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Abstract: This paper describes two navigation filters designed for an Autonomous Underwater
Vehicle (AUV) for geotechnical surveying. Both a Luenberger observer for a kinematic model of
the vehicle as well as an extended Kalman filter for its dynamic model are addressed. The filters
allow to fuse information coming from a Global Positioning System (GPS), a compass, a gyro,
a depth meter, and acoustic based range measurements. A thruster model mapping low level
actuator commands to vehicle surge velocity is also exploited in the design. The performances
of both filters have been compared using the experimental data collected during the H2020
WiMUST (Widely scalable Mobile Underwater Sonar Technology) project experiments.
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1. INTRODUCTION

WiMUST (Widely scalable Mobile Underwater Sonar
Technology) is a project funded by the European Com-
munity within the H2020 framework (Work Programme
2014 - 2015, LEIT- ICT, 5). The main objective of the
WiMUST project is the design, the development, and
the testing of a robotic system composed of cooperating
Autonomous Surface Vehicles (ASVs) and Autonomous
Underwater Vehicles (AUVs) to perform geotechnical sur-
veying and geophysical exploration by means of seismic
acoustic data acquisition Al-Khatib et al. (2015), Antonelli
et al. (2016b), Antonelli et al. (2016a). To the purpose,
the WiMUST project (http://www.wimust.eu/) involves
four Academic Partners (ISME, IST, CINTAL, UH) and
five Industrial Partners (Graaltech, EvoLogics, CGG, Geo
Marine, Geosurveys), with specific expertise in the field
of marine robotics, acoustic systems, and geophysical and
geotechnical surveys.

The WiMUST system is composed of two ASVs carrying
a sparker each, and by a fleet of AUVs (i.e., Medusa
AUVs Abreu et al. (2016) from IST and Folaga AUVs
Caffaz et al. (2010) from ISME and Graaltech) towing
streamers equipped with hydrophones to acquire sub-
bottom profiling acoustic data. The hydrophones on the
streamers towed by the AUVs can be envisioned as an
acoustic array that, by means of the autonomous and
coordinated motion among ASVs and AUVs, can have
different geometries. Indeed, by actively controlling the
geometry of the robot formation, it is possible to change
the shape of the acoustic array antenna according to
the needs of the considered application. Reliable and
accurate navigation is of paramount importance in this
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framework. The WiMUST system architecture allows the
involved AUVs to measure range distances from surface
beacons (anchor nodes). This is achieved through time
of flight measurements of acoustic signals thanks to the
use of atomic clocks installed on the AUVs and on the
anchor nodes. Details of this measurement system are here
omitted for the sake of brevity. Indeed range measurements
from a known anchor can be used to support navigation
as widely discussed in the marine robotics literature of
the last years (refer, by example, to Batista et al. (2011);
Webster et al. (2013); Bayat et al. (2016); De Palma et al.
(2015); Indiveri et al. (2016); De Palma et al. (2017)).

In this paper we will focus on the navigation filters design
for the Folaga AUVs being part of the WiMUST AUVs
fleet. Section 2 briefly describes the Folaga platform.
Section 3 describes a kinematic model for the vehicle and a
kinematic navigation filter, while sections 4 and 5 present
a dynamic model for the vehicle and a dynamic navigation
filter. Results from sea experiments are reported in section
6. Finally conclusions are summarised in section 7.

2. FOLAGA AUV

The Folaga platform Alvarez et al. (2009) Caffaz et al.
(2010) is a cylindrical shaped glider AUV with a rather
advanced actuation system. It has a main stern propeller
thruster for controlling surge and eight jet pumps for
directional control. Four of them are in the stern area and
four in the bow. Each of the bow and stern pumps are
arranged at ninety degrees one from the other so that two
are in the vertical plane and two in the horizontal one.
This set up allows to control pitch, yaw, sway and heave.
The Folaga is also equipped with a flooding chamber to
actively control buoyancy for an additional heave control
system. Moreover the internal vehicle battery (one of
the heaviest elements of the hardware) is mounted on
an actuated moving mechanism allowing to change its
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position along the length of the vehicle. This affects the
position of the center of mass of the AUV resulting in an
additional pitch actuation system. Two navigation filters
for the Folaga AUV are described in the following. The first
is a Luemberger - type estimator based on a kinematics
AUV model, while the second integrates a dynamic lumped
parameter model with the available navigation sensors
resulting in an extended Kalman filter (EKF). Having
a lower order and complexity, the kinematic filter is
simpler to tune: it was used mostly for GPS aided surface
navigation providing a reliable position to compare with
the ones generated by the dynamic model based EKF. This
latter filter was used during underwater navigation when
GPS is not available.

3. SYSTEM MODELING FOR A KINEMATICS
OBSERVER DESIGN

The system model exploits two reference frames: a vehicle
body fixed one (<b>) and an earth fixed one (<NED>).
The corresponding rotation matrix is denoted as bRned ∈
SO(3). The following navigation filter design refers to the
position variables only of the AUV as attitude is measured
on board by an attitude and heading reference system
(AHRS). The vehicle kinematics model in frame <NED>
results in the following:

ẋ = vc + ū (1)

v̇c = 0 (2)

being x ∈ R3 the AUV position in < NED >, ū ∈
R3 is the actuated (and commanded) component of the
AUV velocity projected in < NED > and vc ∈ R3 is
an unknown velocity component associated to actuation
or environmental disturbances as currents. Such term is
modelled as unknown and constant in <NED>.

The kinematics model used to design the basic navigation
filter consists in equations (1 - 2) and an output equation
as

y = x. (3)
The horizontal plane components of the position x are
measured by GPS on the surface. The vertical component
(i.e. heave) of x is measured with a pressure gauge. These
equations (in frame <NED>) can be reformulated in a
linear time invariant (LTI) state space setting as follows

z =

(
x
vc

)
∈ R6×1 (4)

ż =A z +B ū (5)

y =C z (6)

being

A=

(
03×3 I3×3
03×3 03×3

)
(7)

B =

(
I3×3
03×3

)
(8)

C = (I3×3 03×3) . (9)

Such model is completely observable. Based on the (<
NED> frame) model described in equations (4 - 9), an
estimate ẑ of the state vector z can be derived through a
Luenberger observer as follows

˙̂z =A ẑ +B ū +K (y − Cẑ) (10)

K ∈ R6×3 : (A−KC) is Hurwitz. (11)

The stability condition in equation (11) can always be met
given the full observability condition of (A,C). This allows
to estimate both the position and the velocity term vc.
In implementing the proposed filter also notice that the
commanded (nominal) velocity ū is most likely known in
body frame and typically corresponds to the commanded
surge. Although Folagas can also command sway and heave
velocities through the front and rear water-jet actuators,
in the reminder of this discussion it is assumed that ū
refers to the commanded surge only. Being the term ū in
<NED> frame, this can be computed as

ū = nedRb
bū (12)

where bū is the nominal surge speed in body frame, i.e.
bū = (u, 0, 0)>. (13)

The term u is computed by an experimentally identified
model linking thruster commands to steady state AUV
surge speed (details about the identification process go
beyond the scope of the present paper).

As for the attitude matrix nedRb, in the simplest possible
navigation filter implementation, this will be directly given
by the on board attitude and heading reference system
sensor. The described navigation filter allows to estimate
the overall vehicle speed in body frame as:

b ˙̂x = bū + bRned v̂c (14)

where v̂c is extracted from ẑ.

4. FOLAGA DYNAMIC MODEL

Following the standard marine vehicle model described
in Fossen (2011), the vehicle kinematics and dynamics
equations are the following

η̇ = J(η)ν (15)

νr = ν − νc (16)

M ν̇r + C(νr)νr +D(νr)νr + g(η) = τ (17)

where η = (x, y, z, φ, θ, ψ)> = (x>,Φ>)> is the 6D pose
in < NED > frame being Φ = (φ, θ, ψ)> the attitude
modelled with the roll, pitch and yaw angles. Vector
ν ∈ R6 is the generalized velocity in body frame, namely
ν = (ν>1 ,ν

>
2 )>. The term ν1 = (u, v, w)> is the inertial

linear velocity vector projected in body frame (u is surge,
v is sway and w is heave). The term ν2 = (p, q, r)> is
the vehicles angular velocity vector in body frame, i.e.
ν2 = bωb/ned where

bṘned
bR>ned = S(bωned/b) = −S(ν2) (18)

being S(·) ∈ R3×3 the skew symmetric matrix associated
to the cross product a × b = S(a)b for any a,b ∈

R3. Moreover, νc =

[
bRned vc

03×1

]
is the irrotational ocean

current velocity in body frame. Indeed the linear current
velocity term vc is assumed to be constant in <NED>
frame. Vector νr = (ν>r1,ν

>
r2)> is the AUVs relative

velocity in body frame.

With reference to figure 1, the actuation (allocation)
matrix of the Folaga AUV can be written as follows:
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Actuation	
component

Position Actuator	Type Range	
value

Resolution Units

1 Bow	Port Pump [0,100] 1 adimensional

2 Bow	Starboard Pump [0,100] 1 adimensional

3 Bow	Up Pump [0,100] 1 adimensional

4 Bow	Down Pump [0,100] 1 adimensional

5 Stern	Port Pump [0,100] 1 adimensional

6 Stern	Starboard Pump [0,100] 1 adimensional

7 Stern	Up Pump [0,100] 1 adimensional

8 Stern	Down Pump [0,100] 1 adimensional

9 Stern DC	Motor	Propeller [0,100] 1 adimensional

Actuation	
component

Position Actuator	Type Range	
value

Resolution Units

1 Bow	Port Pump [0,100] 1 adimensional

2 Bow	Starboard Pump [0,100] 1 adimensional

3 Bow	Up Pump [0,100] 1 adimensional

4 Bow	Down Pump [0,100] 1 adimensional

5 Stern	Port Pump [0,100] 1 adimensional

6 Stern	Starboard Pump [0,100] 1 adimensional

7 Stern	Up Pump [0,100] 1 adimensional

8 Stern	Down Pump [0,100] 1 adimensional

9 Stern DC	Motor	Propeller [0,100] 1 adimensional

10 Center Flooding	Chamber [-500,500] 10 grams
11 Center Battery	Pack	Position [0,80] 1 millimeters

Folaga	Control	Allocation

Folaga	Control	Allocation

Folaga	Control	Allocation

Fig. 1. Folaga actuation system in its body frame

B =


0 0 0 0 0 0 0 0 β
α −α 0 0 α −α 0 0 0
0 0 α −α 0 0 α −α 0
0 0 0 0 0 0 0 0 0
0 0 −αbu αbd 0 0 αsu −αsd 0
αbl −αbr 0 0 −αsl αsr 0 0 0

 .
(19)

where α > 0 (in [N ]) is the proportionality constant
between pump commands and generated thrust, β > 0 (in
[N ]) is the proportionality constant between the propeller
command and the generated surge thrust. The parameters
b∗ and s∗ are constants (in [Nm]) proportional to the
distances of the corresponding pumps to the body frame.
Notice that all u components are nondimensional.

The allocation matrix in equation (19) does not take
into account the effects of the flooding chamber status
and battery pack position. Indeed, during the experiments
under investigation, such actuation components were not
used as control inputs, but rather only for calibrating the
vehicle to be neutrally buoyant and with zero steady state
roll and pitch. Consequently, in the following the vehicle
is assumed to have constant weight, buoyancy, and center
of mass. Given the definition of B in (19) the generalized
force vector τ in (17) is given by

τ = Bu. (20)

Note that B ∈ R6×9 in (19) is singular as roll is not
actuated (null fourth row).

5. DYNAMIC NAVIGATION FILTER

With the aim to improve the performance of the basic
navigation filter proposed in section 3, we investigated
the use of a navigation algorithm based on a dynamic
vehicle model (15-17), rather than on a pure kinematic
one as reported in (1-2). We are interested in the esti-
mation of the position of the vehicle, the linear relative
velocity of the vehicle and the linear velocity of the ocean
current. Therefore we will consider only the translational
parts of the vectors in equations (15-17). We write the
inertia matrix, the Coriolis and centripetal matrix, the
hydrodynamic damping matrix, the restoring forces and
moments Fossen (2011) and the allocation matrix in (17)
in a compact form as:

M =

[
M11 M12

M21 M22

]
;C(νr) =

[
C11(νr2) C12(νr2)
C21(νr) C22(νr)

]
;

(21)

D =

[
D11 D12

D21 D22

]
; g(η) =

[
g1(Φ)
g2(Φ)

]
;B =

[
B1

B2

]
; (22)

where each term Mij , Cij , Dij , Bi, and gi is a (3 × 3)
matrix, η and Φ are defined as in (15-17). With regards
to the knowledge of the added mass and hydrodynamic
parameters in (21), we resort to the values used in the
Folaga simulator described in Canepa (2011). Note that
for the sake of simplicity, hydrodynamic drag has been
modelled with a linear term only. Assuming the attitude
and the angular velocity of the vehicle to be measured, the
attitude dynamics is completely known. In this hypothesis,
the model in equations (15-17) for the linear degrees of
freedom results in:

ẋ = nedRb νr1 + vc (23)

M11ν̇r1 +M12ν̇r2 + C11(νr2)νr1 + C12(νr2)νr2 +

+D11νr1 +D12νr2 + g1(η) = B1u (24)

v̇c = 0. (25)

Hence, the model in (23-25) can be rewritten as:

ẋ = nedRb νr1 + vc (26)

ν̇r1 = A∗νr1 +B∗u +D∗ (27)

v̇c = 0 (28)

where

A∗ =−M−111 (C11(νr2) +D11) (29)

B∗ =−M−111 B1 (30)

D∗ =−M−111 ((C12(νr2) +D12)νr2 + g1(η)) +

−M−111 M12 ν̇r2. (31)

Note that, even if ν̇r2 in (31) should do not be known, in
most cases it can be neglected. Indeed, often the inertia
matrix M has a diagonal form, so that the term M12 in
(31) that multiplies ν̇r2 is a null matrix (M12 = 03×3 ⇒
M12 ν̇r2 = 0). Moreover, the majority of motions of prac-
tical interest are straight line trajectories, characterised by
a null angular velocity (νr2 = 0, ν̇r2 = 0) or trajectories
with constant angular velocity (νr2 = constant ⇒ ν̇r2 =
0), leading both to a null value of ν̇r2.

Defining a state vector as z = [x> ν>r1 v>c ]> ∈ R9, the
equations (26 - 28) can be reformulated in a linear time
variant (LTV) state space setting:

ż =

[
ẋ
ν̇r1

v̇c

]
=

 03×3
nedRb I3×3

03×3 A∗ 03×3
03×3 03×3 03×3

[ x
νr1

vc

]
+

+

[
03×9
B∗

03×9

]
u +

[
03×1
D∗

03×1

]
. (32)

The measurements available for the navigation filter are:

• position in <NED> frame acquired through GPS
while the vehicle is on the surface,

• surge velocity in body frame estimated by a thruster
based model linking thruster commands to steady
state surge values,

• range measurements from one or more anchor vehi-
cles (ASVs) having known positions, acquired mainly
when the vehicle is underwater and has access only
to anchors by means of acoustic modems.
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Thus, the output equation is given by:

y =


x
u

‖x− xa1
‖

...
‖x− xan

‖

 (33)

with xai the positions of the i th anchor vehicle (i =
1, . . . , n) assumed known (they could come, for example,
from the GPS onboard the ASV). Given the non linearity
of the output equation (33), due to range measurements,
an Extended Kalman Filter (EKF) or Unscented Kalman
Filter (UKF) (Allotta et al. (2016)) could be used for the
estimation of the state variables. Given the time varying
and nonlinear nature of the model, its observability prop-
erties are non trivial. The observability analysis is here
omitted for the sake of brevity. Specific results relative to
the observability of range based navigation filters has been
already studied by the authors in De Palma et al. (2017);
Indiveri et al. (2016); De Palma et al. (2015). Of course, in
the absence of range measurements, the output equation
becomes linear and a simpler observer like a standard
Kalman filter can be adopted as state estimator.

6. EXPERIMENTS

The effectiveness of the proposed dynamic navigation filter
has been validated on the experimental data collected
during the last WiMUST project trials. Such data include:

• AUV measures of roll, pitch and yaw angles acquired
through inertial on board sensors (compass / incli-
nometer),
• GPS readings when the AUV is on the surface,
• AUV range measurements from two anchors ASV

(n = 2) acquired through acoustic modems when the
vehicle is underwater,
• ASVs (anchors) position acquired through on board

GPS,
• AUV surge velocity from a model based on thrusters

commands,
• and the command imparted to the AUV thrusters, 8

pumps and 1 propeller, as depicted in figure 1.

These experimental data refer to two hours of lawn mowing
motion both on surface and underwater.

During the surface navigation, the Luemberger - type
estimator based on the kinematics AUV model was used
as navigation filter. The results of such estimator are
compared with the ones generated by the dynamic model
based filter. Indeed, the experimental data have been
post-processed with an EKF applied on the dynamic
AUV model (32-33). It should be noted that, in order
to implement the dynamic navigation filter described in
section 5, the rotation matrix nedRb is computed by
exploiting the measures of roll, pitch and yaw angles,
while the angular velocity νr2 has been derived using the
relation in (18), and the ν̇r2 has been assumed to be null.
Figure 2 reports the trajectory estimated with both filters
and the GPS readings when the vehicle is on the surface.
Note that no ground truth is available thus the navigation
filters are assessed with reference to the GPS data. Figure
3 reports the norm of position errors between the two
filter estimates ||x̂kin − x̂dyn||, being x̂kin and x̂dyn the

estimates obtained with the kinematic and dynamic filter,
respectively. The norm of position errors between each
filter and the GPS readings are also reported in figure
3, namely ||x̂kin − xGPS ||, ||x̂dyn − xGPS ||, being xGPS

the GPS reading. The results of both navigation filters are
comparable and close to the GPS readings.

Fig. 2. Filters estimations during surface navigation and
GPS readings. The origin in the plot represent the
starting point of the vehicle.

Fig. 3. Norm of error ||x̂kin − x̂dyn|| between kinematic
filter estimation and dynamic filter estimation dur-
ing surface navigation, and norm of position errors
between each filter and the GPS reading.

During underwater navigation, range measurements to
anchors play an important role since the AUV has no
longer access to the GPS readings. In this case the dynamic
model based EKF was used. It should be noted that when
processing such data, range outliers should be rejected in
order not to jeopardise the estimation. Indeed, acoustic
measurements are often contaminated by outliers. Here, a
few outlier candidate data values have been removed prior
to processing the data. Alternative outlier robust filtering
techniques are available in the literature (Ruckdeschel
et al. (2014); De Palma and Indiveri (2017)) and could
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be possibly exploited. The position estimated with the
dynamic navigation filter along the whole experiment is
shown in figures 4 and 5. In particular, figure 5 highlights
the estimations obtained including in the measurement
channel the GPS readings when the vehicle is on the sur-
face, and those exploiting the range measurements when
the vehicle is underwater. The relative and current velocity
estimates are reported in figures 6 and 7, respectively.
Interestingly, the resulting estimation appears to be rea-
sonable also during underwater navigation, confirming the
effectiveness of the proposed dynamic navigation filter.
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Fig. 4. Vehicle position in <NED> frame estimated using
the dynamic navigation filter (EKF estimation): a)
north-east components, b) down components.

7. CONCLUSIONS

Two navigation filters designed for the Folaga AUVs
within the WiMUST project have been presented in this
paper: the first is a Luenberger observer based on a kine-
matic model of the vehicle; the second is an extended
Kalman filter based on a dynamic model of the vehicle.
The filters may include measurements from a GPS unit,
a compass, a gyro, a depth meter, acoustic based range
measurements, and surge velocity estimate from a thruster
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Fig. 5. EKF vehicle position estimates. The magenta
circles refer to the filter estimate when measurements
include GPS. The green points refer to the filter
estimate when underwater and range measurements
only are available.
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Fig. 6. Vehicle relative velocity νr1 estimated using the
dynamic navigation filter.

based model. The performances of these filters are com-
pared during GPS aided surface navigation based on the
experimental data collected during WiMUST trials. Reli-
able estimations are obtained with both filters. The EKF
filter was tested within an underwater navigation scenario,
when GPS is not available, exploiting range measurements
from surface vehicles. The resulting underwater range-
based EKF estimation results reliable and adequate for
an AUV based seismic data acquisition task.
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