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The assembly of freely moving rigid fibres
measures the flow velocity gradient tensor
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The motion of an assembly of rigid fibres is investigated for different classes
of closed streamline flows, steady or time dependent, two-dimensional or three-
dimensional. In our study, the dynamics of the fibre assembly is fully coupled to the
flow field by means of a state of the art immersed boundary method. We show that,
for sufficiently small Stokes times of the assembly, the whole flow gradient tensor
can be accurately reconstructed by simply tracking the fibre assembly and measuring
suitable fibre velocity differences evaluated at the fibre ends. Our results strongly
suggest the possibility of using rigid fibres (or assemblies of them) to perform
multi-point flow measures, either in laboratory or in field: future experiments are
therefore mandatory to inquire the feasibility of a new ‘fibre tracking velocimetry’
technique.
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1. Introduction
Understanding the dynamical behaviour of fibre-like objects dispersed in fluid flow

is a relevant issue concerning many environmental and industrial processes, such as
pollutant dispersion, microfluidic processing and paper production (du Roure et al.
2019). Compared with point-like particles, the dynamics of fibres or, more generally,
non-spherical particles, turns out to be more complex due to the additional degrees
of freedom related to orientation, so that active research is devoted to improve the
comprehension of such fluid–structure interactions.

In the case of rigid particles with ellipsoidal shape and which are sufficiently
small to evolve in a Stokes flow with negligible fluid inertia, an analytical expression
for the fluid torque acting on the particle was originally derived by Jeffery (1922).
Such a result has been later generalized to other shapes and widely exploited in
a variety of problems. These include studies on the rheology of suspensions in
low-Reynolds-number flow conditions (Butler & Snook 2018), as well as on the
dynamics of dispersed fibres in turbulent flows (Voth & Soldati 2017). Focusing
on the latter framework, several investigations concerned with both homogeneous
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isotropic turbulence (Parsa et al. 2012; Ni et al. 2015; Sabban, Cohen & van
Hout 2017) as well as wall-bounded turbulent flows (Marchioli, Fantoni & Soldati
2010; Marchioli, Zhao & Andersson 2016) reveal useful insights on the preferential
alignment experienced by fibres and the correlation statistics between their orientation
and vorticity. Additionally, Gustavsson et al. (2019) recently focused on the settling
of small prolate particles, while the orientation of rod-like particles in Taylor–Couette
turbulence was analysed by Bakhuis et al. (2019).

Despite its significance, the approach based on Jeffery’s solution is justified only if
the aforementioned assumptions are satisfied. For example, these no longer apply if
the fibre length is larger than the Kolmogorov flow scale (i.e. the Reynolds number
at the fibre length scale is not sufficiently small). In fact, the dynamical behaviour of
fibres with length well within the inertial range of scales is far less understood and
has been considered by only few recent experimental investigations (Bounoua, Bouchet
& Verhille 2018; Kuperman, Sabban & van Hout 2019), along with the numerical
study of Do-Quang et al. (2014) who simulated rigid fibres of finite size in a turbulent
channel flow. Furthermore, for Jeffery’s solution to hold strictly, it is also required that
particle inertia (typically quantified by means of the Stokes number) can be neglected
as well (Sabban et al. 2017).

A further breakdown for the application of Jeffery’s model is for the case of
flexible fibres. The dynamics of flexible fibres in low-Reynolds-number flows has
been recently reviewed by du Roure et al. (2019). For sufficiently small fibres,
the typical modelling approach relies here on slender body theory (Cox 1970;
Tornberg & Shelley 2004). Using this approach, in particular, the motion of flexible
fibres in cellular flows has been extensively studied by Young & Shelley (2007),
Wandersman et al. (2010) and Quennouz et al. (2015), revealing the existence of
flow-induced buckling instabilities that are responsible for their complex dynamics,
including the possibility of a diffusive behaviour for neutrally buoyant fibres due
to such deformation. Moreover, Allende, Henry & Bec (2018) recently investigated
the stretching rate and buckling probability of non-inertial flexible fibres in ideal
turbulence.

For flexible fibres with finite size, some recent contributions have considered
this kind of object as the key ingredient for a novel way of flow measurement.
In particular, the possibility of using flexible fibres to quantify two-point statistics
has been highlighted by Rosti et al. (2018a, 2020) in the case of homogeneous
isotropic turbulence by means of fully resolved direct numerical simulation. This
latter case is very far from the realm of application of Jeffery’s model for at least
three main reasons. The fibres are elastic, inertial and they do not evolve locally
in a linear flow (i.e. their size is well within the inertial range of scales). In this
situation, the existence of different fibre flapping states was identified, in some of
which the fibre behaves as a proxy of turbulent eddies with size comparable to the
fibre length. Two-point statistical quantities, such as the velocity structure functions,
were thus acquired simply by tracking the fibre end points in time. Related to this
framework, significant contributions regarded the flapping instabilities of flexible
filaments interacting with two-dimensional low-Reynolds-number flow (Shelley &
Zhang 2011), and similar mechanisms were explored for the purpose of passive
locomotion and flow control purposes (Bagheri, Mazzino & Bottaro 2012; Lācis et al.
2014, 2017). Along a similar line of reasoning, Hejazi, Krellenstein & Voth (2019)
investigated experimentally how to measure fluid velocity gradients using particles
made by connections of slender deformable arms, both in the case of two-dimensional
(2-D) shear flow and three-dimensional (3-D) turbulence.
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FIGURE 1. (a) The so-called BC cellular flow (the colourmap showing the stream function
given by (3.1) along with the corresponding velocity vectors); (b) sketch of a generic fibre
configuration (the characteristic quantities here indicated are introduced in the text).

Motivated by the evidence reported by Rosti et al. (2018a, 2020), the goal of this
work is to investigate similar possibilities for the case of rigid fibres in laminar flow.
Rigid fibres are indeed easier to fabricate than elastic ones and are good candidates
for novel experimental, non-invasive techniques able to access small-scale, multi-point
properties of fluid flows. The idea is to replace single particles, typically used
in particle image or tracking velocimetry (PIV/PTV) to measure single-point fluid
properties (Adrian 1991; Hoyer et al. 2005; Schanz, Gesemann & Schröder 2016),
by single fibres (or assemblies of them) in order to access two-point (or multi-point)
properties.

To this aim, we will focus on cellular flows, which are also a conceptual
representation of eddies of turbulent flows. We will therefore consider spatially
periodic solutions of the incompressible Navier–Stokes equations, i.e. the so-called
Arnold–Beltrami–Childress (ABC) and Beltrami–Childress (BC) flows (Dombre et al.
1986; Biferale et al. 1995). A visualization of the latter is given in figure 1(a). The
choice of this setting will enable us to perform a direct and reliable comparison
between the measured fibre velocity and the underlying, unperturbed fluid flow
velocity. Although the fibre velocity is generally different from the unperturbed fluid
velocity, we will show that the velocities at fibre ends can be used to measure
the velocity differences of the unperturbed fluid flow. With unperturbed velocity
here we mean the velocity field of the flow in the absence of the fibre. In this
framework, a new way for measuring the fluid velocity gradient tensor will be
proposed and tested exploiting the assembly of different fibres (three fibres for
the two-dimensional incompressible case and eight fibres for the corresponding
three-dimensional case). Accessing the velocity gradient is of particular importance
when dealing with turbulent flows, since from this quantity one can thus construct
the vorticity and strain rate tensors, as well as obtaining the energy dissipation rate
and other small-scale quantities.

It is worth summarizing in which sense our model for the fibre dynamics is different
with respect to the well known Jeffery’s model. In our model the fibre is fully coupled
to the flow and it will be of finite size, i.e. its length will be up to the typical size of
the cellular flows we will consider. In general, the fibre will thus not be evolving in a
linear flow as it is in the Jeffery’s model. Moreover, our fibre will be inertial. Different
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Stokes numbers will be analysed with the final aim of understanding up to which
Stokes numbers a rigid fibre can be used as a proxy of unperturbed flow properties.

Following this introduction, the rest of the paper is structured as follows. In § 2 we
present the numerical methods used in the work (complemented by appendix A), § 3
gives the results, and finally § 4 draws some conclusions and perspectives.

2. Methods

We consider an inertial, elastic fibre of length c and diameter d� c, characterized
by (non-dimensional) linear density ρ1 and bending stiffness γ . Given the position
of a material point belonging to the fibre X=X(s, t), as a function of the curvilinear
coordinate s and time t, the fibre dynamics is governed by the Euler–Bernoulli’s beam
equation

ρ1Ẍ= ∂s(T∂s(X))− γ ∂4
s (X)−F. (2.1)

In (2.1), F is the forcing exerted by the fluid–structure coupling, while T is the tension
necessary to enforce the inextensibility condition

∂s(X) · ∂s(X)= 1. (2.2)

The fibre is freely moving in the flow, hence the corresponding boundary conditions
at its ends are

∂ssX|s=0,c = ∂sssX|s=0,c = 0, (2.3)

T|s=0,c = 0. (2.4)

Nevertheless, we focus here on rigid fibres, as sketched in figure 1(b). To this end,
throughout the work we choose and retain c/L = (2π)−1 and γ = 10 for which we
have an essentially rigid behaviour with negligible deformations. The latter can be
quantified by looking at the magnitude of the end to end distance, which is always
smaller than O(10−8).

The fibre is discretized along s into segments with spatial resolution 1s = c/
(NL−1), with NL being the number of Lagrangian points. To model the fluid–structure
coupling, we will consider two different strategies: (i) a fully resolved approach where
the feedback is taken into account (which will therefore be denoted as active) and
(ii) an intrinsically passive model based on slender body theory. Both strategies are
introduced later in this section.

2.1. Active model
In the first case the coupling is two-way and the dynamics is resolved using an
immersed boundary (IB) technique, inspired by the method proposed by Huang,
Shin & Sung (2007) for anchored filaments in laminar flow. The method was also
exploited for dispersed fibres in turbulent flow (Rosti et al. 2018a, 2020; Banaei,
Rosti & Brandt 2020). In the present case, we solve numerically the incompressible
Navier–Stokes equations for the fluid flow (details on the solution method can be
found in appendix A),

∂tu+ u · ∂u=−∂p/ρ0 + ν∂
2u+ f , (2.5)

∂ · u= 0, (2.6)
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where u is the fluid velocity, p the pressure, ρ0 the density and ν the kinematic
viscosity. The volumetric forcing f is made by the sum of two contributions: the
first is used for generating the desired flow field (Dombre et al. 1986), while the
second is characteristic of the IB method, mimicking the presence of the fibre by
means of no-slip enforcement at the Lagrangian points. Note that the single-mode
non-random nature of the volume forcing considered here to generate the flow field
does not require the special attention as for the cases considered, for example, by
Chouippe & Uhlmann (2015).

When using this approach, we consider a cubic domain of side L = 2π with
periodic boundary conditions in all directions, which is discretized into a uniformly
spaced Cartesian grid using N = 64 cells per side. The number of Lagrangian points
describing the fibre is chosen in such a way that the Lagrangian spacing 1s is almost
equal to that of the Eulerian grid 1x; for example, for a fibre with length c= 1 we
use NL= 11 Lagrangian points. Doubling both resolutions, the variation of results was
found to be negligible. As for the time step we use 1t = 5 × 10−5, after assessing
the convergence for this parameter as well.

2.2. Passive model
In the second approach, a one-way coupling is assumed, i.e. the fibre is forced by the
flow but not vice versa. The problem thus essentially consists in solving only (2.1),
within which the forcing term is expressed as

F=
ρ1

τs
(Ẋ− u(X(s, t), t)), (2.7)

τs being the relaxation time of a fibre immersed in viscous flow, i.e. it can be
identified with a Stokes time. Overall, it represents a measure of the fibre inertia
compared to the flow, and also quantifies the strength of the coupling. In this
approach, u is assigned and does not get modified by the presence of the fibre.
Note that our model is similar (apart from the contribution of inertia that we have
accounted for in our model) to that of Young & Shelley (2007) and Quennouz et al.
(2015), relying on local slender body theory, and further simplified assuming an
isotropic form for F.

Using this model, we assess the convergence of the solution only with the
Lagrangian resolution (since there is not the need for an Eulerian grid in this case)
and the computational time step. Testing was performed for several initial positions
of the fibre and in different cellular flow configurations (i.e. 2-D or 3-D, steady or
oscillating). Given the substantially lower computational demand of this approach
compared with the active model, for a fibre with length c = 1 we choose NL = 31
and 1t = 10−6, although a numerically stable and resolution-independent solution is
already found with coarser resolution, accordingly with our findings for the active
case.

3. Results
3.1. Two-dimensional BC flow

To start our analysis, we consider the steady and two-dimensional cellular flow, often
named as the Beltrami–Childress flow, that is defined by the stream function

Ψ (x, y)= sin(y)− sin(x), (3.1)
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FIGURE 2. Rotational Stokes number as a function of fibre linear density. Red squares,
measured values using the active model; black dashed line, linear fit. Inset: time history
of the velocity magnitude of one fibre end (red circles) fitted using (3.3) (black dashed
line), for a fibre with ρ1 = 0.1.

which is shown in figure 1(a). From (3.1), it follows that the velocity field can be
expressed as

u= cos y,
v = cos x.

}
(3.2)

Such a relatively simple flow configuration will first be used for assessing the
importance of fibre inertia by evaluating the rotational Stokes number, and then to
present the actual method for measuring two-point velocity differences.

3.1.1. Rotational Stokes number
As a preliminary step, we characterize the effect of fibre inertia by estimating the

rotational Stokes number, which is the most suitable quantity to consider when dealing
with cellular flows such as those considered in this work. This has been done for the
sole active fibres, the Stokes number being an assigned parameter in the passive case
as shown by (2.7).

To this end, we proceed as follows. We place the fibre at the centre of one cell
in the BC flow (figure 1a). The fibre is initially at rest and, under the action of the
flow, will start to purely rotate around its centre of mass. We measure the time it
takes for the fibre to adapt to the flow, i.e. focusing on the velocity magnitude of one
fibre end V(t), to assume constant velocity V0 compatible with the unperturbed fluid
velocity. Hence, we perform an exponential fit

V(t)= V0(1− e−t/τs) (3.3)

to measure the Stokes time τs. An example of this procedure is given by the inset
of figure 2. From the best fit we obtain the Stokes time and thus the Stokes number
defined as St = τs/τf , where τf = c/U is the characteristic hydrodynamic time scale
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FIGURE 3. Velocity time series at one fibre end for the fibre (red solid line) and for the
underlying unperturbed flow (black dashed line), for a fibre with St ≈ 0.01 released into
the BC flow, computed with the active model.

(we choose U = 1 as the flow velocity magnitude). The resulting behaviour of St as
a function of ρ1 is depicted in figure 2, showing that it can be well described by a
linear law, as expected. Specifically, the best fit of St versus ρ1 gives St = αρ1 with
α ≈ 0.04.

Because in the beam equation only one relaxation time is involved in the passive
case, its value has been identified as the rotational Stokes time measured in the active
case.

3.1.2. Normal derivative of longitudinal velocity component
We are now ready to investigate the capability of a rigid fibre to act as a proxy of

a laminar, cellular flow in terms of a few fibre properties such as its position and the
velocity of the fibre end points. Figure 3 reports the velocity magnitude of one fibre
end in time, compared with the velocity magnitude of the unperturbed flow (i.e. in the
absence of the fibre) evaluated at the same point. It is evident that the two quantities
differ appreciably. This result indicates that a fibre cannot be used to measure single-
point flow quantities as done, for example in PIV techniques using tracer particles
(Adrian 1991).

Hence, we consider the velocity difference between the fibre end points (figure 1b),
i.e. δV = VB − VA, and denote by δu= u|B − u|A the corresponding unperturbed flow
velocity difference. Comparing directly these two quantities, however, would still yield
the same mismatch previously found for the velocity of one end. Such a mismatch is
due not only to the fibre inertia, but also to the fibre inextensibility constraint. Indeed,
if we consider the projection of the velocity difference introduced above along the
direction parallel to the end to end distance, r̂, for a rigid and inextensible object, such
a quantity is always zero, although the same quantity for the underlying unperturbed
flow is clearly not. Our idea is then to project δV on a plane normal to r̂ by simply
arguing that along that direction the effect of the inextensibility constraint should be
washed out. In terms of the normal unit vector r̂⊥ (shown in figure 1b), we define the
projections,

δV⊥ = δV · r̂⊥, (3.4)
δu⊥ = δu · r̂⊥. (3.5)
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FIGURE 4. Transverse velocity differences of fibre δV⊥ (solid line) and unperturbed BC
flow δu⊥ (dashed line) for different Stokes number, both for the active (a,c,e,g,i) and
passive (b,d,f,h,j) model. The normalized root mean square deviation between δV⊥ and
δu⊥, for both active and passive model, is less than 1 % for St 6 0.1, of the order of
10 % for St≈ 0.5 and larger than 15 % for St > 1. The fibre length is unity and it is thus
approximately 32 % of the size of the single cell in the considered flow.

The projected quantities (3.4) and (3.5) are compared in figure 4 where we report
the results of our analysis in the BC flow configuration while varying St, for both
active and passive models. For relatively low St (i.e. the first two rows of the figure),
we now notice a remarkable agreement, i.e. the fibre is able to accurately measure the
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(unperturbed) flow transverse velocity increments in terms of its transverse velocity
increments. For increasing St, i.e. the fibre inertia, the agreement gets worse, as
expected. Overall, we observe a close resemblance between results for fibres starting
from the same position, using the active (a,c,e,g,i) and passive (b,d,f,h,j) model,
especially for the smallest St. This suggests that here the effective coupling between
the flow and the fibre could be actually neglected, in relation to the measurement
of transverse velocity differences. Accordingly, when extending our analysis to
three-dimensional and unsteady flows (§ 3.2) we will exclusively employ the passive
solver on the strength of such evidence.

Nevertheless, figure 4 tells us that the role of feedback cannot be entirely neglected.
For sufficiently large Stokes numbers (St> 0.1), the curves on the left panels, (c,e,g,i),
and those on the right ones, (d,f,h,j), are different, revealing that the motion of the
fibre centre of mass is affected by the feedback of the fibre to the flow. The effect of
the latter is indeed crucial when the fibre centre of mass moves close to the flow
separatrix, potentially causing totally different trajectories compared to the passive
case.

Some further comments are worth considering. First, the projection along the
normal direction to the fibre is crucial for the fibre to be a proxy of the flow velocity
differences: if we project the velocity differences along a generic direction, the
agreement shown before is no longer present (not shown here). In the two-dimensional
case, the normal direction is uniquely defined by r̂⊥ = ±(r̂2, −r̂1, 0). In the
three-dimensional case we have instead an infinite number of directions belonging
to the normal plane to the fibre orientation. We retain r̂⊥ = (r̂2,−r̂1, 0) also for 3-D
cases (see § 3.2) even if the results do not change for a different choice of r̂⊥.

The situation considered in figure 4 refers to a fibre whose length is approximately
32 % the size of the single cell. This is a case where the fibre length is sufficiently
small compared to the variation scale of the flow. Under such condition the velocity
difference between the free ends can be compared with the flow gradient evaluated at
the fibre centre of mass. For the latter, the same projection along r̂⊥ has to be applied
as before. However, due to the tensorial structure of the gradient ∂jui, this translates to
considering a double projection, first along the tangential and then along the normal
direction,

D= ∂juir̂jr̂⊥i . (3.6)

In figure 4, where c/L= (2π)−1, the curve representing D is not reported but would
be essentially superimposed onto that of the fluid velocity difference. Doubling the
fibre length, i.e. c/L=π−1, the accuracy gets worse. This simply means that, despite
the fact that the fibre accurately measures the transverse velocity differences across
the fibre ends, the fibre is too long to allow the derivative to be well approximated
by the ratio of the increments.

Finally, another aspect to be considered is the tendency of inertial particles to
sample preferential zones of the flow, giving rise to peculiar features such as
small-scale clustering of dilute suspensions. This phenomenon is well known and
has been thoroughly investigated for spherical particles in turbulent flows (see, e.g.
Eaton & Fessler (1994), Bec et al. (2006) and Bec et al. (2007)) and has also been
observed for anisotropic particles (see Voth & Soldati (2017) and references therein).
While this mechanism could impact on the potential of using fibres as a proxy of
the flow (i.e. measuring only certain regions of space), we highlight that decreasing
the Stokes number, along with improving the measure in itself, assures us that at the
same time preferential sampling is reduced.
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FIGURE 5. Superposition of fibre positions at different instants within the periodic two-
dimensional BC flow (the colourmap denoting the stream function), computed with the
active model. (a) St = 0.1 and (b) St = 2. The dashed line represents the trajectory of
fibre centre of mass and the black circle indicates its starting position.

In steady cellular flows, we can easily observe the role of inertia in this regard
by looking at the fibre trajectories and, in particular, their deviation from the flow
streamlines. A visualization from our data is given in figure 5 where we compare
two cases at different St: the less inertial fibre with St= 0.1 initially follows the cell
streamlines but, due to the centrifugal effect, eventually reaches the flow separation
lines (figure 5a), while the heavier fibre with St= 2 shows a stronger deviation of its
trajectory from the streamlines, resulting in a more diffusive behaviour (figure 5b).

3.2. Extension to three-dimensional and unsteady flows
As a further step, we test the capability of the fibre to measure the transverse
velocity differences in three-dimensional steady or unsteady cellular flows. In light
of our findings for the steady BC flow (§ 3.1), we present only results obtained with
the passive model, although checks using the active model have been performed and
yield the same overall scenario as in the steady, two-dimensional case.

First, we consider the so-called Arnold–Beltrami–Childress flow, which is known to
be a time-independent, three-dimensional solution of Euler’s equations (Dombre et al.
1986)

u= sin z+ cos y,
v = sin x+ cos z,
w= sin y+ cos x.

 (3.7)

Unlike the two-dimensional BC flow previously considered, in this flow configuration
the Lagrangian fluid elements show both regular and chaotic trajectories, depending
on their initial position (Biferale et al. 1995). A detailed analysis of this dynamical
system can be found in Dombre et al. (1986).

In figure 6(a,c,e,g) we present the results of our analysis for this 3-D case. As
for the BC flow, we find that for sufficiently low Stokes numbers, i.e. St 6 0.1, the
agreement is evident between the fluid and fibre transverse velocity differences. Like
the 2-D case and as expected, the agreement deteriorates for increasing St.
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FIGURE 6. Transverse velocity differences of fibre δV⊥ (solid line) and unperturbed
flow δu⊥ (dashed line) for different Stokes numbers, computed using the passive model.
(a,c,e,g) ABC flow (3.7); (b,d,f,h), 2-D oscillating cellular flow (equation (3.8)). The
normalized root mean square deviation between δV⊥ and δu⊥, for both ABC flow and
2-D oscillating flow, is less than 1 % for St 6 0.1, of the order of 15 % for St = 1 and
larger than 20 % for St= 10.

Next, we present the results for the unsteady, i.e. time-periodic, and two-dimensional
flow

u= sin[x+ ε1 sin(ω1t)] cos[y+ ε2 sin(ω2t)],
v =− cos[x+ ε1 sin(ω1t)] sin[y+ ε2 sin(ω2t)],

}
(3.8)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

28
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 S

is
te

m
a 

Bi
bl

io
te

ca
ri

o 
- U

ni
ve

rs
ita

 d
eg

li 
St

ud
i d

i G
en

ov
a,

 o
n 

30
 M

ay
 2

02
0 

at
 0

5:
05

:5
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.288
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


894 A25-12 M. Cavaiola, S. Olivieri and A. Mazzino

where ε1 = ε2 = 0.2L are the amplitudes while ω1 = 2π and ω2 = 1 are the
frequencies of the oscillation along x and y, respectively. This choice corresponds
to a situation where the Lagrangian trajectories of fluid particles are chaotic
(Castiglione et al. 1998; Cartwright et al. 2010). The projected velocity differences
are shown in figure 6(b,d,f,h), where the same conclusions drawn for steady
configurations are confirmed: the agreement between the fibre-based measurement
and the direct evaluation using the flow expression (3.8) increases by decreasing the
rotational Stokes number.

3.3. Evaluation of the velocity gradient tensor
Having characterized the behaviour of single fibres, we can move further, focusing on
how to access the full velocity gradient tensor ∂jui and not only its normal-directional
projection. This will be achieved by assembling several fibres in a suitable way and
exploiting the following idea: for each fibre, equation (3.6) holds, where the velocity
gradient becomes the unknown variable if we use δV⊥ (that is measured by tracking
the fibre trajectory) in place of D. Considering an assembly made by Nf fibres, we
thus have a system of Nf equations, from which the gradient can be obtained.

Let us therefore estimate the number of fibres that are needed in the two-
dimensional case: here ∂jui is made by 2 × 2 elements; however, the number of
independent quantities is reduced of one by exploiting incompressibility. Hence, the
assembly has to be made by Nf = 3 fibres, yielding the following system to be solved:

δV (1)
⊥ = ∂juir̂

(1)
j r̂⊥(1)i ,

δV (2)
⊥ = ∂juir̂

(2)
j r̂⊥(2)i ,

δV (3)
⊥ = ∂juir̂

(3)
j r̂⊥(3)i .

 (3.9)

In this system the final number of unknowns is three (i.e. three components of ∂jui
out of four because of the incompressibility condition). Both the left-hand side of the
equations and the coefficients of the velocity derivative tensor are easily measurable
at each time step along the fibre trajectories and thus known from the numerical
experiments. The system can be thus easily solved at each time step while following
the fibre along its trajectory.

The three fibres will be connected at their centroids (numerically, it is convenient
to realize these connections using springs with sufficiently high stiffness so that the
distance between centroids is negligible). However, we shall let each fibre behave as in
the single case, its dynamics not being substantially altered by the link with the others.
To this end, it is crucial to avoid any rotational restraint, so that fibres are able to
rotate freely with respect to each other. For the assembly, we measured the rotational
Stokes number following the same procedure described in § 3.1.1 for the single fibre.
The resulting relaxation times of each fibre composing the assembly turned out to
be the same as the rotational Stokes time of the single isolated fibre. One can thus
conclude that the Stokes time of the assembly is the same as that of a single fibre.

Now we are ready to test the outlined concept in the steady BC flow already
used in § 3.1. As a first step, we look at the resulting time histories of the projected
velocity difference for each fibre composing the assembly (figure 7), recovering the
same evidence found in the case of single fibres. This provides a clue that also in
this configuration it is possible to capture the features of the fluid flow. Indeed, we
proceed to combine the information from all fibres, finally obtaining the velocity
gradient tensor as shown in figure 8, where the time series of each element of ∂jui is
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FIGURE 7. (a) Sketch of fibre assembly. (b) Transverse velocity differences of each fibre
δV⊥ (solid line) and underlying unperturbed flow δu⊥ (dashed line) in the case of BC
flow with c= 1 and St≈ 0.01, computed using the active model.
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FIGURE 8. Velocity gradient tensor components in the BC flow (3.2) reconstructed by
tracking the fibre assembly with St ≈ 0.01, using the active model. Red circles, ∂yu
obtained by the fibre Lagrangian tracking; red solid line, ∂yu for the unperturbed flow;
blue squares, ∂xv obtained by the fibre Lagrangian tracking; blue dashed line, ∂xv for the
unperturbed flow; black crosses, ∂xu = −∂yv obtained by the fibre Lagrangian tracking;
black line, ∂xu=−∂yv=0 for the unperturbed flow. The normalized root mean square error
between the components of the gradient tensor reconstructed by the Lagrangian tracking
and those of the unperturbed flow is of the order of 1 %.
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FIGURE 9. As in figure 8 but for assembly of passive fibres. The normalized root
mean square error between the components of the gradient tensor reconstructed by the
Lagrangian tracking and those of the unperturbed flow is of the order of 1 %.

reported, both for the fibre Lagrangian tracking and for the corresponding analytical
value of the unperturbed flow. The comparison between the two quantities yields
good agreement, with differences that are ascribed to numerical resolution and the
finite inertia of fibres.

The reported results are for the active model but very similar evidence is obtained
using the passive model. In figure 9 we show the result for the assembly of passive
fibres in the static BC flow, highlighting essentially the same behaviour obtained
in the active case (note that the same initial condition for the assembly of fibres
was used in both cases). Finally, we complement the analysis by employing an
assembly of passive fibres in the oscillating two-dimensional flow introduced in § 3.2,
equation (3.8). Results are shown in figure 10 from which we can confirm the same
conclusion as outlined before.

It is worth noting that the linear system (3.9) we numerically solved to obtain all
components of the flow gradient can become overdetermined because of the alignment
of two of more fibres. To avoid this problem we found that the simple recipe of
imposing a small displacement (of 1s, the size of the Lagrangian mesh) between
the centroids of the fibres of the assembly (instead of imposing them to be zero)
is enough to prevent perfect alignment of the fibres, thus preventing the breakdown
of the solution. The results reported in figures 8–10 have been obtained exploiting
this simple, but effective, strategy. Figure 11 reports the time history of the angle of
the three fibres composing the assembly, in the oscillating two-dimensional flow. As
shown in figure, in the considered time frame the alignment between the fibres does
not occur and the minimum value of the standard deviation between the three angles
is 0.18 rad. Extending the time frame (not shown), up to 25, the minimum value of
the standard deviation we measured was 0.0085 rad which was, however, large enough
to accurately solve the system.
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FIGURE 10. As in figure 9 but for the oscillating two-dimensional flow (3.8) (the figure
is split into three panels for a better readability of the gradient tensor components).
The normalized root mean square error between the components of the gradient tensor
reconstructed by the Lagrangian tracking and those of the unperturbed flow is of the order
of 1 %.

4. Conclusions and perspectives
This study focused on the capability of measuring the whole structure of the

velocity gradient in steady, unsteady regular and chaotic cellular flows by means
of Lagrangian tracking of assembly of rigid fibres. Two different kinds of fibre
models have been considered: a fully coupled fibre described in terms of an
immersed-boundary method and a passive fibre described by the slender body theory.
We first characterized the role of fibre inertia by defining a rotational Stokes number,
which is evaluated as a function of the fibre linear density. Hence, considering the
velocity difference between the fibre end points and the same difference concerning

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

28
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 S

is
te

m
a 

Bi
bl

io
te

ca
ri

o 
- U

ni
ve

rs
ita

 d
eg

li 
St

ud
i d

i G
en

ov
a,

 o
n 

30
 M

ay
 2

02
0 

at
 0

5:
05

:5
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.288
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


894 A25-16 M. Cavaiola, S. Olivieri and A. Mazzino
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FIGURE 11. Time history of the angles (rad) of the three fibres composing the assembly
in the two-dimensional oscillating flow. Red circles, fibre 1; blue squares, fibre 2; black
crosses, fibre 3. Angles are measured with respect to the horizontal direction. The
minimum value of the standard deviation is 0.18.

the underlying fluid velocity, both projected along the normal direction to the fibre,
we showed that the fibre turns out to be a proxy of such two-point quantity. For
sufficiently small fibres, this two-point quantity reduces to the transverse component
of the flow velocity derivative along the fibre direction. Furthermore, the comparison
between results obtained for the active model and the passive model suggests that
the coupling between the flow and the fibre could be neglected, at least for small St.

This capability of using rigid fibres as a way of measuring flow properties has
potential applications in experimental techniques allowing us to access small-scale,
multi-point properties of fluid flows, offering an alternative to other methods that have
been proposed which rely on complex elaborations using PIV/PTV (Hoyer et al. 2005;
Krug et al. 2014; Lawson & Dawson 2014). Future work will thus be devoted to
the practical implementation of the outlined concept in a laboratory environment.
Preliminary results in this direction considering rigid fibres of millimetric size
dispersed in turbulent flow appear very encouraging (Brizzolara 2019), confirming the
validity of our idea in a framework well beyond the laminar/chaotic examples analysed
here. The applicability of the concept can thus be extended to three-dimensional and/or
turbulent flows, along with considering assemblies of fibres that would be able to
measure the full structure of the velocity gradient.
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Appendix A. Immersed boundary method
This appendix presents the numerical procedure regarding the active approach

introduced in § 2.1. The Navier–Stokes equations (2.5) and (2.6) are solved for a
cubic domain of side L with periodic boundary conditions in all directions, which is
discretized into a Cartesian grid using N points per side. The solution is obtained by
using a finite difference, fractional step method on a staggered grid with fully explicit
space discretization and third-order Runge–Kutta scheme for advancement in time.
Finally, the resulting Poisson equation enforcing incompressibility is solved using a
fast Fourier transform.

As for the fibre-flow interaction, we employ the IB approach of Huang et al. (2007)
and later modified by Banaei et al. (2020). The Lagrangian forcing is first evaluated
at each fibre point, in order to enforce the no-slip condition Ẋ=U(X(s, t), t), as

F(s, t)= β (Ẋ−U), (A 1)

where β is a large negative constant (Huang et al. 2007) and

U(X(s, t), t)=
∫

u(x, t)δ(x−X(s, t)) dx (A 2)

is the interpolated fluid velocity at the Lagrangian point. A spreading is thus
performed over the surrounding Eulerian points, yielding the volumetric forcing
acting on the flow

f (x, t)=
∫

F(s, t)δ(x−X(s, t)) ds. (A 3)

Both the interpolation and spreading feature the Dirac operator, which in discretization
terms is transposed into the use of regularized δ; in our case, we employ the function
proposed by Roma, Peskin & Berger (1999).

The described procedure has been implemented and extensively validated in both
laminar and turbulent flow conditions. For related information, the reader is referred
to Rosti & Brandt (2017), Rosti et al. (2018b), Shahmardi et al. (2019), Rosti et al.
(2020) and Banaei et al. (2020).
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