies detection and decision-action pro-
cess improvement.

This paper will focus on the first two functionalities of the
SA module. Like in [18], a jammer detection framework is
proposed based on learning Generative Models as Dynamic
Bayesian Network (DBN). Our proposed approach differs
from [18], since 1) it investigates a new scenario based on
the integration of CR and UAV communications; 2) it copes
with more complex attacks by considering smart jammers
dynamically injecting disturbance signals and attacking with
low power (JSR ≤ 0 dB); 3) it uses the Growing-Neural-
Gas (GNG) unsupervised technique to cluster the data; 4)
it formulates an effective Generalized State Vector which
improves the learning process.

The remainder of the paper is organized as follows: section
II describes the system model, while the proposed jammer
detection approach is illustrated in section III. Experimental
results are reported in section IV and conclusions are drawn
in section V.

II. SYSTEM MODEL

The system model (see Fig. 1) consists of a Base Station
(BS) and a UAV with a 4G antenna and GPS receiver.
A human operator controls the UAV through LTE cellular
system. Commands are sent to the UAV through BS using
the Downlink (DL) channel. We consider the DL channel
under the threat of a terrestrial jammer which aims to send
false commands to alter the trajectory and take control of the
UAV. The propagation model consisting of the LTE downlink
transmitter, receiver and jammer is shown in Fig. 2. In standard
LTE the downlink transmission is based on the Orthogonal
Frequency Division Multiplexing (OFDM) scheme.

The BS continuously sends a Radio Frame (RF) of 10 ms
duration to the active users (already synchronized with BS)
in the cell. Each RF is composed of 10 subframes of 1 ms
duration each, denoted by indices ranging from 0 to 9. In
this work, we focus on FDD-RF structure type 1 where the
Primary Synchronization Signal (PSS) and the Secondary Syn-
chronization Signal (SSS) along with the Broadcast Channel
(BCH) are located within the 0th subframe. The PSS and SSS

OFDM signal
generation

Resource element
Mapping

Resource element
DE-Mapping

DE-Modulation
Mapping

Modulation
Mapping

Precoding

LTE Downlink Transmitter
Tx signal

Jamming 
signal

LTE Jammer Channel

AWGN

OFDM 
Receiver

Rx signal

LTE Downlink Receiver

Operator 
input data

Output
data

Jammer
data

Layer 
Mapping

Modulation
Mapping

Precoding
Layer 

Mapping
Resource element

Mapping

OFDM signal
generation

Precoding
Layer 

DE-Mapping

Fig. 2. Illustration of the Propagation Model

are repeated in the 5th sub-frame. While the User Data plus
the Channel State Information (CSI) are located in all of the
10 sub-frames. Each sub-frame is divided into two 0.5 ms slots
where the first slot contains the Downlink Control Information
(DCI). The BS allocates a specific number of sub-carriers to
the user for a predetermined time which are referred to as
Physical Resource Blocks (PRBs).

A PRB is defined as consisting of 12 consecutive sub-
carriers of 180 kHz in the frequency domain for 1 slot (0.5
ms) duration. Slots composed of either 6 or 7 OFDM symbols,
depending on whether the normal or extended cyclic prefix
is employed. A PRB is the smallest element of resource
allocation assigned by the BS scheduler forming a total of
12 × (6 or 7) Resource Elements (REs). We supposed that
the GPS measures the 3D position every 50 ms and the UAV
receives one PRB every 50 ms as well (assuming that the
BS follows the third allocation scheme for UAV command
& control (C2) data as mentioned in [19]) since the 3GPP
specifies that efficient management of a UAV would require
a maximum of 100 kb/s for C2 data, latency of 50 ms and
inter-arrival time (defined also as Transmission Time Interval
TTI) of 100 ms [20]. The commands (Pitch, Yaw, and Roll)
are sent in the PRB over 9 consecutive sub-carriers in the
frequency domain within 1 OFDM symbol in the time domain.
We call these REs as a Resource Vector (RV) as shown in
Figs. 3-4. The remaining sub-carriers and OFDM symbols of
the PRB are related to other information sent to the UAV.
For our analysis, only the RV is considered in which we are
interested in studying the command signals only. However,
this can be simply extended to consider the whole PRB in
future investigation. We assume that the jammer is smart and is
aware of the transmission protocol and the resource allocation
strategy performed by the BS. Hence, the jammer can locate
and identify the PRBs allocated to the UAV inside the radio
spectrum and attacks it consequently. In our study, the data
is extracted after the OFDM receiver where the output of
this block consists all the Resource Elements (REs) which
represent the time-frequency grid. At this level the UAV can
scan and sense the whole REs of the grid.

III. PROPOSED JAMMER DETECTION FRAMEWORK

Based on the system model described in section II, the
UAV can sense the received PRBs allocated by the BS and
extract the RV consequently. The method aims to provide the
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Fig. 4. Timing of the PRBs and RVs received by the UAV

UAV with the capability to learn the dynamic behaviour of the
signal by observing such resources. These observations can be
expressed in a probabilistic way and represented as a DBN.
Additionally, the proposed approach allows performing pre-
dictions of the future RVs that lead to a better understanding
of the radio spectrum and detecting malicious behaviours.

A. Forming the Generalized State Vector (GSV)

To analyse the dynamics of the received signal (received
commands) statistically, we generate a set of Generalized State
Vectors (GSVs) X consisting of all the components of the RV
at each time instant t and the corresponding derivatives as
shown in Fig. 5. The state vector is 36-dimensional, and it is
defined as follows:

X̃t = [If1 , . . . , If9 , Qf1 , . . . , Qf9 ,

İf1 , . . . , İf9 , Q̇f1 , . . . , Q̇f9 ],
(1)

where X̃t ∈ X and I , Q are in-phase and quadrature com-
ponents of the signal at different frequencies while İ , Q̇ are
the corresponding derivatives. The derivatives are considered
in order to understand the rule in which the commands are
changing as the time evolves. Incorporating I-Q elements
which belong to different sub-carriers in the same GSV will
certainly improve the learning process. Since in OFDM the
data stream is transmitted in parallel over multiple sub-carriers,
exploiting such correlation between data can help in learning
the dynamic evolution of the signal over time in a better way.
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B. Learning the DBN model (Training Process)

The DBN provides a graphical representation and inference
mechanisms at different levels in which two consecutive
temporal slices (time instants) are used to model a set of
dynamic rules. In this work, we proposed a switching DBN
consists of three levels as shown in Fig. 6. The lowest level
stands for the observations model Z, while the continuous X̃
and discrete S states correspond to the medium and top levels
of inference, respectively. Discrete and continuous variables
are connected by links (arcs) that characterize the conditional
probabilities and explain the causality among them. The condi-
tional dependencies involved in the network are the following:
1) the probability to obtain the observation given the signal’s
state P (Zt|X̃t). Such inference can be calculated by referring
to the observation model

Zt = HX̃t + nt. (2)

H = [H1 H2] is the observation matrix where H1 = [I18 018],
H2 = [018 018] and nt is the measurement noise which is
assumed to be zero mean gaussian noise with covariance Rt

such that nt ∼ N (0, Rt). 2) The probability of obtaining a
future signal’s state given the previous state P (X̃t|X̃t−1), here
inference can be made by using the dynamic model which is



defined in the following form:

X̃t = AX̃t−1 +BUSt−1 + wt, (3)

where A = [A1 A2]ᵀ is the transition matrix while A1 =
[I18 018] and A2 = [018 018]. In addition, B = [I18 018]ᵀ

is the control model and USt
is the control vector which

consists of the rules of which the signal will follow, once
is being inside a discrete region St and it is defined as
USt

= [İf1 , . . . , İf9 , Q̇f1 , . . . , Q̇f9 ]. wt is the process noise
which is assumed to be drawn from a zero multivariate normal
distribution with covariance σt such that wt ∼ N (0, σt). 3) the
probability P (X̃t|St) of being in the signal’s state X̃t given
the super-state St related to the discrete regions of the signal.
4) the probability P (St|St−1) of transiting from super-state
(St−1) to (St) by referring to the transition matrix (Π).

The DBN representation of the signal’s behaviour can be
learned by following the successive steps:
Learning super-states. The GSVs (X) corresponding to a
clean signal (without jamming attacks) will be fed as input
to an unsupervised learning technique. In this work, we used
the Growing Neural Gas (GNG) to cluster the signal without
any prior knowledge about its nature. GNG is an incremental
neural network that learns the relation between a given set of
input patterns and adapts the topological structure based on
nearest neighbour relationships and local error measurements.
GNG shows higher flexibility in representing the input data if
compared to fixed size networks like the Self Organizing Maps
(SOMs). GNG encodes the GSVs into discrete components
producing a set of super-states (or neurons) S that represent the
quasi-similar OFDM symbols, where S = { S1, S2, . . . , SL}
and L is the total number of super-states. L is selected based
on the investigation done in [21].
Learning super-states Properties. After obtaining the super-
states, properties as mean value ξS , covariance matrices ΣS

and boundary region uncertainty ψS of each super-state are
calculated.
Learning Transition Matrix (Π). by observing the active
super-states inside the spectrum over a certain number of
OFDM symbols in the time domain, it is possible to obtain a
(Π) that represent the probabilities of changing current super-
state P (St|St−1, t) taking in consideration the time spent in
each super-state before moving to the new one.

C. MJPF Filtering (Testing Process)

The Markov Jump Particle Filter (MJPF) firstly proposed
in [22] is here employed to perform predictions at different
inference levels of the DBN by using a combination of Particle
Filters (PFs) and Kalman Filters (KFs). The probability of
transitions between super-states P (St|St−1) is used to make
inferences of future predictions at the discrete level by means
of PF. The PF generates a set of particles corresponding to
the predicted super-state S∗

t . For each particle we employed
a KF to predict the future state as pointed out in Eq. 3
(i.e. P (X̃∗

t |X̃∗
t−1(S∗

t ))), where (.)∗ indicates the considered
particle. The prediction at the continuous level and the per-
formance of the KF depend on the predicted super-state (S∗)

Algorithm 1: MJPF
Input: Π,S, ξS , ψS ,ΣS ← Learned variables
Zt ← Testing measurements t = 1,...,T
N ← Total number of particles

1 for t = 1 to T ← Time evolution do
2 for n = 1 to N ← Particles do
3 wn = 1

N
← weight of the particle

4 Prediction at Discrete Level
5 if t == 1 ← Initial State then
6 Sample X̃1 from initial prior density P (X̃1)

7 X̃t = X̃1 ← current state
8 Estimate S̃∗t from P (X̃t|St)
9 else ← Remaining States

10 Predict S̃∗n by referring to Π

11 X̃t=X̃t−1 ← current state

12 Calculate d(X̃t, ξSt−1) ← euclidean distance

13 if 1− (
d(X̃t,ξSt−1

)

ψS
) < 0 ← outside the model then

14 USt−1 = 0 & Pt−1|t−1 = Rt ← process noise

15 else
16 USt−1 = US∗

t−1
& Pt−1|t−1 = ΣS∗

t−1

17 Prediction at Continuous Level
18 X̃t = AX̃t−1 +BUSt−1 ← state
19 Pt|t−1 = APt−1|t−1A

ᵀ + σt−1 ← covariance
20 Ẑt = (Zt −HtX̃t)
21 Kt = Pt|t−1H

ᵀ
t (HPt|t−1H +Rt)

−1

22 update :

23 X̂t = X̃t +KẐt ← updated state
24 P̂t|t = (1−KtHtPt|t−1) ← updated covariance
25 Calculate abnormality signals db1 & db2
26 wn = wn

db1+db2

27 SIR resampling
Output: db1 & db2

performed by PF (based on Π). Therefore, a wrong prediction
at the super-state level will lead to wrong predictions at the
continuous level and consequently overall degradation of the
MJPF performance. The posterior probability P (X̃t|Zt, S

∗
t ) is

estimated according to current observation Zt and the update
is performed by using:

P (X̃t|Zt, S
∗
t ) =

P (X̃t|Zt−1, S
∗
t )P (Zt|X̃∗

t , S
∗
t )

P (Zt|Zt−1)
. (4)

The MJPF is augmented with respect to basic definition
by an additional step for computing the abnormality sig-
nals based on the Bhattacharyya distance between prediction
p(X̃∗

t |X̃∗
t−1(S∗

t−1)) and
� probability of being inside the predicted super-state of

particle p(X̃∗
t |S∗

t ):

db1 = − ln

∫ √
p(X̃∗

t |X̃∗
t−1(S∗

t−1))p(X̃∗
t |S∗

t )dX̃∗
t ; (5)

� evidence p(Zt|X̃∗
t ) to have solutions near the measure-

ment:

db2 = − ln

∫ √
p(X̃∗

t |X̃∗
t−1(S∗

t−1))p(Zt|X̃∗
t )dX̃∗

t ; (6)



db1 indicator corresponds to the discrete level of the DBN,
and its value is related to the similarity between the prediction
of the state and the likelihood to be in the predicted super-
state. If the predicted state is out of the learned model (outside
the super-state) or is far away from the super-state’s center,
db1 will provide a high abnormality signal; otherwise, it
will provide low abnormality signal. On the other hand, db2
indicator corresponds to the continuous level of the DBN
and its value is related to the similarity between the state
prediction and the continuous state evidence corresponding to
the new observation in each super-state. The weight W ∗

t of the
particle S∗

t is calculated (taking into account the abnormality
measurements db1 and db2, the weight of a specific particle
will increase as the abnormality level decrease and viceversa;
to favorite particles with low abnormality that represent well
prediction) and then normalized by considering the Sequential
Importance Resampling (SIR) technique. The logic of the
MJPF is reported in Algorithm 1, showing the different steps
of the filter to perform predictions and consequently detect
abnormalities.

IV. EXPERIMENTAL RESULTS

We use simulated data to evaluate the proposed Framework.
First, the trajectory of a quadcopter UAV is simulated based
on [23]. A relation is studied between the commands and
velocities of the UAV at different angles (Pitch, Yaw and
Roll) to generate the appropriate bits for simulating the LTE
signal and vice versa, from the jammed LTE signal the altered
trajectory is extracted. The LTE signal is generated with
respect to the 3GPP standard requirements and the parameters
defined in table I. The flight time of the UAV is Tflight=30
sec consisting of 600 samples due to the fact that the position
is measured by the GPS every 50 ms. In addition, the UAV
receives a PRB every 50 ms and extracts the RV that contains
a set of commands sent over 9 consecutive frequencies in 1
OFDM symbol. Thus during the Tflight the UAV will receive
600 sets of commands, corresponding to 600 OFDM symbols
in time domain (Fig. 3). And each received set of commands
will indicate how the UAV will move in the 3D space. The

TABLE I
LTE SIMULATION PARAMETERS

Parameter Value
BW 1.4 MHz

Duplex mode FDD
∆f 15 kHz

Number of PRBs per BW 6
Sampling frequency 1.92 Mhz

NFFT 128
OFDM symbols per slot 7

CP length normal
SNR 15 dB

Modulation QPSK
Channel AWGN

Total Radio Frames 600

output of the QPSK modulator for both the normal signal and
the jammer is normalized based on the average power. The
normal signal has average power PS = 1. While, the average

power of the jammer is PJ = 1/n. The Jamming-to-Signal-
Power-Ratio (JSR) is calculated as: JSR = PJ

PS
.

Four different situations are considered, one related to the
normal signal, and the rest are concerning the smart jammer
behaviour and the JSR values.

• Reference Situation: represents the normal behaviour
of the signal related to the original commands sent by
the operator as shown in Fig. 8(a) (because of space
limitation, we visualize only 3 frequencies) which is used
to learn the DBN model. The UAV trajectory during the
normal situation is depicted in Fig. 7 (in blue color).

• Situation 1: the JSR is equal to 0 dB where the power of
the jammer is PJ = 1 considering n = 1 and the signal’s
power is PS = 1. The jamming signal is consecutive
starting from time t = 15 sec till t = 30 sec as shown
in Fig. 8(b). Where the altered UAV trajectory during
the jamming attacks is shown in Fig. 7(a) (dashed red
trajectory).

• Situation 2: the JSR is equal to -3 dB where the power
of the jammer is PJ = 1

2 considering n = 2 and the
power of the normal signal is PS = 1. Here the jammer
behaves in a dynamic way by attacking from t = 0.05 sec
till t = 5 sec, from t = 10 sec till t = 15 sec and from t
= 20 sec till t = 25 sec as shown in Fig. 8(c). Therefore
affecting the commands to change the UAV’s trajectory
as shown in Fig. 7(b).

• Situation 3: the JSR is equal to -4.7 dB where PJ = 1
3

considering n = 3 and PS = 1. The jammer behaves in
a dynamic way by attacking from t = 5 sec till t = 10
sec and from t=15 sec till t=30 sec as shown in Fig. 8(d)
and alters the UAV’s trajectory as depicted in Fig. 7(c).

The proposed approach aims to predict future OFDM sym-
bols at different frequencies (defined as RV) simultaneously.
Such predictions are performed by applying the MJPF filter
on the previously acquired knowledge (the learned DBN) by
the Cognitive-UAV-Radio. Testing new observations Zt and
predicting eventually, could follow the same rules with which
the dynamic model has been learned from previous experience
when the jammer was absent or could deviate due to the
new rules caused by the jammer. The MJPF provides two
abnormality measurements (see Eqs. 5 - 6) to identify whether
the new signals are following the learned rules or not.

Figs. 8(b-c-d), represent the testing data including jammer
attacks on the LTE signal related to the situations mentioned
previously. Consequently, Fig. 9 shows the abnormality signals
at the two inference levels. At the discrete level, if the
probability that the predicted RV is inside the predicted super-
state is high, the filter will provide a low abnormality signal
otherwise the filter will provide high abnormality signal. At
the continuous level, if the probability of having the predic-
tion near the measurement (or the likelihood which is the
probability of how much the prediction is confirmed by the
observation) is high the abnormality signal is low and vice-
versa. As shown in Fig. 9, the filter provides high abnormality
signals in the time instants where the jammer is attacking
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Fig. 7. UAV trajectory in different situations
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Fig. 8. Normal (blue) and Jammed (red) command signals
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Fig. 9. Abnormality Signals: db1 and db2

and low abnormality signals (near zero) when the jammer is
off. Moreover, the abnormality signal’s level may vary from
one situation to the other. For instance, db1 (values above

threshold) in situation 1 is greater than the other situations
since the jammer is attacking with higher power with respect
to situation 2 and 3, which means that it will shift more the
signal towards the boundary of the predicted super-state.

It is worth to note that there is a difference between the
filter’s performance (state estimation using predictions and
updates) and the abnormality signals provided by it. If the
filter doesn’t predict well it may provide high abnormality
signals too, even if the jammer is absent. To this purpose, the
clean signal without jamming attacks is tested by the MJPF to
evaluate the filter’s performance and it is obvious from Fig. 9
that the abnormality signal during this situation (reference
situation) is very low which verifies the filter’s ability in
predicting the OFDM symbols at 9 frequencies correctly.
Optimized thresholds can be obtained by implementing the
MJPF using the normal signal (without jamming attacks). At
the discrete level, the threshold can be obtained by calculating
that the mean value of the db1 signal plus the standard
deviation, while at the continuous level the mean value of db2
plus its standard deviation will represent the second threshold.

In order to evaluate the performance of the proposed
framework, we used a range of confidence thresholds to
build the corresponding ROC curves along with the Area
Under Curve (AUC) and Accuracy (ACC). The ROC curves
in Fig. 10 (a)-(b) shows that the MJPF filter can provide
high detection probability (Pd) with low Pfa at both levels
considering different JSR values (0 dB, -3 dB and -4.7dB)
and compared with the conventional Energy Detector (ED).
The high detection probabilities can be explained by the fact
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Fig. 10. ROC curves (DBN vs. ED)



that the predictions performed at the higher level by PF were
precise and accurate almost of the time (30 sec related to 600
OFDM symbols) considered in the analysis.

Further experiments are tested by decreasing the JSR till
−16dB and considering PJ = 1/n where n = [1, . . . , 40].
In all these experiments the jammer attacks dynamically from
t = 5 sec till t = 10 sec, from t=15 sec till t=20 sec, and
from t=25 sec till t=30 sec. Fig. 11 showed that the proposed
method can still detect with high detection probability even
when the jammer attacks with very low power.
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Fig. 11. Probability of detection vs. JSR

V. CONCLUSION AND FUTURE WORK

We proposed a probabilistic framework based on learning
switching dynamic models to detect a smart jammer that can
locate the PRBs allocated to the UAV inside the radio spectrum
and consequently attack the control commands with low JSR,
which is more difficult to detect compared with the traditional
types of jammers who attack with high JSR. We tested the
work on simulated LTE signals, and the performance was
evaluated by using the ROC curves. Additionally, in this paper
we showed how efficient is the proposed method considering
only Additive White Gaussian Noise (AWGN) Channel by
assuming that the communication link between the base station
and the UAV is always Line-of-Sight (LOS). However, multi-
path fading and Non-line-of-Sight (NLOS) conditions will be
investigated and tested in future work.

Multiple jammer characterization and classification as well
as learning the interaction between the LTE signal and GPS
signal will be studied in future work to achieve new func-
tionalities of the Self-Awareness module, which will further
enhance the Cognitive-UAV-Radios physical layer security.
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