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Abstract

Pathophysiological understanding of gait and balance disorders in Parkinson’s

disease is insufficient and late recognition of fall risk limits efficacious follow-

up to prevent or delay falls. We show a distinctive reduction of glucose meta-

bolism in the left posterior parietal cortex, with increased metabolic activity in

the cerebellum, in parkinsonian patients 6–8 months before their first fall epi-

sode. Falls in Parkinson’s disease may arise from altered cortical processing of

body spatial orientation, possibly predicted by abnormal cortical metabolism.

Introduction

Falls and fall-related injuries are a major cause of disabil-

ity in subjects with Parkinson’s disease (PD). Fall rates in

PD range from 35 to 90% and increase during the disease

course.1 Despite detailed testing of gait and balance, the

specific factors that are critical to fall prediction and pre-

vention in PD remain elusive2 and the best single variable

to predict falls is two or more falls in the previous year

(odds ratio 1.5 or higher).3–5 Late recognition of patients

at risk of falls prevents their timely treatment and is

mainly related to the unclear pathophysiology of balance

dysfunction in PD. While nigrostriatal dopaminergic den-

ervation does not differ between the PD patients with and

without falls,6 functional brain imaging studies has

recently showed a direct involvement of cortical areas in

PD fallers.6,7 Brain metabolic imaging with 2-deoxy-2-

[18F]fluoro-D-glucose ([18F]DG) and positron emission

tomography (PET) can reliably identify the symptom-

specific brain metabolic changes for tracking the

progression of neurodegenerative processes and their

response to treatment.8 In this study, we investigated the

brain metabolic alterations in PD patients at high risk of

fall prior to the occurrence of the first fall.

Patients and Methods

Study subjects

We retrospectively evaluated the clinical records and

molecular imaging findings of over 200 patients with a

diagnosis of idiopathic PD who underwent a PET with

[18F]DG between 2012 and 2017 as part of the workup

for potential deep brain stimulation candidates or other

research studies. We identified one group of 11 right-

handed patients (Fallers) who experienced their very first

fall episode between 6 and 8 months after the execution

of the [18F]DG PET. A time period shorter than

6 months would have reduced the predictive value of our

findings and a longer time would have introduced several
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confounding factors (e.g. therapy changes, comorbidities,

etc.). A fall was defined as an event of unintentionally

coming to rest on the ground or lower level. The

dopaminergic therapy was unchanged between the [18F]

DG PET and the fall episode. We then selected a second

group of 19 right-handed patients (Non-fallers) with sim-

ilar demographic and clinical characteristics who never

experienced any fall episode (up to 2-year follow-up) and

12 right-handed healthy subjects (HC). Exclusion criteria

were dementia (i.e. Mini-Mental State Examination

score < 25), clinically relevant depression (Beck Depres-

sion Inventory score > 8), significant comorbidities (e.g.

visual disturbances, cardiovascular diseases including

symptomatic postural hypotension, etc.), and abnormal

structural MRI. PD patients with freezing of gait (includ-

ing start hesitation) were not included in this study. The

local Ethics Committee approved the study and informed

consent was obtained from all participants.

Imaging acquisition and analysis

PET acquisitions were performed as previously described.9

In brief, patients fasted overnight and stayed in resting

conditions in a dimly lit and quiet room for 30 min

between the injection of [18F]DG and PET acquisition.

All scans were performed in the morning, approximately

2 h after the intake of the morning dose of antiparkinson

medications. Iterative data reconstruction and CT-based

attenuation correction was applied. Data were analyzed

using Statistical Parametric Mapping (SPM8). Scans were

spatially normalized to a PET template in the standard-

ized Montreal Neurological Institute space and then

smoothed. Voxel-by-voxel comparison between the three

groups (i.e. Fallers, Non-fallers, and HC) have been

explored by performing a one-way analysis of variance

(ANOVA), with age and disease duration as covariate.

Then, inference on brain glucose metabolism differences

between groups was made using double-sided t-tests

(P < 0.001, cluster Family-Wise Error corrected with an

extended threshold of at least 150 contiguous voxels). We

additionally performed a post hoc volume-of-interest

(VOI) analysis using a spherical VOI (4 mm radius) cen-

tered on the peak voxel of significant clusters in SPM

analysis and calculated the standardized uptake value ratio

(SUVR) (i.e. mean count per voxel VOI/mean count per

voxel global brain) of [18F]DG uptake within the SPM

predefined brain areas.

Statistical analysis

Statistical analyses were performed with JMP14. Gender

distribution was investigated with Pearson’s chi-square

test. The normal distribution of the data were tested with

the Shapiro–Wilk test and the equality of variances with

the Levene’s test. Groups were compared with the Student

t-test or ANOVA or the Wilcoxon test, with post hoc

analyses (i.e. the Tukey-Kramer HSD test), when appro-

priate (Table). A multivariate logistic regression analysis

was performed to identify which VOI measurement could

independently predict a fall event (i.e. Fallers). We then

performed an ANCOVA to establish the influence of age,

disease duration, UPDRS-III score, and Levodopa Equiva-

lent Daily Dose (LEDD) as covariates on the prediction

of VOI measurements by group (Fallers and Non-fallers).

Results

Fallers showed distinctive hypometabolism in the left

parietal cortex (precuneus and inf. and sup. parietal lob-

ule; cluster peak coordinates: x = �26, y = �77, z = 40;

k = 305; pFWEcorr = 0.04; Z-score = 4.02) and increased

bilateral cerebellar glucose consumption (left cerebellum

post. lobe and tuber of vermis; cluster peak coordinates:

x = �1, y = �70, z = 444; k = 444; pFWEcorr = 0.009; Z-

score = 0.009 and right cerebellum post. and ant. lobe;

cluster peak coordinates: x = 25, y = �44, z = 357;

k = 357; pFWEcorr = 0.023; Z-score = 0.023) (Fig. 1 and

Table 1). ANOVA analysis with SPM and VOI revealed

that glucose metabolism significantly differed between the

three groups in the left parietal cortex and bilateral cere-

bellar lobi and post hoc two-sample t-tests showed that

Fallers versus Non-fallers or versus HC showed hypome-

tabolism in the left inferior and superior parietal lobules

and increased bilateral cerebellar glucose consumption.

Lastly, in our study population the [18F]DG uptake value

of the left parietal cortex was the single measurement to

independently predict future falls (log-likelihood chi-

square test, FDR P = 0.001). The different [18F]DG

uptake between Fallers and Non-fallers cohort in the left

parietal area was not influenced by demographic or clini-

cal variables [F(5,24)=14.49, FDR P = 0.004 and SPM

analysis].

Discussion

The posterior parietal cortex has been proposed as the

sensorimotor interface responsible for the integration and

timing of movement intentions with ongoing movements.

While the right posterior parietal cortex may be relevant

for visuospatial and covert-orienting attention, the left

posterior parietal cortex is responsible for matching

between the anticipated and actual sensorimotor conse-

quences.10,11 The assignment of balance disorders and falls

in PD to the left hemisphere can be made only tentatively

on the basis of the present results. In our study, the selec-

tive impairment of the left parietal cortex might be

580 © 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.

Falls Prediction in Parkinson’s Disease I. U. Isaias et al.



related to the preferential role of this brain area in coding

the spatial relationships between the discrete body

parts.12–15 Alterations in this brain area would impair the

predictability of body orientation and the maintenance of

certain relative positions of the body segments, thus

directly impairing the balance control.16 A predominant

involvement of the left parietal cortex in gait was also

shown in other brain imaging studies with resting state7

or imaged locomotion protocols.17 A hypofunctioning left

parietal cortex would also lead to downregulation of the

activity in the primary motor cortex and supplementary

motor area,18 delaying the adaptation of gait to environ-

mental needs, and additionally increasing the risk of falls

in parkinsonian patients.

Reactive and predictive sensorimotor adjustments are

assumed to be ruled by internal models located in the

cerebellum.19,20 In this context, the posterior parietal

regions would play key roles in sending signals represent-

ing intended motion for a proper prediction of sensory

consequences of movement.19 The increased cerebellar

Figure 1. Brain areas with enhanced (red) or reduced (blue) glucose metabolism in Fallers (compared with non-Fallers). The color bars indicate

corresponding t-values.
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activity in Fallers can be, therefore, a compensatory

attempt for poor adaptability to motor patterns due to an

impaired parietal cortex signaling.20 More in general,

there is increasing evidence of compensatory cerebellar

activation in parkinsonian patients,21 but the complex

interplay between cerebellum and cortical areas following

basal ganglia derangements has yet to be elucidated.21

Interestingly, Zhang and coll.7 failed to describe increased

cerebellar activity, possibly suggesting exhaustion of such

a compensatory activity when parkinsonian patients

already manifest postural instability.

Our study has some limitations. First, this retrospective

study can only reflect the temporary profile of PD falls,

and further follow-up studies are needed to assess the

evolution of the risk of falling over time. Second, given

the relatively small sample size, future longitudinal studies

are required to define a specific pattern for diagnostic

and predictive purposes at a single subject level. Third,

since all patients did not refer balance disturbances or

previous falls at the time of the clinical evaluation or

[18F]DG PET study, they were not investigated with ded-

icated scales such as the Tinetti Test, the Berg Balance

Scale or the Timed up, and go test. Still, these clinical

scales have not been consistently reported as independent

predictors of future falls in non-faller PD patients.4,22

Lastly, all patients performed the [18F]DG PET study in

medication on state, but the brain metabolic differences

we showed in this study cannot be related to an acute

effect of dopaminergic drugs.23 Despite these limitations,

for the first time we have been able to describe the brain

metabolic alterations in PD patients at high risk of fall

before the very first fall episode. This information can

help monitoring patients and planning therapeutic and

preventing interventions (e.g. physical therapy).24 Our

findings further suggest the hypothesis that some PD-

related symptoms, in particular gait and postural disor-

ders, might involve extra-striatal areas and are not dopa-

mine-dependent,25 but instead represent a direct

expression of network derangements and compensatory

attempts or their failure.26
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