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1. Introduction

Let us consider a hyperelastic body occupying a bounded open set Ω ⊂ R
3 in its reference configuration.

Equilibrium states under a body force field f : Ω → R
3 and a surface force field g : ∂Ω → R

3 are obtained
by minimizing the total energy∫

Ω

WI(x,∇y(x)) dx −
∫

Ω

(y(x) − x) · f(x) dx −
∫

∂Ω

(y(x) − x) · g(x) dH2(x).

Here, y : Ω → R
3 denotes the deformation field, H2 denotes the surface measure, and WI : Ω × R

3×3 →
[0,+∞] is the incompressible strain energy density. We require incompressibility by letting WI(x,F) =
+∞ whenever detF �= 1. Moreover, we assume that WI(x, ·) is a frame indifferent function that is
minimized at F = I with value 0.

If h > 0 is an adimensional small parameter, we rescale the displacement field and the external forces
by letting f = hf, g = hg and y(x) − x = hv(x). We get

EI
h(v) :=

∫

Ω

WI(x, I + h∇v) dx − h2

∫

Ω

f · vdx − h2

∫

∂Ω

g · v dH2(x).

We aim at obtaining the behavior of rescaled energies as h → 0 and at showing that the linearized
elasticity functional arises in the limit. More precisely, we aim at proving that

inf EI
h = h2 min EI + o(h2), (1.1)

and that if EI
h(vh) − inf EI

h = o(h2) (i.e., if vh is a sequence of almost minimizers for EI
h) then

vh → v0 ∈ argmin EI (1.2)

in a suitable sense, where

EI(v) :=
∫

Ω

QI(x,E(v)) dx −
∫

Ω

f · vdx −
∫

∂Ω

g · vdH2(x).
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Here, E(v) := 1
2 (∇v + ∇vT ) is the infinitesimal strain tensor field and QI(x, ·) is defined for every

F ∈ R
3×3 by

QI(x,F) := lim
h→0

h−2WI(x, exp(hF)) =
{

1
2 F

T D2W(x, I)F if TrF = 0,
+∞ if TrF �= 0,

where W(x,F) := WI(x, (detF)−1/3 F) is the isochoric part of WI . Such a quadratic form is obtained by
a formal Taylor expansion around the identity matrix (D2 denoting the Hessian in the second variable).
Since QI(x,F) = +∞ if TrF �= 0, we see that EI(v) is finite only if div v = 0 a.e. in Ω. Therefore, EI is the
linearized elastic energy with elasticity tensor D2W(x, I) and divv = 0 is the linearized incompressibility
constraint.

Under Dirichlet boundary conditions, (1.1)–(1.2) have been obtained in [25], by means of a
Γ-convergence analysis with respect to the weak topology of W 1,p(Ω,R3), where the exponent p is suitably
related to the coercivity properties of WI (see Sect. 2). On the other hand, in this paper we shall consider
natural Neumann boundary conditions, i.e., the pure traction problem. In this case, it is crucial to impose
suitable restrictions on the external forces. In particular, as done in [23,24], here we shall assume they
have null resultant and null momentum with respect to the origin, namely

E(v) = 0 ⇒
∫

∂Ω

g · v dH2(x) +
∫

Ω

f · vdx = 0,

and that they satisfy the following strict compatibility condition∫

∂Ω

g · W2 x dH2(x) +
∫

Ω

f · W2 x dx < 0 ∀ W ∈ R
3×3
skew, W �= 0,

where R
3×3
skew denotes the set of real 3×3 skew-symmetric matrices. For suitable classes of external forces,

the latter condition can be interpreted as an overall dilation effect on the body, see Remark 2.7 later on.
Even under such restrictions, in this case it is not possible to obtain a sequential Γ-convergence result with
respect to the weak convergence in W 1,p(Ω,R3) or to the weak Lp(Ω,R3×3) convergence of infinitesimal
strain tensors (we stress that the elastic part in EI

h is not invariant by infinitesimal rigid displacements,
see also Remark 2.6). However, in this context we will show that EI provides indeed an upper bound
for the sequence h−2EI

h(vh) in the limit h → 0, as soon as E(vh) ⇀ E(v) weakly in Lp(Ω,R3×3) and
det(I+ h∇vh) = 1. On the other hand, due to the lack of control on skew-symmetric parts, we may only
obtain a lower bound in terms of the functional

FI(v) := min
W∈R

3×3
skew

∫

Ω

QI(x,E(v) − 1
2 W

2) dx −
∫

Ω

f · vdx −
∫

∂Ω

g · vdH2(x).

Clearly, we have FI ≤ EI . Interestingly, this still allows to obtain (1.1)–(1.2), since it is possible to show
(see Lemma 7.1 later on) that if v ∈ argmin FI , then FI(v) = EI(v). Indeed, if v ∈ argmin FI , then the
minimization problem inside the definition of FI is solved by W = 0.

A key step for obtaining the proof of (1.1)–(1.2) will be to approximate divergence-free vector fields
in terms of vector fields vt having the property WI(x, I + t∇vt) < +∞, i.e., det(I + t∇vt) = 1 for any
t > 0. Following the approach of [25], we define

vt(x) :=
yt(x) − x

t

where yt is the flow associated to the divergence-free field v, starting from y0(x) = x ∈ Ω, and then
by Reynolds transport formula we see that yt is a volume preserving deformation field. Indeed, for any
A ⊆ Ω we have

d
dt

|yt(A)| =
∫

A

div v(x) dx = 0,
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so that det ∇yt = det(I + t∇vt) = 1. In this paper, we will further develop this approach in order to
obtain the desired recovery sequence and the upper bound under the above conditions on external loads.
Moreover, since we have natural boundary conditions, we avoid the technical difficulties due to the need
of keeping track of the boundary data through the construction of the recovery sequence. Therefore, we
shall not need the strong regularity assumptions on ∂Ω that were imposed in [25].

Hyperelastic incompressible models are typically used to describe rubber-like materials such as artifi-
cial elastomers as well as biological soft tissues [9,16,17,19,28,30,36,40]. We refer to [5–7,26,39,41] for
many examples of strain energy densities that are used for the nonlinear description of the stress–strain
behavior of these materials. On the other hand, linear modeling is usually considered a good approx-
imation in the small strain regime. Indeed, the classical theory of linearized elasticity is based on the
smallness assumption on deformation gradients, see for instance [14,22,38]. Nevertheless, for a variational
derivation, i.e., for the proof of (1.1)–(1.2), no a priori smallness assumption is needed, leading to a rigor-
ous justification of linearized elasticity (we also stress that small loads need not give rise to small strains
in rubber-like materials, due to their high compliance in shear). The first rigorous variational deriva-
tion of linearized elasticity from finite elasticity is given in [11], where Γ-convergence and convergence
of minimizers of the associated Dirichlet boundary value problems are proven in the compressible case.
We refer to [1–3,10,18,23–25,37] for many other results of this kind, some of which including theories for
incompressible materials [10,18,25]. The study of asymptotic properties of minimal energies, similar to
(1.1)–(1.2), is also typical of dimension reduction problems, see for instance [4,21,31–35].

In the next section, we rigorously state the main theorem, providing the proof of (1.1)–(1.2) for the
pure traction problem. A related result has been recently obtained by Jesenko and Schmidt in [18] under
different assumptions on the external loads, but in the more general framework of multiwell potentials
that leads to a suitable quasiconvex envelope of the strain energy density in the limiting functional.

Plan of the paper

In Sect. 2, we collect the assumptions of the theory and we state the main result about convergence of
minimizers. The latter is based on suitable compactness properties of (almost) minimizing sequences that
are established in Sect. 4, after some preliminaries in Sect. 3. In Sect. 5, we provide the lower bound.
Sect. 6 delivers the upper bound. Section 7 completes the proof of the main result.

2. Main result

In this section, we introduce all the assumptions and we state the main result. Let Ω ⊂ R
3 be the reference

configuration of the body. We assume that for some m ∈ N

Ω is a bounded open connected Lipschitz set, ∂Ω has m connected components. (2.1)

Assumptions on the elastic energy density

We let WI : Ω×R
3×3 → [0,+∞] be L3×B9- measurable. The assumptions on WI are similar to the ones

in [2,25], i.e., for a.e. x ∈ Ω

WI(x,F) = +∞ if detF �= 1, (W0)

WI(x,RF) = WI(x,F) ∀R∈SO(3), ∀F ∈ R
3×3, (W1)
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min WI = WI(x, I) = 0. (W2)

Moreover, we define W : Ω × R
3×3 → [0,+∞] by

W(x,F) :=
{WI(x, (detF)−1/3F) if det F > 0

+∞ if detF ≤ 0

and we assume that W(x, ·) is C2 in a neighbor of rotations, i.e.,

there exists a neighborhood U of SO(3) s.t., for a.e. x ∈ Ω,W(x, ·) ∈ C2(U),
with a modulus of continuity of D2W(x, ·) that does not depend on x.
Moreover, there exists K > 0 such that |D2W(x, I)| ≤ K for a.e. x ∈ Ω.

(W3)

We assume the following growth property from below: there exist C > 0 and p ∈ (1, 2] such that for a.e.
x ∈ Ω

WI(x,F) ≥ C gp(d(F, SO(3))) ∀F ∈ R
3×3, (W4)

where gp : [0,+∞) → R is the convex function defined by

gp(t) =

⎧⎨
⎩

t2 if 0 ≤ t ≤ 1
2tp

p
− 2

p
+ 1 if t ≥ 1.

(2.2)

Here, SO(3) denotes the group of positive rotation matrices. d(·, SO(3)) denotes the distance from SO(3)
and it satisfies

d(F, SO(3)) := inf
R∈SO(3)

|F − R| = |
√

FTF − I| for any F ∈ R
3×3 with detF > 0, (2.3)

where | · | is the Euclidean norm on R
3×3, i.e., |F| :=

√
Tr(FTF).

Assumptions on the external forces

We introduce a body force field f ∈ L
3p

4p−3 (Ω,R3) and a surface force field g ∈ L
2p

3p−3 (∂Ω,R3), where p is
such that (W4) holds. The corresponding contribution to the energy is given by the linear functional

L(v) :=
∫

Ω

f · v dx +
∫

∂Ω

g · v dH2(x), v ∈ W 1,p(Ω,R3).

We note that since Ω is a bounded Lipschitz domain, the Sobolev embedding W 1,p(Ω,R3) ↪→
L

3p
3−p (Ω,R3) and the Sobolev trace embedding W 1,p(Ω,R3) ↪→ L

2p
3−p (∂Ω,R3) imply that L is a bounded

functional over W 1,p(Ω,R3).
We assume that external loads have null resultant and null momentum, i.e.,

E(v) = 0 ⇒ L(v) = 0, (L1)

and that they satisfy the following strict compatibility condition

L(W2x) < 0 ∀W ∈ R
3×3
skew, W �= 0. (L2)

Some examples of external loads satisfying the above assumptions are provided in the remarks at the
end of this section.
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Statement of the main result

The functional representing the scaled total energy is denoted by FI
h : W 1,p(Ω,R3) → R ∪ {+∞} and

defined as follows

FI
h(v) :=

1
h2

∫

Ω

WI(x, I + h∇v) dx − L(v).

We further introduce the functional of linearized incompressible elasticity EI : W 1,p(Ω,R3) → R ∪
{+∞} as

EI(v) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫

Ω

QI(x,E(v)) dx − L(v) if v ∈ H1(Ω,R3)

+∞ otherwise in W 1,p(Ω,R3),

where

QI(x,B) :=

⎧⎪⎨
⎪⎩

1
2
BT D2W(x, I)B if TrB = 0

+∞ otherwise,

and the limit energy functional FI : W 1,p(Ω,R3) → R ∪ {+∞} defined by

FI(v) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

inf
W∈R

3×3
skew

∫

Ω

QI

(
x,E(v) − W2

2

)
dx − L(v) if v ∈ H1(Ω,R3)

+∞ otherwise in W 1,p(Ω,R3).

(2.4)

We notice that EI(v) is finite only if v ∈ H1(Ω,R3) is divergence-free, while FI(v) is finite only if v has
constant nonpositive divergence (since W2 is negative semi-definite for any W ∈ R

3×3
skew).

We are ready for the statement of the main result

Theorem 2.1. Assume (2.1),(L1),(L2), (W0), (W1), (W2), (W3), (W4). Then, for every vanishing
sequence (hj)j∈N ⊂ (0, 1) we have

inf
W 1,p(Ω,R3)

FI
hj

∈ R. (2.5)

If (vj)j∈N ⊂ W 1,p(Ω,R3) is a sequence such that

lim
j→+∞

(
FI

hj
(vj) − inf

W 1,p(Ω,R3)
FI

hj

)
= 0, (2.6)

then there is a (not relabeled) subsequence such that

E(vj) ⇀ E(v∗) weakly in Lp(Ω,R3) as j → +∞,

where v∗ ∈ H1(Ω,R3) is a minimizer of FI over W 1,p(Ω,R3), and

FI
hj

(vj) → FI(v∗) = EI(v∗), inf
W 1,p(Ω,R3)

FI
hj

→ min
W 1,p(Ω,R3)

FI = min
W 1,p(Ω,R3)

EI as j → +∞.

We close this section with several remarks about the main theorem.
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Remark 2.2. It is worth noticing that the infimum in the right-hand side of (2.4) is actually a minimum.
Indeed if v ∈ H1(Ω,R3) then either FI(v) = +∞ or div v is a nonpositive constant. In the latter case,
let (Wn)n∈N ⊂ R

3×3
skew be a minimizing sequence: then |Wn|2 = Tr(WT

nWn) = −TrW2
n = −2 div v hence

there exists Wv such that, up to subsequences, Wn → Wv and FI(v) =
∫
Ω

QI
(
E(v) − W2

v

2

)
dx − L(v) as

claimed.

Remark 2.3. If the function W is replaced by any other W̃, still satisfying (W3), such that W(x,F) =
W̃(x,F) if detF = 1, then this does not affect functionals FI and EI . Indeed, if TrB = 0 then
det(exp(hB)) = exp(hTrB) = 1 and by Taylor’s expansion we have for a.e. x ∈ Ω

lim
h→0

1
h2

WI(x, exp(hB)) =
1
2
symBD2W̃(x, I) symB =

1
2
symBD2W(x, I) symB = QI(x,B).

Remark 2.4. A typical form of WI is the Ogden incompressible strain energy density, see [8,16,29], given
by

WI(F) :=
N∑

k=1

μk

αk
(Tr((FTF)αk/2) − 3), detF = 1,

where N,μk, αk are material constants, and extended to +∞ if detF �= 1. If the material constants vary
in a suitable range, the Ogden model satisfies the assumptions (W1), (W2), (W3), (W4). In particular,
we refer to [2] and [25] for a discussion about the growth properties and the validity of (W4) for the
Ogden strain energy density and other standard models.

Remark 2.5. It is worth to stress that Theorem 2.1 does not hold without suitable compatibility assump-
tions on external forces. Not even relaxing (L2) by requiring non strict inequality therein would work.
Indeed, choose f = g ≡ 0,

WI(x,F) =
{ |FTF − I|2 if detF = 1 ,

+∞ otherwise,
(2.7)

so that (W0), (W1), (W2), (W3), (W4) are satisfied (with p = 2). Let vj := h−1
j (R − I)x, where

R ∈ SO(3), R �= I and (hj)j∈N ⊂ (0, 1) is a vanishing sequence. Then, yj = x + hjvj = Rx hence
det ∇yj = 1 and FI

hj
(vj) = 0 = minW 1,p(Ω,R3) FI

hj
so the sequence (vj)j∈N satisfies (2.6). However, it has

no subsequence that is weakly converging in W 1,p(Ω,R3). Moreover, E(vj) = c h−1
j W2 for some c ∈ (0, 1]

and some W ∈ R
3×3
skew such that |W|2 = 2, as a consequence of the Euler–Rodrigues formula (3.2) for

the representation of rotations that we shall recall in Sect. 3. Therefore, the sequence (E(vj))j∈N has no
subsequence that is bounded in Lp(Ω,R3×3).

Remark 2.6. Under the assumptions of Theorem 2.1, in general it is not possible to get weak W 1,p(Ω,R3)
compactness of (almost) minimizing sequences. Indeed, let us consider the following example. Let Ω = B1

be the unit ball of R3, centered at the origin. Let WI be given by (2.7). Let f(x) = x and g ≡ 0. It is
readily seen that (L1) and (L2) are satisfied. On the other hand, let the divergence-free vector field
v∗ ∈ H1(Ω,R3) be a minimizer of EI over W 1,p(Ω,R3). Since Ω = B1 and v∗ is divergence-free, there
exists w∗ ∈ H2(Ω,R3) such that v∗ = curlw∗ and by divergence theorem

L(v∗) = −
∫

B1

x · v∗ dx = −
∫

B1

x · curlw∗ dx =
∫

B1

div(x ∧ w∗) dx =
∫

∂B1

(x ∧ w∗) · xdx = 0

so that

EI(v∗) = 4
∫

B1

|E(v∗)|2 dx ≥ 0,
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and since EI(0) = 0, we get EI(v∗) = 0. By Theorem 2.1, we deduce that 0 is the minimal value of
both EI and FI over W 1,p(Ω,R3). Let now W ∈ R

3×3
skew be such that |W|2 = 2. Let α ∈ ( 1

2 , 1) and let us
consider a vanishing sequence (hj)j∈N ⊂ (0, 1) and the sequence

vj(x) := hα−1
j Wx + h−1

j

(
1 −

√
1 − h2α

j

)
W2x = 0. (2.8)

The Euler–Rodrigues formula (3.2) implies that for any j ∈ N there holds yj(x) := x + hjvj = Rjx for a
suitable Rj ∈ SO(3). This implies det ∇yj = 1 for any j ∈ N and then by (2.7) we get

FI
hj

(vj) =
1
h2

j

∫

B1

W(x, I + hj∇vj) dx =
1
h2

j

∫

B1

|2hjE(vj) + h2
j∇vT

j ∇vj |2 dx.

The above right-hand side goes to 0 as j → +∞, as shown after a computation making use of (2.8).
Therefore, the sequence (vj)j∈N satisfies (2.6). On the other hand,

(∇vj)j∈N has no subsequence that is bounded in Lp(Ω,R3×3), since α ∈ ( 1
2 , 1).

Remark 2.7. If L(W2
∗x) > 0 for some W∗ ∈ R

3×3
skew, then the functionals FI

h may admit no uniform bound
from below as h → 0. Indeed, let Ω = {(x1, x2, x3) ∈ R

3 : x2
1 + x2

2 < 1, 0 < x3 < 1} and let g(x) =
(−x1,−x2, 0), f ≡ 0, W∗ := e1 ⊗ e2 − e2 ⊗ e1. Then, (L1) is satisfied and since W2

∗ = −e1 ⊗ e1 − e2 ⊗ e2

we get

L(W2
∗x) =

∫

∂Ω

(x2
1 + x2

2) dH2(x) > 0

and by taking a vanishing sequence (hj)j∈N ⊂ (0, 1) and vj := h−1
j (W∗x + W2

∗x) a direct computation
shows that

FI
hj

(vj) = −h−1
j L(W2

∗x) → −∞
as j → +∞, as claimed.

For general Ω, we notice that if the body is subject to a uniform boundary compressive force field
then the above situation occurs. Indeed, if n denotes the outer unit normal vector to ∂Ω, and we choose
g = λn with λ < 0 and f ≡ 0, then∫

∂Ω

g · W2x dH2(x) = λ (TrW2) |Ω| > 0 ∀ W∈R
3×3
skew, W �= 0

and by choosing W∈R
3×3
skew, W �= 0 and vj := h−1

j (Wx + W2x), we get

FI
hj

(vj) = L(vj) = − λ

hj

∫

∂Ω

W2x · n dH2(x) = − λ

hj
(TrW2)|Ω| → −∞

as j → +∞, as before. On the other hand, if λ > 0 we have a dilation effect on the body and (L2) is
satisfied.

Remark 2.8. Let us consider external forces of the following form. Given p such that (W4) holds, let
f = ∇φ, where φ ∈ W 1,r

0 (Ω), r = 3p
4p−3 , and let g = λn, where λ ∈ R and n is the unit exterior normal

vector to ∂Ω, with
∫
Ω

φ(x) dx < λ|Ω|. It is readily seen that in this case (L1) and (L2) are satisfied.

Moreover, by the divergence theorem, L(v) = 0 for every divergence-free vector field v ∈ H1(Ω,R3).
Therefore, under the assumptions of Theorem 2.1, from the definition of EI and from the estimate
(3.5) below we deduce that argminW 1,p(Ω,R3)EI coincides with the set of rigid displacements of Ω (i.e.,
displacements fields with vanishing infinitesimal strain tensor). From Theorem 2.1, we deduce in this case
that the minimal value of both EI and FI is 0.



  146 Page 8 of 26 E. Mainini and D. Percivale ZAMP

3. Notation and preliminary results

Through the paper, R3×3 will denote the set of 3 × 3 real matrices. R3×3
sym and R

3×3
skew denote, respectively,

the sets of symmetric and skew-symmetric matrices and for every B ∈ R
3×3 we define symB := 1

2 (B+BT )
and skewB := 1

2 (B − BT ). Moreover, we set

K := {τ(R − I) : τ ≥ 0, R ∈ SO(3)} . (3.1)

Given a, b ∈ R
3, with a ∧ b we denote the cross product. A Sobolev vector field w ∈ W 1,1(Ω,R3) is said

to be an infinitesimal rigid displacement if E(v) := sym ∇v = 0 a.e. in Ω, which is the case iff there
exist a, b ∈ R

3 such that v(x) = a ∧ x + b for every x ∈ Ω. By H1
div(Ω,R3), we denote the space of

divergence-free H1(Ω,R3) vector fields. The codomain of functions of Lr(Ω) or W 1,r(Ω) shall be R, R3

or R
3×3 and we shall often omit it from the notation. Bold letters will be used for vector fields.

Euler–Rodrigues formula

For every R ∈ SO(3), there exist ϑ ∈ R and W ∈ R
3×3
skew, such that |W|2 = 2 and such that exp(ϑW) = R.

By taking into account that W3 = −W, the exponential matrix series exp(ϑW) =
∑∞

k=0 ϑkWk/k! yields
the Euler–Rodrigues formula:

exp(ϑW) = R = I + sinϑW + (1 − cos ϑ)W2. (3.2)

We also recall that if W ∈ R
3×3
skew and |W|2 = 2 then |W2|2 = 2.

Properties of W

Let assumptions (W0), (W1), (W2), (W3) and (W4) hold. We recall that W is defined by W(x,F) :=
WI(x, (detF)−1/3F), thus WI ≥ W. It is clear that W itself satisfies (W1) and (W2), so that by (W3),
since W ≥ 0, we deduce

W(x,R)=0, DW(x,R)=0 ∀R ∈ SO(3), for a.e. x ∈ Ω. (3.3)

Due to frame indifference, there exists a function V such that

W(x,F) = V(x, 1
2 (FTF − I)) , ∀F ∈ R

3×3, for a.e. x ∈ Ω. (3.4)

Given B ∈ R
3×3, h > 0, we have W(x, I+hB) = V(x, h symB+ 1

2h2BTB). By (3.3) and by (W3), we get
for a.e. x ∈ Ω

lim
h→0

h−2W(x, I + hB) =
1
2

symBD2V(x, 0) symB =
1
2
BT D2W(x, I)B,

hence (W4) and (2.3) imply that for a.e. x ∈ Ω, as soon as TrB = 0,

1
2
BT D2W(x, I)B = lim

h→0
h−2W(x, I + hB + o(h)) = lim

h→0
h−2W(x, exp(hB))

= lim
h→0

h−2WI(x, exp(hB)) ≥ lim sup
h→0

Ch−2 d2(exp(hB), SO(3))

= lim sup
h→0

Ch−2

∣∣∣∣
√

exp(hB)T exp(hB) − I

∣∣∣∣
2

= lim sup
h→0

Ch−2| exp(h symB) − I|2 = C|symB|2.

(3.5)
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Moreover, by expressing the remainder of Taylor’s expansion in terms of the x-independent modulus of
continuity ω : R+ → R of D2W(x, ·) on the set U (ω is an increasing function such that limt→0+ ω(t) = 0)
from (W3), we have

∣∣∣∣W(x, I + hB) − h2

2
symBD2W(x, I) symB

∣∣∣∣ ≤ h2ω(h|B|)|B|2 (3.6)

for any small enough h (such that hB ∈ U), where ω : R+ → R is such that limt→0+ ω(t) = 0. Similarly,
V(x, ·) is C2 in a neighbor of the origin in R

3×3, with an x-independent modulus of continuity η : R+ → R,
which is increasing and such that limt→0+ η(t) = 0, and we have

∣∣∣∣V(x, hB) − h2

2
symBD2V(x, 0) symB

∣∣∣∣ ≤ h2η(h|B|)|B|2 (3.7)

for any small enough h.

Sobolev–Poincaré inequality

Here and for the rest of this section, Ω is a bounded connected set with Lipschitz boundary. Let p ∈ (1, 2].
By Sobolev embedding, Sobolev trace embedding and by the Poincaré inequality for null-mean functions
we have for any v ∈ W 1,p(Ω,R3)

‖v − v̄‖
L

3p
3−p (Ω,R3)

+ ‖v − v̄‖
L

2p
3−p (∂Ω,R3)

≤ KF ‖∇v‖Lp(Ω,R3×3), (3.8)

where KF is a constant only depending on Ω, p and v̄ := 1
|Ω|

∫
Ω

v dx.

Projection on rigid motions

Let p ∈ (1, 2] and let

R :={v ∈ W 1,1(Ω,R3) : E(v) = 0}
denote the space spanned by the set of the infinitesimal rigid displacements. We denote by Pv the unique
projection of v ∈ W 1,p(Ω,R3) onto R.

Korn inequality

Let p ∈ (1, 2]. For any v ∈ W 1,p(Ω,R3), there is a unique couple Wv ∈ R
3×3
skew, av ∈ R

3 such that

‖v − Pv‖Lp(Ω) = min{‖v − (Wx + a)‖Lp(Ω) : W ∈ R
3×3
skew, a ∈ R

3} = ‖v − (Wv x + av)‖Lp(Ω)

and Korn inequality, see for instance [27], entails the existence of a constant QK = QK(Ω, p) such that

‖∇v − Wv‖Lp(Ω) ≤ QK‖E(v)‖Lp(Ω). (3.9)

Moreover, by combining the latter with Sobolev and trace inequalities, we obtain the existence of a further
constant CK = CK(Ω, p) such that for all v ∈ W 1,p(Ω,R3)

‖v − Pv‖
L

3p
3−p (Ω,R3)

+ ‖v − Pv‖
L

2p
3−p (∂Ω,R3)

≤ CK ‖E(v)‖Lp(Ω,R3×3). (3.10)
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Basic estimate on external forces

As a consequence of (3.10), if (L1) holds true we obtain the following estimate for functional L: for any
v ∈ W 1,p(Ω,R3), there holds

|L(v)| = |L(v − Pv)|
≤ ‖f‖

L
3p

4p−3 (Ω,R3)
‖v − Pv‖

L
3p

3−p (Ω,R3)
+ ‖g‖

L
2p

3p−3 (∂Ω,R3)
‖v − Pv‖

L
2p

3−p (∂Ω,R3)

≤ CL‖E(v)‖Lp(Ω,R3×3),

(3.11)

where CL := CK

(
‖f‖

L
3p

4p−3 (Ω,R3)
+ ‖g‖

L
2p

3p−3 (∂Ω,R3)

)
and CK is the constant in (3.10).

Rigidity inequality

We recall the rigidity inequality by Friesecke, James and Müller [12], in its version from [13], [2]. Let gp

the function defined in (2.2). There exists a constant Cp = Cp(Ω) > 0 such that for every y ∈ W 1,p(Ω,R3)
there exists a constant R ∈ SO(3) such that we have∫

Ω

gp(|∇y − R|) dx ≤ Cp

∫

Ω

gp(d(∇y, SO(3))) dx. (3.12)

We close this section with a result about convergence of infinitesimal strain tensors.

Lemma 3.1. Let p ∈ (1, 2]. Let (wn)n∈N ⊂ W 1,p(Ω,R3) be a sequence such that E(wn) ⇀ T weakly in
Lp(Ω,R3×3) as n → +∞. Then, there exists w ∈ W 1,p(Ω,R3) such that T = E(w). If in addition we
assume that ∇wn ⇀ G weakly in Lp(Ω;R3×3), then there exists a constant matrix W ∈ R

3×3
skew such that

∇w = G − W.

Proof. The proof is given in [24, Lemma 3.2] for the case p = 2. Its extension to p ∈ (1, 2) is straightfor-
ward. �

4. Compactness

We prove uniform Lp(Ω,R3×3) bounds for E(vj) on almost minimizing sequences (vj)j∈N of FI
hj

(vj) as
hj → 0. We start by showing that functionals FI

h are uniformly bounded from below.

Lemma 4.1. (Boundedness from below) Assume (2.1), (W0), (W1),(W2),(W3),(W4), (L1) and (L2).
There exists a constant C > 0 (only depending on Ω, p, f, g) such that FI

h(v) ≥ −C for any h ∈ (0, 1) and
any v ∈ W 1,p(Ω,R3).

Proof. Let v ∈ W 1,p(Ω,R3) and let h ∈ (0, 1). Let y := i + hv, where i denotes the identity map on R
3,

and let R ∈ SO(3) be a constant matrix such that (3.12) holds. Let S := {x ∈ Ω : |∇y(x) − R| ≤ 1}.
By taking advantage of assumption W4 and of the linearity of L, since gp(t) = t2 for 0 ≤ t ≤ 1 and
gp(t) ≥ tp for t ≥ 1, we get

FI
h(v) ≥ c

h2

∫

Ω

gp(|∇y − R|) dx − 1
h

L(y − i)

≥ c

h2

∫

S

|∇y − R|2 dx +
c

h2

∫

Ω\S

|∇y − R|p dx − 1
h

L(y − i),
(4.1)
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where c > 0 is a constant only depending on p and Ω. By the Sobolev–Poincaré inequality (3.8), letting
u(x) := Rx and letting m denote the mean value of y − u on Ω, we have

‖y − u − m‖
L

3p
3−p (Ω,R3)

+ ‖y − u − m‖
L

2p
3−p (∂Ω,R3)

≤ KF ‖∇y − R‖Lp(Ω,R3×3). (4.2)

By the Euler–Rodrigues formula (3.2), we represent R as R = I + sin θW + (1 − cos θ)W2 for a suitable
skew-symmetric matrix W and some θ ∈ (−π, π]. Then, we notice that (L1) and (L2) entail L(u− i) ≤ 0
so that L(y − i) ≤ L(y − u − m). As a consequence, by means of the Hölder inequality and of (4.2) we
get

L(y − i) ≤ L(y − u − m)

≤ ‖f‖
L

3p
4p−3 (Ω,R3)

‖y − u − m‖
L

3p
3−p (Ω,R3)

+ ‖g‖
L

2p
3p−3 (∂Ω,R3)

‖y − u − m‖
L

2p
3−p (∂Ω,R3)

≤ Cf,g ‖∇y − R‖Lp(Ω,R3×3) ≤ Cf,g‖∇y − R‖Lp(Ω\S,R3×3) + Cf,g|Ω| 2−p
2p ‖∇y − R‖L2(S,R3×3)

where Cf,g := KF

(
‖f‖

L
3p

4p−3 (Ω,R3)
+ ‖g‖

L
p

p−1 (∂Ω,R3)

)
, and then by Young inequality we obtain

L(y − i) ≤ p − 1
p

C
p

p−1
f,g

(
2h

cp

) 1
p−1

+
c

2h
‖∇y − R‖p

Lp(Ω\S,R3×3)

+
h

2c
C2

f,g |Ω| 2−p
p +

c

2h
‖∇y − R‖2

L2(S,R3×3),

(4.3)

where c is the constant appearing in (4.1). By joining together (4.1) and (4.3), we get

FI
h(v) ≥ c

2h2
‖∇y − R‖p

Lp(Ω\S,R3×3) +
c

2h2
‖∇y − R‖2

L2(S,R3×3)

− C
p

p−1
f,g

(
2
cp

) 1
p−1

h
2−p
p−1 − 1

2c
C2

f,g |Ω| 2−p
p ≥ −C

p
p−1
f,g

(
2
cp

) 1
p−1

− 1
2c

C2
f,g |Ω| 2−p

p

as desired. �

Lemma 4.2. (Compactness) Assume (2.1), (W0), (W1),(W2),(W3),(W4), (L1) and (L2). Let
(hj)j⊂N ⊂ (0, 1) be a vanishing a sequence and let (vj)j∈N ⊂ W 1,p(Ω,R3) be a sequence such that

lim
j→+∞

(
FI

hj
(vj) − inf

W 1,p(Ω)
FI

hj

)
= 0. (4.4)

Then, there exists M > 0 such that ‖E(vj)‖Lp(Ω) ≤ M for any j ∈ N.

Proof. The argument extends the one of [24, Lemma 3.6] to the weaker coercivity condition (W4).
For any j ∈ N, by Lemma 4.1 there holds

− ∞ < inf
W 1,p(Ω)

FI
hj

≤ FI
hj

(0) = 0, (4.5)

therefore by considering (4.4) it is not restrictive to assume that FI
hj

(vj) ≤ 1 for any j ∈ N. We assume
by contradiction that the sequence (tj)j∈N, defined as tj := ‖E(vj)‖Lp(Ω), is unbounded, so that up to
extraction of a not relabeled subsequence we have tj → +∞ as j → +∞ and moreover tjhj converge to a
limit as j → +∞. We let wj = vj/tj , so that ‖E(wj)‖Lp(Ω) = 1 for any j ∈ N, and along a not relabeled
subsequence we have E(wj) ⇀ E(w) weakly in Lp(Ω) for some w ∈ W 1,p(Ω), thanks to Lemma 3.1. By
defining yj := i + hjvj , we let Rj be the corresponding constant rotation matrix such that (3.12) holds,
so that by (W4), since FI

hj
(vj) ≤ 1, we get∫

Ω

gp(|∇yj − Rj |) dx ≤
∫

Ω

gp(d(∇yj , SO(3))) dx ≤
∫

Ω

W(x, I + hj∇vj) dx ≤ h2
j + h2

jL(vj).
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By inserting (3.11)∫

Ω

gp(|∇yj − Rj |) dx ≤ h2
j + h2

jL(vj) ≤ h2
j + CL h2

j ‖E(vj)‖Lp(Ω) = h2
j (1 + CL tj),

that is, ∫

Ω

gp(|I − Rj + tjhj∇wj |) dx ≤ h2
j (1 + CL tj). (4.6)

We claim that ∇w is the sum of a skew-symmetric matrix and an element of K, where K is defined by
(3.1), and that E(wj) → E(w) in Lp(Ω), up to extraction of a further not relabeled subsequence. We shall
prove the claim by separately treating the following three possible cases: hjtj → λ ∈ (0,+∞), hjtj → 0
and hjtj → +∞ as j → +∞.

Case 1 hjtj → λ as j → +∞ for some λ > 0. It is easy to check that

2gp(ax) ≥ (a2 ∧ ap)gp(x) for any x ≥ 0 and any a ≥ 0, (4.7)

so that (4.6) implies

1
2
((h2

j t
2
j ) ∧ (hp

j t
p
j ))

∫

Ω

gp

(∣∣∣∣ I − Rj

hjtj
+ ∇wj

∣∣∣∣
)

dx ≤
∫

Ω

gp (|I − Rj + hjtj∇wj |) dx

≤ h2
j (1 + CL tj),

therefore

lim
j→+∞

∫

Ω

gp

(∣∣∣∣ I − Rj

hjtj
+ ∇wj

∣∣∣∣
)

dx = 0. (4.8)

We define

Aj := {x ∈ Ω : |I − Rj + tjhj∇wj(x)| ≤ tjhj}.

Since gp(t) = t2 for 0 ≤ t ≤ 1 and gp(t) ≥ tp for t ≥ 1, taking advantage of (4.8) we get

lim
j→+∞

∫

Ω

χAj

∣∣∣∣ I − Rj

hjtj
+ ∇wj

∣∣∣∣
2

dx + lim
j→+∞

∫

Ω

(1 − χAj
)

∣∣∣∣ I − Rj

hjtj
+ ∇wj

∣∣∣∣
p

dx = 0

so that both

(1 − χAj
)

(
I − Rj

hjtj
+ ∇wj

)
and χAj

(
I − Rj

hjtj
+ ∇wj

)

go to zero in Lp(Ω) as j → +∞, since p ∈ (1, 2]. As a consequence, we obtain the convergence to zero of
h−1

j t−1
j (I − Rj) + ∇wj in Lp(Ω) as j → +∞. Therefore, ∇wj converge in Lp(Ω), up to subsequences, to

λ−1(R− I) for some suitable R ∈ SO(3) (thus E(wj) converge in Lp(Ω) to E(w)) and Lemma 3.1 implies
that ∇w is the sum of a constant skew-symmetric matrix and an element of K.

Case 2 hjtj → 0 as j → +∞. We assume w.l.o.g. that tjhj ≤ 1 for any j ∈ N. Writing Rj by means
of the Euler–Rodrigues formula (3.2), from (4.6) we get∫

Ω

gp(|hjtj∇wj − sin θjWj − (1 − cos θ)W2
j |) dx ≤ h2

j (1 + CL tj),

where, for any j ∈ N, θj ∈ (−π, π] and Wj ∈ R
3×3 is skew-symmetric. Since |symF| ≤ |F| and gp is

increasing, we deduce ∫

Ω

gp(|hjtjE(w) − (1 − cos θ)W2
j |) dx ≤ h2

j (1 + CL tj).
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Therefore, (4.7) implies (since hjtj ≤ 1)
∫

Ω

gp

(∣∣∣∣∣E(wj) − (1 − cos θj)W2
j

hjtj

∣∣∣∣∣
)

dx ≤ 2 + 2CL tj
t2j

. (4.9)

By taking advantage of the latter estimate, since gp is increasing and satisfies gp(x) ≤ 2xp for any x ≥ 0,
we get

|Ω| gp

(∣∣∣∣∣
(1 − cos θj)W2

j

hjtj

∣∣∣∣∣
)

=
∫

Ω

gp

(∣∣∣∣∣
(1 − cos θj)W2

j

hjtj

∣∣∣∣∣
)

dx

≤
∫

Ω

gp(|E(wj)|) dx +
∫

Ω

gp

(∣∣∣∣∣E(wj) − (1 − cos θj)W2
j

hjtj

∣∣∣∣∣
)

dx

≤ 2
∫

Ω

|E(wj)|p dx +
∫

Ω

gp

(∣∣∣∣∣E(wj) − (1 − cos θj)W2
j

hjtj

∣∣∣∣∣
)

dx

≤ 2 +
2 + 2CL tj

t2j
.

Since tj → +∞ as j → +∞, we obtain the existence of a positive constant C∗ (not depending on j) such
that

1 − cos θj

hjtj
=

√
2

2

∣∣∣∣∣
(1 − cos θj)W2

j

hjtj

∣∣∣∣∣ ≤ C∗.

In particular, up to subsequences, we have

lim
j→+∞

(1 − cos θj)W2
j

hjtj
= G2

for some suitable constant skew-symmetric matrix G, so that from (4.9) we deduce (since gp is continuous
and increasing, and since from (2.2) it is possible to check that there exists a positive constant cp such
that gp(a + b) ≤ cp(gp(a) + gp(b)) for any a ≥ 0 and any b ≥ 0)

lim sup
j→+∞

∫

Ω

gp(|E(wj) − G2|) dx ≤ cp lim sup
j→+∞

∫

Ω

gp

(∣∣∣∣∣E(wj) − (1 − cos θj)W2
j

hjtj

∣∣∣∣∣
)

dx

+ cp lim sup
j→+∞

∫

Ω

gp

(∣∣∣∣∣
(1 − cos θj)W2

j

hjtj
− G2

∣∣∣∣∣
)

dx = 0.

By the same argument of Case 1, we conclude that E(wj) → G2 in Lp(Ω) as j → +∞, hence E(w) = G2,
thus ∇w = Skew(∇w) + G2. We deduce that the skew-symmetric part of ∇w is a gradient field, hence a
constant skew-symmetric matrix Λ, and that ∇w = Λ + G2.

By applying the Euler–Rodrigues formula (3.2), we deduce the existence of μ > 0, of R ∈ SO(3) and
of Q ∈ R

3×3
skew such that ∇w = μ(R − I) + Q, so that indeed ∇w is the sum of an element of K and a

constant skew-symmetric matrix.
Case 3 hjtj → +∞ as j → +∞. We may assume in this case that hjtj ≥ 1 for any j ∈ N. By applying

(4.6) and (4.7), we get
∫

Ω

gp

(∣∣∣∣ I − Rj

hjtj
+ ∇wj

∣∣∣∣
)

dx ≤ 2h2
j (1 + CL tj)

hp
j t

p
j

,
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where the right-hand side vanishes as j → +∞, and where I−Rj

hjtj
vanishes as well, since Rj − I is bounded.

By the same argument of Case 1, we conclude that ∇wj → 0 in Lp(Ω) as j → +∞, thus E(wj) → E(w) = 0
in Lp(Ω). By Lemma 3.1, we deduce that ∇w is a constant skew-symmetric matrix. This ends the last of
the three cases and proves the claim.

Let w̃j := wj − Pwj so that E(w̃j) = E(wj) and L(w̃j) = L(wj) by (L1). The claim we just proved
implies E(w̃j) → E(w) in Lp(Ω) as j → +∞. Therefore, since (3.11) implies

|L(w̃j) − L(w)| = |L(w̃j − w)| ≤ CL ‖E(w̃j) − E(w)‖Lp(Ω),

we deduce L(wj) = L(w̃j) → L(w) as j → +∞. As a consequence, thanks to (4.4) and (4.5) we infer
that

L(w) = lim
j→+∞

L(wj) = lim
j→+∞

1
tj

L(vj)

= lim
j→+∞

1
tj

⎛
⎝ 1

h2
j

∫

Ω

WI(x, I + hj∇vj) dx − FI
hj

(vj)

⎞
⎠ ≥ 0.

(4.10)

Since we have already proven that ∇w is the sum of a constant skew-symmetric matrix and an element of
K, we have w(x) = τ(R−I)x+Ax+c for suitable τ ≥ 0, R ∈ SO(3) such that R �= I, A ∈ R3×3

skew and c ∈ R
3.

By (3.2) there exist ϑ ∈ (−π, π], θ �= 0, and W ∈ R
3×3
skew, W �= 0, such that R = I+(1−cos ϑ)W2+(sin ϑ)W.

Hence, (L1) and (4.10) yield

0 ≤ L(w) = τ

∫

∂Ω

g · (R − I)x dH2 + τ

∫

Ω

f · (R − I)xdx

= τ(1 − cos ϑ)

⎛
⎝

∫

∂Ω

g · W2x dH2 +
∫

Ω

f · W2xdx

⎞
⎠ .

By taking (L2) into account, we conclude that τ = 0, so that ∇w is a constant skew-symmetric matrix
and then E(w) = 0. But E(wj) → E(w) in Lp(Ω) and ‖E(wj)‖Lp(Ω) = 1 imply ‖E(w)‖Lp(Ω) = 1, a
contradiction. �

5. Lower bound

In this section, we prove the lower bound lim infj→+∞ FI
hj

(vj) ≥ FI(v) as E(vj) ⇀ E(v) weakly in
Lp(Ω,R3×3) and hj → 0. We start with two preliminary lemmas.

Lemma 5.1. Assume (2.1),(L1), (W0), (W1), (W2), (W3), (W4). Let (hj)j∈N ⊂ (0, 1) be a vanishing
sequence and let (vj)j∈N ⊂ W 1,p(Ω,R3) be a sequence such that supj∈N

FI
hj

(vj) < +∞ and such that
E(vj) ⇀ E(v) weakly in Lp(Ω,R3×3) as j → ∞ for some v ∈ W 1,p(Ω,R3). Then, there exists a constant
matrix W ∈ R

3×3
skew such that, up to subsequences,

√
hj∇vj → W in Lp(Ω,R3×3) as j → ∞.

Proof. Through the proof, C will always denote a generic positive constant only depending on p, Ω, f
and g. By taking into account (L1), (W4), and by applying (3.12) to yj := i+ hjvj , we see that for any
j ∈ N there exists a constant matrix Rj ∈ SO(3) such that

h−2
j

∫

Ω

gp(|I + hj∇vj − Rj |) dx − L(vj − Pvj) ≤ C.
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By (3.11) and by the boundedness of E(vj) in Lp(Ω,R3×3), we get

h−2
j

∫

Ω

gp(|I + hj∇vj − Rj |) dx ≤ C (5.1)

Due to the representation (3.2) of rotations, for every j ∈ N there exist ϑj ∈ (−π, π] and Wj ∈R
3×3
skew,

with |Wj |2 = 2, such that

Rj = exp(ϑjWj) = I + sin ϑj Wj + (1 − cos ϑj)W2
j .

Hence, by (5.1) and (2.2), we have∫

Ω

gp(|hj∇vj − sin ϑjWj − (1 − cos ϑj)W2
j |) dx ≤ Ch2

j . (5.2)

By setting

Aj := {x ∈ Ω : |hj∇vj − sin ϑjWj − (1 − cos ϑj)W2
j | ≤ 1},

from (5.2) we get via Hölder inequality∫

Aj

|hj∇vj − sinϑjWj − (1 − cos ϑj)W2
j |p dx

≤

⎧⎪⎨
⎪⎩

∫

Aj

|hj∇vj − sin ϑjWj − (1 − cos ϑj)W2
j |2 dx

⎫⎪⎬
⎪⎭

p/2

|Aj |1− p
2 ≤ Chp

j ,

(5.3)

and again by (2.2) we also obtain∫

Ω\Aj

|hj∇vj − sinϑjWj − (1 − cos ϑj)W2
j |p dx ≤ Ch2

j ≤ Chp
j . (5.4)

Since

sym
(
hj∇vj − sinϑjWj − (1 − cos ϑj)W2

j

)
= hjE(vj) − (1 − cos ϑj)W2

j ,

we get ∫

Ω

|E(vj) − (1 − cos ϑj)h−1
j W2

j |p dx ≤ C.

By recalling that E(vj) ⇀ E(v) in Lp(Ω,R3×3), we get

|1 − cos ϑj | ≤ Chj (5.5)

hence

| sin ϑj | ≤ √
2Chj . (5.6)

By (5.3) and (5.4), we have∫

Ω

|√hj∇vj − h
−1/2
j sin ϑjWj − h

−1/2
j (1 − cos ϑj)W2

j |p dx ≤ Ch
p/2
j ,

therefore, by (5.5) and (5.6) there exists a constant matrix W ∈ R
3×3
skew such that, up to subsequences,√

hj∇vj → W in Lp(Ω,R3×3) as j → ∞. �
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Lemma 5.2. Assume (2.1), (L1), (W0), (W1), (W2), (W3), (W4). Let (hj)j∈N ⊂ (0, 1) be a vanishing
sequence and let (vj)j∈N ⊂ W 1,p(Ω,R3) be a sequence such that supj∈N

FI
hj

(vj) < +∞ and E(vj) ⇀ E(v)
weakly in Lp(Ω,R3×3) as j → ∞ for some v ∈ W 1,p(Ω,R3). Then, v ∈ H1(Ω,R3) and up to subsequences
1Bj

E(vj) ⇀ E(v) weakly in L2(Ω,R3×3) as j → ∞, where

Bj :=
{

x ∈ Ω : |
√

hj∇vj | ≤ 2|W| + 1
}

(5.7)

and where W ∈ R
3×3
skew is given by Lemma 5.1.

Proof. Again, through the proof we denote by C the various positive constants, possibly depending only
on Ω, p, f, g. Let θj and Wj be as in the proof of Lemma 5.1, so that (5.5) holds. We claim that 1Bj

E(vj)
is bounded in L2(Ω,R3×3). To this aim, it is useful to notice that by (2.2) for every δ > 0 there exists
c = c(p, δ) > 0 such that gp(t) ≥ ct2 for every t ∈ [0, δ]. Therefore, by taking into account that for j large
enough

1Bj
|hjE(vj) − (1 − cos θj)W2

j | ≤ 2|W| + 1.

We may fix δ = 2|W| + 1 and obtain for any j large enough ( since |symF| ≤ |F| and gp is increasing)∫

Bj

|E(vj)|2 dx ≤ 2h−2
j

∫

Bj

|hjE(vj) − (1 − cos θj)W2
j |2 dx + 2|Bj |h−2

j |(1 − cos θj)W2
j |2

≤ Ch−2
j

∫

Bj

gp(|hjE(vj) − (1 − cos θj)W2
j |) dx + 2|Bj |h−2

j |(1 − cos θj)W2
j |2

≤ Ch−2
j

∫

Bj

gp(|hj∇vj − (1 − cos θj)W2
j − sin θjWj |) dx + 2hj

−2|Bj ||(1 − cos θj)W2
j |2

and by arguing as in the proof of Lemma 5.1, see (5.2) and (5.5), we get∫

Bj

|E(vj)|2 dx ≤ C

as claimed. On the other hand, for every q ∈ (1, p) we have

∫

Bc
j

|E(vj)|q dx ≤

⎛
⎜⎝

∫

Bc
j

|E(vj)|p dx

⎞
⎟⎠

q/p

|Bc
j |(p−q)/p → 0

since |Bc
j | → 0 by Chebyshev inequality and by Lemma 5.1. By taking into account that

E(vj) = 1Bc
j
E(vj) + 1Bj

E(vj)

and by assuming wlog that 1Bj
E(vj) ⇀ u weakly in L2(Ω,R3×3) we get E(vj) ⇀ u weakly in Lq(Ω,R3×3)

and recalling that E(vj) ⇀ E(v) weakly in Lp(Ω,R3×3) we get u = E(v) ∈ L2(Ω,R3×3) thus proving
that v ∈ H1(Ω,R3) by Korn inequality. �

Lemma 5.3. (Lower bound) Assume (2.1), (W0), (W1), (W2), (W3), (W4). Let (hj)j∈N ⊂ (0, 1) be
a vanishing sequence and let (vj)j∈N ⊂ W 1,p(Ω,R3) be a sequence such that E(vj) ⇀ E(v) weakly in
Lp(Ω,R3×3) as j → ∞. Then,

lim inf
j→+∞

FI
hj

(vj) ≥ FI(v). (5.8)
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Proof. We may assume wlog that FI
hj

(vj) ≤ C for any j ∈ N so that by setting

Dj := E(vj) + 1
2hj∇vT

j ∇vj

we get

1 = det(I + hj∇vj) = det(I + hj∇vT
j )(I + hj∇vj) = det(I + 2hjE(vj) + h2

j∇vT
j ∇vj)

= 1 + 2hjTrDj − 2h2
j (Tr(D2

j ) − (TrDj)2) + 8h3
j detDj

a.e. in Ω, that is,

2 div vj + hj |∇vj |2 = 2TrDj = 2hj(Tr(D2
j ) − (TrDj)2) − 8h2

j detDj .

By taking into account Lemma (5.1) we get
√

hj∇vj → W in Lp hence, up to subsequences, hj∇vT
j ∇vj →

−W2 a.e. in Ω and 2hj(Tr(D2
j )− (TrDj)2)−8h2

j detDj → 0 a.e. in Ω. Therefore, 2 div vj → TrW2 a.e. in
Ω and since the weak convergence of E(vj) implies div vj ⇀ div v weakly in Lp(Ω) we get 2 div v = TrW2

a.e. in Ω. On the other hand by Lemma 5.2, with Bj defined by (5.7), we have 1Bj
E(vj) ⇀ E(v) weakly

in L2(Ω,R3×3) and v ∈ H1(Ω,R3). Hence, by (3.7), (3.4) and (L1) we get for large enough j

FI
hj

(vj) ≥ 1
h2

j

∫

Bj

W(x, I + hj∇vj) dx − L(vj − Pvj) =
1
h2

j

∫

Bj

V(x, hjDj) dx − L(vj − Pvj)

≥
∫

Bj

1
2
DT

j D2V(x, 0)Dj dx −
∫

Bj

η(hjDj)|Dj |2 dx − L(vj − Pvj),

since on Bj we have hj |Dj | ≤ √
hj

(√
hj |∇vj | + 1

2h
3/2
j |∇vT

j ||∇vj |
)

≤ √
hj(2|W| + 2) for large enough

j ( so that indeed (3.7) can be applied). We deduce

FI
hj

(vj) ≥ 1
2

∫

Ω

(1Bj
Dj)T D2W(x, I) (1Bj

Dj) dx

− η(
√

hj(2|W| + 1)
∫

Ω

|1Bj
Dj |2 dx − L(vj − Pvj)

(5.9)

for large enough j, as η is increasing. Since hj∇vT
j ∇vj → −W2 a.e. in Ω and |Bc

j | → 0 as j → +∞, and
since |1Bj

hj∇vT
j ∇vj | ≤ (2|W| + 1)2, we get 1Bj

hj∇vT
j ∇vj ⇀ −W2 weakly in L2(Ω,R3×3). By taking

into account that 1Bj
E(vj) ⇀ E(v) weakly in L2(Ω,R3×3), we then obtain 1Bj

Dj ⇀ E(v)− 1
2W

2 weakly
in L2(Ω,R3×3). Hence, by (W3), (5.9) and by the weak L2(Ω,R3×3) lower semicontinuity of the map
F �→ ∫

Ω

FT D2W(x, I)F dx, we deduce

lim inf
j→+∞

FI
hj

(vj) ≥ 1
2

∫

Ω

(
E(v) − 1

2
W2

)
D2W(x, I)

(
E(v) − 1

2
W2

)
dx − L(v). (5.10)

In order to obtain (5.10), we have also used the fact that L(vj − Pvj) → L(v) as j → +∞. Indeed,
by (3.9) and (3.10) we obtain boundedness of vj − Pvj in W 1,p(Ω,R3) and in L

3p
3−p (Ω,R3). Therefore,

up to subsequences we get vj − Pvj ⇀ w weakly in L
3p

3−p (Ω,R3) for some w ∈ W 1,p(Ω,R3), and by
trace embedding vj − Pvj ⇀ w weakly in L

2p
3−p (∂Ω,R3) as well. Moreover, since E(vj − Pvj) ⇀ E(v)

weakly in Lp(Ω,R3×3), we deduce E(w) = E(v), thus (L1) implies L(w) = L(v). Therefore, we have
L(vj − Pvj) → L(w) = L(v) as j → +∞.

Eventually, since 2 div v = TrW2 a.e. in Ω, the result follows from (5.10). �
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6. Upper bound

The following result is an extension of [25, Lemma 4.1].

Lemma 6.1. Let Ω satisfy assumption (2.1). Let v ∈ C1(Ω′,R3)∩W 2,∞(Ω′,R3) be such that div v = 0 in
Ω′, where Ω′ ⊂ R

3 is an open set such that Ω ⊂ Ω′. Let (hj)j∈N ⊂ (0, 1) be a vanishing sequence. There
exists a sequence of vector fields (vj)j∈N ⊂ C1(Ω,R3)∩W 2,∞(Ω,R3) and j∗ ∈ N such that for any j > j∗

det(I + hj∇vj) = 1, (6.1)
sup
x∈Ω

|vj(x) − v(x)| ≤ ‖v‖L∞(Ω) q(hj‖v‖W 1,∞(Ω)), (6.2)

sup
x∈Ω

|hj∇vj(x)| ≤ q(hj‖v‖W 1,∞(Ω)), (6.3)

sup
x∈Ω

|∇vj(x) − ∇v(x)| ≤
(
1 + ehj‖v‖W1,∞(Ω′)

)
‖v‖W 2,∞(Ω′) q(hj‖v‖W 1,∞(Ω′)), (6.4)

where q(z) := zez. In particular, vj → v in W 1,∞(Ω,R3) as j → +∞.

Proof. We choose T ∈ (0, 1) small enough, such that y(t, x) ∈ Ω′ for any x ∈ Ω and any t ∈ [0, T ], where
y(·, x) is the unique solution to ⎧⎪⎨

⎪⎩
∂y
∂t

(t, x) = v(y(t, x)), t ∈ (0, T ]

y(0, x) = x,

(6.5)

so that y is the flow associated to the vector field v. We have y ∈ C1([0, T ];W 2,∞(Ω)), see [15, Corollary
5.2.8, Remark 5.2.9]. From (6.5), we have

1
t

(y(t, x) − x) − v(x) =
1
t

t∫

0

(v(y(s, x)) − v(x)) ds (6.6)

for any x ∈ Ω. We get therefore the basic estimate

1
t
|y(t, x) − x| ≤ |v(x)| + ‖v‖W 1,∞(Ω′)

t∫

0

1
s
|y(s, x) − x|ds

for any x ∈ Ω, and Gronwall lemma entails
1
t
|y(t, x) − x| ≤ |v(x)| exp{‖v‖W 1,∞(Ω′)t}, (6.7)

so that we have

sup
x∈Ω

|y(t, x) − x| ≤ q(t‖v‖W 1,∞(Ω′)). (6.8)

We have ∇y ∈ C1([0, T ];W 1,∞(Ω)), where ∇ denotes the gradient in x, and as shown in the proof of
[25, Lemma 4.1], there hold

∇y(t, x) = exp

⎛
⎝

t∫

0

∇v(y(s, x)) ds

⎞
⎠ (6.9)

and then

det ∇y(t, x) = exp

⎛
⎝

t∫

0

Tr∇v(y(s, x)) ds

⎞
⎠ = exp

⎛
⎝

t∫

0

div v(y(s, x)) ds

⎞
⎠ = 1 (6.10)
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for every t ∈ (0, T ] and for every x ∈ Ω.

We define

vt(x) := t−1(y(t, x) − x), x ∈ Ω, t ∈ (0, T ].

From the definition of vt, from (6.6) and (6.7) we get

|vt(x) − v(x)| =
∣∣∣∣1t (y(t, x) − x) − v(x)

∣∣∣∣ ≤ ‖v‖W 1,∞(Ω)

t∫

0

1
s

|y(s, x) − x| ds

≤ ‖v‖L∞(Ω)q(t‖v‖W 1,∞(Ω))

(6.11)

for any x ∈ Ω and any t ∈ (0, T ]. From the latter, we get in particular the convergence of vt to v in
L1 ∩ L∞(Ω) as t → 0.

Since the map Ω � x �→ v(y(t, x)) is Lipschitz continuous, uniformly with respect to t ∈ (0, T ), we
may take the gradient under integral sign in (6.6) and obtain

1
t
(∇y(t, x) − I) − ∇v(x) =

1
t

t∫

0

(∇[v(y(s, x))] − ∇v(x)) ds

=
1
t

t∫

0

(∇v(y(s, x))∇y(s, x) − ∇v(x)∇y(s, x)) ds

+
1
t

t∫

0

(∇v(x)∇y(s, x) − ∇v(x)) ds

(6.12)

for every x ∈ Ω and every t ∈ (0, T ]. From the first equality of (6.12) and from (6.9), we get

1
t
|∇y(t, x) − I| ≤ 1

t

t∫

0

|∇v(y(s, x))| |∇y(s, x)|ds

≤ ‖v‖W 1,∞(Ω′)
1
t

t∫

0

|∇y(s, x)|ds ≤ ‖v‖W 1,∞(Ω′)
1
t

t∫

0

exp{s‖v‖W 1,∞(Ω′)}ds

≤ ‖v‖W 1,∞(Ω′) exp{t‖v‖W 1,∞(Ω′)},

therefore

sup
x∈Ω

|∇y(t, x) − I| ≤ q(t‖v‖W 1,∞(Ω′)) (6.13)
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for any t ∈ (0, T ]. Moreover, by (6.12), (6.8), (6.13) and (6.9) we have

|∇vt(x) − ∇v(x)| =
∣∣∣∣1t (∇y(t, x) − I) − ∇v(x)

∣∣∣∣

≤ 1
t

t∫

0

|∇y(s, x)| |∇v(y(s, x)) − ∇v(x)|ds + ‖v‖W 1,∞(Ω′)
1
t

t∫

0

|∇y(s, x) − I| ds

≤ ‖v‖W 2,∞(Ω′)
1
t

t∫

0

|∇y(s, x)| |y(s, x) − x|ds + ‖v‖W 1,∞(Ω′) q(t‖v‖W 1,∞(Ω′))

≤ ‖v‖W 2,∞(Ω′)
1
t

t∫

0

exp{s‖v‖W 1,∞(Ω′)} q(s‖v‖W 1,∞(Ω′)) ds + ‖v‖W 1,∞(Ω′) q(t‖v‖W 1,∞(Ω′))

≤
(
et‖v‖W1,∞(Ω′)

)
‖v‖W 2,∞(Ω′) q(t‖v‖W 1,∞(Ω′))

for any x ∈ Ω and any t ∈ (0, T ].
Eventually, let us consider a vanishing sequence (hj)j∈N ⊂ (0, 1). By defining j∗ as the smallest positive

integer such that hj < T for any j > j∗ and by defining vj := vhj
, the result follows from (6.10), (6.11),

(6.13) and from the latter estimate. �

We next provide the approximation construction for the recovery sequence.

Lemma 6.2. Let Ω satisfy assumption (2.1). Let (hj)j∈N ⊂ (0, 1) be a vanishing sequence. Let v ∈ H1
div(Ω).

There exists a sequence (vj)j∈N ⊂ W 2,∞(Ω,R3) such that

(i) det(I + hj∇vj) = 1 for any j ∈ N,
(ii) hj‖∇vj‖L∞(Ω) → 0 as j → +∞,
(iii) vj → v strongly in H1(Ω,R3) as j → +∞.

Proof. Assumption (2.1) implies that there are m bounded open connected Lipschitz sets with connected
boundary, denoted by Ω∗,Ω1, . . . ,Ωm−1, such that Ω = Ω∗\(Ω1 ∪ · · · ∪ · · · Ωm−1). We have Ω∗ ≡ Ω
if m = 1. By [20, Corollary 3.2], we may extend v to a H1(R3\Pδ,R

3) vector field, still denoted by
v, such that div v = 0 on R

3\Pδ, where P := {p1, . . . , pm−1}, pi ∈ Ωi for any i = 1, . . . ,m − 1, and
Pδ := Bδ(p1) ∪ · · · ∪ Bδ(pm−1). We have P = Pδ = ∅ if m = 1, otherwise δ > 0 is fixed and so small
that Bδ(pi) ⊂ Ωi for any i = 1, . . . ,m − 1. We note that this extension can be constructed in the form
v = divV + λ1g1 + · · · + λm−1gm−1, where V ∈ H2(R3,R3×3), λi ∈ R and gi is a harmonic field with
singularity at pi for each i = 1, . . . ,m − 1.

Let ρ denote the standard unit symmetric mollifier on R
3 and let ρε(x) := ε−3ρ(x/ε). We let vε := v∗ρε

and we let Ω′ be a bounded open set such that Ω ⊂ Ω′. We may choose Ω′ such that vε ∈ C∞(Ω′), such
that Ω ⊂ Ω′ ⊂⊂ R

3\Pδ and such that div vε ≡ 0 in Ω′ for any small enough ε. Therefore, we may fix a
constant c ∈ (0, 1), only depending on δ, such that εn := c/n satisfies the above properties for any n ∈ N.

Given a vanishing sequence (hj)j∈N of positive numbers and given n ∈ N we may define (vεn
j )j∈N to

be the sequence from Lemma 6.1, constructed from the W 2,∞(Ω′,R3) divergence-free vector field vεn :
indeed, by applying Lemma 6.1 to vεn , we construct a sequence of W 2,∞(Ω) vector fields (vεn

j )j∈N and
a strictly increasing diverging function g : N → N such that (6.1), (6.2), (6.3), (6.4) are satisfied for any
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positive integers j, n with j > g(n), i.e.,

det(I + hj∇vεn
j ) = 1, (6.14)

sup
x∈Ω

|vεn
j (x) − vεn(x)| ≤ ‖vεn‖L∞(Ω′) q(hj‖vεn‖W 1,∞(Ω′)), (6.15)

sup
x∈Ω

|hj∇vεn
j (x)| ≤ q(hj‖vεn‖W 1,∞(Ω′)), (6.16)

sup
x∈Ω

|∇vεn
j (x) − ∇vεn(x)| ≤

(
1 + ehj‖vεn‖W1,∞(Ω′)

)
‖vεn‖W 2,∞(Ω′) q(hj‖vεn‖W 1,∞(Ω′)). (6.17)

Therefore, by defining g∗(j) := max{n ∈ N : g(n) < j} for any integer j such that j > j0 := g(1), and
by defining the diverging sequence (n(j))j>j0 ⊂ N as

n(j) := �min{g∗(j), h
−1/10
j }�,

where �·� denotes integer part, we obtain that (6.14), (6.15), (6.16), (6.17) are satisfied with εn(j) in place
of εn for any j > j0, since n(j) ≤ g∗(j) (which implies g(n(j)) < j).

We let therefore vj := v
εn(j)
j if j > j0 (and, say, vj ≡ 0 if j = 1, . . . , j0) and conclude by checking that

the sequence (vj)j∈N satisfies the desired properties. Property (i) is already given by (6.14). Moreover,
by the elementary estimates

‖ρε‖W k,∞(R3) ≤ (k + 1) ε−3−k ‖ρ‖W k,∞(R3), k = 0, 1, 2,

we get

‖vεn(j)‖W k,∞(Ω′) ≤ ‖v‖L1(Ω′) ‖ρεn(j)‖W k,∞(R3) ≤ (k + 1) ε−3−k
n(j) ‖v‖L1(Ω′) ‖ρ‖W k,∞(R3),

= c−3−k (k + 1)n(j)3+k ‖v‖L1(Ω′) ‖ρ‖W k,∞(R3), k = 0, 1, 2,
(6.18)

therefore

hj‖vεn(j)‖W 1,+∞(Ω′) ≤ 2hj c−4 n(j)4 ‖v‖L1(Ω′)‖ρ‖W 1,∞(R3)

≤ 2c−4 h
3/5
j ‖v‖L1(Ω′)‖ρ‖W 1,∞(R3),

(6.19)

so that hj‖vεn(j)‖W 1,+∞(Ω′) vanishes as j → +∞ and then (6.16) implies property (ii). On the other
hand, (6.18) similarly implies

hj‖vεn(j)‖W 1,∞(Ω′)‖vεn(j)‖L∞(Ω′) ≤ 2c−7 h
3/10
j ‖v‖2

L1(Ω′)‖ρ‖2
W 2,∞(R3) (6.20)

and

hj‖vεn(j)‖W 1,∞(Ω′)‖vεn(j)‖W 2,∞(Ω′) ≤ 6c−9 h
1/10
j ‖v‖2

L1(Ω′)‖ρ‖2
W 2,∞(R3). (6.21)

Thanks to (6.19), (6.20) and (6.21), from (6.15) and (6.17) we obtain

lim
j→+∞

‖vj − vεn(j)‖W 1,∞(Ω) = 0.

This entails, since vε → v in H1(Ω,R3) as ε → 0 and since εn(j) → 0 as j → +∞,

lim
j→+∞

‖vj − v‖H1(Ω) ≤ lim
j→+∞

‖vj − vεn(j)‖H1(Ω) + lim
j→+∞

‖v − vεn(j)‖H1(Ω) = 0

thus proving (iii). �

Lemma 6.3. (Upper bound) Assume (2.1), (W0), (W1), (W2), (W3), (W4). Let (hj)j∈N ⊂ (0, 1) be
a vanishing sequence. For every v ∈ W 1,p(Ω,R3), there exists a sequence (vj)j∈N ⊂ W 1,p(Ω,R3) such
that vj ⇀ v weakly in W 1,p(Ω,R3) as j → +∞ and

lim sup
j→+∞

FI
hj

(vj) ≤ EI(v).
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Proof. It is enough to prove the result in case v ∈ H1
div(Ω). Let us define E : H1(Ω,R3) → R as

E(u) :=
1
2

∫

Ω

E(u)D2W(x, I)E(u) dx − L(u).

We take the sequence (vj)j∈N from Lemma 6.2. Property (ii) of Lemma 6.2 yields I + hj∇vj ∈ U for
a.e. x in Ω if j is large enough, where U is the neighbor of SO(3) that appears in (W3). In particular,
D2W(x, ·) ∈ C2(U) for a.e. x ∈ Ω and we make use of (3.6) together with det(I + hj∇vj) = 1 to obtain

lim sup
j→+∞

|FI
hj

(vj) − E(vj)| ≤ lim sup
j→+∞

∫

Ω

∣∣∣∣∣
1
h2

j

WI(x, I + hj∇vj) − 1
2

∇vT
j D2W(x, I)∇vj

∣∣∣∣∣ dx

= lim sup
j→+∞

∫

Ω

∣∣∣∣∣
1
h2

j

W(x, I + hj∇vj) − 1
2

∇vT
j D2W(x, I)∇vj

∣∣∣∣∣ dx

≤ lim sup
j→+∞

∫

Ω

ω(hj |∇vj |) |∇vj |2 dx

≤ lim sup
j→+∞

‖ω(hj∇vj)‖L∞(Ω)

∫

Ω

|∇vj |2 dx = 0.

The limit in the last line is zero since hj∇vj → 0 in L∞(Ω), since ω is increasing with limt→0+ ω(t) → 0
and since (vj)j∈N is converging in H1(Ω) as j → +∞ by Lemma 6.2 . But the H1(Ω) convergence also
entails E(vj) → E(v) as j → +∞. Hence,

lim sup
j→+∞

|FI
hj

(vj) − EI(v)| = lim sup
j→+∞

|FI
hj

(vj) − E(v)|

≤ lim sup
j→+∞

|FI
hj

(vj) − E(vj)| + lim sup
j→+∞

|E(vj) − E(v)| = 0.

Therefore, along the sequence (vj)j∈N provided by Lemma 6.2, we get FI
hj

(vj) → EI(v) as j → +∞.
The result is proven. �

7. Convergence of minimizers

We show that EI and FI have the same minimizers thus concluding the proof of the main result.

Lemma 7.1. Assume (2.1),(L1), (L2), (W0), (W1), (W2), (W3), (W4). On W 1,p(Ω,R3) we have

min FI = min EI (7.1)

and

argmin FI = argmin EI . (7.2)

Proof. Existence of minimizers of EI on W 1,p(Ω,R3) follows by standard arguments. Indeed, (3.5) and
(3.11) imply that a minimizing sequence (un)n∈N ⊂ H1

div(Ω,R3) of EI satisfies supn∈N
‖E(un)‖L2(Ω) <

+∞, and Lemma 3.1 entails the existence of u ∈ H1(Ω,R3) such that up to subsequences E(un) → E(u)
weakly in L2(Ω,R3×3). By (3.10) and (L1), we deduce L(un) → L(u), up to subsequences, as n → +∞.
By the weak L2(Ω) lower semicontinuity of F �→ ∫

Ω

FT D2W(x, I)F dx, we deduce that u is a minimizer of

EI over W 1,p(Ω,R3). Moreover, first order minimality conditions show that all the minimizers of EI have
the same infinitesimal strain tensor. In particular, minimizers of EI are unique up to rigid displacements.
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By taking into account that FI(v) ≤ EI(v) for every v ∈ H1(Ω), and setting zW(x) := 1
2W

2x for
every W ∈ R

3×3
skew, we get E(zW) = 1

2W
2 and

min
v∈H1(Ω)

EI(v) ≥ inf
v∈H1(Ω)

FI(v) = inf
v∈H1(Ω)

⎧⎨
⎩ min

W∈R
3×3
skew

⎧⎨
⎩

∫

Ω

QI(x, E(v) − 1
2W

2) dx − L(v)

⎫⎬
⎭

⎫⎬
⎭

= min
W∈R

3×3
skew

⎧⎨
⎩ min

v∈H1(Ω)

⎧⎨
⎩

∫

Ω

QI(x, E(v) − 1
2W

2) dx − L(v)

⎫⎬
⎭

⎫⎬
⎭

= min
W∈R

3×3
skew

⎧⎨
⎩ min

v∈H1(Ω)

⎧⎨
⎩

∫

Ω

QI(x, E(v − zW)) dx − L(v − zW) − L(zW)

⎫⎬
⎭

⎫⎬
⎭

= min
z∈H1(Ω)

EI(z) − max
W∈R

3×3
skew

L(zW) ≥ min
H1(Ω)

EI

where last inequality follows by L(zW) ≤ 0. Therefore, also min FI exists on W 1,p(Ω,R3) and (7.1) is
proved so we are left to show (7.2).

First assume v ∈ argmin FI and let

Wv ∈ argmin

⎧⎨
⎩

∫

Ω

QI
(
x, E(v) − 1

2W
2
)

dx : W ∈ R
3×3
skew

⎫⎬
⎭ . (7.3)

If Wv �= 0 then, by setting zWv(x) = 1
2W

2
v x we get E(zWv) = ∇zWv = 1

2W
2
v and, by compatibility (L2)

we obtain

min FI = FI(v) =
∫

Ω

QI
(
x, E(v − zWv)

)
dx − L(v − zWv) − L(zWv) =

EI(v − zWv) − L(zWv) ≥ min EI − L(zWv) > min EI ,

(7.4)

a contradiction. Therefore, Wv = 0, zWv = 0, and all the inequalities in (7.4) turn out to be equalities,
hence we get FI(v) = EI(v) = min EI = min FI , therefore v ∈ argmin E and argmin FI ⊆ argmin EI . In
order to show the opposite inclusion, we assume v ∈ argmin EI and still referring to the choice (7.3) we
get 2 div v = 0 = TrW2

v = −|Wv|2. Therefore, EI(v) = FI(v) and v ∈ argmin FI . �

Remark 7.2. The proof of Lemma 7.1 shows that, although Theorem 2.1 is not true if (L2) is replaced
by the weaker condition

L(W2x) ≤ 0 ∀ W ∈ R
3×3
skew,

still EI and FI have the same minimal values under such weaker condition. As an example, we may
consider f and g as in Remark 2.8, but with

∫
Ω

φ(x) dx = λ|Ω| instead of
∫
Ω

φ(x) dx < λ|Ω|. In this case,

L(W2x) = 0 for any W ∈ R
3×3
skew and then Theorem 2.1 does not apply (see Remark 2.5). However, still

EI(v) is minimal (with minimal value 0) if and only if v is a rigid displacement. Moreover, FI is minimal
on rigid displacements as well.

Proof of Theorem 2.1. We obtain (2.5) from Lemma 4.1. If (vj)j∈N ⊂ W 1,p(Ω,R3) is a sequence such
that

lim
j→+∞

(
FI

hj
(vj) − inf

W 1,p(Ω,R3)
FI

hj

)
= 0,
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then by Lemma 4.2 there exists v∗ ∈ H1(Ω) such that, up to subsequences, E(vj) ⇀ E(v∗) weakly in
Lp(Ω) hence by Lemma 5.9

lim inf
j→+∞

FI
hj

(vj) ≥ FI(v∗). (7.5)

On the other hand by Lemma 6.3 for every v ∈ H1(Ω), there exists a sequence (vj)j∈N ⊂ W 1,p(Ω) such
that E(vj) ⇀ E(v∗) weakly in Lp(Ω) and

lim sup
j→+∞

FI
hj

(vj) ≤ EI(v), (7.6)

that is, FI(v∗) ≤ EI(v) for every v ∈ H1(Ω). Hence, FI(v∗) ≤ minW 1,p(Ω) EI and by Lemma 7.1 we
obtain FI(v∗) ≤ minW 1,p(Ω) EI = minW 1,p(Ω) FI so that by (7.5), (7.6)

lim
j→+∞

FI
hj

(vj) = FI(v∗) = min
W 1,p(Ω)

FI = min
W 1,p(Ω)

EI

thus completing the proof. �
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