
Business-Savvy Blockchains with Gamification:
A Framework for Collaborative Problem-Solving
Stefano Dalla Palma1,∗, Damian Andrew Tamburri2,†, Remo Pareschi1,†,
Carmine Cerrone1, Willem-Jan van den Heuvel2

1University of Molise, C.da Fonte Lappone 86090 Pesche (IS), Italy
2Jheronimus Academy of Data Science (JADS), Sint Janssingel 92 5211 DA ’s-Hertogenbosch, The Netherlands

Abstract

This paper proposes a design pattern that combines gamification dynamics along with blockchains for
the purpose of using blockchain technology in a business-savvy fashion as support to a framework for
collaborative problem solving, i.e., leveraging gamification to incentivize people to produce efficient, freely
available and easily accessible solutions in the optimisation research and the potentiality of blockchain
technology to safekeep the intellectual property on such solutions, marking the progress of problem solving
as intellectual capital. The proposed gamification design pattern is then instantiated in the context of
optimisation.

Received on 18 July 2018; accepted on 10 August 2018; published on 13 September 2018
Keywords: blockchain technology, gamification, optimization, design pattern, software engineering

Copyright © 2018 Stefano Dalla Palma et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.13-7-2018.155567

1. Introduction
Distributed ledgers are databases shared across a
public or private computing network. Each computer
node in the network holds a copy of the ledger, so
there is no single point of failure. Blockchains are
specific kinds of distributed ledgers such that every
piece of information is mathematically encrypted and
added as a new "block" to the chain of historical
records held within the ledger. Various consensus
protocols are used to validate a new block with other
participants before it can be added to the chain. This
prevents fraud or double spending without requiring
a central authority. Blockchain technology [21] has
recently gained massive attention from the media and
companies worldwide, mostly because of its intriguing
architectural property of maintaining a consistent
copy of every transaction across the blockchain, hence
guaranteeing overall tamper-resistance [5]. They are
by far the most proven and widespread kind of
distributed ledger, as a consequence of the consolidated

∗First author. Email: s.dallapalma@studenti.unimol.it
†Corresponding author. Email: d.a.tamburri@tue.nl,
remo.pareschi@unimol.it

use of blockchains as the distributed ledgers supporting
cryptocurrencies like Bitcoin [14], Ether (https:
//www.ethereum.org/ether) and Litecoin (https://
litecoin.org/). Indeed, the clearest and most striking
success of blockchain technologies has so far been the
creation of the universe of cryptocurrencies, whose
constituent matter is given by digital currencies capable
of self-certifying their authenticity in an algorithmic
way, without the need for third parties such as central
banking institutions and monetary authorities. While,
to the broader public, blockchain is synonymous with
cryptocurrency, the business community is increasingly
realizing the enormous potential of this technology
(well beyond the yet notable success of Bitcoins and
companions) (i) for its ability to create a history
of certified information, and (ii) to automate the
execution and reporting of transactions across multiple
stakeholders. Experimentations with blockchains that
aim to meet existing business needs do exist, e.g.,
think of the several IBM and Ethereum initiatives
around the matter (available online: https://www.

ibm.com/blockchain/use-cases/ and https://www.

stateofthedapps.com/). The table in figure 1 taken

1

EAI Endorsed Transactions
on Serious Games Research Article

EAI Endorsed Transactions on
Serious Games

12 2017 - 09 2018 | Volume 5 | Issue 16 | e5

http://creativecommons.org/licenses/by/3.0/
mailto:<s.dallapalma@studenti.unimol.it>
mailto:<d.a.tamburri@tue.nl>
mailto:<remo.pareschi@unimol.it>
https://www.ethereum.org/ether
https://www.ethereum.org/ether
https://litecoin.org/
https://litecoin.org/
https://www.ibm.com/blockchain/use-cases/
https://www.ibm.com/blockchain/use-cases/
https://www.stateofthedapps.com/
https://www.stateofthedapps.com/

S. Dalla Palma et al.

from the McKinsey report on blockchains1 sums up
well the applications made possible by these two uses
of blockchain technology, which however have to be
considered as communicating vessels rather than as
insulated silos.

Supporting this trend, there are the numerous busi-
ness blockchains that have been hosted by Ethereum
and the Linux Foundation’s Hyperledger technology
forming an environment in which communities of soft-
ware developer and companies meet and coordinate
to build blockchain frameworks. For instance, Hyper-
ledger Indy2 is a software ecosystem for private, secure,
and powerful identity that aim to put people in charge
of decisions about their own privacy and disclosure.
This enables all kinds of rich innovation: connection
contracts, revocation, novel payment workflows, asset
and document management features, creative forms
of escrow, curated reputation, integrations with other
cool technologies, and so on. Hyperledger Iroha3 is a
business blockchain framework designed to be simple
and easy to incorporate into infrastructural projects
requiring distributed ledger technology. The Australian
PowerLedger4, which utilizes the Ethereum blockchain,
provides a peer-to-peer marketplace for renewable
energy that raised 34 million Australian dollars through
its ICO (Initial Coin Offering).

Within this paper we propose the use of gamification
[7] along with blockchain technology as a basis
for a design pattern to create tangible value for
the players involved, i.e., for game participants and
for game administrators. Gamification applies game
design and game principles to non-gaming contexts,
so as to improve the involvement of stakeholders
in social ecosystems such as companies, government
organizations and citizenries. A number of case studies
has shown that gamification has generally performed
very well, with employees producing more and better,
information flowing more smoothly and effectively,
citizens more involved in relevant events such as
electoral consultations and so on and so forth. The
use of gamification for crowdsourcing purposes has
been studied even further, particularly in the context
of ICT technologies [13] and one of the most successful
recent applications has been the Netflix prize challenge
where concurrent machine-learning campaigns were
encouraged to improve Netflix’s own recommendation
system [1]. Our purpose is to bring this trend one step

1"Blockchain beyond the hype: What is the strategic business
value?" Available online: https://www.mckinsey.com/business-
functions/digital-mckinsey/our-insights/blockchain-beyond-the-
hype-what-is-the-strategic-business-value
2Available online: https://www.hyperledger.org/projects/

hyperledger-indy
3Available online: https://www.hyperledger.org/projects/iroha
4Available online: https://powerledger.io/

further up to its full potentialities for social good and
economic development by marrying gamification with
another powerful technology: the blockchain.

The use of gamification in the context of blockchain
turns the problem of architecting with blockchains
into the goal of building a software-defined, network-
based ecosystem, a marketplace of participants (human,
machine, or otherwise) who contribute computational
power and creativity towards a predefined computa-
tional goal in a decentralized and secure fashion. Our
target is given by optimization problems that find
practical applications in a variety of fields such as e-
commerce, logistics, scheduling, traffic management,
storage allocation etc. A considerable number of prob-
lems can be defined via the maximization or minimiza-
tion of some desired objective, hence approaches to
problem solving, learning or discovery that employ a
practical method to reach that objective (e.g., heuristsic
and metaheuristics) are applicable to a broad range
of disciplines including the ones listed above. Soft-
wares that "solve" a mathematical problem, namely
"solvers", are routinely applied to problems of real-
world concern, producing highly-significant financial
and resource savings, e.g., minimizing fuel by optimiz-
ing delivery routes; minimizing energy consumption by
optimizing wind-farm/generator placement; minimiz-
ing the number of vehicles used to deliver products
by optimizing the arrangement of products in those
vehicles; minimizing the total amount of time (or cost)
required to complete a set of tasks by optimizing per-
sonnel scheduling and tasks assignment, etc.; resulting
in benefices for both product (or service) users and
providers. The general criteria that we apply to justify
our proposal are the following: (1) it is a small world:
meaning that for someone who needs an optimized
solution for a given problem, there might be someone
who has concocted exactly that solution; (2) half of
the world does not know what the other half is doing:
meaning that, even if the condition as above applies,
we might not be aware that someone next door has
exactly what we need (and in the Internet age the whole
Earth is one single village); (3) there must be a virtuous
circle of mutual returns and benefits that binds together
proposers of problems and producers of solutions, so
as to create the pre-conditions for a marketplace of
optimizations; (4) transactions must be recorded in an
evolving archive shared among the stakeholders for
the purpose of certifying transaction execution and of
watermarking the latest point of optimization of a given
problem, so as to clearly indicate where to go next. This
is where technologies such as distributed ledgers in gen-
eral, and blockchains in particular, turn out to be partic-
ular useful and promising. The theoretical basis for the
above idea stems from the synergy we observed between
blockchain technology and computational approaches
that can be defined as human-competitive [15], namely,

2 EAI Endorsed Transactions on
Serious Games

12 2017 - 09 2018 | Volume 5 | Issue 16 | e5

https://www.hyperledger.org/projects/hyperledger-indy
https://www.hyperledger.org/projects/hyperledger-indy
https://www.hyperledger.org/projects/iroha
https://powerledger.io/

Business-Savvy Blockchains with Gamification: A Framework for Collaborative Problem Solving

Figure 1. There are six distinct categories of blockchain use cases addressing two major needs: record keeping and transactions.

computational solutions which satisfy at least one of the
following criteria:

1. The result was patented as an invention in
the past, is an improvement over a patented
invention, or would qualify today as a patentable
new invention.

2. The result is equal or better than a result that was
accepted as a new scientific result at a time when
it was published in a peer-reviewed scientific
journal.

3. The result is equal to or better than a result that
was placed into a database or archive of results
maintained by an internationally recognized
panel of scientific experts.

4. The result is publishable in its own right as a new
scientific result, independent of the fact that the
result was mechanically created.

5. The result is equal to or better than the most
recent human-created solution to a long- standing
problem for which there has been of increasingly
better human-created solutions.

6. The result is equal to or better than a result that
was considered an achievement in its field at the
time it was first discovered.

7. The result solves a problem of indisputable
difficulty in its field.

8. The result holds its own or wins a regulated
competition involving human contestants (in the
form of either live human player or human-
written computer programs).

Our proposal envisions the use of blockchains
as means to structure a "marketplace" of human-
competitive solutions, a concurrent community of
practice [19] aiming for shared solutions to address the
pre-defined computational problem; rather than using
a blockchain to architect a single software to address it,
the blockchain shall be used as a support technology
to structure its crowdsourced resolution [11] and
continuous improvement. This very same pattern
was adopted in the famed aforementioned Netflix
challenge. The major benefits of using blockchains
to structure a competitive marketplace in much the
same vein are manifold, among which: (1) registration
on the blockchain of the effective superiority of an
algorithm or a solution, with consequent entitlement
to automatically generated and unequivocal royalties
both for game participants and for game owners, that
is, the company administering the marketplace; (2)
certified algorithms and solutions — each algorithm
and solution are certified to belong to a provider and to

3 EAI Endorsed Transactions on
Serious Games

12 2017 - 09 2018 | Volume 5 | Issue 16 | e5

S. Dalla Palma et al.

resolve a given problem; (3) facilitated registration and
re-use of both open-source and proprietary algorithms
and solutions; (4) payment through cryptocurrency
coins which can acquire value on the cryptocurrency
market and be exchanged even outside their primary
use contexts in the scope of the marketplace.

In the next sections we illustrate the proposed
design pattern to optimisation problems in general. The
blockchain-based marketplace to address this solution
consists of people and machines who compete to
resolve computational optimization problems and are
incentivized to create efficient, freely available and
easily accessible solutions, making sure their ownership
over proposed solutions is maintained in a safe,
secure, and rewardable fashion by means of blockchain
technology.

2. Gamified, Blockchain-based Marketplaces: How
does it work?
The marketplace we propose as a design pattern to
use blockchain technology in a business-savvy fashion
is implemented in a public decentralized database
that stores the computational problem to be addressed
concurrently.

2.1. Design Principles
Design principle 1 - marketplace-based information sharing.
In the case of optimization problems, the marketplace
stores problem definitions, algorithms, and proposed
solutions up to a certain point in time; marketplace
participants are people who can contribute by posting
their own algorithms and solutions for a given problem
and share them with others upon payment.

Design principle 2 - marketplace cryptocurrency. A
cryptographic private-public key pair is assigned to
each user joining the community in order to edit the
database to post a solution or to update an existing one.
Each entry in the database can be edited only by its
creator, who is identified by her public key. Public key
is used to sign (encipher) the solution to avoid their free
re-use. In this way, only the owner can decipher it with
her private key and see in clear the solution or edit it.
When the owner of a solution receives the payment for
the solution after having sold it, the private key is used
to decipher the solution and make it available to and
usable by the buyer. A solution posted as open-source
is not enciphered. In much the same way, the creator
of a solution or an algorithm maintains the ownership
over them.

Design Principle 3 - marketplace coopetition. The research
literature in optimization is positively obsessed with
playing the up-the-wall game [3]. There are no rules
in this game, just a goal, which is to get higher up the
wall (which translates to "obtain better results") than

your opponents. Although some competition between
researchers or research groups can certainly stimulate
innovation, the goal of science is to understand. To
this end, cooperation is also needed. Coopetition is a
neologism coined to describe cooperative competition
[2]. Coopetition games are statistical models that
consider the ways in which synergy can be created by
partnering with competitors. This tactic is thought to
be a good business practice between two businesses
because it can lead to the expansion of the market
and the formation of new business relationships. We
use the concept of coopetition in the context of the
proposed marketplace. Nodes on the network are in
competition to find the best solution for a given problem
to win a reward; at the same time they cooperate and
speed up the optimization research. The marketplace
itself puts in competition people to find the best
solution of a given problem in order to gain rewards
and reputation as well as money by selling their own
solutions. This way everyone proposing a problem
could easily find efficient solutions. Moreover, the
creator of a solution or an algorithm is certified to
be his/her owner. Indeed, the marketplace can rely
on existing blockchain techonologies (e.g. Ethereum)
to ensure ownerships of solutions and more granular
properties of blockchains to ensure security, e.g., proof
of existence, proof of identity and proof of authorship
– at the same time, consistency can be maintained
with the three classic security approaches across typical
blockchains: (1) identification; (2) authentication; and
(3) authorization.

Design principle 4 - marketplace data-storage. Data stored
in the blockchain-based marketplace and hence, within
the public decentralized database are:

• Problems to be solved - these are described with a
textual specification, an objective function, and a
validation algorithm that automatically evaluates
the proposed solutions.

• Gamification board - solutions and algorithms are
stored and shared by all peers active across the
marketplace.

• Gamers data - Gamers are encoded as marketplace
users with their nickname, reputations and
cryptographic public key to authenticate him/her.

• Smart contracts - they are a set of conditions
recorded in the database such that transactions
automatically trigger when the conditions are met
[4]. Contracts are used to buy algorithms and
solutions or transfer their ownership.

4 EAI Endorsed Transactions on
Serious Games

12 2017 - 09 2018 | Volume 5 | Issue 16 | e5

Business-Savvy Blockchains with Gamification: A Framework for Collaborative Problem Solving

2.2. Architecture Elements
The software architecture of the proposed solution
entails a Solution-as-a-service architectural style where-
fore a solution marketed through the proposed market-
place, e.g., for an optimization problem, is addressed
through the marketplace itself, and worked out by
peers, but, at the same time, the solution is also sold
through the same marketplace. Therefore, whenever
someone buys a solution (e.g., a ML algorithm), she
buys it as "a service", meaning that she gets that solution
(e.g., the same ML algorithm) following the pay-per-use
schema, while the ownership of the solution still belongs
to its original producer. The style also envisions and
ensures fairness: only when the ownership of a solution
(e.g., a ML algorithm) is willingly transferred between
marketplace users through smart contracts, then the
ownership passes from the original owner to the new
one.

The aforementioned architectural style requires the
architecture elements listed below.

• Blockchain Node - is any user (proponent,
competitor or validator) or machine that propose
a problem to the community or resolve it, validate
transactions, sell or buy solutions and algorithms
as well as transfer their ownership through
Smart Contract replicated on the blockchain and
validated from other peers.

• Database - stores each problem specification,
solution or algorithm and users’ information.
Only user that add an entry in the database,
e.g. a solution, can modify that entry. Every
operation performed on the database is stored on
the blockchain. See transaction later on.

• Problem Specification - is any optimisation prob-
lem that can be mathematically formulated and
require a solution. Mathematically formulation
can be useful to have an unambiguous description
but it is not mandatory.

• Proponent - is any user that proposes a problem
to the community posting it into the database.
She does not have to pay any fee or amount of
tokens to post the problem into the database. A
proponent only has to pay the owner of a solution
for using it or use a freely available solution,
if any. Proponent can also use solutions of
problems similar to the proposed one. Proponent
must provide a validation algorithm together
with the problem description to allow the
system to validate the solutions of the resolvers,
automatically. She can also provide own algorithm
to resolve the problem that competitors can set up
and run to find a solution.

• Competitor - is a node which competes to find
and efficient solution to resolve a problem and
post it in the database. Competitor is not forced
to find the best solution or to make it freely
available to others. However, the mechanism of
reward incentivizes her to find the best solution
and make it open-source (i.e, freely available to
the community) in order to gain both reward and
reputation. Otherwise, the competitor must pay
to post the solution into the database. See also
section 2.3.

• Solution - is any solution provided by competitors
to a given problem proposed by a proponent.
Solutions are automatically validated by the
system through the validation algorithm provided
by the proponent and each solution value is
kept visible to everyone (i.e., is not enciphered)
in order to compare different solutions. If the
validation algorithm accepts the solution, i.e., the
solution is admissible for the problem, it is stored
into the database. A solution can be stored in the
database as a private solution, that is, a solution
provided to other peers behind payment or it can
be shared freely to others. See also the reward
mechanism in section 2.3 on how constraints bind
the insertion of solutions into the database.

• Validator - is any node that validate transac-
tions between competitors and database, database
and proponent/competitor(s) or among propo-
nent/competitor(s).

• Transaction - is any interaction performed
among nodes and database or among nodes
themselves that move rewards (i.e., tokens)
or solution/algorithm ownership and must be
recorded on the blockchain to guarantee the
integrity of the system and the ownership of the
solutions. A transaction can consist of "posting a
solution into the database" (no matter whether the
node gains reward or not), "transferring a solution
or algorithm ownership" or "selling/buying a
solution" etc.. Transactions are stored on the
blockchain and validated to maintain the integrity
of data and guarantee the ownership of solutions
and algorithms for any given user.

• Smart Contract - in the context of the proposed
framework, they are used to sell and buy solutions
as a service or transfer their ownership and
guarantee the success of such operations.

2.3. Gamified Rewarding Rules: Incentive and
Reputation Schema
The gamification by-design aspects behind the pro-
posed blockchain marketplace follows a set of rules for

5 EAI Endorsed Transactions on
Serious Games

12 2017 - 09 2018 | Volume 5 | Issue 16 | e5

S. Dalla Palma et al.

compensating competitors and validators. The rules in
question follow below:

(i) Each time a competitor posts a new successful
validated solution into the database, that is better than
the current best one for the related problem, she gets
rewarded with a variable positive amount of tokens x,
which is proportional to the improvement made by the
new solution compared to the best one (we call the
new solution an highest-higher solution "HH"), e.g. if a
competitor posts a solution that improves the current
best one by 10%, she gets rewarded by the reward
for the best solution plus a propotion given by the
improvement of 10% made by the solution. Indeed, the
last few bits of improvement are much harder to find
than the early ones, i.e. we will have to work harder
to get 1% improvement late in the game, than 1%
early in the game. The larger the difference between
the proposed and the previous solution, the larger
the reward gained by the proponent. This establishes
a rewarding mechanism that increase with increasing
solution improvement. If no best solution exists up to
that time, i.e., no solution has been already posted, the
competitor get rewarded by a fixed amount of tokens.

(ii) Each time a competitor posts a new successful
validated solution into the database, that is no better
than the best one for the related problem (i.e., mediocre
solution), she must pay a positive amount of tokens
y, which are deposited in the proposed problem
specification as deposit and put on the market when
other users will get rewarded. However, competitor still
gets rewarded in a proportional fashion as in (i) with
regard to the highest solution lower than the proposed
one (we call that solution an highest-lower HL for the
proposed one), i.e., the larger the difference between the
posted solution and a HL solution, the larger the reward
gained by the competitor. The gain or the loss of tokens
depends on the quality of the solution: if the value of
the solution is such as to allow to overcome the amount
y the competitor obtain the reward minus y, otherwise
she must pay y. If at the time of posting the solution
there already exists a solution with the same value, the
previous schema does not apply and the competitor
must pay the amount of tokens y. The same applies for
private solutions.

(iii) If a competitor posts a solution or edit a previous
one as public - i.e., freely available to everyone - she
gets rewarded with a positive amount of tokens x’
>> x, that is, an amount of token greater than the
amount she would gain posting the best solution. If
the solution results to be the best one for the related
problem and is inserted into the database for the first
time, the competitor gains twice: the amount of tokens
x for having posted the best solution and the amount
of tokens x’ for having made it freely available to the
community. If the solution was previously stored into

the database, making it public allows the competitor to
gain the reward x’.

(iv) If a competitor, that has previously posted a
solution as public, wants to make it private (i.e.,
available to everyone behind payment) she must pay a
positive amount of tokens y’ >> y, that is, an amount of
tokens greater than the amount she gained for making
it public. These tokens are deposited in the deposit for
S and put on the market when other users will get
rewarded.

(v) Each time an open-source solution is used
indirectly or directly by the community, the owner of
that solution gets rewarded with an increment of her
reputation. (See Reputation Schema).

(vi) When validating a transaction, the validator
receives a positive amount of tokens. Validators can
require fees to validate specific transactions.

Incentive Schema. (i) and (ii) incentivize the nodes to
post always the best solution to gain rewards, improv-
ing a lot the best one up to that time. Furthermore,
rewards are proportional to the improvement made
by the posted solutions with regard to a HH solution.
Thus, competitor are incentivized to post very good
solutions to gain more rewards. However, sometimes a
suboptimal solution or algorithm - which is radically
different from the state of the art or the best one -
can be extremely valuable. Finding a new solution or
algorithm opens new doors for future work, even if at
the moment it does not compete with other ones. (ii)
also incentivizes this aspect, still rewarding the owner
of the "suboptimal" solution to the extent that this
improves some HL solution.

(iii) and (iv) incentivize to post open-source solutions.
Otherwise, the competitor it can define a price for that
solution and wait and hope that someone buys it.

(vi) incentivize people to maintain integrity on the
blockchain.

Reputation Schema. Reputation is the sum of all our
actions that is reflected by the people around us in
the way they treat us or interact with us. It is an
indirect result of anything and everything that we do.
The basic idea behind reputation is somewhat similar
to the idea of reward and punishment. In this paragraph
we briefly describe the reputation schema used to assign
reputation to the entities on the platform that allow
them to become more known and be considered more
reliable.

We introduce the concept of transitive reputation
which is very close to the transitive credit wherein a
credit map for product A, which is used by product
B, feeds into the credit map for B [10]. First, we
consider each open-source solution or algorithm to rely
implicitly on the previous solutions for the problem or
class of problems they are supposed to solve. Arguably,
this is a strong assumption that overestimate the

6 EAI Endorsed Transactions on
Serious Games

12 2017 - 09 2018 | Volume 5 | Issue 16 | e5

Business-Savvy Blockchains with Gamification: A Framework for Collaborative Problem Solving

implicit knowledge embedded in open-source solutions
a competitor could exploit to create her own solution.
Nevertheless, it is plausible that people rely on existing
solutions to create new improved solutions. As its name,
the transitive reputation plans to reward users in a
transitive fashion, i.e. when someone posts a solution
for a specific problem, all owner of the solutions
lower than the new posted one gain an increment of
their reputation proportionally to the quality of their
solutions. For example, if a competitor posts a solution
A which is better than a solution B with regard to some
quality measure f, i.e. f(A)>f(B), which in turn is better
than a previous solution C, i.e., f(B)>f(C), than owner
of solution B would gain a reputation given by the
reciprocal of the difference f(A)-f(B), while the owner of
solution C will gain a reputation given by the reciprocal
of the difference f(B)-f(C). Note: only owner of open-
source solutions are rewarded by reputation, unless
the competitor posting a solution has bought a private
solution in the past, within the context of the specific
problem.

In the context of private solutions, the reputation
schema behaves differently. As by the pay-per-use
schema, the owner of a private solution will gain a
positive amount of reputation r each time her solution
will be used (i.e. bought as-a-service) by others.

The primary value of transitive reputation is in
measuring the indirect contributions to a solution,
which today are not quantitatively captured. Because
they are not captured, they are not rewarded, and there
is a disincentive to perform them. If they were captured,
this disincentive would be replaced by an incentive,
which in this case means to publish and share solutions
and algorithm in a reusable form. Other reputational
mechanisms can apply [17].

2.4. Attacks aiming at exploiting the reward
mechanism
We now analyze two possible ways a malicious user can
try to exploit the rewarding mechanism to gain more
and propose solutions to prevent this behavior, which
themselves are embedded in the design.

Gradual introduction of a suboptimal solution. If a
competitor finds a solution which is n times better than
the previous one, with respect to some quality measure,
the competitor could be incentivized not to reveal it,
but to design worse variants of it, so as to publish them
gradually and reap the reward each time, since she’s
introducing different "best" or suboptimal (mediocre)
solutions. Although it could be considered a (apparent)
fault of the rewarding mechanism exploitable by a
malicious user, it is not, because the user is still
introducing better solutions usable by other people,
which are incentivized by the design we propose.
Furthermore, we argue that the versions of an improved

solution the user can introduce are a finite number,
and it does not affect too much the behavior of the
mechanism.

Plagiarism Countermeasures. The Oxford dictionary
defines plagiarism5 as "The practice of taking someone
else’s work or ideas and passing them off as one’s own".

By design it is possible for a peer to replicate an open-
source solution, obfuscate it and reintroduce it into the
database as private, to obtain reputation, or as public,
to obtain the reward for having shared it with others.
Although it seems a problem or a possible attack at first
glance, rule (ii) in section 2.3 prevents this behavior.
As the rule states: "If at the time of posting the solution
there already exist a solution with the same value, the
previous schema does not apply and the competitor must
pay the amount of tokens y" it is not worth to replicate
an existing solution since the rewarding rules establish
a first come, first served policy on equal solutions’ value,
i.e., at the same solution’s value, only the first people
to improve a previous solution for a specific problem
will receive the reward. Thus, the plagiarist will obtain
no reward or reputation. Moreover, she must pay to
posts the solution. However, the plagiarist could use
the solution and post a new improved one based on
it. In this case the problem does not arise, since she is
introducing a new improved solution, which is rightly
and properly incentivized by our design.

There still exists the opportunity that the plagiarist
would introduce the plagiarized solution as private to
gain from its sales. Since an open-source solution with
the same value would already exists, people would be
disincentivized to buy solution by the plagiarist.

2.5. Gamified, Blockchain-based Marketplaces:
Workflow
The workflow of operations allowed across the
marketplace is as follows:

a) A proponent proposes a problem, providing its
representation and the representation of the candidate
solution together with the objective function, used
to evaluate the quality of potential solutions, and a
validation algorithm used to automatically validate
the solutions, i.e., to verify they are feasible solutions
for the problem. The representation is important to
shaping the nature of the search problem and it should
be one can be rapidly understood. To ensure that all
is working, the proponent can eventually provide a
simple algorithm (e.g. a random search) that allows
competitors to check that the objective function is
working correctly and that can be used by them to
resolve the problem (e.g., running it several times, with
different paramenters). The problem is replicated in

5https://en.oxforddictionaries.com/definition/plagiarism

7 EAI Endorsed Transactions on
Serious Games

12 2017 - 09 2018 | Volume 5 | Issue 16 | e5

https://en.oxforddictionaries.com/definition/plagiarism

S. Dalla Palma et al.

order to store it in the entire distributed database to
make it consistent.

b) Competitors download the problem and (eventu-
ally) the algorithm provided by the proponent and try
to resolve it. They can set up their own algorithms,
or use existing ones, regardless of the type (i.e., exact
methods, heuristics, metaheuristics etc.), store them
into the database and share the obtained solutions on
the marketplace.

c) Competitors post their solutions: (i) the one who
posts the best solution for the problem up to that
moment get rewarded; (ii) those who post solutions as
open-source – regardless whether they are the best ones
– get rewarded for having shared them with everyone.
The reward is bounded by the gamified rewarding rules
in section 2.3; (iii) those who want to post solutions with
the intent of selling it – and are not the best ones for the
problem up to that moment – must pay an amount of
tokens to do it.

d) When nodes perform actions on the network or on
the database, e.g., they post, sell or buy a solution or
transfer their ownership, those are validated by other
peers to guarantee the integrity and the ownership of
each operation.

Figure 2 represents the ideal workflow previously
outlined using a simple UML sequence diagram. The
diagram outlines the scenario in which a proponent
posts a problem and a competitor resolves it and posts
the solution as open-source (or the solution result is the
best one for the problem). If the solution is not the best
one for the problem and it is not open-source, arrow
at step 7 must be reversed and labelled "pay to public
solution as private".

3. Example: Competing for the Knapsack Problem
The Knapsack Problem (KP) is a well-known NP-hard
problem: given a set of items, each with a weight and a
value, determine which item to include in a collection
so that the total weight is less than or equal to a
given limit and the total value is as large as possible.
The problem often arises in resource allocation where
there are financial constraints and is studied in fields
such as combinatorics, computer science, complexity
theory, cryptography, applied mathematics, and daily
fantasy sports. In this section we show an example
of the application of Genetic Algorithm (GA) to the
Knapsack Problem [6] and how competitors can take
advantage from the properties of techniques such as GA
and compete to find the "best so far" solution for such a
problem.

Genetic Algorithm is a metaheuristic inspired by
the process of natural selection that belongs to
the larger class of evolutionary algorithms (EA).
GAs are commonly used to generate high-quality
solutions to optimization and search problems by

relying on bio-inspired operators such as mutation,
crossover and selection. During the course of evolution,
natural populations evolve according to the principles
of natural selection and "survival of the fittest".
Individuals which are more successful in adapting to
their environment will have a better chance of surviving
and reproducing, whilst individuals which are less fit
will be eliminated. This means that the genesfrom
the highly fit individuals will spread to an increasing
number of individuals in each successive generation.
The combination of good characteristics from highly
adapted ancestors may produce even more fit offspring.
In this way, species evolve to become more and more
well adapted to their environment. A GA simulates
these processes by taking an initial population of
individuals and applying genetic operators in each
reproduction. In optimisation terms, each individual in
the population is encoded into a string or chromosome
which represents a possible solution to a given problem.
The fitness of an individual is evaluated with respect
to a given objective function. Highly fit individuals
or solutions are given opportunities to reproduce by
exchanging pieces of their genetic information, in a
crossover procedure, with other highly fit individuals.
This produces new "offspring" solutions (i.e., children),
which share some characteristics taken from both
parents. Mutation is often applied after crossover
by altering some genes in the strings. The offspring
can either replace the whole population (generational
approach) or replace less fit individuals (steady-state
approach). The basic steps of a simple GA are: (1)
generate the initial solution; (2) valuate fitness of
individuals in the population; (3) select parents from
population; (4) recombine parents to produce children;
(5) evaluate fitness of the children; (6) replace some or
all of the population by the children. The evaluation-
selection-reproduction cycle (steps 3 to 6) is repeated
until a satisfactory solution is found or a stop criterion
is reached.

3.1. Problem representation and objective function
The one-dimensional Knapsack Problem can be formu-
lated as follows:

maximise
n∑
i=1

cixi (1)

subject to
n∑
i=1

wixi ≤ W (2)

wherein n is the number of items; ci and wi are the
value and the weight of the i-th item, respectively; W
is the maximum capacity; and x is a integer variable
that indicates the possibility that an item is included

8 EAI Endorsed Transactions on
Serious Games

12 2017 - 09 2018 | Volume 5 | Issue 16 | e5

Business-Savvy Blockchains with Gamification: A Framework for Collaborative Problem Solving

Figure 2. Gamified blockchain-based marketplaces: a workflow - notation loosely based on UML sequence diagrams.

Figure 3. Binary representation of a KP solution.

in the collection. In this example we consider the 0-
1 Knapsack problem, therefore xi ∈ {0, 1} is a binary
value, meaning that each item can be included zero or
one times in the collection.

The first step in designing a genetic algorithm for a
particular problem is to devise a suitable representation
scheme, i.e., a way to represent individuals in the GA
population. The standard GA 0-1 binary representation
is an obvious choice for the one-dimensional Knapsack
Problem since it represents the underlying 0-1 integer
variables. Hence, in this representation, we used a n-
bit binary string, where n is the number of variables
in the KP. A value of 0 or 1 at the i-th bit implies
that xi = 0 or 1 in the solution, respectively. This
binary representation of an individual’s chromosome
(solution) for the KP is illustrated in Figure 3. Note
that a bit string S ∈ {0, 1}n might represent an infeasible
solution. An infeasible solution is one for which the

constraint (2) is violated, i.e.,
n∑
i=1

wixi > W .

3.2. Initial Population
To achieve sufficient diversification one can randomly
generate an initial population with a high size being
fixed (e.g. n = 100) and construct each of the initial
feasible solutions by a primitive primal heuristic that

repeatedly randomly selects a variable and sets it to
one if the solution is feasible. Another competitor
can generate the initial population changing its size
and using a simple constructive greedy or a clever
heuristic to construct initial solutions rather than
randomly generate them. Competitors can initialize
their population as they want as long as the final posted
solution is feasible for the problem.

3.3. Parent Selection
Parent selection is the task of assigning reproductive
opportunities to each individual in the population.
Typically in a GA we need to generate two parents
who will have (one or more) children. The tournament
selection method works by forming two pools of
individuals, each consisting of t individuals drawn
from the population randomly. Using a larger value
for t has the effect of increasing selection pressure on
the more fit individuals. A competitor can adopt the
standard binary tournament selection method (i.e., t =
2) as the method for parent selection because it can
be implemented very efficiently. Another competitor
can base its selection on other criteria such as Roulette
Wheel Selection where the probability for an individual
to be selected is proportioned to its fintess; Rank
Selection; Random Selection, etc.

3.4. Crossover and Mutation
The binary, problem-independent, representation
adopted for the KP in this example allows a wide range
of the standard GA crossover and mutation operators

9 EAI Endorsed Transactions on
Serious Games

12 2017 - 09 2018 | Volume 5 | Issue 16 | e5

S. Dalla Palma et al.

to be adopted. Competitors can choose among several
crossover operators. In a one-point crossover, a random
crossover point is selected and the tails of its two
parents are swapped to get new off-springs. Multi-point
crossover is a generalization of the one-point crossover
wherein alternating segments are swapped to get new
off-springs. In uniform crossover the chromosome is
not divided into segments, rather it treats each gene
separately. Two parents have a single child. Each
bit in the child solution is created by copying the
corresponding bit from one or the other parent, chosen
according to a binary random number generator [0,
1]. If the random number is a 0, the bit is copied from
the first parent, if it is a 1, the bit is copied from the
second parent. There exist a lot of other crossovers
like Partially Mapped Crossover (PMX), Order based
crossover (OX2), Shuffle Crossover, Ring Crossover, etc.
Once a child solution has been generated through
crossover, a mutation procedure is performed that
mutates some randomly selected bits in the child
solution, i.e., causes these chosen bits to change from
0 to 1 or vice versa. The rate of mutation is generally
set to be a small value (in the order of 1 or 2 bits
per string). However, each competitor can define the
mutation value she desires.

3.5. Repair operator
Clearly, the child solution generated by the crossover
and mutation procedures may not be feasible because
the Knapsack constraints may not all be satisfied. In
order to guarantee feasibility, competitors can apply
several heuristics, such as a simple greedy algorithm.

3.6. Stopping Criterion
The following three kinds of termination conditions
have been traditionally employed for GAs [16]: (i) an
upper limit on the number of generations is reached;
(ii) an upper limit on the number of evaluations of
the fitness function is reached; or (iii) the chance of
achieving significant changes in the next generations
is excessively low. However, there are a lot of other
criteria defined in the literature, all with their pros
and cons. Competitors can choose among them or
define their own stopping criteria. A simple stopping
criterion could be based simply on the execution time a
competitor is willing to spent.

3.7. Algorithmic outline
Settings of the GA heuristic a competitor can use for the
KP are:

• the binary tournament selection method;

• the uniform crossover operator;

• a mutation rate equal to 2 bits per child string;

• to discard any duplicate children (i.e., discard
any child which is the same as a member of the
population);

• the steady-state replacement method based on
eliminating the individual with the lowest fitness
value.

This settings can be included as solution information
when a competitor posts the solution generated by
this algorithm set up. Of course, competitors can use
simpler heuristics than GAs and also obtain better
results, depending on the problem instance and search
technique used.

Let’s consider the data in Table 1 and a weight
limit of 20. In this case there exist two optimal
solutions that can be found with different algorithms.
The optimal solutions consist of selecting the 2nd and
7th item or the 7th and 8th item, and are generated
following the binary representation showed before:
(0,1,0,0,0,0,1,0) and (0,0,0,0,0,0,1,1) both with a weight
of 19 and a total value of 8. The solutions are then
evaluated by the validation algorithm provided by the
proponent, with the purpose to check their feasibility
and execute the objective function to measure their
quality. Once accepted the system provides to insert
them into the database, together with the algorithm
information, and register them on the blockchain
whose transactions are validated by other peers to
guarantee the integrity and the ownership of those
operations as mentioned in section 2.5. At this point,
people on the network can buy, sell or exchange those
solutions and the algorithm set up through smart
contracts that establish and guarantee the conditions
to be respected for their use, payment and their
eventual ownership transfer. For example, competitors
could have generated intermediate solutions such
as (0,1,1,0,0,0,0,0) or (0,0,0,0,0,1,1,0) of value 7
and weight 18 and 20, respectively. Those solutions
could be acquired, through smart contracts, by other
peers to solve similar problems or, for example, to
use them as part of the initial population in a
evolutionary algorithm. Finally, instead of competing,
competitors could also cooperate starting from a initial
population and share computational efforts to create
new generations (i.e., children) in a distributed fashion
and split the rewards. Smart contracts guarantee that
each competitor will be rewarded by the effort spent to
find the final solution and all the information will be
stored on the blockchain.

4. Discussion
The problems we want people to solve on our
marketplace often apply in areas where there is no

10 EAI Endorsed Transactions on
Serious Games

12 2017 - 09 2018 | Volume 5 | Issue 16 | e5

Business-Savvy Blockchains with Gamification: A Framework for Collaborative Problem Solving

item 1 2 3 4 5 6 7 8
value 5 3 4 6 3 1 5 3
weight 15 8 10 14 11 9 11 8

Table 1. Example of data for the KP.

existing best solution. This is particularly true in
the engineering. It is natural in the resolution of
new problems of engineering fields that there are,
at first, moments characterized by enthusiasm, early
important results and the excitement that goes with
them. However, this excitement is often struck down
by the fact that no optimum solution is known, and
the actual results could be not the best ones. Clearly,
this is the case of search-based optimization problems,
that involve search techniques to find the best solution
in a huge space of possible solutions. There are three
key ingredients for the application of search-based
optimization to a widely number of applications: (i)
the choice of the representation of the problem; (ii)
the definition of the objective function; and (iii) a set
of manipulation operators. Typically, a proponent will
have a suitable representation for her problem, so the
first of the pre-requisites is easily satisfied. Even the
objective function is defined by the proponent, which
is posted together with the problem representation
and its description. However, the objective function
can be proposed by competitors and eventually
accepted by the proponent, for example through a
stacking mechanism. Competitors, for their parts, can
define manipulation operators or using existing ones.
Different search techniques use different operators.
As a minimum requirement, it will be necessary to
mutate an individual representation of a candidate
solution to produce a representation of a different
candidate solution. It will make it possible to apply hill
climbing approaches and certain forms of evolutionary
computation. If it is possible to determine the set of
"near neighbors" of a candidate solution (in term of
its representation) then simulated annealing and tabu
search can be applied. If, instead (or in addition), it
is possible to sensibly cross-over two individuals (to
produce a "child" which retain characteristics of both
"parents") then genetic algorithms will be applicable.
With these three ingredients it becomes possible to
implement search algorithms. The results of the search
algorithms can be compared, for example using random
search or other algorithms provided by the competitors
or by the proponent itself, to provide as baseline data.
Naturally, the aim is to beat them, though in some areas
even a purely simple, unsophisticated algorithm, such
as random search, has been found to be not without
value, even beating human-directed search in some
cases. This fact is supported by the "no free lunch"
(NFL) theorems that establish that for any algorithms

any elevated performance over one class of problems is
exactly paid for in performance over another class [20].
Of course, the goal is to find the best solution for a given
problem, regardless from the used algorithm. However,
having different algorithms to compare – and solutions
generated by these algorithms – allows researchers and
people to understand and balance the results with
performance, with the possibility to create an ontology
of problems and related algorithms together with their
best solutions and information.

There exist a lot of search-based optimization
algorithms and techniques. Although competitors can
use precise optimization algorithms such as linear
programming6 to solve problems – and we encourage
them to do so, whenever possible –, those are
straightforward deterministic algorithms. Even though
modern solvers can deal with thousand of variable and
millions of clauses, these deterministic optimization
algorithms are often inapplicable because the problems
have objectives that cannot be characterized by a
set of linear equations. Often there are multiple
criteria and complex objective functions. Many of
the optimization problems are augmented versions of
known NP-complete problems and, as such, they are
well suited to the application of metaheuristic search
techniques. A metaheuristic is a high-level problem-
independent algorithmic framework that provides a
set of guidelines of strategies to develop heuristic
optimization algorithms. The term is also used to refer
to a problem-specific implementation of a heuristic
optimization algorithm according to the guidelines
expressed in such a framework [18]. A metaheuristic
is not an algorithm. Rather, it is a consistent set
of ideas, concepts, and operators that can be used
to design heuristic optimization algorithms. This
acknowledgment brings with it all of issues that are
associated with the application of metaheuristic search
techniques: (i) global optimum; (ii) predictability; and
(iii) computational expense.

Global Optimum. There is no guarantee that the global
optimum will be found. In many applications, there is a
threshold, above which a solution will be "good enough"
for purpose. Furthermore, optimization may not seek to
find an optimal solution to a problem, but rather, it may
seek to improve upon the current situation.

Predictability. Each execution will potentially yield
different results. It is true that each execution of
a metaheuristic search algorithm can yield different
results, but all search algorithms are formulated in such
a way that repeated executions can only improve on a

6Linear programming is a mathematical optimization technique that
is guaranteed to locate the global optimum solution subject to some
linear expression in the decision variables given as input to the linear
programming model.

11 EAI Endorsed Transactions on
Serious Games

12 2017 - 09 2018 | Volume 5 | Issue 16 | e5

S. Dalla Palma et al.

"best so far" result, rather than overturning a previous
result. The algorithms may be terminated at any time
and also after any number of executions to yield results
which are the "best so far".

Computational Expense. Many individual candidate
solutions may need to be considered before an
acceptable quality solution is found. The kinds of
problems to which search techniques seem to be readily
applicable, are those where the solution is highly
complex. While speedy answers may be attractive, they
are not essential in many applications. To overcome
computational expense, competitors can solve problems
in a distributed fashion, sharing their computational
power and split the rewards, as nowadays happen with
the famous "mining pools". Several techniques can be
used that involve parallelism (e.g., Multiple Threads,
Island Models, Master-Slave Fitness Assessment) [12]
and different reward approaches exist (e.g., slush’s
pool, pay-per-share, p2pools, etc.).

An attractive field to which search-based optimiza-
tion techniques have been widely applied is software
engineering [8, 9]. Many of the problems faced by soft-
ware engineers turn out to have natural counterparts
as "standard" optimization problems. Indeed, from its
formal definition to this date a huge number of software
engineering problems have been mathematically for-
mulated as optimization problems and tackled with a
considerable variety of search-based techniques. Often,
of course, there are some modifications and enhance-
ments that are required and suitable representations
and objective functions must be formulated for each
problem; therein lies interesting and exciting research.

5. Conclusions and Future Work
The role of blockchain technology to structure effective,
trust-based and cooperative software engineering
solutions is not clear yet but offers ample potential
and great opportunity. The solution we outlined in the
previous pages combines state of the art blockchain
technologies in a new way and includes in the midst all
the elements of gamification in a purposeful way such
that a business-savvy software-based solution can be
structured. Although a proof-of-concept of our proposal
is currently under way of prototyping, we are looking
to formalize our proposal using more structured
approaches to software and requirements engineering,
properly exploring the solution space defined by
our proposed design pattern and understanding its
factual feasibility beyond the theoretical illustration
and discussion we currently offered. In the future we
plan to carry out such formalization, addressing in
particular the business benefits behind the solution
possibly by means of industrial empirical software
engineering research. From a technical perspective, we

aim at eliciting the different technical implementation
options currently existing to support blockchains (e.g.,
Ethereum, Hyperledger) and comparatively analyze
their fitness for purpose towards designing for,
implementing, and operating prototypes for the
proposed idea. We plan to propose a software-centric
business model behind the proposed solution such
that the proposed design pattern may be accompanied
by a sound and well-thought business plan template
around which companies and practitioners interested in
blockchain technology may base their own solutions.

Finally, although this framework promotes sharing
open-source solutions, others rules can apply. We also
aim at creating a platform that allows proponents
to create contests and define their own rules, in
accordance with the design pattern presented, defining
a distributed ledger model that marks the progress of
problem solving as intellectual capital.

Acknowledgements
The authors are grateful to Hervé Gallaire for many
useful feedbacks and insights for the previous versions
of this paper.

References
[1] Bell, R.M. and Koren, Y. (2007) Lessons from the netflix

prize challenge. SIGKDD Explorations 9 2: 75–79.
[2] Bengtsson, M. and Kock, S. (2000) âĂİ coopetitionâĂİ

in business networksâĂŤto cooperate and compete
simultaneously. Industrial marketing management 29(5):
411–426.

[3] Burke, E.K., Curtois, T., Kendall, G., Hyde, M., Ochoa,

G. and Vazquez-Rodriguez, J.A. (2009) Towards the
decathlon challenge of search heuristics. In Proceedings
of the 11th Annual Conference Companion on Genetic
and Evolutionary Computation Conference: Late Breaking
Papers (ACM): 2205–2208.

[4] Buterin, V. et al. (2014) A next-generation smart contract
and decentralized application platform. white paper .

[5] Caddy, T. (2005) Tamper resistance. In Encyclopedia of
Cryptography and Security, edited by Henk C. A. van
Tilborg: Springer .

[6] Chu, P.C. and Beasley, J.E. (1998) A genetic algorithm
for the multidimensional knapsack problem. Journal of
heuristics 4(1): 63–86.

[7] Dalpiaz, Fabiano; Ali, R. and Brinkkemper, S. (2018)
Special section on gamification and software engineer-
ing. Information & Software Technology 95: 177–178.

[8] Harman, M. and Jones, B.F. (2001) Search-based soft-
ware engineering. Information and software Technology
43(14): 833–839.

[9] Harman, M., Mansouri, S.A. and Zhang, Y. (2012)
Search-based software engineering: Trends, techniques
and applications. ACM Computing Surveys (CSUR) 45(1):
11.

[10] Katz, D. (2014) Transitive credit as a means to
address social and technological concerns stemming

12 EAI Endorsed Transactions on
Serious Games

12 2017 - 09 2018 | Volume 5 | Issue 16 | e5

Business-Savvy Blockchains with Gamification: A Framework for Collaborative Problem Solving

from citation and attribution of digital products. Journal
of Open Research Software 2.1.

[11] LaToza, T.D. and van der Hoek, A. (2016) Crowdsourc-
ing in software engineering: Models, motivations, and
challenges. IEEE Software 33 1: 74–80.

[12] Luke, S. (2013) Essentials of Metaheuristics
(Lulu), 2nd ed., 99–107. Available for free at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[13] Morschheuser, B., Hamari, J. and Koivisto, J. (2016)
Gamification in crowdsourcing: A review .

[14] Nakamoto, S. (2008) Bitcoin: A peer-to-peer electronic
cash system .

[15] Olague, G. (2006) Gecco-2006 highlights. human com-
petitive awards the humies. synthesis of interest point
detectors through genetic programming. SIGEVOlution
1 3: 28–29.

[16] Safe, M., Carballido, J., Ponzoni, I. and Brignole, N.

(2004) On stopping criteria for genetic algorithms. In
Brazilian Symposium on Artificial Intelligence (Springer):
405–413.

[17] Scalabrino, S., Geremia, S., Pareschi, R., Bogetti, M.

and Oliveto, R. (2018) Freelancing in the economy 4.0:
How information technology can (really) help. Social
Media for Knowledge Management Application in Modern
Organizations : 290–314.

[18] Sörensen, K. and Glover, F.W. (2013) Metaheuristics.
In Encyclopedia of operations research and management
science (Springer), 960–970.

[19] Tamburri, D.A., Lago, P. and van Vliet, H. (2013)
Uncovering latent social communities in software
development. IEEE Software 30 1: 29–36.

[20] Wolpert, D.H. and Macready, W.G. (1997) No free
lunch theorems for optimization. IEEE transactions on
evolutionary computation 1(1): 67–82.

[21] Zheng, Z., Xie, S., Dai, H., Chen, X. and Wang,

H. (2017) An overview of blockchain technology:
Architecture, consensus, and future trends. Big Data
(BigData Congress), 2017 IEEE International Congress on
: 557–564.

13 EAI Endorsed Transactions on
Serious Games

12 2017 - 09 2018 | Volume 5 | Issue 16 | e5

	1 Introduction
	2 Gamified, Blockchain-based Marketplaces: How does it work?
	2.1 Design Principles
	Design principle 1 - marketplace-based information sharing
	Design principle 2 - marketplace cryptocurrency
	Design Principle 3 - marketplace coopetition
	Design principle 4 - marketplace data-storage

	2.2 Architecture Elements
	2.3 Gamified Rewarding Rules: Incentive and Reputation Schema
	Incentive Schema
	Reputation Schema

	2.4 Attacks aiming at exploiting the reward mechanism
	Gradual introduction of a suboptimal solution
	Plagiarism Countermeasures

	2.5 Gamified, Blockchain-based Marketplaces: Workflow

	3 Example: Competing for the Knapsack Problem
	3.1 Problem representation and objective function
	3.2 Initial Population
	3.3 Parent Selection
	3.4 Crossover and Mutation
	3.5 Repair operator
	3.6 Stopping Criterion
	3.7 Algorithmic outline

	4 Discussion
	Global Optimum
	Predictability
	Computational Expense

	5 Conclusions and Future Work

