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Abstract—This paper proposes a method for detecting anoma-
lies in video data. A Variational Autoencoder (VAE) is used
for reducing the dimensionality of video frames, generating
latent space information that is comparable to low-dimensional
sensory data (e.g., positioning, steering angle), making feasible
the development of a consistent multi-modal architecture for
autonomous vehicles. An Adapted Markov Jump Particle Filter
defined by discrete and continuous inference levels is employed to
predict the following frames and detecting anomalies in new video
sequences. Our method is evaluated on different video scenarios
where a semi-autonomous vehicle performs a set of tasks in a
closed environment.

Index Terms—Variational autoencoder, anomaly detection,
particle filtering, Kalman filtering

I. INTRODUCTION

The detection of anomalies on video data is currently one

of the most relevant topics in signal processing and computer

science fields due to its multiple applications such as machine

automation [1]–[5], estimation of future instances [6]–[8]

and improvements in surveillance systems [9]–[11]. Currently,

video analysis and computer vision are important fields that

attract large research and industrial interest. Furthermore, the

automatic detection of anomalies in video information is a

key element for generating robust autonomous systems that

can adapt themselves to unknown situations/experiences and

incrementally learn predictive models from them.

Over the last years, different deep learning algorithms have

demonstrated their capabilities for solving several problems,

e.g., image classification with a human-like performance [12]–

[14]. Since we are moving closer and closer towards the

ultimate aim of human-like vision for machines [15], more

complex problems such as recognizing contextual information

incrementally and understanding/adapt to new scenarios are

current challenges to be automatically solved by machines. For

generating autonomous systems, it is fundamental to provide

machines with models that can handle the dynamic properties

of real-world situations, e.g., dealing with streams of data

that have not been seen before and including uncertainty in

contextual representations and model predictions.

Motivated by the necessity of generating active artificial

agents that are able to interact with the real-world in often un-

controlled or detrimental conditions [16], this paper proposes

a method for detecting anomalies in video data that facilitates

the identification of unusual situations (previously unseen data)

as they are experienced. Our method uses a probabilistic

structure that facilitates the potential insertion/learning of

new models as they are detected as abnormal, which would

undoubtedly increase the adaptability of autonomous systems

to unknown scenarios by continuously evolving their current

models through the incorporation of new concepts.

As is well known, in signal processing and surveillance

systems, the detection of anomalies is an essential topic

of large research [11], [17]–[21] and commercial interest

[22]–[24]. Nonetheless, in computer vision, due to the large

dimensionality of images, few attempts for recognizing and

understanding anomalies have been made. Accordingly, exist-

ing methods based on deep learning for detecting anomalies

in video sequences [8], [25]–[27] usually do not allow to

perform learning of models in a probabilistic framework that

can be compatible with models relying on low dimensional

information, e.g., 2-Dimensional position data. Novel research

has tried to include the concept of lifelong learning to deep

neural networks (DNNs) [28], which aim at allowing DNNs

to acquire, fine-tune, and transfer knowledge through time

continually. Nonetheless, advances in DNN lifelong learning

remain in large dimensional representations that do not con-

template the possibility of including multisensory data for

making robust models that could rely on either low or high

dimensional information.

The proposed method is based on hierarchical probabilis-

tic models that facilitate inferring future instances of video

sequences and detecting anomalies. A similar approach was

used for making inferences in low dimensional data, namely

positional [29] and control [30] information coming from a

moving vehicle. Accordingly, this paper proposes a method

for inferring/estimating video sequences similarly as [29] and

[30] do through a Markov Jump Particle Filter (MJPF).

Our method is based on the latent representation of a Vari-

ational Autoencoder (VAE), which is employed for obtaining

a low-dimensional state of the video at each time instant in

a probabilistic fashion. Clusters of similar latent spaces are

identified, which facilitates obtaining a semantic representation

of video states. In each cluster, a fully connected neural

network (NN) is employed to learn a non-linear dynamical

model that allows estimating a future image given the content
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Fig. 1: Training phase: the VAE is trained to reconstruct a set of training images. The bottleneck features are then extracted

and the GSs are derived and used for clustering. A Neural Network is trained for each cluster.

of the current one. Accordingly, two representation levels, i.e.,

discrete and continuous, are learned for making inferences in

video sequences and detecting anomalies. For testing learned

models, a particle filter coupled with a set of Unscented

Kalman Filters (UKFs) [31] are employed for predicting at

discrete and continuous levels, respectively, and detecting

anomalies.

As mentioned before, the proposed method is based on

research previously done on low-dimensional data [29], [30].

Nonetheless, the novel contributions of this paper are: i) A

full probabilistic method that represents video sequences into

latent spaces so that video predictions can be made at contin-

uous and discrete hierarchical levels. ii) A method that models

non-linearly the dynamics of latent space information through

a set of NNs. iii) Finally, an approach that is compatible with

any low and large dimensional data, which allows us to detect

anomalies in multisensory data and potentially use them for

incremental learning.

The rest of the paper is structured as follows: Section II

presents the proposed method for detecting anomalies in video

sequences. Section III introduces the dataset employed to

evaluate our method. Section IV shows and discusses obtained

results. Finally, Section V concludes the paper and presents

some insights about possible future work.

II. PROPOSED METHOD

The proposed method is composed of two basic steps,

namely training and testing phases; during the former (section

II-A and Fig. 1), algorithms are trained based on observed

data; whereas the latter (section II-B and Fig. 2) uses learned

algorithms to detect anomalies on new data.

A. Training phase

1) Variational Autoencoder: As a first step of the training

phase, a VAE is used for describing the images in a latent

space that has significantly reduced dimension with respect

to the original image size. A VAE has been used instead of a

normal Autoencoder because the former facilitates to represent

images in the latent state probabilistically by using a mean

µ and variance σ2 to approximate each latent variable. This

enables probabilistic reasoning and inference.

It is well known that a VAE is composed of two parts: an

encoder qθ(z|x) and a decoder pφ(x|z). The latent state z sam-

pled from N (µ, σ2), returns an approximate reconstruction of

the observation x. Through θ and φ, we define the parameters

of the encoder and decoder, respectively. In order to optimize

them, the VAE maximizes the sum of the lower bound on the

marginal likelihood of each observation x of the dataset D, as

described in [32], [33]:

Lφ,θ(D) =
∑

x∈D

Lφ,θ(x), (1)

being L(θ, φ;x) defined as:

Lφ,θ,(x) =−DKL(qθ(z|x)||pφ(z))+

+ Eqθ(z|x)[logpφ(x|z)],
(2)

where DKL defines the Kullback-Leibler divergence. There-

fore, the first term measures the difference between the en-

coder’s distribution qθ(z|x) and the prior pφ(z); being the prior

typically a standard normal distribution N (0, 1). The second

term is the expected log-likelihood of the observation x and

forces the VAE to reconstruct the input data.

This work uses the ability of the VAE to encode the

input information in a significant lower-dimensional space that

exhibits probabilistic properties exploitable to detect anomalies

at the latent feature level. Additionally, as we are interested

in producing predictive models that can work for multisen-

sory data regardless of their dimensionality, the VAE turns

out to be an excellent choice for representing and treating

video sequences as small-dimensional data, enabling a more

homogeneous way of making algorithms for data fusion with

multimodal information.

We first train the VAE by using a set of training images

Xtrain. Then, we input again Xtrain to the VAE and obtain

a set of latent features described by µtrain and σ2
train.

2) Generalized states: Starting from the set of µtrain,

considered as the state of training images, we build a set

of Generalized States (GSs) containing several time-order

derivatives. This work only uses the first time-order derivative

since no abrupt dynamics are considered.
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Fig. 2: Testing phase: the encoder of the VAE is used to extract the bottleneck features of the testing images. The GSs are

derived and given as input to the Adapted MJPF, which detects anomalies by using information coming from clusters.

Let µk be the value of µ for the image xk at time k, its first

time-order derivative can be approximated by µ̇k ∼ µk−µk−1

∆k
,

where ∆k = 1, which assumes a normalized regular sam-

pling of images. The GS at time k can thus be written as

z̃k = [µk µ̇k]
⊺. Repeating this for each consecutive couple of

training images, we obtain a set of GSs for the training set,

defined by:

Z̃train = [µtrain µ̇train]
⊺. (3)

3) Clustering and neural networks: After obtaining GSs

related to training video sequences, we use a traditional k-

means algorithm to cluster GSs into groups that carry similar

information. Since we use the values of µ and µ̇ to perform the

clustering process, obtained clusters take into consideration the

encoded image and also its dynamics w.r.t. the next frame. This

facilitates recognizing and cluster different ways of moving,

e.g., the vehicle crossing the same zone at different speeds.

Once the clustering is performed, a transition matrix T

encodes the transition probabilities from each cluster to the

others. Additionally, the following features are extracted from

each cluster indexed as S: i) cluster’s centroid M (S), ii)

cluster’s covariance Q(S) and iii) cluster’s radius of acceptance

R(S). Finally, a fully connected neural network N (S) defin-

ing the dynamics of GSs, i.e., continuous predictive model,

is learned for each cluster. Assuming that a total number

of C clusters have been identified, it is possible to write

S = {1, . . . , C}. For training each N (S), the value of every µk

is taken as input and the corresponding µ̇k+1 as output, where

[µk, µ̇k]
⊺ ∈ S. Moreover, to include the uncertainty of the

Gaussian latent spaces encoded in σ2, 2L additional inputs and

outputs are used, where L is the dimension of the latent state.

Such 2L points, together with the initial mean µ0
k = µk, permit

to completely capture and define the Gaussian N (µk, σ
2
k), as

described in [31]:

µk
i = µk + (

√

(L+ λ)Σk)i if i = 1...L

µk
i = µk − (

√

(L+ λ)Σk)i−L if i = L+ 1...2L,
(4)

where λ is a scaling parameter and Σk ∼ ILσ
2
k, being IL

the identity matrix of dimension L.

The µi
k values calculated in Eq. (4) are the so-called sigma

points associated with (µk, σ2
k). A corresponding group of

sigma points can be defined in the same way for (µk+1, σ2
k+1)

and each value of µi
k+1 −µi

k is given as additional output for

the training of the NNs.

To summarize, each N (S) performs the following approxi-

mation:

µ̇i
k+1 ∼ N (S)(µi

k) + wi
k,

where µ̇i
k+1 and µi

k are calculated based on [µk, µ̇k]
⊺ ∈ S and

wi
k is the residual error after the convergence of the network.

Each N (S) learns a sort of quasi-semantic information

based on a particular image appearance and motion detected

by the cluster S, facilitating the estimation of future latent

spaces, i.e., predicting following frames. Such a feature can

be employed to detect whether new observations are similar to

previously learned situations encoded in the set of NNs. In case

predictions from NNs are not compliant with observations, an

anomaly should be detected, and models should be adapted to

learn new situations, generating new semantic information.

B. Testing Phase

During the testing phase, each testing image is processed

by the VAE, and GSs are calculated. Then, an adapted version

of the MJPF is used to detect anomalies in video sequences.

1) Adapted Markov Jump Particle Filter: A MJPF can

be described as a Probabilistic Switching Graphical Model

[34], [35] for prediction and anomaly detection purposes by

using a bank of Kalman Filters (KFs) at the continuous state

level and a Particle Filter at the discrete state level [29].

This work tackles a problem that requires a non-linear model

for prediction purposes and a non-linear observation model,

solved by a set of NNs (each of them associated with a

detected cluster) and a VAE, respectively. Accordingly, a bank

of standard KFs at the state level cannot be used due to

the nonlinearities described above. This work uses a bank of

modified KFs whose predictions follow the same logic of the

UKFs and employ the encoded information of the VAE for

updating purposes.

The DBN associated with the Adapted MJPF (A-MJPF) is

showed in Fig. 3. A detailed description of the MJPF can be

found in [29]. This paper will only provide a brief description
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Fig. 3: DBN associated with the A-MJPF.

of the overall logic of the employed probabilistic architecture,

which is identical to the one used in [29]. Instead, it will focus

on the parts that have been modified in the A-MJPF w.r.t. the

standard MJPF.

For both architectures (MPJF and A-MPJF), at each time

instant k, two stages are performed: prediction and update.

During prediction, the next cluster Sk+1 (discrete level) and

the next GS z̃k+1 (continuous level) are estimated for each par-

ticle, i.e., p(Sk+1|Sk) and p(z̃k+1|z̃k), respectively. Similarly

to the standard MPJF, predictions at the discrete level in the A-

MJPF are performed by using the transition matrix T in each

particle. On the other hand, predictions at the continuous level

in the A-MPJF are performed by the neural network N (Sk)

associated with the selected discrete state Sk. Since non-

linear models are considered for predicting continuous level

information, an UKF performs the estimations as described in

[31] by taking 2L additional sigma points as already done in

section II-A3. Therefore, the prediction for each sigma point

follows the equation below:

z̃ik+1 = f(z̃ik) = Az̃ik +BN (S)(µi
k) + wi

k, (5)

where A and B are two matrices used to map the previous

state z̃ik and the new velocity computed by N (S)(µi
k) on

the new state z̃ik+1, such that as A = [A1A2] with A1 =
[IL0L,L]

⊺, A2 = 02L,L and as B = [ILIL]
⊺. The mean and

covariance of the predicted state are then calculated using

the UKF formulas for the propagation of a Gaussian random

variable through a non-linear model.

The update phase is performed when a new measurement

(image) is observed. At the discrete level, particles are re-

sampled based on a measure of the anomaly (see section

II-B2). At the state level, a modified version of the KF update

is performed. This update takes into consideration the fact

that µk and σ2
k from the VAE for image xk can be used

as the mapped observation on the state space at time k.

Consistently, σ2
k can approximate the covariance matrix, such

that Σk ∼ ILσ
2
k, representing the uncertainty while encoding

images. Algorithm 1 describes the employed KF’s steps.

2) Anomaly measurement: After the update phase, at each

time instant k, the predicted value of µ
l,p
k related to latent

Algorithm 1 Equations of the prediction and update phase of

the Adapted Kalman Filter.

⊲ PREDICTION:

1: Calculation of the sigma points z̃i
k|k and of their respective

weights W̃ i,m and W̃ i,c as described in [31].

2: z̃i
k+1|k = f(z̃i

k|k)

3: z̃k+1|k =
∑2L

i=0 W̃
i,mz̃i

k+1|k

4: Pk+1|k =
∑2L

i=0 W̃
i,c{z̃i

k+1|k−z̃k+1|k}{z̃
i
k+1|k−z̃k+1|k}

⊺

5: PL
k+1|k = Pk+1|k

∣

∣

∣

{row:1...L,col:1...L}

⊲ UPDATE:

6: Kk+1 = [PL
k+1|k; IL](P

L
k+1|k +Σk+1)

−1

7: z̃k+1|k+1 = z̃k+1|k +Kk+1(µk+1 − µk+1|k)
8: Pk+1|k+1 = Pk+1|k −Kk+1(P

L
k+1|k +Σk+1)K

⊺

k+1

state component l and particle p is compared with the actual

updated value, outputting a measure of innovation defined as:

yk = min
p

∑L
l=1

∣

∣µ
l,p

k|k − µ
l,p

k|k−1

∣

∣

L
. (6)

The anomaly values of training video sequences are used to

set an anomaly threshold defined as:

thresh = ȳtrain + 3std(ytrain), (7)

being ȳtrain and std(ytrain) the mean value and standard

deviation of anomalies from the training data, respectively.

When using algorithm 1 on testing data, video sequences

that produce anomaly signals above the threshold in Eq.(7)

are considered as potential anomalies. Moreover, to filter out

spurious peaks, also a temporal criterion based on a window of

3 frames is used, such that anomaly signals that are above the

threshold thresh but last less than 3 frames are not considered

as actual anomalies.

III. EMPLOYED DATASET

A real vehicle called “iCab” [36], see Fig. 4a, is used to

collect the video dataset. A human drives the iCab performing

different tasks in a closed environment displayed in Fig. 4b.

The proposed dataset was captured from an onboard front

camera while the vehicle executes 4 different tasks.

(a) Autonomous vehicle
“iCab”

(b) Closed environment

We aim at detecting dynamics that have not been seen

previously in a normal situation (Scenario I), which is used

for learning purposes. Scenarios II, III and IV include unseen
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maneuvers caused by the presence of pedestrians while the

vehicle performs a perimeter monitoring task. Accordingly,

four scenarios (see Fig. 5) are considered in this work:

Scenario I (perimeter monitoring): the vehicle follows

a rectangular trajectory along with a closed building. The

temporal evolution of the perimeter monitoring maneuver from

a first-person perspective is shown in Fig. 6.

(a) Perimeter monitoring (b) Pedestrian avoidance

(c) U-turn (d) Emergency stop

Fig. 5: Vehicle tasks used to evaluate the proposed method.

Perimeter monitoring is utilized in the training phase whereas

the other three tasks are employed for testing purposes

Scenario II (emergency stop maneuver): the vehicle

executes the perimeter monitoring task and encounters two

pedestrians crossing its path at each lap. The vehicle performs

an emergency stop and then continues the perimeter monitor-

ing task when pedestrians exit its field of view. A vehicle’s

first-person perspective of the temporal evolution of the stop

maneuver is provided in Fig. 7.
Scenario III (pedestrian avoidance maneuver): two ob-

stacles (stationary pedestrians) in different locations interfere

with the perimeter monitoring task of Scenario I. The vehicle

performs an avoidance maneuver and continues the perimeter

monitoring. Fig. 8 shows the temporal evolution of the avoid-

ance maneuver from a first-person perspective.
Scenario IV (U-turn maneuver): while the vehicle exe-

cutes a perimeter monitoring, it encounters two static pedestri-

ans located in different locations. In this scenario, the vehicle

performs a U-turn motion and then continues the perimeter

monitoring in the opposite direction w.r.t. training data. Fig. 9

shows the U-turn maneuver from the front camera viewpoint.

Fig. 8: Scenario III (avoidance maneuver).

Fig. 6: Scenario I (perimeter monitoring).

Fig. 7: Scenario II (stop maneuver).

Fig. 9: Scenario IV (U-turn maneuver).

IV. EXPERIMENTAL RESULTS

A. Definition of normality

As a first step, it is necessary to train our model to learn nor-

mal patterns. The Perimeter Monitoring frames are therefore

used as Xtrain data to perform the training phase described

in section II-A. Consequently, a VAE is trained (II-A1), from

which a set of clusters and their corresponding NNs (II-A3) are

learned based on frames where the iCab moves in a pedestrian-

less environment. We considered several cluster experiments

where the total number of clusters C was varied. Consequently,

we selected the case of C = 6 empirically as it describes

the normal scene accurately with a relatively low number

of clusters. Video frames are clustered based on images’

appearance and dynamics (changes in consecutive frames) at

each time instant.

The threshold described in section II-B2 is then obtained by

performing a testing procedure using the training data. This

threshold will be used in the actual testing phases described in

the following sections with the objective of detecting abnormal

behaviors in new scenarios.

B. Emergency stop maneuver

In this modality, the vehicle (artificial agent) performs an

emergency stop maneuver that allows a pedestrian to cross

in front of it. Fig. 10a displays the anomaly signal obtained

from a single vehicle’s lap around the courtyard where it

encounters/interacts with two pedestrians. The signal is nor-

malized based on the threshold calculated from the perimeter

monitoring experience; see Eq.(7). Consistently, when the

anomaly signal goes above the threshold (displayed as a dotted

black line in Fig. 10(a)), a potential abnormal situation is

detected. The blue color background indicates the presence

of the pedestrian, such as from the moment it enters into the

camera’s field of view, see (1) and (4); until the instant where

it leaves it, see (3) and (6). The anomaly signal grows rapidly

as soon as the pedestrian completely enters the field of view

of the camera, see (2) and (5).

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on July 14,2020 at 08:56:33 UTC from IEEE Xplore.  Restrictions apply. 



(a
)

(1)

(2)

(3)
(4)

(5)

(6)

(b
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

Fig. 10: Testing phase on the emergency stop task: (a) Anomaly signal. (b) Color-coded final anomaly.

Fig. 10(b) displays the final color-coded anomalies w.r.t.

the perimeter monitoring task (training data), normal and

abnormal frames are colored in green and red, respectively.

It can be seen how the proposed method enables the detection

of anomalies due to moving pedestrians that have not seen

before in the training data.

C. Pedestrian avoidance

In this modality, the vehicle avoids a static pedestrian. Fig.

11a shows the resulting anomaly signal. The blue zones refer

to video frames that contain the static pedestrian, and yellow

zones encode the avoidance maneuvers. As can be seen from

Fig. 5b, at each lap, the vehicle encounters two different

static pedestrians in the environment. They wear t-shirts of

different colors (black in the first case and white in the second

one), which make them “camouflage” with the environment in

some particular configurations due to changeable illumination

conditions. This factor influences the different anomaly values

for both pedestrians, with the second one generating a higher

anomaly.

At each pedestrian encounter, the anomaly signal is com-

posed of three zones with high values: a first one due to

the pedestrian presence beginning, see (1) and (5); and other

two due to the avoidance maneuver, see (2)-(4) and (6)-(8).

Between the latter two peaks, a zone with a low anomaly is

present, see (3), or (6); this is due to the execution of similar

behaviors already observed in the training set.

D. Pedestrian avoidance through U-turn

In this modality, the vehicle avoids a static pedestrian

by performing a U-turn maneuver. In this case, the vehicle

will move in the opposite direction w.r.t. its previous motion

towards the pedestrian, see Fig. 5c, which introduces later

on new situations, e.g., curving in the opposite direction,

and other already known behaviors, e.g., moving straight in

regions that present similar symmetries to those in the training

set. Additionally, the U-turn presents some cases containing

both normal and abnormal information, e.g., moving straight

in regions that are similar to video sequences already seen

but showing some differences related to structures that are

illuminated differently in the courtyard.

Fig. 12a shows the anomaly signal for this case. Three

regions have been highlighted describing the main abnormal

situations appearing in this task: i) the presence of pedestrians

colored in blue, ii) the U-turn maneuver represented in yellow

and iii) the curves performed in the opposite direction w.r.t.

the training set, which is coded in purple. Regarding the first

situation, it must be noted that the blue zone is again related

(a
)

(b
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

Fig. 11: Testing phase on the pedestrian avoidance task: (a) Anomaly signal. (b) Color-coded final anomaly.
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Fig. 12: Testing phase on pedestrian avoidance through U-turn task: (a) Anomaly signal. (b) Color-coded final anomaly.

to the entire sequence of frames in which the pedestrian is

present. In this task, as the pedestrian first appears on the

opposite corner of the courtyard w.r.t. where the vehicle is

moving, it occupies only a small amount of pixels, which

makes its recognition difficult even for the human eye; see (1)

and (8) in Fig. 12a. Moreover, as pedestrians in this task are

located on a background that has a similar color shade to their

clothing, even when the vehicle is moving closer, low anomaly

levels are detected. In (2), the anomaly is particularly high

because the vehicle starts moving right to perform the U-turn.

The other two anomaly zones regarding the U-turn maneuver,

see (3) and (9), and the curves in the opposite direction (5)

and (7) are both detected effectively by the proposed method

as anomalies.

In addition to the three anomaly cases mentioned above,

other smaller anomaly peaks can be observed in zones where

the vehicle moves straight but in the opposite direction to

what is experienced in the training set. Those anomalies due

to different causes: In (6), they are caused by differences in

the background (e.g., the right side is abnormal due to the

presence of a tree and the lack of shadows). In (4), anomalies

are found due to differences in the background and velocities

(e.g., the vehicle is in the middle of the courtyard, where it is

expected the maximum velocity based on the training dataset,

but due to the U-turn maneuver, the vehicle decelerates at that

section of the courtyard).

E. Results Discussion

It can be observed how the proposed method is able to

determine whether a situation is normal or abnormal, with

a high accuracy level in different scenarios. The detection

of anomalies was particularly good in three cases: i) visual

data that differs substantially from training samples, e.g., when

performing a curve in the opposite direction w.r.t. the training

video sequences or during the central part of the U-turn

movement. ii) new image motions related to visual information

that has already been seen, e.g., the beginning of the U-turn

maneuver (due to the changing of direction) and after exiting

from it (due to previously unseen velocity changes). iii) the

presence of moving or static objects, e.g., pedestrians, that are

not considerably far away from the camera. On the other hand,

the accuracy is much lower in cases where anomalies are not

completely defined, e.g., pedestrians placed far away from the

camera or that “camouflage” with the background.

We have therefore observed how our method successfully

recognizes anomalies based on the appearance (new images)

and the dynamics (abnormal motions) of video data.

V. CONCLUSION AND FUTURE WORK

This paper presented a method for the detection of anoma-

lies from visual data. By using a VAE, we were able to

bring high-dimensional data acquired from a camera to a

low-dimensionality that is compatible with other sensor data

acquired from the vehicle and already examined in previous

contributions (e.g., position, steering angle). An A-MJPF has

been introduced and used to detect anomalies both at the

observation and prediction levels.

This work aims at generating a predictive model for video

sequences. Our method can be inserted in a multi-modal

architecture for autonomous vehicles. Future work is oriented

to examine the incremental learning of the new scenarios

and adaptation to them. Anomaly detection constitutes a

fundamental aspect for this: when abnormal situations are

detected, the corresponding input images can be used for build-

ing/refining new and already existing models. As discussed in

the paper, two main abnormal situations can be distinguished:

i) Video sequences containing images that were never seen

before; ii) Video sequences containing known images but new

video dynamics/motions. This paper mainly focused on the

first case, as also done by [8], [25]. In the future, we will

consider both cases by exploiting the incremental learning

of new situations by taking abnormal data and use it for

building/refining predictive models.

The insertion of observations coming from other sensory

data, e.g., positional and control information, into the proposed

probabilistic framework constitutes another future path for

our work. By allowing algorithms to handle multi-modal

data when making predictions and detecting anomalies, it is
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possible to generate more realistic algorithms that associate

multiple heterogeneous signals to familiar concepts as humans

and other animals do. Such will certainly enable a more robust

inference process, which leads to more efficient decision-

making in autonomous systems.
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