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Abstract. The World-Wide-Web is a complex system naturally repre-
sented by a directed network of documents (nodes) connected through
hyperlinks (edges). In this work, we focus on one of the most relevant
topological properties that characterize the network, i.e. being scale-free.
A directed network is scale-free if its in-degree and out-degree distribu-
tions have an approximate and asymptotic power-law behavior. If we
consider the Web as a whole, it presents empirical evidence of such prop-
erty. On the other hand, when we restrict the study of the degree distri-
butions to specific sub-categories of websites, there is no longer strong
evidence for it. For this reason, many works questioned the almost uni-
versal ubiquity of the scale-free property. Moreover, existing statistical
methods to test whether an empirical degree distribution follows a power
law suffer when dealing with large sample size and/or noisy data.
In this paper, we propose an extension of a state-of-the-art method that
overcomes such problems by applying a subsampling procedure on the
graphs performing Random Walks (RW). We show on synthetic exper-
iments that even small variations of true power-law distributed data
causes the state-of-the-art method to reject the hypothesis, while the
proposed method is more sound and stable under such variations.
Lastly, we perform a study on 3 websites showing that indeed, depend-
ing on the sub-categories of website we consider, some accept and some
refuse the hypothesis of being power-law. We argue that our method
could be used to further explore sub-categories of websites in order to
better characterize their topological properties deriving from different
generative principles: central or peripheral.

Keywords: Power-law Distribution, Random Walks, Statistical Test,
World-Wide-Web, Network Analytics

1 Introduction

The World-Wide-Web (WWW) encodes associative links among a large amount
of pages. Its structure has grown without any central control, thus make it ap-
proximable to the result of a random process, where pages link to each other
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following local probabilistic rules.
Such probabilistic rules are defined through statistical properties of Web graph
features. In particular, several investigations show that the WWW is scale-free
[1, 5, 8] i.e., both the distributions of incoming and outgoing links are well-
approximated by a discrete power law [19]. This can be traced to the fact that
the vast majority of documents in the Web have relatively few outgoing and
incoming links, but few pages still have enormous number of links that skew the
mean of the empirical distribution far above the median.

Nonetheless, when analyzing specific portions of the Web, i.e. websites, the
scale-free property seems to be less evident especially for specific sub-categories
of websites (e.g. university homepages) [21, 22]. Note that, differently from what
is commonly done in literature [21], we consider websites as closed sub-systems
of the Web whose temporal evolution is independent of the system they evolved
into.

In this work, we are interested in developing a method able to assess if data
from empirical observations follow a power-law. Indeed, testing power laws on
empirical data is usually hard due to the large fluctuations that are present in
the tail of the distribution.

One of the most commonly used methods for testing is the Kolmogorov-
Smirnov test [9]. This method focuses on the center of the distribution, making it
not suitable for testing heavy-tailed distributions. In [9] the authors make strong
use of this test by performing a bootstrap procedure that is optimal in small
sample size regimes. Indeed, as the sample size grows, the power of the statistical
test increases thus leading to higher rate of rejections of the null hypothesis.
Moreover, even in presence of small sample sizes, adding a low amount of noise
may cause the test to reject.

As in real-world noisy or large samples are the common scenario, here, we
propose an alternative testing pipeline that leverages on the Anderson Darling
test [3] and Random Walks (RWs). Our pipeline is able to cope with the power
of the test problem by reducing the sample size with random walks while main-
taining the original degree distribution behavior.

We show synthetic experiments in which the state-of-the-art method fails
under small variations or large sample sizes of input data. In all these cases,
our method is proved to be more stable under variations and it can be shown
that provides results with a better confidence. Lastly, we present case studies
on 3 websites which present interesting results showing that indeed, closed sub-
portion of the Web do not necessarily follow a power-law distribution.

Outline The remainder of the paper is organized as follows: Section 2 presents
the state-of-the art algorithm for testing empirical power-law distribution; in
Section 3 we present the limitations of such method with the related synthetic
examples; in Section 4 we present our adaptation based on RWs to overcome
the issue of power in empirical data; in Section 5 we present a set of synthetic
experiments showing how our method is more stable; Section ?? shows results
obtained on 3 websites; lastly, we conclude with Section 6 with some discussion
on the obtained results and future research directions.
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2 Discrete power-law distribution: definition, fit and
statistical test

The discrete power-law distribution is defined as

P(dv = x) ≈ 1

ξ(xmin, α)
x−α, (1)

where dv is the random variable representing the degree of a node v, xmin is a
fixed lower bound on the values x, α is a scaling parameter, and ξ(xmin, α) =
∞∑

x=xmin

x−α is the Hurwitz-zeta function [13].

The parameter xmin is particularly important, as often the degree distribu-
tion of a network follows a power law only for degrees x greater than a lower
bound. A network is said to be scale-free if the tail of its in-degree and out-degree
distributions obeys to a discrete power law decay. In practice, this entails that
we have a non-null probability to observe nodes with a degree much greater than
average (hubs).

2.1 Maximum Likelihood Estimation

The parameters xmin and α of an empirical power-law distribution need to be
estimated from data. Given as input a vector x ∈ Nn representing the degrees
of n nodes of a graph, we need to perform two different procedures to estimate
these two parameters, as described by the pseudo-code in Algorithm 1.

Estimate of xmin add at least 25 remaining observations First, we pick x̂ as the
value that minimizes the difference between the empirical degree distribution
and the fitted power-law model where xmin = x̂ [10, 9]. Note that, if we select
a x̂ > xmin, we are reducing the size of our training data, and our model will
suffer from the statistical fluctuations in the tail of the empirical distribution.
On the other hand, if x̂ < xmin, the maximum likelihood estimate of the scaling
parameter α̂ may be severely biased.

In order to minimize the difference of the empirical and fitted distributions,
we need to select a suitable distance. One of the most common is the Kolmogorov-
Smirnov (KS) statistic, which is defined as the maximum distance between the
cumulative distribution functions (CDFs) of the empirical data and the best-fit
model [16]. Although the KS statistic is widely used, it presents some drawbacks
in the detection of heavy-tailed distributions since, being based on the CDF, it
mainly penalizes fluctuations in the center of the empirical distribution. A more
reliable distance for the comparison of heavy-tailed distributions is the Anderson-
Darling (AD) statistic as it puts more importance to the extreme values of the
CDFs [3]. For this reason, we will recur to this statistic in the rest of the paper.
The AD distance is defined as

A2(x, Fxmin=x) = −n−
n∑
i=1

2i− 1

n

[
lnFxmin=x(xi) + ln(1− Fxmin=x(xn+1−i))

]
,

(2)
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Algorithm 1 Power-law fitting

1: Input: degrees vector of length n
2: distances = [ ]
3: for x ∈ {min(degrees),max(degrees)− 25} do
4: if len(degrees > x) too short then
5: break
6: α← power law fit(degrees, xmin = x)
7: d← Anderson-Darling(degrees, x, α)
8: distances.append(d)

9: x̂← argmin
x

distances

10: α̂← power law fit(degrees, xmin = x̂)
11: d̂← Anderson-Darling(degrees, x̂, α̂)
12: return x̂, α̂, d̂

where n is the sample size and Fxmin=x is the power-law CDF.
The estimated lower bound x̂ is then the observed degree that minimizes

Equation (2).

Estimate of α Given the lower bound xmin, we estimate the scaling parameter
α by means of maximum likelihood, which provides consistent estimates in the
limit of large sample sizes [11].
In the discrete case, a good approximation of the true scaling parameter can be
reached mostly in the xmin ≥ 6 regime [9]. And it can be computed as:

α̂ ≈ 1 + n

[ n∑
i=1

ln
xi

xmin − 1
2

]−1
. (3)

2.2 Goodness-of-fit test

Once α̂ and x̂ have been estimated, we need to assess if observed data are
plausibly sampled from the related power-law distribution. To such extent, we
perform a goodness-of-fit (GoF) test procedure [17].

A goodness of fit test measures how well a statistical model fits into a set of
observations. Typically, a GoF makes use of a so-called test statistic in order to
evaluate the discrepancy between the observed values and the values expected
under the tested statistical model. GOF statistics are functions which do not
depend on the parameters of the statistical model. The goodness-of-fit test pro-
duces a p-value corresponding to the probability that the test statistic is greater
than the realization of the same statistic on the observed data.
The pseudo-code of the test we perform is presented in Algorithm 2. In particu-
lar, we recur to a semi-parametric bootstrap approach where we fixed as statistic
the Anderson-Darling distance. The bootstrap phase is needed as, when estimat-
ing parameters from data, we do not know the distribution of the test statistic
under the null hypothesis [23, 9]. Given n samples, we indicate with ntail the
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Algorithm 2 Power-law testing

1: Input: degrees vector of length n, x̂, α̂, d̂
2: distances = [ ]
3: for i = 1, . . . ,M do
4: ntail = count(degrees > x̂)
5: for j = 1, . . . , n do:
6: b← bernoulli sample(ntail/n)
7: if b is 1 then
8: si[k] = power law sample(x̂, α̂)
9: else

10: si[j]← uniform sample(degrees < x̂)

11: αi, xi ← power law fit(s)
12: d← Anderson-Darling(s, xi, αi)
13: distances.append(d)

14: p-value = count(distances > d̂)/M
15: return p-value

amount of samples that are greater than x̂. Bootstrap is then performed by sim-
ulating ntail examples from a power law with parameters α̂ and x̂, and for the
remaining sample size n− ntail we sample degrees from the empirical data that
are smaller than x̂. We repeat this procedure M times. The value of M depends
on the desired significance of the p-value. Typically, if we want a p-value that
approximates its true value with an error smaller than ε, then M = 1

4ε2 .

Given the M simulated data sets, we fit to each of them its own power-law
model and compute the AD distance. This provides the empirical distribution of
the AD statistic that we use to compute the associated p-value, defined as the
fraction of synthetic distances larger than the observed one.

If p is large (relatively to a fixed significance level, e.g. 0.1), we cannot reject
the null hypothesis, then possibly the difference between the empirical and the-
oretical distributions may be attributed to statistical fluctuations. Differently, if
p is smaller than the significance level, we say that the empirical data are not
power law.
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Fig. 2: On the left, the empirical probability density functions of true power-law data
(black line) and noisy power-law data (pink). On the right, the Anderson-Darling test
on both samples. Little variations from an exact power-law sample lead to reject the
null hypothesis.

3 Problems of goodness-of-fit on empirical data
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On the left, the empirical

probability density function of true power law data. On the right, the

Anderson-Darling test. Large sample size (5× 105) leads to reject the null hypothesis.

Testing whether empirical data are power-law distributed is a hard task. This
is due to the following reasons: a) the probability of rejecting the null

hypothesis grows with sample size; and, as a consequence b) the procedure is
too sensitive to even minimal amount of noise. Little attention has been put on
these issues, but we argue that they are crucial as they heavily affect the final

response of the statistical test.

In particular, both problems can be addressed by considering the power of the
test, which, fixed a significance level, is defined as the probability of correctly

rejecting the null hypothesis. Such probability increases accordingly to the
sample size, hence, when the number of nodes n is large, we tend to reject the
null hypothesis even in cases of true power-law distributed data (as the power
of the test is very close to 1). Indeed, by performing bootstrap, we simulate

nearly exact power-law samples, which induce the Anderson-Darling test to be
very sensitive to even minimal fluctuations in the observed distribution.
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Fig. 3: Schematic representation of the proposed pipeline.

In Figure 1 and 3, we show two synthetic experiments where such test fails, in
particular:

(a) we generated n = 105 samples from a discrete power-law distribution with
parameters xmin = 7 and α = 2.7. We perturbed the data by adding one
occurrence to the last 13 degrees in the extreme tail (see Figure 1 left panel
for the true and perturbed data);

(b) we generated n = 5 × 105 samples from a discrete power-law distribution
with parameters xmin = 2 and α = 2.7.

We applied the procedure in Section 2 on both datasets, with M = 200 and
significance level set to 0.1. Results are shown on the right side of Figure 1 and
3. In Figure 1, the empirical probability density functions of the two samples
are indistinguishable from each other except in the extreme tail, where little

divergences can be traced. Thus, it becomes evident that for large sample sizes
the test is very sensitive even to little fluctuations in the observed sample.

Also, with example (b) we show that even perfect power-law samples induce
the test to fail when the sample size is too large (Figure 3).

Both examples show that the high power of the Anderson-Darling test in large
sample size regimes constitutes a drawback of the previously introduced

method [9]. Since it is never the case that an observed degree distribution is
exactly drawn from a discrete power law, we propose a variation of the method
in Section 2 that aims at testing the goodness of fit of heavy tail distributions.

4 Monte Carlo approach

Our proposal is based on the idea of performing iterative Monte Carlo (MC)
sub-samplings of different length on the original degree sequence. We argue
that with this sub-sampling scheme we can reduce the sample size without

modifying the trend of the original degree distribution and possibly obtain a
more reliable test.

The global scheme of the procedure is provided in Figure 2. In particular, we
define a set of lengths, {l1, . . . , lmax}, for each length we perform r

corresponding MC samplings.(see Section 4.1 for a more detailed RWs
description). For each sample we fit a power-law distribution and assess its
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plausibility following Algorithm 1 and Algorithm 2. Thus obtaining r p-values
of the Anderson-Darling test. We consider, as final output of the procedure,

the mean of all p-values for all different lengths and the related standard
deviation. To reject the null hypothesis, we fix the significance level at 0.1.

This is a conservative choice implying that the power law hypothesis is ruled
out if there is a probability of 1 in 10 or less that we obtain data that agree

with the model as the data we have.
To the best of our knowledge, it is not usual to exploit RWs to test for

power-law decay in the degree distribution. In fact, performing RWs does not
allow to exactly estimate the parameters of the power-law distribution, indeed,
to each RW may correspond a different set of parameters. Nonetheless, we do
not use RWs as a fitting method but rather to say if a network is plausible to

asymptotically satisfying the scale-free property. We argue that using RWs as a
way to obtain suitable sub-samples of smaller sample size would provide better

understanding of the degree sequence behavior while overcoming the
drawbacks induced by large sample sizes.

The algorithm to obtain a RW given a graph and a starting node is presented
in Algorithm ??. Given a node, we iteratively select one of its neighbors at
random and move to it. We repeat the procedure until we reach the desired
length sequence of nodes. The collected sequence is defined as a RW on the

graph.
length of monte carlo resampling The problem of selecting adequate lengths for
the random walks is not trivial. We now want to provide a lower and an upper

bound for the lengths given the following considerations: on the one hand, a
too short random walk would lead to very different degree sequences due to the

large fluctuations present in the original network, while, on the other hand,
lengths close to the original degree sequence would not provide a smaller
sample, leading to higher rates of rejection of the power-law hypothesis.

5 Experimental results

In order to evaluate the performance of the proposed pipeline, we perform four
experiments and compare the results with the state-of-the-art method. In the

results and in the rest of the narration we will refer to the state-of-the-art
method as Bootstrap and to our method as Monte Carlo + Bootstrap.

5.1 Validation of the proposed method on different graph models

In the first expweriment we aim at verifying if the prposed method is
comparable to the SoA when considering two cases at varyiong sample size:

1. Erdős-Renyi models of different sample sizes, {75 × 103, 15 × 104, 3 × 105},
we expect both ours and state-of-the-art method to refuse the null hypoth-
esis as the degree distribution of this model is known to follow a binomial
distribution [12]. Thus, we use this as base test to assess the probability of
correctly rejecting the power-law hypothesis.
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2. Barabasi-Albert models of different sample sizes, {75×103, 15×104, 3×105},
we expect both methods to have high p-values as the degree distribution
follows a power law [6]. We use this experiment to provide proof of the
soundness of the method in presence of true power-law data.

Each experiment listed above is repeated 10 times to estimate the mean and
standard deviation of performances. Results are rported in Table ?? Results

are reported in Table ?? and Figure 3. In particular, in the table we report the
mean p-values and standard deviations obtained when analysing two extreme
cases: true power-law data and completely non power-law data. Results show

that we always reject the null hypothesis in the latter case, while in the former
we always provide p-values with a smaller variance than the bootstrap

approach.

5.2 Robustness to noise

Configuration models, where we provide an input distribution that follows a
power law and we want to show that our method is more robust under

increasing noise in the input distribution[20]. We simulated from a discrete
power law, with parameters α = 2.3 and xmin = 1, a sample of size

n = 4× 105. For different levels of noise in the set
n̄ ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90}, we perturbed the power law observation
by adding n̄ values uniformly sampled from the original observation. For each
perturbed distribution we generate the related configuration model. For our

pipeline, we fixed 5 lengths of RWs within the lower and upper bounds defined
in Section ??. For each length, we perform 5 different RWs. All the simulations

are performed in Python. We used the package powerlaw [2] for fitting
power-law distributions to empirical data and compute the AD distances. We
provide all the notebooks used for the experiments of this paper in a GitHub
repository1. Figure 3 shows that the proposed methods is ... Figure 3 shows

similar results, in mean our approach is almost always better than the simple
bootstrap approach while also providing a smaller variance. Also, it never

reject the null-hypothesis in cases in which the noise is small while sometimes
it rejects it in presence of high amount of noise (100 added observations).
Differently from the boostrap approach that, depending on the simulated

sample, sometimes rejects it even in presence of zero noise.

5.3 Benchmark on University of Notre Dame website

In literature, we find a widely studied example of empirical data that is
assumed to follow a power-law distribution [1, 4, 18], i.e. the web graph of the

University of Notre Dame website. This graph, in 1999, has been studied in
order to obtain information regarding the topology of the WWW. In [1], the
authors found that the in-degree and out-degree distributions of the graph

1 LINKTO
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Fig. 4: Results in terms of p-values for the two testing pipelines as the input data
present an increasing level of noisy observations.

underlying the hyperlink structure of the domain nd.edu were well
approximated by power-law distributions with scaling parameters 2.7 and 2.1

respectively. We downloaded the hyperlink graph from
http://snap.stanford.edu/ [14]; the crawl consists of 325729 documents and

1497134 links. We tested the proposed pipeline on the in-degree distribution of
the network. For this purpose we performed 5 MC samplings for different sizes
equally spaced between 162864 and the number of nodes. We obtained a mean
p-value equal to 0.15, meaning that there is no strong evidence against the

power-law hypothesis for the in-degree distribution.
Differently, when applying the state-of-the-art method we observed a p-value

equal to 0.00, which would lead us to reject the null hypothesis.

This allows us to conclude that....

5.4 Websites analysis

In order to assess the proposed method on real scenarios, we considered three
different websites that we deemed representative of different strategies of

content creation: e-commerce, academic and public forum. The first category is
typically characterized by a strong central control in the design and evolution
of the information architecture and content generation. Conversely, the last

category is completely user-guided and its evolution is, thus, likely to be
random. We argue that the academic category, as well as most complex

institutions, should be a trade-off between the two, as usually many
contributors have access to writing and adding content with a mild central

control. We crawled the following websites using the open source framework
Scrapy2:

1. Goop, the website of a wellness and lifestyle company; during the crawl we
restricted to the domains goop.com and shop.goop.com;

2 https://scrapy.org/.
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2. Stanford, the website of Stanford University. We downloaded a crawl per-
formed in 2002 available at http://snap.stanford.edu/;

3. InsideHoops, a basketball news website in which users can also exchange
views in a forum section. We crawled starting from insidehoops.com/forum

limiting the depth to 5 edges, in order to retrieve only content within the
public forum.

Table ?? describes the characteristics of the three considered websites, in terms
on nodes, edges, and type and reports the results of hypothesis testing on the

in-degree distribution with the proposed method.

6 Discussion

1. we proposed a method for hypothesis testing of power-law distributions in
empirical data to overcome issues related to power and sample size and noise.
When the sample size is big, we rely on iterative Monte-Carlo subsamplings

2. we verified that the proposed method retains the ability of assessing if a
distribution is a power-low with different sample sizes

3. we observe that the method is indeed more reliable than the state-of-the art
in sythetic data when dealing with noisy data

4. we confirm that the UND follows a power-law
5. we start exploring how different content generation strategies for websites

may induce a different connectivity structure of the hyperlink graph
6. future research direction may involve considering RWs instead of simple

Monte Carlo Random Walks represent a sub-sampling technique on graphs
aimed at evaluating empirical characteristics on suitable sub-networks [7,
15].

References

1. Albert, R., Jeong, H., Barabási, A.L.: Diameter of the world-wide web. nature
401(6749), 130–131 (1999)

2. Alstott, J., Bullmore, D.P.: powerlaw: a python package for analysis of heavy-tailed
distributions. PloS one 9(1) (2014)

3. Anderson, T.W., Darling, D.A.: A test of goodness of fit. Journal of the American
statistical association 49(268), 765–769 (1954)

4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. science
286(5439), 509–512 (1999)

5. Barabási, A.L., Albert, R., Jeong, H.: Scale-free characteristics of random net-
works: the topology of the world-wide web. Physica A: statistical mechanics and
its applications 281(1-4), 69–77 (2000)

6. Barabási, A.L., et al.: Network science. Cambridge university press (2016)

7. Basirian, S., Jung, A.: Random walk sampling for big data over networks. In: 2017
International Conference on Sampling Theory and Applications (SampTA). pp.
427–431. IEEE (2017)



12 Garbarino et al.

8. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the web. Computer networks 33(1-6),
309–320 (2000)

9. Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical
data. SIAM review 51(4), 661–703 (2009)

10. Clauset, A., Young, M., Gleditsch, K.S.: On the frequency of severe terrorist events.
Journal of Conflict Resolution 51(1), 58–87 (2007)

11. Daniels, H.: The asymptotic efficiency of a maximum likelihood estimator. In:
Fourth Berkeley Symposium on Mathematical Statistics and Probability. vol. 1,
pp. 151–163. University of California Press Berkeley (1961)

12. Erdös, P., et al.: On random graphs
13. Hardy, M.: Paretos law. The Mathematical Intelligencer 32(3), 38–43 (2010)
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