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Abstract: The flow induced by progressive water waves propagating over a rippled bed is reproduced by
means of the numerical solution of momentum and continuity equations to gain insights on the steady
streaming induced in the bottom boundary layer. When the pressure gradient that drives the flow is
given by the sum of two harmonic components an offshore steady streaming is generated within the
boundary layer which persists in the irrotational region. This steady streaming depends on the Reynolds
number and on the geometrical characteristics of the ripples. Nothwithstanding the presence of a steady
velocity component, the time-average of the force on the ripples vanishes.
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1. Introduction

The knowledge of the flow induced by surface waves close the bottom of the sea is important to
predict the vertical distribution of the wave induced velocity and to formulate reliable models of sediment
transport. One of the most important characteristics of the boundary layer at the bottom of sea waves
is the generation of a steady velocity component induced by the nonlinearity of momentum equation.
The existence of this steady streaming was first highlighted by [1] and then it was theoretically explained
by [2] for waves propagating over a horizontal flat bed, when the flow regime in the bottom boundary
layer is laminar. In particular, Ref. [2] showed that, close to the bed, but outside the boundary layer,
a mean onshore velocity of magnitude 0.75U∗20 /c∗ is present, where c∗ is the wave speed and U∗0 is
the amplitude of the velocity oscillations near the bed. This streaming is due to the mean Reynolds
stress generated because of the non-uniform distribution of the velocity in the boundary layer along the
longitudinal extension of the surface wave. In the mean moment equation, the vertical gradient of this
mean Reynolds stress consists of a force applied to the fluid particles which is balanced by the viscous
stress associated with a steady streaming.

As discussed by [2], the profile of the steady velocity component in the core region is significantly
affected by the steady streaming induced in the bottom boundary layer that plays the role of the boundary
condition for the flow in the core region.

More recent studies have shown that the direction (onshore/offshore) and the intensity of the steady
streaming close to the sea bed is affected by turbulence dynamics when asymmetric or skewed waves are
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present [3–6]. Even in this case, the streaming is affected by non-vanishing mean values of the Reynolds
stress, but the mechanism generating this mean stress by asymmetric or skewed waves is different from
that considered by [2]. Indeed, in this case, it is the uneven distribution of turbulence during the flow cycle
responsible for the generation of a mean Reynolds stress. In general, the streaming due to turbulence is
offshore directed; therefore, it is in competition with the streaming considered by [2]. For highly skewed or
highly asymmetric waves, turbulence may cause even an inversion of the direction of the steady streaming
with respect to that predicted by [2].

When the seabed is made up of cohesionless sediments, the oscillatory flow induced by surface waves
close to the sea bottom may induce the appearance of small undulations of the bottom profile known as
’ripples’, which are characterized by a wavelength of the order of decimeters and a height on the order of
centimeters. Since these bed forms strongly affect the bottom roughness and, consequently, the coastal
hydro-morpho-dynamics, several studies have been devoted to the understanding of the appearance,
growth, and migration of ripples [7–10].

The mechanism analyzed by [2] is also present in the case of a rippled bed, even if the complications
due to the geometry do not allow a simple formula like the one shown above for a flat bed to be obtained.
In general, the flow close to a rippled bed differs substantially from that over a plane bed. Indeed,
the oscillatory flow interacting with the bottom waviness gives rise to the appearance of a steady velocity
component even if the fluid motion is driven by a purely time oscillating pressure gradient constant in the
space. The steady component of the velocity field consists of recirculation cells, which, close to the bed,
induce a mean velocity directed from the troughs towards the crests of the bottom waviness. Since these
cells control the growth or the decay of the ripple height, different studies were aimed at predicting the
sizes, form, and strength of these recirculation cells [11,12].

When symmetric ripples and oscillations induced by a sinusoidally varying pressure gradient are
considered, the mean velocity far from the bed vanishes even though, as previously pointed out, a steady
flow, which consists in recirculating cells, is present in the region close to the bed. When the ripples are
asymmetric and/or the pressure gradient driving the flow is the sum of two or more harmonic components,
as it occurs under asymmetric or skewed waves [13], the steady velocity component persists at the outer
edge of the bottom boundary layer, even at low Reynolds numbers, and affects the flow in the entire
water column [14,15]. This is due to the turbulence associated with flow separation at the ripple crests,
which, in the cases mentioned above, causes a non-vanishing mean value of the Reynolds stress.

The present study is aimed at determining the mean velocity induced at the outer edge of the bottom
boundary over a rippled bed because of fluid oscillations constant in the space but similar to those induced
by asymmetric waves [16,17], which can be observed for example when waves shoal on a sloping beach.
Attention is focused on the velocity field averaged over the period of the imposed oscillations and on the
force exerted by the fluid on the rippled bed.

2. Formulation of the Problem

Consider an oscillatory flow over a rippled bed. Herein, we assume that at the outer edge of the
boundary layer the fluid oscillates as follows:

U∗ = U∗0 [sin(σ∗t∗) + r sin(2σ∗t∗)], (1)

where U∗0 is the amplitude of the velocity oscillations induced by the progressive waves, σ∗ is the angular
frequency, r is the ratio between the second and the first harmonic components, and t∗ is the time.
Hereinafter, a star is used to denote a dimensional quantity. It is easy to observe that the time development
of the velocity given by Equation (1) is asymmetric since the magnitude of the positive acceleration
is greater than that of the negative acceleration. A Cartesian coordinate system (x∗1 , x∗2) is introduced,
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the x∗1-axis being horizontal and touching the minima of the bed elevation and the x∗2-axis being vertical
and upward directed. The problem is made dimensionless by introducing the following variables:

t = σ∗T∗, (x1, x2) =
x∗1 , x∗2

δ∗
, (u1, u2) =

u∗1 , u∗2
U∗0

, p =
p∗

$∗U∗20
, (2)

where δ∗ is the viscous thickness
√

ν∗T∗/π, ν∗ is the kinematic fluid viscosity, T∗ is the wave period,
$∗ is the fluid density, u∗1 and u∗2 are the velocities along the x∗1 and x∗2 directions, respectively, and p∗ is
the pressure. The ripple profile is assumed to be given by:

x1 = ξ − 1
2

h sin(kξ), (3)

x2 =
1
2

h (cos(kξ) + 1), (4)

where ξ is a dummy variable, k is the wavenumber of the bed profile (k = 2π/L) and L is the dimensionless
ripple wavelength. It can be observed that the profile given by Equations (3) and (4) exhibits crests sharper
than troughs, which is a characteristic of ripples under sea waves. Moderate values of the Reynolds
number Rδ = U∗0 δ∗/ν∗ are considered and the flow is assumed to be two-dimensional, i.e., the Reynolds
number is assumed to be smaller than the critical value Rδ,crit, which gives rise to 3D turbulence. The value
of Rδ,crit depends on the ripple geometry, i.e., on the values of h∗/L∗ and U∗0 T∗/(2πL∗), and it can be
estimated by means of the results described in [18]. For example, Figure 7 of [18] shows that Rδ,crit is about
50 when h∗/L∗ = 0.15 and U∗0 T∗/(2πL∗) = 1.33, the latter being the value considered in the present study.
The largest value of h∗/L∗ considered in this study is 0.14; therefore, it is expected that three-dimensional
effects are negligible. The fluid dynamics is described by continuity and Navier–Stokes equations:

∂uj

∂xj
= 0, (5)

∂ui
∂t

+
Rδ

2
∂uiuj

∂xj
= −Rδ

2
∂p
∂xi

+
1
2

∂ui
∂xj∂xj

+ δ1,i f , (6)

where f = cos(t) + 2rcos(2t) (see Equation (1)) is the dimensionless pressure gradient that drives the flow,
i and j assume the values 1 and 2 and the repeated indices denotes a summation. For later use, it is also
useful to show the stress tensor in dimensionless form:

τij = −pδij +
1

Rδ

(
∂ui
∂xj

+
∂uj

∂xi

)
. (7)

The governing Equations (5) and (6) are solved numerically using a fractional step method.
The computational domain includes one ripple wavelength and it is delimited from below by the ripple
profile, from the top by a horizontal plane, and laterally by two vertical planes. At the bottom, the no
slip condition is introduced (u1, u2) = (0, 0), while, at the top boundary, a free shear stress condition is
imposed (∂u1/∂x2, u2) = (0, 0). Finally, periodic boundary conditions are introduced along the x1 direction,
which means that all variables are forced to respect the following relationship: f (x1, x2) = f (x1 + L, x2).
The spatial derivatives are approximated by the second order finite difference and the time advancement
of the solution is carried out by approximating the viscous terms by means of the Crank–Nicholson scheme
and the nonlinear terms by means of a third order Runge–Kutta scheme. Further details of the numerical
method are described in [16].
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3. Analysis of the Mechanisms Inducing the Steady Streaming

To examine the mechanism that generates the steady streaming, let us integrate the streamwise
component of the momentum equation in the volume Ω highlighted in Figure 1, where the ripple profile
is given by the thick line.

B
r

B
u

B
l

B
l

Ω

Figure 1. Sketch of a ripples profile with the boundary lines that enclose the region in which Equation (8)
is integrated.

It should be pointed out that the streamwise component of momentum equation is written in
a different form but equivalent to (6), in order to highlight the terms related to the viscous stress
(see Equation (7)):

∂u1

∂t
+

Rδ

2
∂u1uj

∂xj
= −Rδ

2
∂p
∂x1

+
1
2

∂

∂xj

(
∂u1

∂xj
+

∂uj

∂x1

)
+ f . (8)

Then, Equation (8) is integrated in the volume Ω highlighted in Figure 1 and the Gauss theorem is
applied whenever possible in order to convert volume integrals into surface integrals:

∫
Ω

∂u
∂t dΩ + Rδ

2

∫
Bu

u1u2dx1 = − Rδ
2

∫
Br

pn1dBr +
1
2

∫
Br

(
∂u1
∂xj

+
∂uj
∂x1

)
njdBr +

1
2

∫
Bu

∂u1
∂x2

dx1 +
∫

Ω f dΩ, (9)

where nj is the j− th component of the unit vector normal to the boundary and directed outside the fluid
domain. Keeping in mind Equation (7), it can be easily observed that the sum of the first two terms on the
right-hand side is equal to the total dimensionless force exerted to the fluid by the bottom profile, in the x1

direction, multiplied by Rδ/2 (the force is made dimensionless using the quantity $∗U∗20 δ∗). Therefore,
the sum of these terms is denoted by F1Rδ/2, where F1 is the dimensionless force. By considering the time
average of (9) over a large number of wave cycles, the first term on the left-hand side vanishes. Indeed,
after a transient that lasts a few cycles, the flow becomes periodic and the velocity can be expressed as
a Fourier series. Performing the time derivative of the velocity, the constant term in the Fourier series
disappears and consequently the time average vanishes. Similarly, the last term on the right-hand side
tends to vanish, being an oscillating quantity. Then, using a bar to denote time averaged quantities,
it is possible to write:

Rδ

∫
Bu

u1u2dx1 = RδF1 +
∫

Bu

∂u1

∂x2
dx1. (10)

The position of the boundary Bu is arbitrary; therefore, it is possible to imagine that it is placed very
far from the bottom, where the vertical velocity component is negligible and the streamwise velocity is
constant along the vertical. Hence, it is easy to observe that the time average of the force applied to the
bed vanishes, so that Equation (10) can be written as follows:∫

Bu

∂u1

∂x2
dx1 = Rδ

∫
Bu

u1u2dx1. (11)
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Introducing a hat to denote the spatial average in the x1 direction, Equation (11) can be written in the
following form:

∂û1

∂x2
= Rδû1u2. (12)

Therefore, the steady streaming û1 depends on the Reynolds stress û1u2. Generally, in the presence of
a driving pressure gradient having the same form as f in Equation (6), the time average of the Reynolds
stress does not vanish. Indeed, in these circumstances, the magnitude of the positive acceleration is greater
than that of the negative acceleration and this generates an uneven distribution of turbulence during the
flow period. It is expected that, because of the larger acceleration during the first part of the positive
half-cycle, negative values of the Reynolds stress are more important, therefore û1u2 < 0. According to
Equation (12), this implies that the gradient of the steady streaming and the steady streaming itself are
negative. However, this deduction must be verified through the numerical simulations reported below.

Previous considerations are valid when the position of the boundary Bu is above the ripples crests.
When the boundary Bu is located below the ripple crest, Equation (10) is still valid with F1, which represents
the force exerted by the portion of the ripple profile placed below the boundary Bu. In such a case, however,
F1 does not vanish in general, thus Equation (10) cannot be further simplified. Introducing the spatial
average along the boundary Bu, and applying the Leibnitz rule, Equation (10) becomes:

∂û1

∂x2
= Rδû1u2 − Rδ

F1

Lu
, (13)

where Lu is the length of the boundary Bu, which is shorter than the ripples wavelength L for all position
of Bu that are below the crest level.

4. Numerical Results

Ripples under sea waves are characterized by a wavelength L∗ that is approximately 1.33 times
the amplitude A∗ of fluid particles oscillations close to the bed (see [8]). Taking into account this field
observation, and that A∗ = U∗0 T∗/2π, it turns out that the dimensionless ripple wavelength L depends on
the Reynolds number Rδ:

L =
L∗

δ∗
=

L∗

A∗
A∗

δ∗
= 1.33

U∗0 T∗

2πδ∗
= 1.33

U∗0 δ∗

2ν∗
= 1.33

Rδ

2
. (14)

This formula is valid for sinusoidal oscillatory flow, but it is acceptable even for not highly
asymmetrical waves as it occurs in the present study, where the parameter r (see Equation (1)) is fixed
equal to 0.1. Therefore, in the present study, it is assumed that the dimensionless ripple wavelength can be
evaluated by means of (14). The analysis of the steady streaming is carried out by fixing different values
of h/L and performing, for each of them, several simulations varying the Reynolds number. Results are
shown in Figure 2 for four different values of h/L and Rδ ranging between 20 and 45. In all the cases,
it is observed that the steady streaming is negative as it was expected on the basis of the reasoning reported
in the previous section. For a fixed value of h/L, the steady streaming increases in magnitude when the
Reynolds number is increased. The ratio h/L plays a fundamental role in determining the intensity of the
steady streaming. Large values of h/L enhance flow separation and the generation of vortices which cause
large values of the Reynolds stress û1u2. Therefore, the strength of the steady streaming increases with h/L
and may attain values comparable with the amplitude of the velocity oscillations. Indeed, for h/L = 0.14
and Rδ = 45, û ≈ 0.28.
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Figure 3 shows the time average of the streamfunction ψ for Rδ = 25 and h/L = 0.14 (we remind the
reader that the velocity components are given by u1 = ∂ψ/∂x2, u2 = −∂ψ/∂x1). In the figures, red lines
denote positive values while black lines denote negative values. In Figure 3a, the parameter r is equal
to zero, so that the flow is driven by an oscillating pressure gradient characterized by just one harmonic
component, while in Figure 3b the value of r is equal to 0.1 and a second harmonic component is present.
Significant differences can be observed between these two cases. When the forcing has just one harmonic
component, the time average of streamfunction vanishes far from the bottom (Figure 3a) and the steady
streaming consists of two symmetric counter-rotating cells confined close to the bottom. Positive values
of the streamfunction characterizes a region of fluid rotating counterclockwise, the opposite for negative
values. Therefore, it appears that, close to the bed, the mean flow is directed from the trough towards
the crests of the bottom waviness so that, in the presence of a loose bed, the mean flow tends to induce
the growth of the ripple amplitude. Figure 3b shows that far from the wall the time average of the
streamfunction does not vanish, but it linearly grows with x2 while it is constant along the x1 direction.
Therefore, in this case, a steady velocity component in the horizontal direction exists moving far from the
bottom which affects the flow in the core region [14,15].

R
δ

20 25 30 35 40 45

û

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

h/L=0.08

h/L=0.10

h/L=0.12

h/L=0.14

Figure 2. Steady streaming at the outer edge of the boundary layer as a function of Rδ for different values
of the ripples steepness h/L and r = 0.1.
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Figure 3. Streamfunction of the time mean velocity (u1, u2) for Rδ = 25, h/L = 0.14 and r = 0.1.
(a) sinusoidal oscillations (r = 0); (b) asymmetric oscillations (r = 0.1). Red lines: positive values; black
lines: negative values. ∆ψ = 0.037.



J. Mar. Sci. Eng. 2020, 8, 142 7 of 11

On the top of the negative cell, a saddle point is present and thus the fluid coming from above moves
below the negative cell and emerges again before the ripple crest.

Figure 4a shows the spatial distribution of the time-average of the Reynolds stress for Rδ = 25.
It can be observed that large values of the u1u2 appear close to the bed, within the recirculating cells. Indeed,
the existence of these cells is due to non-vanishing values of the time-average of the Reynolds stress tensor
of which u1u2 is one of the components. In Figure 4b, the average of u1u2 in the x1 direction is shown.
Two negative peaks and a positive one can be observed. Overall, negative values of û1u2 prevails over
positive ones, therefore a negative steady streaming is generated as shown in Figure 3b. Figure 5a shows
the spatial distribution of u1u2 for Rδ = 40. In this case, the asymmetric distribution of u1u2, due to the
presence of a second harmonic component in the pressure gradient that drives the flow is quite evident.
The spatial average of u1u2 shows a positive peak close to the x2 position where u1u2 is maximum. However,
in magnitude, the maximum of û1u2 occurs at higher elevations, at the edges of the recirculation cells,
where u1u2 is close to zero (x2 ≈ 10). Even in this case, overall, negative values of û1u2 prevails over
positive ones; therefore, a negative steady streaming must be generated.

(a)
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4

-4 -3 -2 -1 0 1 2
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(b)

Figure 4. Distribution of the Reynolds stress. (a) spatial distribution of the time-averaged Reynolds stress
(∆u1u2 = 0.015); (b) vertical distribution of the spatial average along the x1 direction of the time-averaged
Reynolds stress. Rδ = 25, h/L = 0.14 and r = 0.1.
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(b)

Figure 5. Distribution of the Reynolds stress. (a) spatial distribution of the time-averaged Reynolds stress
(∆u1u2 = 0.015); (b) vertical distribution of the spatial average along the x1 direction of the time-averaged
Reynolds stress. Rδ = 40, h/L = 0.14 and r = 0.1.

Figure 6 shows the vertical profiles of the steady velocity spatially averaged along the x1 direction
(û1) for h/L = 0.14 and r = 0.1. It can be observed that the strength of the steady streaming increases with
the Reynolds number. Near the bed, the velocity is small in a region which extends well above the ripple
crest. In this region, positive streaming can also be observed, but it concerns limited areas and this is due
to the existence of positive values of û1u2 (see Figure 5b). At x2 ≈ 7, the mean velocity begins to increase
rapidly until it attains a constant value where û1u2 vanishes (see Equation (12)).
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Figure 6. Steady streaming û1 for h/L = 0.14 and r = 0.1.

This streaming can be compared with that provided by the formula of [2] reported in the introduction
(0.75U∗20 /c). However, in doing this, it must be kept in mind that the streaming expressed by this formula
is valid for laminar flow on a flat bed and that the mechanism involved is due to the non-uniform velocity
distribution in the boundary layer along the longitudinal extension of the surface wave. Instead, the
streaming considered in this study is due to the uneven distribution of the Reynolds stress during the
flow cycles in the case of a rippled bed. In order to compare these steady streaming with each other, we
choose a wave with period of 2 s propagating over a water depth of 2 m. This is a condition that falls
within the range of cases considered in experimental studies but is also relevant for field conditions. Using
the linear wave theory, we get c = 3.02 m/s. Assuming a wave height of 0.14 m, we obtain U∗0 = 0.056
m/s. Therefore, according to [2], the streaming is 1.39% of U∗0 . For this wave, the Reynolds number in the
boundary layer turns out to be 44.5; therefore, according to Figure 6, the streaming is approximately 25%
of U∗0 for h/L=0.14. This example shows that the streaming due to the mechanism analyzed here can be
significantly larger than that due to the mechanism considered by [2].

Figure 7 shows the time development of the force acting on a ripple wavelength from the beginning of
the numerical simulation. The force attains a steady oscillation after t = 60, but it clearly appears that the
two half cycles are different between themselves because of the asymmetric oscillations. As discussed in
Section 3, the time average of the force applied to the bed should vanish when computed on a sufficiently
large number of wave cycles. This is shown by Figure 8 where the time average as a function of the number
n of wave cycles is reported. It can be noted that, while F1 in Figure 6 is of order 1, its time average rapidly
decreases as n increases and attains values smaller than 10−2. This result supports the theoretical finding of
Section 3 according to which the time average of F1 vanishes.



J. Mar. Sci. Eng. 2020, 8, 142 9 of 11

t

0  40 80 120 160

F
1

-3

-2

-1

0

1

2

3

Figure 7. Force F1 acting on one ripples wavelength as a function of time for Rδ = 40, h/L = 0.14
and r = 0.1.
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Figure 8. Time-average of the force F1 acting on one ripples wavelength as a function of the number of the
wave cycles n for Rδ = 40, h/L = 0.14 and r = 0.1.

5. Conclusions

In the present study, the steady streaming generated over a rippled bed by a purely oscillating
pressure gradient is investigated. When the driving pressure gradient is made up of a single harmonic
component of angular frequency σ∗, the time-averaged velocity field consists of recirculating cells confined
near the bed and the time average of both the mean velocity away from the bed and the mean flow rate
in the boundary layer vanish. On the other hand, when the driving pressure gradient is the sum of two
harmonic components with angular frequency σ∗ and 2σ∗, the mean velocity does not vanish far from the
wall and the same occurs for the mean flow rate in the boundary layer. In the latter case, recirculating cells
are still present close to the bed although they are not symmetric as it occurs for a sinusoidally oscillating
pressure gradient. A more complex flow field would be generated by the interaction of fluid oscillations
with the rippled bed when the forcing term has more harmonic components.

The generation of a steady velocity component far from the bed is due to non-vanishing values of the
spatial average (in the streamwise direction) of the time-averaged Reynolds stress. When the flow is driven
by a sinusoidal oscillating pressure gradient, the time average of the Reynolds stress is symmetrically
distributed along the x1 direction as positive and negative values appear equally and the horizontal
average vanishes. On the other hand, when the driving pressure gradient is the sum of two harmonic
components, the turbulence intensity is not equally distributed during the two half-cycles so that positive
and negative values of the time-averaged Reynolds stress do not appear equally in the space. Generally,
for asymmetric waves, negative values prevail as turbulence is more intense when the velocity is positive.
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Therefore, the spatial average of the time-averaged Reynolds stress is negative and this causes a steady
streaming even far from the bed.

Although a steady velocity component develops within the boundary layer and the mean flow rate is
different from zero, in contrast to steady flows driven by a time constant pressure gradient, the time-average
of the force applied to the bed vanishes.

In principle, the present study could easily be extended to include more harmonics in order to
consider a random flow. For this purpose, a realistic random series of velocities at the edge of the boundary
layer, due to waves characterized by a certain degree of asymmetry, should be determined. Currently,
there are no well-established methods for generating such a time series. To this end, however, it would
be possible to use the data derived from velocity measurements just outside the boundary layer under
random shoaling waves, which have the asymmetry characteristics considered here.
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