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Abstract
We show that the cone-adapted shearlet coefficients can be computed by means

of the limited angle horizontal and vertical (affine) Radon transforms and the one-
dimensional wavelet transform. This yields formulas that open new perspectives for
the inversion of the Radon transform.
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1 Introduction
The inversion of the Radon transform is a classical ill-posed inverse problem and con-
sists in reconstructing an unknown signal f on R2 from its line integrals [14]. The
Radon transform of a signal f is a function on the affine projective space P1×R = {Γ |
Γ line of R2} whose value at a line is the integral of f along that line. We label lines
in the plane by pairs (v, t) ∈ R2 as x + vy = t and we define the horizontal (affine)
Radon transform Rf : R2 → C of any f ∈ L1(R2) by

Rf(v, t) =
∫
R
f(t− vy, y) dy, a.e. (v, t) ∈ R2.

This version of the Radon transform is proved to be particularly well-adapted to the
structure of the classical shearlet transform, see [5] and [11]. We recall that the key
idea in shearlet analysis is to construct a family of analyzing functions

{Sb,s,aψ(x) = |a|−3/4ψ(A−1
a N−1

s (x− b)) : b ∈ R2, s ∈ R, a ∈ R×}

by translating, shearing and dilating a fixed initial function ψ ∈ L2(R2), called mother
shearlet. Once we have this family of analyzing functions, we define the shearlet
transform of any f ∈ L2(R2) by Sψf(b, s, a) = 〈f, Sb,s,aψ〉. If ψ satisfies the admissible
condition (4) we can recover any signal f ∈ L2(R2) from its shearlet transform through
the reconstruction formula

f =
∫
R×

∫
R

∫
R2
Sψf(b, s, a)Sb,s,aψ dbds da

|a|3
, (1)

where the integral converges in the weak sense. In [5] we have shown that the classi-
cal shearlet transform can be realised by applying first the horizontal (affine) Radon
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transform, then by computing a one-dimensional wavelet transform and, finally, per-
forming a one-dimensional convolution. This relation opens the possibility to recover
a signal from its Radon transform by using the shearlet inversion formula (1), where
the coefficients Sψf(b, s, a) depend on f only through its Radon transform. Thus,
formula (1) allows to reconstruct an unknown signal f from it Radon transform Rf
by computing the family of coefficients {Sψf(b, s, a)}b∈R2,s∈R,a∈R× . Equation (1) has
a disadvantage if one wants to use it in applications since the shearing parameter s
is allowed to vary over a non-compact set. This gives rise to problems in the recon-
struction of signals mostly concentrated on the x-axis since the energy of such signals
is mostly concentrated in the coefficients Sψf(b, s, a) as s → ∞. The standard way
to address this problem is so-called "shearlets on the cone" construction introduced by
Kutyniok and Labate [6] for classical admissible shearlets ψ and then generalized by
Grohs [11] requiring weaker conditions on ψ. The basic idea in this construction is to
decompose the signals as f = PCf + PCvf previous to the analysis, where PC is the
frequency projection on the horizontal cone C =

{
(ξ1, ξ2) ∈ R2 : |ξ2/ξ1| ≤ 1

}
and PCv

is the projection on the vertical cone Cv =
{

(ξ1, ξ2) ∈ R2 : |ξ1/ξ2| ≤ 1
}
. Then, chosen

a suitable window function g, the following reconstruction formula holds true:

‖f‖2 =
∫
R2
|〈f, Tbg〉|2 db+

∫ 1

−1

∫ 2

−2

∫
R2
|Sψ[PCf ](b, s, a)|2 dbds da

|a|3

+
∫ 1

−1

∫ 2

−2

∫
R2
|Sv
ψv [PCvf ](b, s, a)|2 dbds da

|a|3
, (2)

where Fψv(ξ1, ξ2) = Fψ(ξ2, ξ1) and the so-called vertical shearlet transform Sv
ψvf(b, s, a)

is obtained from the classical shearlet transform by switching the roles of the x-axis
and the y-axis. In formula (2), PCf is reconstructed via the classical shearlet transform
and PCvf via the vertical shearlet transform and this allows to restrict the shearing
parameter s over a compact interval. In this paper, applying the "shearlets on the cone"
construction to our results presented in [5], we obtain for any f ∈ L1(R2) ∩ L2(R2) a
reconstruction formula of the form (2), i.e. where both the scale parameter a and the
shearing parameter s range over compact intervals, and where the coefficients depend
on f only through its Radon transform. Precisely, we show that the shearlet coef-
ficients Sψ[PCf ](b, s, a) depend on f through its (affine) horizontal Radon transform
Rf(v, t) and the action of the projection PC on f turns into the restriction of the direc-
tional parameter v over the compact interval [-1,1]. Analogously, the vertical shearlet
coefficients Sv

ψv [PCvf ](b, s, a) depend on the limited angle (affine) vertical Radon trans-
form Rvf(v, t), |v| ≤ 1, obtained by switching the roles of the x-axis and the y-axis
in the affine parametrization. Therefore, equation (2) allows to reconstruct an un-
known signal f ∈ L1(R2)∩L2(R2) from its Radon transform by computing the family
of coefficients {〈f, Tbg〉,Sψ[PCf ](b, s, a),Svψv [PCvf ](b, s, a)}b∈R2,s∈R,a∈R× by means of
Theorem 6. The different contributions Rf(v, t) and Rvf(v, t), |v| ≤ 1, reconstruct
the frequency projections PCf and PCvf , respectively. Finally, in Section 4 we gener-
alize reconstruction formula (2) by applying to f localization operators different from
PC and PCv in order to avoid artificial singularities in the reconstructed signal. The
paper is organised as it follows. In Section 2 we recall the notion of wavelet transform,
shearlet transform and Radon transform and part of the results in [5]. In Section 3 we
present the main results. Finally, in Section 4 we generalize the results presented in
Section 3.
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2 Preliminaries
In this section we introduce the notation and we recall the definition and the main
properties of the three main ingredients, namely the wavelet transform, the shearlet
transform and the Radon transform. Then, we recall part of the results in [5] which
show how these three classical transforms are related.

2.1 Notation
We briefly introduce the notation. We set R× = R \ {0}. The Euclidean norm of a
vector v ∈ Rd is denoted by |v| and its scalar product with w ∈ Rd by v · w. For any
p ∈ [1,+∞] we denote by Lp(Rd) the Banach space of functions f : Rd → C that are
p-integrable with respect to the Lebesgue measure dx and, if p = 2, the corresponding
scalar product and norm are 〈·, ·〉 and ‖ · ‖, respectively. The Fourier transform is
denoted by F both on L2(Rd) and on L1(Rd), where it is defined by

Ff(ξ ) =
∫
Rd

f(x)e−2πi ξ·xdx, f ∈ L1(Rd).

If G is a locally compact group, we denote by L2(G) the Hilbert space of square-
integrable functions with respect to a left Haar measure on G. If A ∈ Md(R), the
vector space of square d×d matrices with real entries, tA denotes its transpose and we
denote the (real) general linear group of size d×d by GL(d,R). Finally, the translation
operator acts on a function f : Rd → C as Tbf(x) = f(x− b), for any b ∈ Rd.

2.2 The wavelet transform
The one-dimensional affine group W is the semidirect product R o R× with group
operation

(b, a)(b′, a′) = (b+ ab′, aa′)

and left Haar measure |a|−2dbda. It acts on L2(R) by means of the square-integrable
representation

Wb,af(x) = |a|− 1
2 f

(
x− b
a

)
.

The wavelet transform is then Wψf(b, a) = 〈f,Wb,aψ〉, which is a multiple of an
isometry provided that ψ ∈ L2(R) satisfies the admissibility condition, namely the
Calderón equation,

0 <
∫
R

|Fψ(ξ)|2

|ξ|
dξ < +∞ (3)

and, in such a case, ψ is called a one-dimensional wavelet.

2.3 The shearlet transform
In this subsection we start presenting the standard shearlet group introduced and
studied in [1, 13] and further investigated in [3, 4] as an extension of the Heisenberg
group with homogeneous dilations and in [2] as a subgroup of the symplectic group.
Furthermore, the standard shearlet group has been extended by Führ in [8, 9] where
the generalized shearlet dilation groups are introduced. The (parabolic) shearlet group
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S is the semidirect product of R2 with the closed subgroup K = {NsAa ∈ GL(2,R) :
s ∈ R, a ∈ R×} where

Ns =
[
1 −s
0 1

]
, Aa = a

[
1 0
0 |a|−1/2

]
.

We can identify the elementNsAa with the pair (s, a) and write (b, s, a) for the elements
in S. With this identification the product law amounts to

(b, s, a)(b′, s′, a′) = (b+NsAab
′, s+ |a|1/2s′, aa′).

A left Haar measure of S is

dµ(b, s, a) = |a|−3dbdsda,

with db, ds and da the Lebesgue measures on R2, R and R×, respectively. The group
S acts on L2(R2) via the square-integrable representation

Sb,s,af(x) = |a|−3/4f(A−1
a N−1

s (x− b))

and the shearlet transform Sψf(b, s, a) = 〈f, Sb,s,aψ〉 is a multiple of an isometry from
L2(R2) into L2(S,dµ) provided that ψ ∈ L2(R2) satisfies the admissible condition

0 < Cψ =
∫
R2

|Fψ(ξ)|2

|ξ1|2
dξ < +∞, (4)

where ξ = (ξ1, ξ2) ∈ R2 [12], or equivalently∫
R

∫
R
|Fψ(AatNsξ)|2ds da

|a|3/2 = Cψ, for a.e. ξ ∈ R2/{0}.

Furthermore, in such a case, we have the reconstruction formula

f = 1
Cψ

∫
R×

∫
R

∫
R2
Sψf(b, s, a)Sb,s,aψ dbds da

|a|3
, (5)

where the integral converges in the weak sense, and

‖f‖2 = 1
Cψ

∫
R×

∫
R

∫
R2
|Sψf(b, s, a)|2 dbds da

|a|3
. (6)

From now on, when we consider an admissible vector ψ, we suppose Cψ = 1.
Although the shearlet transform exhibits an elegant group structure and is based

on the theory of square integrable representations, the reconstruction formula (5) has
one disadvantage: the shearing parameter ranges over a non-compact set and this can
constitute a limitation in applications. For example, if f is the delta distribution sup-
ported on the x-axis, a classical model for an edge in an image, the high amplitude
shearlet coefficients, i.e. the shearlet coefficients in which the energy of the signal is
mostly concentrated, correspond to the shearlet coefficients Sψf(b, s, a) as s→∞ [6].
In order to avoid this problem Kutyniok and Labate [6] proposed the "shearlets on the
cone" construction which leads to a reconstruction formula of the form (5) in which
both the scale parameter a and the shearing parameter s are restricted over compact
sets. We briefly recall this construction.

4



Let f ∈ L2(R2). We consider the horizontal and vertical cones in the frequency
plane

C =
{

(ξ1, ξ2) ∈ R2 :
∣∣∣∣ξ2

ξ1

∣∣∣∣ ≤ 1
}
, Cv =

{
(ξ1, ξ2) ∈ R2 :

∣∣∣∣ξ1

ξ2

∣∣∣∣ ≤ 1
}
. (7)

If D is a region in the plane, we denote by χD its characteristic function, i.e.

Figure 1: In the "shearlets on the cone" construction the frequency plane is divided in two
cones C and Cv. In formula (9), PCf is reconstructed via the classical shearlet transform
and PCvf via the so-called vertical shearlet transform.

χD(ξ) =
{

1 if ξ ∈ D
0 if ξ 6∈ D

and we define the frequency projections of f onto C and Cv by

F(PCf)(ξ1, ξ2) = Ff(ξ1, ξ2)χC(ξ1, ξ2)
(8)

F(PCvf)(ξ1, ξ2) = Ff(ξ1, ξ2)χCv(ξ1, ξ2)

respectively.
We need a modified version of the continuous shearlet transform obtained by switch-

ing the roles of the x-axis and the y-axis. We introduce the vertical shearlet represen-
tation

Sv
b,s,af(x) = |a|−3/4f(Ãa

−1
Ñs
−1(x− b))

where
Ñs =

[
1 0
−s 1

]
, Ãa = a

[
|a|−1/2 0

0 1

]
,

and the associated vertical shearlet transform Sv
ψf(b, s, a) = 〈f, Sv

b,s,aψ〉.

Reconstruction formulas of the form (9) were firstly proved by Labate and Kutinyok
[6] for classical admissible shearlets ψ and then generalized by Grohs [11] requiring
weaker conditions on ψ. We have chosen to present our results within the second
approach. We fix ψ ∈ L2(R2) satisfying the admissibility condition (4). We require
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that ψ is a smooth function with infinitely directional vanishing moments in the x1-
direction [11], that is∫

R
xN1 ψ(x1, x2)dx1 = 0, for allx2 ∈ R, N ∈ N.

Finally, we define
Fψv(ξ1, ξ2) = Fψ(ξ2, ξ1).

Then, we have the following result.

Theorem 1. For any f ∈ L2(R2), we have the reconstruction formula

‖f‖2 =
∫
R2
|〈f, Tbg〉|2 db+

∫ 1

−1

∫ 2

−2

∫
R2
|Sψ[PCf ](b, s, a)|2 dbds da

|a|3

+
∫ 1

−1

∫ 2

−2

∫
R2
|Sv
ψv [PCvf ](b, s, a)|2 dbds da

|a|3
, (9)

with g ∈ C∞(R2) such that for all ξ ∈ R2

|Fg(ξ)|2 + χC(ξ)
∫ 1

−1

∫ 2

−2
|Fψ(AatNsξ)|2 ds da

a3/2

+ χCv(ξ)
∫ 1

−1

∫ 2

−2
|Fψv(ÃaNsξ)|2 ds da

a3/2 = 1. (10)

We refer to [11] and [7, Chapter 2] for the proof.

2.4 The Radon transform
The Radon transform of a signal f is a function on the affine projective space P1×R =
{Γ | Γ line of R2} whose value at a line is the integral of f along that line. It is usually
defined by parametrizing the lines by pairs (θ, t) ∈ [0, π)× R as

Γθ,t = {(x, y) ∈ R2 | cos θx+ sin θy = t},

see [14]. We label the normal vector to a line by affine coordinates, that is

Γv,t = {(x, y) ∈ R2 | x+ vy = t},

see Figure 2. With this parametrisation, the horizontal lines can not be represented,
but they constitute a negligible set with respect to the natural measure on P1×R. The
horizontal (affine) Radon transform of any f ∈ L1(R2) is the function Rf : R2 → C
defined by

Rf(v, t) =
∫
R
f(t− vy, y) dy, a.e. (v, t) ∈ R2.

The choice of the affine parametrization is particularly well-adapted to the mathemat-
ical structure of the shearlet transform, see also [11]. It is possible to extend R to
L2(R2) as a unitary map. However, this raises some technical issues. First, consider
the dense subspace of L2(R2)

D = {g ∈ L2(R2) |
∫
R2
|τ ||(I ⊗F)g(v, τ)|2dvdτ < +∞},
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where I : L2(R) → L2(R) is the identity operator, and then define the self-adjoint
unbounded operator J : D → L2(R2) by

(I ⊗F)JF (v, τ) = |τ | 12 (I ⊗F)F (v, τ), a.e. (v, τ) ∈ R2,

which is a Fourier multiplier with respect to the second variable. Then, it is not hard
to show that for all f in the dense subspace of L2(R2)

A = {f ∈ L1(R2) ∩ L2(R2) |
∫
R2

|Ff(ξ1, ξ2)|2

|ξ1|
dξ1dξ2 < +∞},

the Radon transform Rf belongs to D and the map

f 7−→ JRf

from A to L2(R2) extends to a unitary map, denoted by Q, from L2(R2) onto itself.
We refer to [14] and [5] for technical details. We need the following version of the
Fourier slice theorem.

Corollary 2. Let f ∈ L1(R2)∩L2(R2). For almost every v ∈ R the function Rf(v, ·)
is in L2(R) and satisfies

F(Rf(v, ·))(τ) = Ff(τ, τv). (11)

Furthermore, for any f ∈ L2(R2)

F(Qf(v, ·))(τ) = |τ | 12Ff(τ, τv), a.e. (v, t) ∈ R2. (12)

In (11) and (12) the Fourier transform on the right hand side is in R2, whereas the
operator F on the left hand side is one-dimensional and acts on the variable t. We
repeat this slight abuse of notation in other formulas below. The first statement in
Corollary 2 is the classical Fourier slice theorem [14] adapted to the horizontal (affine)
Radon transform [5]. The proof of the second part in Corollary 2 is not trivial because
Q cannot be written as the composition JR for arbitrary f ∈ L2(R2) and is based on
(11) and the fact that J is a Fourier multiplier (see Appendix B in [5]).
We repeat the construction above by exchanging the role of the x-axis and the

y-axis and we parametrize the lines in the plane, except the vertical ones, by pairs
(v, t) ∈ R× R as follows

Γv,t = {(x, y) ∈ R2 | vx+ y = t},

see Figure 2. The vertical (affine) Radon transform of any f ∈ L1(R2) is the function
Rvf : R2 → C defined by

Rvf(v, t) =
∫
R
f(x, t− vx) dx, a.e. (v, t) ∈ R2.

As for the horizontal Radon transform, define the dense subspace Av of L2(R2) by

Av = {f ∈ L1(R2) ∩ L2(R2) |
∫
R2

|Ff(ξ1, ξ2)|2

|ξ2|
dξ1dξ2 < +∞}.

Then, the composite operator JRv : Av → L2(R2) extends to a unitary map Qv from
L2(R2) onto itself.

7



Figure 2: The horizontal Radon transform is defined by labeling the normal vector to a line,
except the horizontal ones, by affine coordinates (figure on top): v parametrizes the slope
of a line and t its intersection with the x-axis. The vertical Radon transform is obtained
just switching the roles of the x-axis and the y-axis in the previous parametrization.

2.5 The Radon transform intertwines wavelets and shearlets
We recall part of the results in [5]. We fix ψ ∈ L2(R2) of the form

Fψ(ξ1, ξ2) = Fψ1(ξ1)Fψ2

(
ξ2

ξ1

)
, (13)

with ψ1 ∈ L2(R) satisfying the conditions

0 <
∫
R

|Fψ1(τ)|2

|τ |
dτ < +∞,

∫
R
|τ ||Fψ1(τ)|2 dτ < +∞ (14)

and ψ2 ∈ L2(R). Then, ψ satisfies the admissible condition (4) and the function
φ1 ∈ L2(R) defined by

Fφ1(τ) = |τ | 12Fψ1(τ) (15)
is a one-dimensional wavelet, i.e. it satisfies condition (3).

Theorem 3. For any f ∈ L2(R2) and (x, y, s, a) ∈ R2 × R× R×,

Sψf(x, y, s, a) = |a|− 1
4

∫
R
Wφ1(Qf(v, ·))(x+ vy, a)φ2

(
v − s
|a|1/2

)
dv (16)

and, analogously for the vertical shearlet transform,

Sv
ψvf(x, y, s, a) = |a|− 1

4

∫
R
Wφ1(Qvf(v, ·))(vx+ y, a)φ2

(
v − s
|a|1/2

)
dv,

where φ1 is the one-dimensional wavelet defined by (15) and φ2 = Fψ2.

We refer to [5] for the proof.

3 Cone-adapted shearlets and Radon transforms
Equation (6) together with formula (16) allows to reconstruct an unknown signal f
from its unitary Radon transform Qf but it is difficult to implement in applications
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since Q involves both a limit and the pseudo-differential operator J . Furthermore, in
the reconstruction formula (6) the shearing parameter s is allowed to range over R and
this can give rise to the problems discussed above. The aim of this paper is to obtain
a reconstruction formula of the form (9), i.e. where both the scale and the shearing
parameters belong to compact intervals, where the shearlet coefficients depend on f
only through its Radon transform and do not involve the operator J applied to the
signal.

We fix an admissible vector ψ of the form (13) satisfying conditions (14) and such
that ψ1 satisfies the further condition∫

R
|τ |2|Fψ1(τ)|2 dτ < +∞. (17)

Proposition 4. For any f ∈ L1(R2) ∩ L2(R2) and (x, y, s, a) ∈ R2 × R× R×,

Sψ[PCf ](x, y, s, a) = |a|− 3
4

∫ 1

−1
Wχ1(Rf(v, ·))(x+ vy, a)φ2

(
v − s
|a|1/2

)
dv,

Sv
ψv [PCvf ](x, y, s, a) = |a|− 3

4

∫ 1

−1
Wχ1(Rvf(v, ·))(vx+ y, a)φ2

(
v − s
|a|1/2

)
dv,

where Fχ1(τ) = |τ |Fψ1(τ) and φ2 = Fψ2.

Proof. We take a function f ∈ L1(R2)∩L2(R2) and we consider its frequency projection
PCf on the horizontal cone C defined by (7) and (8). Since PCf belongs to L2(R2),
we can apply formula (16) and we obtain

Sψ[PCf ](x, y, s, a) = |a|− 1
4

∫
R
Wφ1(Q[PCf ](v, ·))(x+ vy, a)φ2

(
v − s
|a|1/2

)
dv, (18)

where φ1 is the admissible wavelet defined by (15) and φ2 = Fψ2. We consider the
functions t 7→ Q[PCf ](v, t) in equation (18). By Corollary 2 and the definition of PCf ,
we have

F(Q[PCf ](v, ·))(τ) = |τ | 12F(PCf)(τ, τv) = |τ | 12Ff(τ, τv)χC(τ, τv), (19)

for almost every (v, τ) ∈ R2. Furthermore, by the definition of the horizontal cone C,
the function τ 7→ χC(τ, τv) is identically one if |v| ≤ 1 and zero otherwise. Thus, (19)
becomes

F(Q[PCf ](v, ·))(τ) =
{
|τ | 12Ff(τ, τv) if |v| ≤ 1
0 if |v| > 1

. (20)

From now on we consider the case |v| ≤ 1. Since f ∈ L1(R2) ∩ L2(R2), Corollary 2
and equation (20) imply that for almost all v ∈ R, Rf(v, ·) ∈ L2(R) and

F(Q[PCf ](v, ·))(τ) = |τ | 12Ff(τ, τv) = |τ | 12FRf(v, ·)(τ). (21)

Since τ 7→ F(Q[PCf ](v, ·))(τ) ∈ L2(R) for almost all v ∈ R, equality (21) implies that
Rf(v, ·) is in the domain of the differential operator J0 : L2(R)→ L2(R) defined as

FJ0g(τ) = |τ | 12Fg(τ), (22)

9



and, by the definition of J0,

Q[PCf ](v, ·) = J0Rf(v, ·).

Since J0 is a self-adjoint operator, the wavelet coefficients in (18) become

Wφ1(Q[PCf ](v, ·))(x+ vy, a) = 〈Q[PCf ](v, ·),Wx+vy,aφ1〉2
= 〈J0Rf(v, ·),Wx+vy,aφ1〉2
= 〈Rf(v, ·),J0Wx+vy,aφ1〉2
= |a|− 1

2 〈Rf(v, ·),Wx+vy,aJ0φ1〉2
= |a|− 1

2WJ0φ1(Rf(v, ·))(x+ vy, a),

by taking into account that

J0Wb,a = |a|− 1
2Wb,aJ0,

for any (b, a) ∈ R× R×. We set χ1 = J0φ1 = J 2
0 ψ1, that is

Fχ1(τ) = |τ |Fψ1(τ),

which is well-defined since ψ1 satisfies (17). From the above calculations, we can
conclude that for almost every v ∈ R

Wφ1(Q[PCf ](v, ·))(x+ vy, a) =
{
|a|− 1

2Wχ1(Rf(v, ·))(x+ vy, a) |v| ≤ 1
0 |v| > 1

and formula (18) becomes

Sψ[PCf ](x, y, s, a) = |a|− 3
4

∫ 1

−1
Wχ1(Rf(v, ·))(x+ vy, a)φ2

(
v − s
|a|1/2

)
dv. (23)

Using the same arguments as in the case of the horizontal cone, we obtain the following
formula for the vertical shearlet transform

Sv
ψv [PCvf ](x, y, s, a) = |a|− 3

4

∫ 1

−1
Wχ1(Rvf(v, ·))(vx+ y, a)φ2

(
v − s
|a|1/2

)
dv. (24)

This completes the proof.

It is worth observing that formulas (23) and (24) turn the action of the frequency
projections PC and PCv on f into the restriction of the interval over which we inte-
grate the directional variable v and so, (23) and (24) eliminate the need to perform a
frequency projection on f prior to the analysis. Furthermore, as a consequence, the
shearlet coefficients Sψ[PCf ](b, s, a) and Sv

ψv [PCvf ](b, s, a) depend on f through its
limited angle (affine) horizontal and vertical Radon transforms Rf(v, t) and Rvf(v, t),
with |v| ≤ 1, respectively.

Finally, let us show that also the first integral in the right hand side of reconstruction
formula (9) may be expressed in terms of Rf only.
Proposition 5. For any f ∈ L1(R2) ∩ L2(R2) and for any smooth function g in
L1(R2) ∩ L2(R2) we have that

〈f, Tbg〉 =
∫
R
〈Rf(v, ·), Tn(v)·bζ(v, ·)〉dv,

for any b ∈ R2, where ζ = J 2
0Rg and n(v) = t(1, v).
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Proof. We take a function f ∈ L1(R2) ∩ L2(R2) and we consider a smooth function
g ∈ L1(R2) ∩ L2(R2). We readily derive

〈f, Tbg〉 =〈Qf,QTbg〉 =
∫
R
〈Qf(v, ·),QTbg(v, ·)〉dv.

Since f and g are in L1(R2) ∩ L2(R2), Corollary 2 implies that for almost all v ∈ R,
Rf(v, ·) and Rg(v, ·) are square-integrable functions and

〈f, Tbg〉 =
∫
R
〈J0Rf(v, ·),J0RTbg(v, ·)〉dv,

where we recall that J0 is the differential operator defined by (22). By the behavior
of the horizontal Radon transform under translations [14] and since the operator J0
commutes with translations, denoting n(v) = t(1, v), we have that

J0RTbg(v, t) = J0(I ⊗ Tn(v)·b)Rg(v, t) = (I ⊗ Tn(v)·b)J0Rg(v, t).

We need to choose g in such a way that J0Rg(v, ·) is in the domain of the oper-
ator J0 for almost every v ∈ R. Assuming this, the same property holds true for
Tn(v)·bJ0Rg(v, ·) by the translation invariance of domJ0 and we obtain

〈f, Tbg〉 =
∫
R
〈J0Rf(v, ·), Tn(v)·bJ0Rg(v, ·)〉dv

=
∫
R
〈Rf(v, ·), Tn(v)·bJ 2

0Rg(v, ·)〉dv. (25)

It is worth observing that the extra assumption that J0Rg(v, ·) is in the domain of
J0 for almost every v ∈ R is always satisfied. Indeed, by the definition of J0 and
Corollary 2 ∫

R
|τ ||FJ0Rg(v, ·)(τ)|2dτ =

∫
R
|τ |2|FRg(v, ·)(τ)|2dτ

=
∫
R
|τ |2|Fg(τ, τv)|2dτ < +∞

since by definition g is a smooth function. We set ζ(v, τ) = J 2
0Rg(v, τ), that is

Fζ(v, ·)(τ) = |τ |Fg(τ, τv),

so that (25) becomes

〈f, Tbg〉 =
∫
R
〈Rf(v, ·), Tn(v)·bζ(v, ·)〉dv. (26)

Furthermore, if possible, we choose g of the form

Fg(ξ1, ξ2) = Fg1(ξ1)Fg2

(
ξ2

ξ1

)
,

with g1 ∈ L1(R2) ∩ L2(R2) satisfying the condition∫
R
|τ |2|Fg1(τ)|2 dτ < +∞ (27)
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and g2 ∈ L1(R2) ∩ L2(R2). Under these hypotheses, (26) becomes

〈f, Tbg〉 =
∫
R
〈Rf(v, ·), Tn(v)·bζ1〉ζ2(v)dv,

where ζ1 = J 2
o g1, which is well-defined by (27), and ζ2 = Fg2.

Theorem 1 and formulas (23), (24) and (26) give our main result. We recall that
ψ is an admissible vector of the form (13) satisfying conditions (14) and such that
ψ1 satisfies (17). Furthermore we require that ψ is smooth with infinitely directional
vanishing moments in the x1-direction [11].
Theorem 6. For any f ∈ L1(R2) ∩ L2(R2), we have the reconstruction formula

‖f‖2 =
∫
R2
|〈f, Tbg〉|2 db+

∫ 1

−1

∫ 2

−2

∫
R2
|Sψ[PCf ](b, s, a)|2 dbds da

|a|3

+
∫ 1

−1

∫ 2

−2

∫
R2
|Sv
ψv [PCvf ](b, s, a)|2 dbds da

|a|3
, (28)

where g is a smooth function in L1(R2)∩L2(R2) such that (10) holds true and for any
b = (x, y) ∈ R2, s ∈ R, a ∈ R×

Sψ[PCf ](x, y, s, a) = |a|− 3
4

∫ 1

−1
Wχ1(Rf(v, ·))(x+ vy, a)φ2

(
v − s
|a|1/2

)
dv,

Sv
ψv [PCvf ](x, y, s, a) = |a|− 3

4

∫ 1

−1
Wχ1(Rvf(v, ·))(vx+ y, a)φ2

(
v − s
|a|1/2

)
dv,

〈f, T(x,y)g〉 =
∫
R
〈Rf(v, ·), Tx+vyζ(v, ·)〉dv,

where ζ = J 2
0Rg, Fχ1(τ) = |τ |Fψ1(τ), φ2 = Fψ2 .

Proof. The proof follows immediately by Theorem 1 and Propositions 4 and 5.

This theorem gives an alternative reproducing formula for any f ∈ L1(R2)∩L2(R2)
in which, by the "shearlets on the cone" construction, the scale and shearing parameters
range over compact sets and, by Propositions 4 and 5, the coefficients depend on f
only through its Radon transform. Therefore equation (28) allows to reconstruct an
unknown signal f from its Radon transform by computing the family of coefficients
{〈f, Tbg〉,Sψ[PCf ](b, s, a),Svψv [PCvf ](b, s, a)}b∈R2,s∈R,a∈R× by means of Theorem 6. It
is worth observing that the different contributions in (28) with Rf(v, t) and Rvf(v, t),
|v| ≤ 1, reconstruct the frequency projections PCf and PCvf , respectively.

4 Generalizations
A disadvantage in formula (9), and therefore in formula (28), is that the frequency
projections PC and PCv performed on f can lead to artificially slow decaying shearlet
coefficients. In order to avoid this problem we consider an open cover {U,Uv} of the
unit circle in the plane S1 ' (−π, π], where

U =(−π,−3
4π + ε) ∪ (−π4 − ε,

π

4 + ε) ∪ (3
4π − ε, π],

Uv = (−3
4π − ε,−

π

4 + ε) ∪ (π4 − ε,
3
4π + ε).

12



Figure 3: The open cover {U,Uv} of the unit circle in the plane S1 ' (−π, π].

Then, there exist even functions ϕ,ϕv ∈ C∞((−π, π]) such that suppϕ ⊆ U , suppϕv ⊆
Uv and ϕ(θ)2 +ϕv(θ)2 = 1 for all θ ∈ (−π, π], see [10]. For any ξ ∈ R2 \{0}, we denote
by θξ ∈ (−π, π] the angle corresponding to ξ/|ξ| ∈ S1 by the canonical isomorphism
S1 ' (−π, π]. Then, we define the functions Φ, Φv ∈ C∞(R2 \ {0}) by

Φ(ξ) = ϕ(θξ), Φv(ξ) = ϕv(θξ).

It is easy to verify that suppΦ =
{

(ξ1, ξ2) ∈ R2 : |ξ2/ξ1| ≤ tan (π4 + ε)
}
, suppΦv ={

(ξ1, ξ2) ∈ R2 : |ξ1/ξ2| ≤ cot (π4 − ε)
}
and Φ(ξ)2 + Φv(ξ)2 = 1 for all ξ ∈ R2 \ {0}. We

define the operators L : L2(R2)→ L2(R2) and Lv : L2(R2)→ L2(R2) as follows

F(Lf)(ξ) = Ff(ξ)Φ(ξ)

and
F(Lvf)(ξ) = Ff(ξ)Φv(ξ).

We recall that ψ is an admissible vector of the form (13) satisfying conditions (14) and
such that ψ1 satisfies (17). Using analogous computations as in Section 3, it is possible
to show that for any f ∈ L1(R2) ∩ L2(R2) and (x, y, s, a) ∈ R2 × R× R×

Sψ[Lf ](x, y, s, a)

= |a|− 3
4

∫
R
Wχ1(Rf(v, ·))(x+ vy, a)φ2

(
v − s
|a|1/2

)
ϕ(arctan v) dv, (29)

Sv
ψv [Lvf ](x, y, s, a)

= |a|− 3
4

∫
R
Wχ1(Rvf(v, ·))(vx+ y, a)φ2

(
v − s
|a|1/2

)
ϕv
(

arctan 1
v

)
dv, (30)

where Fχ1(τ) = |τ |Fψ1(τ) and φ2 = Fψ2. Furthermore, following the proof of The-
orem 3 in [7, Chapter 2], it is possible to derive a reconstruction formula of the form
(28) in this new setup.
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Theorem 7. For any f ∈ L1(R2) ∩ L2(R2), we have the reconstruction formula

‖f‖2 =
∫
R2
|〈f, Tbg〉|2 db+

∫ 1

−1

∫ 2

−2

∫
R2
|Sψ[Lf ](b, s, a)|2 dbds da

|a|3

+
∫ 1

−1

∫ 2

−2

∫
R2
|Sv
ψv [Lvf ](b, s, a)|2 dbds da

|a|3
, (31)

where g is a smooth function in L1(R2) ∩ L2(R2) such that for all ξ ∈ R2

|Fg(ξ)|2 + Φ(ξ)2
∫ 1

−1

∫ 2

−2
|Fψ(AatNsξ)|2 ds da

a3/2

+ Φv(ξ)2
∫ 1

−1

∫ 2

−2
|Fψv(ÃaNsξ)|2 ds da

a3/2 = 1 (32)

and the coefficients in (31) are given by (29), (30) and (26).

Proof. Consider a smooth function g ∈ L1(R2)∩L2(R2) such that (32) holds true. By
Plancherel theorem, we have that∫

R2
|〈f, Tbg〉|2 db =

∫
R2

∣∣∣∣∫
R2
Ff(ξ)Fg(ξ)e2πib·ξ dξ

∣∣∣∣2 db

=
∫
R2
|F−1(Ff Fg)(b)|2 db

=
∫
R2
|Ff(ξ)|2|Fg(ξ)|2 dξ. (33)

Using an analogous computation, by Plancherel theorem and Fubini’s theorem we have∫ 1

−1

∫ 2

−2

∫
R2
|Sψ[Lf ](b, s, a)|2 dbdsda

a3

=
∫ 1

−1

∫ 2

−2

∫
R2
|〈Lf, Sb,s,aψ〉|2 dbdsda

a3

=
∫ 1

−1

∫ 2

−2

∫
R2

∣∣∣∣∫
R2
Ff(ξ)Φ(ξ)Fψ(AatNsξ)e2πiξb dξ

∣∣∣∣2 dbds da
a3/2

=
∫ 1

−1

∫ 2

−2

∫
R2
|F−1(FfΦFψ(AatNs·))(b)|2 dbds da

a3/2

=
∫ 1

−1

∫ 2

−2

∫
R2
|Ff(ξ)|2Φ(ξ)2|Fψ(AatNsξ)|2 dξds da

a3/2

=
∫
R2
|Ff(ξ)|2Φ(ξ)2

∫ 1

−1

∫ 2

−2
|Fψ(AatNsξ)|2 ds da

a3/2 dξ. (34)

Similarly, we have that∫ 1

−1

∫ 2

−2

∫
R2
|Sv
ψv [Lvf ](b, s, a)|2 dbdsda

a3

=
∫
R2
|Ff(ξ)|2Φv(ξ)2

∫ 1

−1

∫ 2

−2
|Fψv(ÃaNsξ)|2 ds da

a3/2 dξ. (35)

14



Thus, combining equations (33), (34) and (35) we obtain the reconstruction formula

‖f‖2 =
∫
R2
|〈f, Tbg〉|2 db+

∫ 1

−1

∫ 2

−2

∫
R2
|Sψ[Lf ](b, s, a)|2 dbds da

|a|3

+
∫ 1

−1

∫ 2

−2

∫
R2
|Sv
ψv [Lvf ](b, s, a)|2 dbds da

|a|3
, (36)

for any f ∈ L1(R2)∩L2(R2), where the shearlet coefficients are given by (29) and (30).
It is worth observing that there always exists a function g satisfying (32) provided that
the admissible vector ψ is smooth and possesses infinitely vanishing moments in the
x1-direction [11]. Indeed, we have that

z(ξ) := 1− Φ(ξ)2
∫ 1

−1

∫ 2

−2
|Fψ(AatNsξ)|2 ds da

a3/2

− Φv(ξ)2
∫ 1

−1

∫ 2

−2
|Fψv(ÃaNsξ)|2 ds da

a3/2

= Φ(ξ)2(1−
∫ 1

−1

∫ 2

−2
|Fψ(AatNsξ)|2 ds da

a3/2 )

+ Φv(ξ)2(1−
∫ 1

−1

∫ 2

−2
|Fψv(ÃaNsξ)|2 ds da

a3/2 )

Following the proof of Lemma 3 in [7, Chapter 2] it is possible to prove that

1−
∫ 1

−1

∫ 2

−2
|Fψ(AatNsξ)|2 ds da

a3/2 = O(|ξ|−N ),
∣∣∣∣ξ2

ξ1

∣∣∣∣ ≤ tan (π4 + ε),

for all N ∈ N. Analogously,

1−
∫ 1

−1

∫ 2

−2
|Fψv(ÃaNsξ)|2 ds da

a3/2 = O(|ξ|−N ),
∣∣∣∣ξ1

ξ2

∣∣∣∣ ≤ cot (π4 − ε),

for all N ∈ N. Therefore, there exists a smooth function g ∈ L1(R2) ∩ L2(R2) such
that Fg(ξ) =

√
z(ξ), so that (32) holds true. Finally, by Proposition 5, we can express

the coefficients 〈f, Tbg〉 in reconstruction formula (36) in terms of Rf only.
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