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Abstract In the present work, the evolution of damage in periodic composite materials is investigated
through a novel finite element-based mmltiseale computational approach. The proposed methodology is de-
veloped by means of the original combination of asymptotic homogenization with the phase field approach
to nonlocal damage. This last is applied at the macroscale level on the equivalent homogeneous continum,
whose constitutive properties are obtained in closed form via a two-scale asymptotic homogenization scheme,
The formulation allows considering different assumptions on the evolution of damage at the microscale (e.g.,
damage in the matrix and not in the inclusion/fiber), as well as the role played by the microstructural
reinforcement, ie. its volumetric content and shape. Numerical results show that the proposed formulation
leads to an apparent tensile strength and a post-peak branch of unnotched and notehed specimens dependent
not only on the internal length seale of the phase field approach, as for homogeneous materials, but also on
microstructural features. Down-scaling relations provide the full reconstruction of the microscopic fields at
any point of the macroscopic model, as a simple post-processing operation.

1 Introduction

The increasing demand in achieving lightweight structures with superior performance in terms of damage
tolerance and load-bearing capacities has motivated the incorporation of composite materials in many dif-
ferent applications in the last decades. As a result, at present, composite-like structures can be found in
biomechanies, renewable energy systems, acrospace and antomotive seetors, to quote some practical fields
with strong societal impact, The irruption of new mamifacturing techniques has encouraged this trend with
rencvated interest, allowing the produetion of tailor-made composite materials with unprecedent eapabilities
by means of controlling the microstructural arrangement to attain the specific practical needs,

In this context, it is well established that the versatility and applicability of composite materials strongly
depend upon their inherent failure mechanisms that take place at different seales. These failure events can he
wenerally eategorized as meso-and-macro-scale mechanisms (Maimi et al., 2007; Reinoso et al., 2017a) and
micro-scale failure modes (Herrex et al., 2015: Arteiro et al., 2015), with a cumbersome effective connection
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across the seales. From a mechanical point of view, the heterogenous character of composite materials induces
their inherent anisotropic response at the structural level, being this behavior hardly predictable and thus
representing one of the major drawbacks for their practical use. In order to overcome current limitations, the
potential routes for achievement of superior responses in next generation of composite materials wonld require
a thorough nnderstanding of the infAuence of the micro-scale arrangements on macroscopic responses, in terms
of constituents properties and their spatial distribution within the material, and the reliable prediction of
failure events at such materials,

Investigation of composite materials having periodic or quasi-periodic arrangements resorts microme-
chanical theory, which deseribes the material behavior in detail, but in general results in labor-intensive
analvses. Multiscale technigues, based on homogenization approaches, could conveniently overcome these
drawbacks, allowing to gather a synthetic but acceurate description of the heterogeneous material behav-
ior both for static and dyvnamie problems, Homogenization methods take into account the effects of the
microscopic phases on the overall constitutive properties of such composites, also in the presence of multi-
field phenomena. Specifieally, homogenization methods allow replacing an heterogeneous material with a
homogeneons equivalent one that can be modeled tlhrongh either a Cauchy or a nonlocal continuum. Homog-
enization techniques have been a matter of intensive research within the last decades. In general sense, the
local and /or nonlocal homogenization methods can be classified with respeet to the underlying fundamental
hypotheses as: the asymptotic techniques (Bensoussan et al., 1978; Bakhvalov and Panasenko, 1984; Gambin
and Kroner, 1989; Hubert and Palencia, 1992; Allaire, 1992; Meguid and Kalamkarov, 1994; Boutin, 1996;
Andrianov et al., 2008; Panasenko, 2009; Tran et al., 2012; Bacigalupo, 2014; Fantoni et al., 2017, 2018}, the
variational-asymptotic techniques (Willis, 1981; Smyshlyaev and Cherednichenko, 2000; Smyshlyaev, 2009;
Bacigalupo and Gambarotta, 20014a.b; Bacigalupo et al., 2014; Del Toro et al.. 2019) and many identifica-
tion approaches, involving the analytical {Sevostianov et al., 2005; Bigoni and Drugan, 2007; Bacea et al.,
2013a.b,c; Bacigalupo and Gambarotta, 2013; Sevostianov and Girand, 2013; Rizei et al., 2019ab), and the
computational techniques (Forest and Sab, 1993: Ostoja-Starzewski et al., 1999; Kouznetsova et al., 2002;
Forest, 2002; Feyvel, 2003; Kouznetsova et al., 2004; Kaczmarczyk et al., 2008; Yuan et al., 2008; Bacigalupo
and Gambarotta, 2010; De Bellis and Addessi, 2011; Forest and Trinh, 2011; Addessi et al., 2013; Trovalusei
et al., 2015; Otero et al., 2018; Dirrenberger et al., 2019).

Regarding the prediction of failure events in engineering materials and structures, the advent of new
computational capabilities has promoted the generation of different numerieal tools ineluding diffusive crack
methods (Bazant and Jirasek, 2002; Comi, 1999; Peerlings et al., 2001; Dimitrijevie and Hackl, 2011), strong
discontinuity procedures (Moes et al., 1999 Linder and Armero, 2007: Oliver et al., 2006) and cohesive-like
crack approaches (Camacho and Ortiz, 1996; Ortiz and Pandolfi, 1999; Pagei and Wriggers, 2012: Turon
et al., 2018), among many others, where most of them rely on the exploitation of finite element-based
procedures, Recent variational formulations and crack tracking algorithms based on the analogy between
linear elastic fracture mechanics and standard dissipative systems can be found in (Salvadori and Fantoni,
2016: Salvadori et al., 2019). Derived from its versatility for the estimation of failure mechanisms due to
erack initiation and growth, the seminal variational approach of fracture developed by Francfort and Marigo
(1998), being denominated as the phase Reld approach of fracture, endows a smeared crack idealization that
permits overcoming most of the limitations of alternative numerical methods. This methodology attains a
regularized modeling of Griffith-like fracture (Griffith, 1921) and ecan be conceived as a nonlocal damage
method, which in its original format is especially suitable for triggering fracture in brittle materials. In this
concern, Bourdin et al. (2008, 2000) comprehensively developed the corresponding numerieal treatment and
extended the applicability of the phase field method for different applications (see also Pham and Marigo
(2013): Pham et al. (2011)), providing a robust implementation. Alternatively, Miche et al. {2010a) came
up with a rigorous analysis with regard to thermodynamic considerations within an engineering point of
view, One of the main ingredients for the outstanding progresses on phase field methods stems from the
fact that this variational approach does offer very appealing aspects and can easily be implemented into
multi-field finite element frameworks. In view of the strong potential of the phase field methods, recent
developments encompassed its application to cohesive-like fracture (Verhoosel and de Borst, 2013), coupled
damage-plasticity (Ambati et al., 2015; Miehe et al., 2015a, 2016), shells (Miehe et al., 2014; Areias et al.,
2016; Reinoso et al., 2017h), thermo-elastic (Miche et al., 2015h) and hydrogen embrittlement (Martinez-
Yaneda et al., 2008) applications, defining alternative degradation functions (W, 2017; Sargado et al., 2017),
among many others. Owing to its modular formulation, the phase-field approach to racture has proven to
be a powerful tool for fracture characterization of many different materials such as arterial walls (Giiltekin
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et al., 2018), and anisotropic media [ Teichtmeister ot al., 2017; Blever and Alessi, 2018; Quintanas-Corominas
et al., 2009), to quote a few of them. Additional contributions in the field have addressed the aceuracy of
phase field methods evaluating the reliability of different implementation schemes with special attention on
the loeal irreversibility constraint (Linse et al., 2017}, Recently, the conjecture of erack nucleation in brittle
materials discussed in (Tannd et al., 2018) has provided a further insight into the physieal interpretation to
the internal length seale in phase field formulations, £, leading to a direct link of this variable with respect
the apparent material strength, o., see (Nguyen et al., 2016Ga).

With regard to heterogeneous media, being of special interest for composites, new developments of phase
field methods generally accounted for the combination of bulk fracture with eracking along the existing
interfaces. Specifically, Nguyen et al, (2016¢) employed a level set function to deseribe interface displace-
ment jump using an unigue damage variable for both fracturing events, i.e. bulk and interface eracking.
Conversely, Khisamitov and Meschke (2018) proposed a split of the dissipative term in the variational for-
malism distinguishing between bulk and interface fracture mechanisms, whereas an alternative formulation
was developed in (Hansen-Dirr et al., 2019), The distinction between bulk and interface energy dissipation
was seminally exploited by the authors through the coupling of the phase field and cohesive-like methods for
triggering bulk and interface cracking, respectively, being denominated as the PF-CZM (Paggi and Reinoso,
2017). The robustness of this methodology has been assessed by its suecessful application to poly-crystalline
materials {Paggi et al.. 2018), layered ceramics (Carollo et al., 2018) and miero-mechanics of fiber-reinforeed
composites (Guillén-Herndndez et al., 20019) in comparison with the so-called coupled eriterion (Mantié and
Garefa, 2012).

In this respect, though there exist different mumerical methods that allow reliable characterization of
complex fracture phenomena at macro- and micro-seales, to the best authors’” knowledge, the coupling be-
tween hath seales of observations for the efficient material tailoring has not yet been addressed with the
exploitation of the phase field approach. Consequently, the primary goal of the current study is to estab-
lish a novel numerical methodology which links a variational phase field approach to nonlocal damage at
the macro-scale with a homogenization-based technigues in order to account for the micro-structural in-
formation and the spread of damage depending on the material microstructure geometry and properties,
This framework represents an interesting development towards the efficient multi-seale modeling of damage
events in reinforeed composites through the combination of the phase field method of fracture and a careful
microstructure treatment. by means of asymptotic homogenization technigues,

The manuseript is arranged as follows, Section 2 describes the developed methodology. The treatment of
the corresponding material modeling at both scales is outlined in Section 3. The description of the damage
evolution at the macro-scale is presented in Section 4. The proposed methodology is examined in Section 5
for different benchmark applications, whereas the main conclusions are given in Seetion 6.

2 Synopsis of the proposed approach

The present section highlights the key steps of the wethodology herein proposed for multi-scale simulation of
damage within heterogeneous materials by originally combining asymptotic homogenization and the phase
field (nonlocal) approach to damage, as sketehed in Fig, 1. In this respect, let consider a microstructured
periodie medinm, which is made by different phases and it is characterized by the macroscopic length seale
L. At the microscale, each periodic cell is characterized by a microscopic length scale = which, for the validity
of scale separation, has to be much smaller than L, e, L & ¢,

Such a medium can be properly deseribed trough a multiseale homogenization technigue, which allows
overcoming the computation cost of explicitly discretizing the Lheterogeneous microstructure using the finite
element method. Thus, through the advoeation of such a homogenization method, a concise but accurate
description of material behavior and its mechanical damage can be gained. In this study, although the
formulation ean also be extended to other degradation mechanisms and different damage scenarios can be
assumed at the microscale, we restrict our analysis to situations where damage takes place only in the matrix,
while the inclusions/fibers are assmmned to behave obeving a linear elastic response with no degradation. This
is a reasonable assumption in the majority of engineering applications concerning linear elastic stiff particle or
fiber-reinforced composite materials, Hence, damage at the microscale is herein modeled as the degradation
of the elastic properties of the matrix.



4 F. Fantoni et al,

A two-scale asymptotic homogenization procedure is therefore advocated in order to homogenize the
microstructured composite medinm for any damage level, whose phases are modeled as first-order elastic
continua, to an equivalent first-order elastic continmum,

At the macroscale, specimens of any geometry and subjected to any loading conditions can be considered
by employing the finite element method and the phase field approach to (nonlocal) damage propagation.
Emploving a first order homogenization procedure, the only requirement that has to be satisfied for the
application of the proposed approach relies on the scale separation between the macro and the micro seales,
this last being ai least one order of magnitude smaller than the characteristic structural size. Usually,
the damaged constitutive tensor entering the stress-strain relation is degraded in the phase field approach
according to a preseribed degradation funetion g{0) which does not take into account the damage mechanism
oceurring at the microscale. In the present formulation, no degradation funetion is assumed at the macroscale.
On the contrary, the chosen damage evolution scenario is imposed at the microscale, where, following a
standard procedure within the context of Damage Mechanics, depending on the phase field damage j.fnriahlr.'
0, the elastic parameters of the matrix will be degraded by the degradation function g(d) = (1 — 2)°. while
that of the particle/fiber will be left undamaged. Based on that, asymptotic homogenization will be used to
compute the overall degraded constitutive tensor based on the above assumption on the damage evolution
mechanism. As a result, the overall homogenized damaged constitutive tensor will not be simply equal to
the undamaged one re-scaled by g(d) as in the standard phase field approach, bot it will be provided by
asyvmptotic homogenization and it will depend on the damage mechanisms at the microscale and eventually
on the microscale properties (inclusion shape and volumetric content) and linear elastic parameters of the
material constituents.

In this computational framework. from the practical standpoint, the asymptotic homogenization scheme
is called at each Gauss point of the finite element diseretization at the maeroscale, in order to compute the
homogenized constitutive tensor of the damaged material, based on the damage-like phase field variable 9,
This resembles the FE* method, where two nested finite element models are solved, one at the macroscale,
and another at the microscale. To redoce the computation cost associated with the present formulation,
we herein explore a look-up table concept. Basically, the asymptotic homogenization is applied off-line to a
series of periodic unit cell problemns for a series of values of D ranging from zero to unity, i.e from intact up
to fully degraded states, respectively, Degradation funetion is emploved to degrade the elastic properties of
the matrix at the microseale. The obtained homogenized constitutive tensor components, for different values
of 9, are then interpolated to determine their closed-form (analytical) dependency upon 9, that is used by
the phase field approach for the computation of the damaged clastic strain energy density of the damaged
material at the macroseale. Similarly, the first derivative of the components of the homogenized damaged
constitutive tensor with respect to D are also analytically determined, to be inserted into the computation of
the tangent constitutive operator at the macroscale, which is required for the use of fully consistent implicit
iterative-incremental solution schemes,

Finally, as a post-process of the simulations, the homogenized stress and strain fields can be visualized.
Moreover, by exploiting the down-sealing relations established by the asvmptotic homogenization approach,
the microscale fields can also be reconstructed and inspected, for any material point. Algorithm 1 ontlines
the complete numerical-analytical approach herein developed for a given psendo time inerement throughout
the simulation.

Initialization of the displacement uix} and the damage-like phase fleld variable 3(x) at the time £,
Within the pseudo time interval by, FL‘:]_,] at the iteration &, update the prescribed loading and the primary flelds

{ul) )05 (x1)

Loap over the integration points at the macroscale

l. Interpolate the macro-scale phase field variable Etﬂlf"]

2. Call the asymptotic homogenization procedure for micrascale characterization

3. Compute the homogenized constitutive tensor C () (for the unit cell) based on the look-up
table concept

4. Determine the first derfvative of €55 (0) with respect to 2.

5. Roturn Cpp(0) and daC (D) to the macroseale

Construct the element residual and stiffness operators,
Solve for the new displacement increment

Algorithm 1: Algorithim Howchart for the phase field-asymptotic homogenization procedure.
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Fig. 1 Asymplotic homogentzation allows descrbing the behavier of a microstructured periodic medium having doman ©
and persodic cell A as an eguivalent homogeneous continuum, for different values of the phase field damage variable 3. The
evalttion af the phase field s described by the phase field approach af the homogentzed macroscale, Mechanioal fields at the
microsciale can evenfually be reconstructed theough down-sealing relations.

In summary, the wain goal of the proposed formulation is to study the evolution of damage inside the
bulk depending on the microstructural features of the material itself. In particular, by stating for example
that damage takes place only in the matrix, the proposed methodology allows investigating the role of the
material microstructure (inclusion shape and volumetric content) onto the macroscopic response, both in
terms of load-displacement relation and in terms of damage propagation. Moreover, it is worth stating that
the proposed methodology precludes the use of computational demanding FE* schemes. whose use can be
widely exploited in different applications.

A range of values for the characteristic phase field length scale £ are also examined, under the assumption
that diffuse damage is spread enough in the space to avoid strain localization and therefore guarantee the
applicability of homogenization theory.

As shown in the results obtained from the numerical simulations, the proposed coupled model is able to
predict an apparent strength of the macroscopic system that is not only affected by £, as in the standard
phase field approaches for homogenous materials that do not account for different degradation scenarios at
the microscale, but also on the microstructural topology and the inclusion volumetric content,

3 Modeling of two-scale periodic elastiec materials

To establish a general scheme, one considers a linear elastic material characterized by a periodic microstruce-
ture, whose phases can be deseribed as first-order contioma (Fig. 2). In a two-dimensional perspective, vector
X = rje +iroey identifies the position of each material point in the orthogonal eoordinate system with origin
at point € and base e, e; as shown in Fig. 2-(b).

Advocating the periodicity of the medinum microstructure. a periodic cell 4 = [0, 2] = [0, §z] is identified
by two orthogonal periodicity vectors vy = ze; and va = dzes, where £ characterizes the size of cell
A as depicted in Fig. 2. As is usually done in the context of asvmptotic homogenization, the unit cell
Q = [0.1] = 10, 4] is obtained rescaling the periodic cell A by the characteristic length =, The microscopic
displacement uf(x) = w;(x)e; is induced by body forces bi{x) = bj(x)e; whose periodicity is much greater
than the microstroctural one for the validity of the scale separation condition. Body forees in fact, are
here assumed to be L-periodie, and to have vanishing mean values on £, being £ = [0, L] x [0, 4L] a true
representative portion of the whole body, Consistently with what above said, the stroctural length L has to
be much greater than the microstructural one (L % =), Moreover, diffuse damage without strain localization
phenomena is also reguired to allow the rigorous applicability of homogenization theory,
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Fig. 2 {u) Heterogeneous wmicrostructured medinm having structurd chaomcteristico size L, (b)) Perodic cell 4 with miero
chamcteristic stze £ and periodicity vectors vy and vo. (o) Periodic unil cell Q.

Under the hypothesis of quasi-static loading proeesses, the partial differential equation governing the
elastic problem is given componentwise as

2] s, Duk
e L, b = M
br. (cu,ﬂ, DJ"—;) +b =0 (1)

heing CI.[;;:;E’ the components of the fourth order micro elasticity tensor, where the superseript m refers to
the microseale and = to the characteristic size of A. In Eq. (1), the symbol D/Dx; denotes the generalized
derivative with respect to the variable ;. The micro-constitutive elastic tensor is @-periodic, meaning that

C.'f;:}ri (x+va)= C:;;;}rb{x}, a=12 ¥xecA (2)

and its components depend only on the fast variable £ = x/=:
T i x .
E'T}jkr ' (x) = ikt (E = ;) ., WEE Q. (3)

Two variables in fact can be identified for the separation of the macro and the miero seales. namely the
macroscopic (slow) one x € A and the microscopic (fast) one £ € @, In this regard, the micro displacement
results to be a function of both the slow and the fast variables, ie. u; = u;(x, € = %). In such a context,
homogenization technigques reveal to be efficient in aceurately deseribing the overall behavior of a microstrue-
tured composite material, replacing the periodie continuum with an homogeneous equivalent one requiring
a much lower computation cost for its analysis and simulation. Analytical and numerical solutions of Eq. (1)
could be particularly complex to obtain because of the rapidly oscillating Q-periodic coefficients. ln what
follows, the formulation of an equivalent first-order elastie continuum is deseribed, together with the exact
closed-form expression of the overall constitutive elastic tensor components.

In the obtained equivalent homogenized medium. the macro displacement field in each material point x is
denoted with Ux) = U(x)e;. It is worth mentioning that variability of source terms acting on the medinm
has to be much greater than the microstructural length seale £, in order to preserve the scales separability
principle. If volume forces are C-periodic, then macroscopic displacement Uix) will be C-periodic too, other-
wise snitable houndary conditions should be taken into account in order to determine the macroscopic field
(Fantoni et al., 2017, 2018).

3.1 Asymptotic expansion of the microscopic field equation

Splitting the contributions of the slow and fast variables in accordance with the seale separation condition,
the micro displacement field can be asymptotically expanded in terms of the micro characteristic length seale
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= (Bakhvalov and Panasenko, 1984) as

“+5C
ity (x’—f) = ZE! ui.” (x%) H:'_I” (xj—f) +E uL” (xi %) +£ HF:I ( ) +O(=Y) (4)
- I=0 - ) .

Taking into account the differentiation rule for a generie function f{x, £ = %):

D x af 1 df df
f(xe== =(—+ )l ( ~ 5)
Dx; ( :') dr;  £0% a4 'r" == (
and substituting the asvmptotic expansion (4) into the governing field equation (1), one obtains
o (0) 2
(o) . m [ O (1) d (0)
(Clj“ g f) + £ 1 [ How ( aj‘ + ”J.-J) : + EL-J (Cl-JﬁI L !) -}
ﬂuk 4:” o n':i‘ur” (1) o Eiui_z} (2)

\F{;‘M ( B U j 5 kt | g+ e [Gim | g + i J +
2 e o a\|lio 7! +bi(x) =0 (6)

l!j.f'j “ighkd &J‘f LW {. - X = U

A set of recursive partial differential problems can now he obtained from Eq. (6) by equating terms at
the different orders of =. Details about the solutions of such recursive differential problems can be found in
(Smyshlvaey and Cherednichenko, 2000; Bacigalupo, 20014; Fantoni et al., 2017). In particular, the solvability
condition of the partial differential problem at the order =2 in the class of Q-periodic functions (Bakhvalov
and Panasenko, 1984), implies that the solution at the order ==* does not depend on the fast variable £,
taking the form

uy” (x,€) = Uk (x) (7)

In force of solution (7) of the elastic differential problem at the order £ =2, the solvability condition of resulting
differential problem at the order ¢! and the Q-periodicity of C™, lead to a solution at the first order of the
form

il (x)

By, (8)

".Er” {x"ﬁ} J‘.,I'EI.I:H{E}

where N,‘__:jn is the first order perturbation function, which accounts for the influence of microstructural
inhomogeneities.
Accounting for the solutions (7) and (8) of differential problems at the order =2 and =~', respectively,

and of the Q-periodicity of the micro constitutive tensor components €77, and of the perturbation function

ML::L: at the order =2 the micro displacement solution takes the form

[opd
" N U, (%)
. (x.§) = J.NNEIE}iqulfli'qg

(9)
where kai is the second order perturbation function which, again, depends only on the geometrical and
physico-mechanical properties of the considered material.

Determination of perturbation funetions derives from the solution of non-homogeneous recursive differ-
ential problems at the different order =, being those problems referred to as cell problems. Such differential
problems are characterized by Q-periodic source terms having a vanishing mean value over unit cell Q.
Consequently, their solutions result to be Q-periodic and they are enforced to have a zero mean value over
Q in order to gnarantee their unigqueness.

The following normalization condition is therefore imposed for all perturbation hunetions:

1
1}—@[2{-}#5—!1 (10)
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where |Q| represents the unit cell area, namely |@| = 4. The cell problem at the order ==! in terms of the

first order perturbation function M‘m ; reads
" r“] L e
( ikt Niepay. ) + Clipng =0 (11)

Onee "l.'i:u]q is determined, from Eq. (6) one obtains the cell problem at the order 22 which, symmetrized

with respect to indices ¢ and g, takes the form

a2 1 AT
(C:r“ j'ﬂ']""ﬂllh I) 5 2 [(C::‘lhm "ﬁ"ﬂ'm)__r T C;::mfu

i i1} T LY
+C-q-;kf ‘n"kpq: A + ( i3k hl.-;m) + Ci-.-;m; C:;H *\'k;u}q J']

<(-rm + Fq:k! N r(1] /8 Oom

P Epigy [ P

+CR N ) (12)

Determination of perturbation functions as solutions of cell problems at the different orders of = allows ob-
taining the down-sealing relation, expressing the micro displacement field u(x, £) as an asymptotic expansion
in powers of £ in terms of the L-periodie macro field U(x) and its gradients. The down-scaling relation is
expressed as

i, (x)

rfh

+-— JHIF{J' Il{x}l

ke rm{s}arr" a'rw D{E“] {luﬂ

uk(%.€) = Uk(x) + & Niy, (6) =512

Denoting with ¢ € @ a variable such that the vector ¢ € A defines the translation of the medinm with
respect to C-periodic body forces bix) (Smyshlvaev and Cherednichenko, 2000; Bacigalupo, 20014), the macro
displacement field can in turn be expressed in terms of the micro field trough the up-sealing relation, as the
mean value of u over unit cell @

Uilox) = (i (%, +¢;)>‘c (14)

In partieular, the variable { removes rapid Huetuations of coeflicients and is such that invariance property
W6+ Q=g [ 96+ 6 = gy [ o1&+ )& = (o€ (15)

is proved to hold for @-periodic functions. Eq. (15), together with normalization condition (10) enforced for
all perturbation functions, leads to the up-scaling relation (14).

3.2 Closed form of the homogenized elastic tensor

The overall elastic tensor is determined by means of a generalized macro-homogeneity condition, which estab-
lishes an energetic equivalence between the macro and the micro scales (Smyvshlyvaey and Cherednichenko,
2000; Bacigalupo, 2014). The microscopic mean strain energy E,, is defined in terms of the miero strain
enerey density o, as

&=ﬁ££wﬂﬂ%ﬁ=ﬁmwk (16)

where 2, reads

1 Du; Du Day,

" " m r | r (1] U HU#
Fm = QC.JM. D.! D!’k = 2 ihk (tgﬂai)_jm + Ml]".ud) (ﬁhﬂﬁk, +Nh#r. ) [

'EHE + ﬂ{.‘?]l “T}

in view of the down-scaling relation (13). The strain energy at the macroseale is defined as

EM=_['F.-.HTX (18)
c
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in terms of the macro strain energy density 4y expressed in the form

1 by, aU;
wu = 5C, =k

'm"“ﬂ.rq, ﬂ_.r,,; (19)

In Eq. (19), Cpy, iy, denotes a generic component of the overall elastic tensor. Denoting with EY the mean
micro strain energy truncated at the zeroth order, the generalized macro-homogeneity condition implies that

Ey = En (20)

from which the components of the first order macroscopic tensor Cy, iy, can be defined in terms of the
components of the mieroscopic constitutive elastie tensor and in terms of the first order perturbation funetion.
The closed form of the overall elastic tensor components is

Comipz = { rykl ("Yill-rla-s +bir 5-"‘?’) (N;E:,,]” &7 ﬁ"’“ﬁ"“)>' =

Better approximation of the solution of the heterogeneous problem could be obtained by means of higher
order homogenization techniques, modifving the generalized macro-homogeneity condition (20) in a proper
way. Higher order approaches consider both higher order terms in the asvmptotic expansion performed at
the microscale and the non local character of the macroscopic constitutive tensor. Alternatively, the solution
of the average field equations of infinite order by means of perturbation methods allows to obtain a higher
order approximation by suitably truneating the asyvimptotic expansion of the macro field U in powers of =
(Bacigalupo, 2014). Higher order homogenization schemes conld be explored in follow-up studies, motivating
the development of higher order phase field formulations at the macroscale, for a consistent modelling of
higher order effects across the material length scales.

4 Damage evolution in a microstructured material trough a phase field model approach

Let consider an arbitrary, homogeneous body 2 € B, Note that for the sake of simplicity, we restrict our
analysis to bidimensional geometries, As described in See. 3. vector x = ryey + rpe; identifies the position
of each material point inside the bulk at the macroscale. The boundary of the body I € B is the union of
Dirichlet I and & Newmann Iy parts, with Iy U0 = Dand Tpyn il =0

Under the validity of the small strains assumption, the material response to the following quasi-static
external actions is sought: body forces b(x) in £2, tractions { on I}, and displacements U on Iy, Accordingly
to the variational approach of fracture described in (Bourdin et al., 2008; Miehe et al., 2010b). the total
potential energy of a system [T can be written as the balance between the internal contribution, which is the
sum of a global energy storage functional and a dissipation functional due to damage, and the contribution
due to external loading:

oo
1 (U,,0) = f o (H,;.0) df2 + f Gen (a—) dﬂ—f t,U;dar — | b, U, (22)
12 1 i ; r Il
Note that the first term on the right-hand side of Eq. (22) is the global energy storage functional in which
the strain energy density per unit volume (H;;. 9] depends on both the macro displacement field trough
H;; and the phase field 9. In the small-strain context, Hy; is defined as the displacement gradient:
iy .

Hy = Bz, (23)

According to (Miche et al., 2010b.¢), the phase field 9 € [0, 1] is an internal auxiliary variable character-
izing, for 0 = (0, the undamaged condition and, for o = 1, the fully damaged condition of the material.

The second term in Eq. (22) defines the work needed to ereate a diffusive damage and its rate provides
the dissipation power due to damage in the bulk, In this context, G- would correspond to a Griffith-type
fracture energy, and (9. d0/dr;) represents the crack surface density function depending on the phase field
and on its gradient, which leads to the nonlocality of the formulation and therefore its mesh independency.
It can be expressed as

NN 1., (RN
() =2 +3(a) (4
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where { is an internal length seale parameter governing the regularization/diffusion of damage (Kuhn and
Miiller, 2014; Nguyven et al., 2016b). Here, we request to £ to be big enough to avoid crack localization
and model situations where diffuse damage takes place. In order to introduce damage only in tension, the
energy density in the bulk is left undamaged in compression. On the other hand, it is degraded in tension
by assuming that only the Young's modulus of the matrix is affected by damage, Le., by setting E,,(0) =
H l—ﬁ]l?—l-?C]E,,._u. where E,, o is the undamaged value of the Young's modulus of the matrix and X is a residual
material stiffness introduced to avoid numerical instabilities for @ = 1. The overall effective constitutive tensor
components €, (d) are finally computed by means of the asymptotic homogenization method deseribed
in Section 3, specifically exploiting Eq. (21) for each value of 9, and they are provided to the finite element
computation seheme at the macroseale. In this regard, it s important to highlight that the elastic strain
energy density is not degraded as in the standard phase field approaches used for homogenous materials,
but instead its value depends upon the assumed damage evolution law at the microscale. Furthermore,
macro-homogeneity condition (20}, which establishes an energetic equivalence between the macro and the
micro scales, consistently holds in the present formulation independently from any chosen damage evolution
seenario oceurring at the microscale. Since the damaged constitutive tensor is the outcome of asyvmptotic
homogenization, it will also depend upon the volumetric content and the shape of the inclusion/fiber.
The first order variation of functional (22) reads:

S (U;, 0U;,,80) = f Hi; Cijps (9) 6Hy A2 + f 5 Hi _‘*Cr;;;*‘“}

+f C’—Madﬂ+f Gl L ‘;i“ 102 — f 1,60, dI" — fz- sU7, A2 (25)
L J

Hpyy dodf? +

Integration by parts of the first and fourth terms of the right-hand side of Eq. (25) allows to rephrase the
variation 417 as

all arr

AT (U, 80U, D, 6D) = 3 ﬂ'_ Cijna(0) my 80, dI" — f oy (E—‘ Cijm-{ﬁ}) G0 12 +

H,,f'—%lﬂl—ﬂ 1andj?+j —anndj?+f{“.; ¢ B 5ty 0T+
l;r -l\l
ﬂz
[ Gotim Ys0dn— [ tév,dr - [ b6v,d40 (26)

i’ r o

where symmetry properties of the elastic tensor C and the condition 4L, = 0 on Iy have been exploited.
The Euler-Lagrange equations associated with the displacement and phase field problems vield the cou-
pled field equations

il aliy,
W( Ijhk[a} j J)""b::U.
it

70 ¢ . AC(d)
P gy Ly i
T T P

Hﬂll‘ =1, {ET}

in the domain 2, along with Neumann boundary conditions:

v iy, _ -
C-u;,kmﬂj = I‘I o Ir

0 :
EHJ =0 ore I {25}

The solution of the nonlinear system (27}, together with boundary conditions (28), allows to describe the
evolution of macroscopic mechanical quantities and of the phase field d(x) inside the homogenized material.
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5 Numeriecal examples: influence of the phase field internal length seale and of the
microstructure upon damage evolution

The main objective of the present section is to show the dependence of the evolution of damage inside the
material to the shape and volumetrie content of the inclusion, as well as to the phase field internal length
£. To this aim, let consider the specimens sketched in Fig. 3. having width L = 1 nun and height 2L, both
subjected to uniform tensile loading through the application of an imposed far-field displacement A to all
the finite element nodes belonging to the lower and apper sides, The ease depicted in Fig, 3-(h) distinguishes
from the one of Fig. 3-(a) beeause of the presence of an initial defect, which is a horizontal straight edge crack
with mouth at s = L and erack tip at oy = L/2. In both cases, the specimen iz supposed to be constituted
by a microstructured material composed by a matrix embedding a cireular or a square inclusion, where
microstructural size is much smaller than the structural one (e.g. =/L < 1/100). As previously mentioned,
damage is assumed to develop only within the matrix, but the proposed methodology can be exploited for
any damage scenario ocenrring at the microseale.

A A
T L]
(a) (h)

Fig. 3 Specimens in plane stroin conditions havimg width equal to L = 1 mm and height equal to 2L subjected to imposed
displacement A along the upper and lower boundanes. (a) Plane specimen, (b)) specsmen anth an anihial edge erack.

In order to accelerate coupling between the macroscale and the microscale computations, asymptotic
homogenization of the microstructured material as described in Section 3 is performed off-line, for a set
of admissible values of the phase field variable 8 ranging from zero to unity. The numerical results of the
coupled problem (27) for the test problem without initial defect and with an initial defect are discussed in
Sections 5.2 and 5.3, respectively.

5.1 Homogenization of the material with microstructure

Specimens depicted in Fig. 3 are supposed to be made by a microstructored material whose periodic cell
is shown in Fig. 4. The periodic cell is composed of an Aluminum matrix undergoing damage, with an
undamaged linear elastic constitutive behavior characterized by a Young's modulus F,, o = F.y = 60 GPa
and Poisson ratio vy = 0.3, and a linear elastic inelusion corresponding to Silicon carbide with Young's
modulus Egie = 340 GPa and v = 0,18,
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(n) (1)

Fig. 4 Periodic cell A of chameteristic size ¢ made of an Aluriinum mateiz with a Silicon earbide inclusion, (o) nelusion
writh eireular shape, () clusion with o square shape.

Under plane strain conditions, the elastic tensor of the undamaged matrix C 4 and of the inclusion Csie
are:

8077 3461 0 36.917 5104 O
Cq = | 3461 8077 0O x 10'MPa, Cgsic=| 8.104 36917 0 x 10" MPa (29)
0 0 2308 1] 0 14407

Two different inclusion shapes have heen taken into account, namely cireular (Fig. 4-(a) ) with five different
values of the volumetric content f = 1/4, 1/8, 1/16,1,/32, 1/100, and square (Fig. 4-(b}) with a volumetric
content f = 1/4. The volumetric content represents the ratio between the area of the inclusion and that of
the periodic cell A in the cross-section of the specimen, as customary,

After computing the perturbation functions N;E” as the solutions of the cell problem (11}, the overall
elastic constitutive tensor has been computed by means of the closed form (21). Considering, for example, a
volumetric content [ = 1/4, we get:

10,206 4.104 0 1LETG 4.014 0
Coire=| 4104 10.896 0 x 10°MPa, C,,= | 4013910876 0 * 10°MPa (30
0 0 3148 il 0 3.0464

where subscripts 4, and , stand for civeular and square topology, respectively,

Adopting a residual stiffness K = 0.005 in correspondence of 8 = 1, the elastic constitutive tensor of
the damaged matrix C.ap have been computed multiplying the undamaged matrix Young's modulus E,, o
by degradation fumction ¢(d) = (1 = 2)® + K. with the phase field variable in the range (0 < 8 < 1. The
components of the overall elastic tensor T have then been computed for each value of @ by means of Eq.
(21). Fig. 5 shows, for example, the components of C;.. (Fig. 5-(a)) and of C,, (Fig. 5-(b)) as a function
of the phase field 0, for a micrestructure configuration characterized by a volumetrie content f = 1/4. In
correspondence of d = 0, the overall elastic constitutive tensors C,. and C,; correspond to those of the
undamaged material, given by Eq. (30). Their values monotonically decrease as 0 approaches unity, where
the value A is retrieved.

The adopted first order asymptotic homogenization technique is validated trough illustrative benclimarks,
as detailed in Appendix 6. Periodic microstructures as the ones depicted in Fig, 4 are subjected to harmonic
volume forces having a much greater periodicity than the microstructural size =, The good agreement ob-
tained between the solution of the heterogeneons material model and the homogenized one, for all the values
of the damage-like phase field variable (0 < 2 < 1, assesses the validity of the adopted first order homogeniza-
tion procedure. It is worth mentioning that a more aceurate and efficient deseription of damage evolution
in microstroctured periodic Cauchy materials can be obtained by means of higher orders homogenization
sehiemes, according to the seminal paper (Bazant and Jirdsek, 2002).

Considering a constant value for G = 6 N/mm for the homogenized material, the coupled system of
erquations (27) has been pumerically solved for each value of the imposed displacement A, for the imnotehed
and the notched specimen configurations. Details regarding the finite element framework adopted to obiain
the numerical solution, and implemented in the finite element software FEAP (Zienkiewicz and Taylor, 1977),
are described in the Appendix 6. Five different values of the internal length scale £ have been considered,
in order to investigate the role of this parameter in triggering damage inside the microstructured material.
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Fig. 5 Components of the overall elastic consfitulive tensor C: g (red), Cryge (Wue), and Cyage (magenta). (o) Cireulor
inclusion. {b) Square inclusion.

Values of £ have been set intermediate between the value of the structural or macroscopic length scale L
and the microscopic size = in order to avoid strain localization which would violate the applicability of
homogenization, namely £ = 0,05, 0.1, 0.2, 0.4 mm. In phase ficld approaches to describe damage evolution
in homogeneous materials, the value of the internal length scale € is usually chosen such that the apparent
tensile strength of unnotched specimens in tension predicted by the model matehes the tensile strength of the
real material (Kuhn and Miiller, 2004; Nguyen et al., 2016b). The present two-scale model allows introdueing
other dependencies for the apparent tensile strength, in addition to ¢, as shown in the following onmerical
experiments.

5.2 Case 1: tensile test on a plain unnotched specimen

One considers the plain unnotched speciimen depicted in Fig. 3-(a), where a uniaxial tensile test is performed.
Fig, 6 depicts the variation of the homogenized mean stress Thy with respect to the homogenized mean strain
Haa, by varving the phase field length seale £, for a circular inclusion with a different volumetrie content f in
the subfigures from (a) to (e), and for a the square inclusion with f = 1/4 in the subfigure (). In particular,
the average stress Tos is computed as the sum of the reaction forces on the upper (or lower) boundary of the
specimen, divided by the width L of the specimen and its unit out-of-plane thickness, The average strain
Hys is computed by dividing the imposed far-field displacement A by L.

Aceording to previous results reported in the literature (Kuhn and Miiller, 2014; Nguven et al., 20160;
Pagei and Reineso, 2017), the apparent strength ng,,,_,. representing the maximum of the average stress-
strain curves, inereases as the length seale € decreases. This trend ean be intuitively explained by the fact
that larger values of ¢ indicate a more widespread damage in the bulk. However, by comparing the different
subfigures in Fig. 6, one notices that the present model provides an apparent strength also dependent upon
the volumetric content of the reinforcement and on the shape of the inclusion, which is a major novelty
as compared to the standard phase field approach for homogeneous materials. Examining each stress-strain
curve more in detail, the system response is almost linear till T5y_ s reached. The stiffness of such an
elastic part is the same by varying £, which is consistent with the fact that all the curves in a subfgure
present the same microstructure with the same volumetrie content f. For an axial strain larger than the
value of the strain corresponding to the apparent strength, the post-peak response presents softening. This
is a major difference from the prediction of the phase field in the case of a homogenous material, and it is
caused by the progressive stress transfer from the damaged matrix to the undamaged inclusion, by increasing
damage. This redistribution of stresses cannot take place if the material is homogenous. The value of the
residual stress are increasing by redueing the length seale £, as an effect of the different evolution and spread
of damage. By comparing Figs. 6-(a) and G-(f), which refer to the same value of f, but correspond to different
inclusion shapes, one can notice how the apparent strength and the corresponding value of Hag |, are slightly

EL T
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influeneed by the change of topology, while the post peak behavior is greatly affected by the inelusion shape,
showing steeper branches and lower residual stresses in the case of a square inclusion. Furthermore, Fig. G-(f)
shows that the residual stresses are slightly influeneed by £, for a square topology of the cell inclusion.

Tl MPa)

Ty MPa)

| o i i
o o oo LLex] oo o mm LILHS oy ho b 0%
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Fig. 6 Average stress Taa vs average deformation Haa for different values of the internal length scole £ § = 0.05 (Black),
f =01 (blue), £ =0.2 (red), and £ = 0.4 (magenta), (o) cireular inclusion and f = 1/4, (b) crcwlar inclusion ond [ = 1 /8,
fe) circular tnclusion and [ = 1/16, {d) corewdar melesson and [ = 1/32, {e) cirewlar inelusion and [ = 1100, (f) square
mchision and [ = 174,
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To highlight the effect of the volumetric content, Fig, 7 depiets, [or a cireular inclusion, the average
stress Toz as a function of 2z by keeping £ constant and varving f, The apparent strength Tos | increases
as volume fraction f increases, and this is colierent with the choice to weaken the constitutive properties
only for the matrix and not for the inclusion. For the same reason, residual stresses are greater as volume
fraction f increnses, To sminmarize the above results, Fig, 8 shows how the apparent strength of the system,

L]
0 CHi e an o oM 00F 00004 0DO5 006 QOF

i

n I‘.ll:l: 0

Tos [ MPa)

& . . - . d E ., . - P
a 0%t am . GO 004 00 oo ool oms_ 00; O0@S 003 0O
n I
(c) {d)

Fig. T Average stress Tog vs average deformation Hag for crodar inelusion at different volume froctions: [ = 1/1 bue curve,
Jf=1/8 red eurve, f = 1/16 magenta curve, f = 1/32 eyan curve, f = 17100 WHack curve. fa) £ = 0.05 mm,(h) £ = 0.1 mm,
fe) £ =02 mm, {d) § =04 mm.

Tas,... . and the correspondent values of the strain, g, depend on £, for the different inelusion volumetric
contents and also for different shapes of the inclusion. Accordingly to the procedure deseribed in Nguyen
et al. (20161), graphs of the kind of Fig. 8 could conveniently be exploited also to tune the internal length
seale parameter £, once the apparent tensile strength, for example, is estimated trough experimental tests.
Curves referring to the square topology and f = 1/4 show lower values than those for a circular inclusion
and the same value of f, both for Tay, . and Ha_ .

LT

5.3 Case 2: tensile test for a specimen with an edge notch

Let consider a uniaxial tensile test for the notched specimen depicted in Fig, 3-(b). Fig. 9 shows the average
stress Tao s a function of average strain fys for this test, where Tay and Hao are computed as for the
specimen without an initial noteh, In particular, Fig. 9 shows the homogenized stress-strain curves for a
material microstructure with a ecircular inclusion and different values of f, for two distinet values of the
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Fig. 8 Apparent strength Taa,,.. vs £ fu), and the coresponding everage deformation fgz, .. vs € (b). Cirenlar inelusion

and [ = 1/4 (blue), f = 1/8 fred), f = 1/16 {magenta), f = 1/32 (epan), f = 17100 (black), square inclusion and f = 1/4
(green t.

internal length seale £, namely ¢ = 0.1 mm (Fig. 9-(a)) and f = 0.4 mm (Fig. 9(b})). Once again, the two-
scale coupled formulation predicts an apparent strength To,  which is an increasing function of f, while the
correspondent average deformation Has | is a decreasing function of f. The mechanical response is quite
affected by € as can be assessed by comparing Figs. 9-(a) and 9-(b). Softening branches ocour for £ = 0.4 mm,
while for ¢ = 0.1 mm the post-peak response is quite brittle. Fig. 10 shows Tho, . and the corresponding
strain Haa, . 0s functions of £, for all the different values of f herein considered, The apparent strength of
the system and the corresponding homogenized strain are monotonically decreasing functions of the internal
length scale £. Moreover, the comparison between Figs. 8 and 10 shows that, as expected, T, and Haa
are lower than the corresponding values for the unnotehed specimen,

Iy MPa)

af- ey - I -
o o0 oU00d 000 0 aot

T3

)

Fig. 8 Averuge stress Tho ve. avernge struin Hag for a material with circulor inclusion and different volumetric content:
J=1/4 (Mue), [ =1/8 (red), [ = 1/18 (magenta), = 1/32 (eyan), [ = 17100 {black). {a) £ =01 mm (b} £ = 0.4 mm,

Figures 11 and 12 show two contour plots of the phase field variable 2 for £ = 0.1 mm and £ = 0.4 mm,
respectively, at two consecutive psendo-time steps of the quasi-static computation in the case of a cirenlar
inclusion and a volumetric content f = 1/4. In particular Fig. 11-(a) refers to Hay = 0.0062, Fig. 11-(b) to
Hay = 0.0072 , Fig. 12-(a) to Hay = 0.014, and Fig. 12-(b) to Hay = 0.0172, respectively. As expected, the
spread of the damaged zone increases by increasing the internal length £,
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Fig. 10 Apparent strength Tog,  ows, € fa), and corrésponding values of fag, o ovs £ (b)) for a material microstruefure with
a circular inclusion and [ = 11 {blue}, f = 1/8 (red), [ = 1716 (magenia), f = 1/32 {eyan}, f= 17100 (black}.

(a)

Fig. 11 Contour plot of 3 for £ = 0.1 mm, circular inclusion and f = 1/1. (a) oz = 0.0062 (b) Hay = 0.0072
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Fig. 12 Contour plot of 8 for £ = (.4 mm, circular inclusion and [ = 1/4. {a) Heg = 0.014 () Hea = 0.0172



18 F. Fantoni et al,

Without any loss of generality, the eases shown in Fig. 12 have been considered as possible examples
to show the applicability of the down-scaling relations established by asymptotic homogenization to recon-
struct the local microscopic fields. In fact, once the macro displacement field U{x) is known in each point
x of the macroscale maodel, it is possible to reconstruct the micro displacement feld u(x, €) on the peri-
adic eell by means of the down-scaling relation (13), herein truncated to the first order of . For example,
considering a point of coordinates x = {0.75,0.12} mm inside the specimen sketched in Fig. 3-(b), the
computed dimensionless micro displacement iy (x.€) = uy(x. &) /U (x) is shown in Fig. 13 for £ = 0.4 mm
and a circular inclusion with f = 1/4, for two different values of Haa. In particular, Fig. 13-(a) refers to an
imposed average strain equal to Hae = 0.014, and a macro displacement Uy (x) = =2.0113 10™* mum, while
Fig. 13-(b) refers to Hay = 0.0172 and U (x) = —2.2932107* mm. The dimensionless micro displacement

'- 1.0a+00

— 1.005

(a) (b}

Fig. 13 Dimensionless micro displacernent iy (%, £) at point x = {075, 0,12} mm of the specimen shoun in Fig. 3-(b): { = 0.4
mm, circular inclusion with [ = 171, {a} Hyp = 0.004, (&) Hae = 0.0172.

tig(x, &) = ua(x,&)/Us(x) in the e; direction, at the same point x = {0.75,0.12} mm, is shown in Fig. 14.
Fig. 14-(a) refers to an imposed strain equal to sz = 0.014 and Uy(x) = —1.1741 1072 mm. while Fig.14-(b)
refers to Hya = 0.0172 and Up(x) = —1.421710-2

I.Dmm
— 1.002
t?‘?ﬁ-ﬂl

Fig. 14 Dimensioniess micro disp!unemerit iig(x, &) at poant x = {0.75,0.12} mm of the specimen shown in Fig, S-(b}; { = 0.4
mm, circuler inclusion and f = 1/4. fa) Haez = 0,014, (b)) Haz = 0.0172.
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6 Conclusions

The evolution of damage in composite materials with periodie or quasi-periodic microstructure has been
investigated in the present work trough a multiscale finite element-based computational approach, integrating
the phase field method with an homogenization scheme. Specifically, the overall constitutive properties
of the heterogencons material have been determined in closed form by means of a two-scale asymptotic
homogenization technique and the damage propagation inside the equivalent homogeneons medinm has been
deseribed at the macroscale via a phase field approach.

The current technigque allowed triggering macroscopic damage by means of tracking the matrix degra-
dation at the microscale even if different damage evolution seenarios ean be assumed at the microseale
without compromising the proposed methodology. In this regard, differing from alternative FE2-techniques,
this method provided a fast and efficient computational tool for the link between the two-seales using the
concept of a look-up table scheme. Therefore, it was precluded the instantaneous computation of both scales
throughout the simulation.

The performance of the present technique has been demonstrated by means of several representative
examples. These results clearly evidenced that, for cases under analysis, the overall response of the specimen
was affected by the material length scale, which is usually related to the apparent material strength of the
material, and by the micromechanical information regarding the inclusion shape and volume content as well
as the damage extent into the matrix. Moreover, through these numerical applications, it has been shown that
these aspects played a significant role in the the peak response of the specimen and the posterior softening
evolution upon failure, featuring a progressive softening instead of an abrupt drop, as in most of the phase
field methods of fracture. In this regard. the internal length scale parameter £ and the damage evolution law
at the microscale, expressed in the form of a degradation function, should be tuned so that the mumnerical
predictions can reproduce both the apparent material tensile strength of unnotehed specimens and the shape
of the post peak branch, this last depending upon the damage spread.

Finally, it is worth to recall that the influence of the microseale over the macroseale results is one of the
major novelties of the present approach in comparison to standard phase field methods for homogencous
materials with no specific scale separation.
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Appendix A. Homogenization of a bi-phase elastic material: benchmark test

The first order asymptotic homogenization technigue deseribed in Section 3 is here validated for all the
admissible values of the phase field variable 9, with 0 <9 < 1, in order to assess its capabilities to accurately
describe the global behavior of composite elastic materials subjected to damage, The periodic cell A of the
considered two-phase elastic material is the one depicted in Fig. 4, with matrix made by an Alluminum-like
material and circular or square inclusion with Silicom carbide constitutive parameters. The elastic tensors
of the two phases in plane strain conditions are reported in Eq. (29) in the absence of damage (@ = 0).
Only components of the elastie tensor of the matrix are supposed to be affected by damage evolution inside
the material trough multiplication of the undamaged Young modulus E,, = F 4 by degradation funetion
g(0) = (1 = 0)* + K, with residual stiffness K = 0.005,

Considering for example a volune fraction f = 1/4, the periodic medium is loaded by means of C-periodic
body forces bix) of the form

by(xy) = B; glidmnee /L) (31)

with 7 = 1.2, wave number ny, and L the macrostructural characteristic size, see Fig. 15, In Eq. (31) 4
represents the imaginary unit, such that i = —1, In view of the L-periodicity of volume forees, only a
representative portion of the entire heterogencous material has been analyvzed. In particular, becanse of the
invariance of body forees b with respect to s, the model problem is composed by 11 cells along the e
direction having a total dimension equal to L and one cell along the es direction.

el4

el

4

£id i efd

Fig. 16 Heterogencous microstructured model and the equivalent homogenized one logded by C-periodic harmaenie body forces
bixry). The periodic cell A has microstructyrml chareteristie size egual fo = and velume froction f= 174,

Field equations for the first order homogenized material in terms of the overall elastic tensor C{9) take
the form

i a7
By ( Uum}ﬂ.ﬂ) + bj(xy) (32)
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whose analytical solution in terms of macro displacement U depends only upon @y in view of formula (31)
and reads

2
Uilxy) = By (i) I. plidmmyry /L)
T

Cyn(d) \2r ) n;
By (L 2 2
L — e ) — plidEngry L) 33
2la1) Crai2(d) \ 27 nﬁf (33)

If one considers for example only the imaginary part of expressions (33), components of macro displacement
field results

2
Uyfay) B (-L—) “—Iz- sin(2amgay /L)
b

& Cring(0) \ 2w
B. ENFa .
Uafay) = T:{DJ (E) 7 sin(2mmyry /L) (34)

Comparison between the homogenized model solution, as expressed in Eqs. (34), and the solution obtained
from a finite element analysis of the heterogeneous model subjected to periodie boundary conditions, is
depicted in Fig. 16 for square inclusion and three different values of the phase field variable, namely 8 =
0,0.25,0.5. Analogous results have been abtained for the case of circular inclusion. The heterogeneous macro
solution has been computed from the corresponding microscopic one by means of up-scaling relation (14},
by performing a mean of the micro field over each cell. Furthermore, for each value of 9, components of the
micro displacement field of the heterogeneous maodel are represented in Fig. 16, where the micro solution is
evaluated at nodes having xge = 0, see Fig. 15. In particular, dimensionless components of the macro and
micro displacement field, defined as

=U|{J'1] = Ualry) a _ ey =0) _

: =————"= iz =

2 J‘rg{.}[.‘h.'l"g = “]
I Nt L : L d

L8 T (35)

are represented in Fig, 16 as functions of the dimensionless length 7y = &y /L. Unit dimensionless amplitudes

= BIL - BQL

31=51|1|{3=U] =% Ezcml(a=ﬂ] =i (36)

are considered in the analyses, where Ty (0 = 0) is a component of the fourth order overall elastic tensor
evaluated for the undamaged material (2 = 0). Capabilities of the first-order asyvmptotic homogenization
technique applied for this class of periodic microstructured elastic materials are assessed by the good agree-
ment obtained in all the analyzed cases between the numerical solution of the heterogeneous model and the
solution of the homogenized one. Therefore, at the maeroscale, the elastic behavior of a periodic heteroge-
neous medium can be accurately described by the present homogenization procedure trough derivation of
the overall constitutive properties of the equivalent Canchy medinm depending npon the value of the phase
field parameter @ and the chosen degradation function g().

Appendix B. Finite element formulation of the coupled model

This appendix details the finite element formulation that has been exploited and implemented in the finite
clement software FEAP in order to solve the coupled system (27) in terms of the macro displacements U (x)
and the phase field variable d{x).

The weak form of balance equations (27) of the coupled field problem detailed in Section 4, taking into
account boundary conditions (28}, reads

i,
Ja dx

Sy D £ A inel0)
.(-.._._ il 1y Y 3 1 o — I =
‘/u 3z, B, (Iff+l?qaﬁ(1!3+-£: 5Ce wli pr Hypdf2 =10 Vi (37)

ol
Tiink (D) a—“d!?—i- j-; iy, by A+ s vy, by df2 =0 Yy, st by, =0on I,
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Fig. 16 Dimensionless micro displacement compenents iy ond iy evaluated along the mean horizontal line of the helerogeneous
model (dashed hines) and dimensionless macro displacement components [y and U7y os soluttons of the homogenized model
jeontinuous lines) and as o result of the upscaling of the numerteal selutton of the heterogeneous model (squares). (a) i’y and
iip va ¥y forng =1, (b) Uy and aiy va Fy forng = 2, (e) Uz and iz va F1 for ng = 1, and {d) Uz and G2 vs 5y for ng = 3
Phase field variable 3 =0 (blue), 8 = 0.25 (magente), and d = 0.5 (red),

where vy, awd W are taken as test functions. Considering the finite dimensional space V), for which {N;|j =
1.2..... N}, } is a basis, in the finite element discretization the macro displacement field U(x) and the phase
field o(x) are approximated as linear combinations of shape functions N;(x) and nodal unknowns U; and
0

R N
Uix) = Z.ﬂfj{x}!)’,j. oix) = ZNJ{x]D_,- (38)
=1 =1

Analogous approximations are considered for tost functions ¢, and ¥, whose nodal unknowns are indicated
respectively as 8U; and 82,

N Ni
G, (x) = Ny(x)dUs;,  alx) = Nj(x)d2; (39)
=1 =1

In every single finite element e, one can define matrices Byr and B, as
By =DyNy. By=D;N; {40)

where, in a two dimensional setting, matrices Dy and Dy contain the derivatives with respect to coordinates
xy and xq

"“—13. 0 i
Dy=|0 5|, Da=[“&5‘]+ (41)
8 i ey
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while Ny and N, collect the shape functions

Ny 0 No 0 ... Nvnod i

p o h . - Jﬂf Y T . L v
N; [n Ny 0 Naoo 0 N,»-..m] Ny = [N N2 ... Nanod] (42)

being Nyeq the number of single element nodes, Thus, the weak form (37) can be written over each element
domain 2, as

—éUTf B/ C(0)BydRU +46U" | Nitdr +éU” | Nl bdo=u.
Il"f ~ ;Ifr Lle

2 o g . 1.+ 1C(D
5a-'r3(-rf B! B;.<|!3a+da’“7rf N{Nadﬂa+§ﬁa' NI UTBT((;; 'BLdeuU =0 (43)
12, - Ja £,

The mumerical solution of the coupled problem (43) is obtained by means of an iterative Newton-Raphson
procedure, for which residual vectors of the displacement field Ry and of the phase field Ry are defined as

Ry=- [ BlC@)Byd2U+ [ Nftdl'+ [ Nlbd®, (44a)
2. Fey s
Ry =—Get | BiBpdfio— o Ny N,d2o - 2 NiUTB{ EC{”BU dRU (44b)
12, t LES 2 e 'j

The specific form of elemental stiffness matrices reads

iRy y
F-‘I’ = ""—r_mL = 5 Bj-r C{D] Br_; l'i,ﬁ," ['454}
K; n= _% f BT dc{n} B UNp[iIf {45',}
:‘.H' {}R'vb = NT'UJ‘ BT dC[m}B; [],!? {4&}
E 7.

2 ~ 8°C(d
K, = -_ﬁ =c:f-ff Bl Bydn + 55 f N7 Npdf2 + f NI UTB{ ! TR g UN, e
o 2. £ Ja, do?
(45d)

Consistently with the linearization of the resulting nonlinear system of equations (43), at each iteration of
the Newton-Raphson loop, the following linear system has to be solved

Kuo Ko .

46

[Kw K v

where AU and A9 are discretized according to (38) and the elemental stiffness matrices (45) and the residual
vectors (44) have been assembled in the corresponding global ones!.

Coupling with asymptotic homogenization is established by taking the elosed-form expression for C(D)

and AC(0) /v provided by an off-line computation hased on asymptotic homogenization, for different values

of 9.

! Finally note that following (Miehe ot al, 2010a), the current formulation is equipped with o viscous crack resistance
parmmeter, leading to the modification of the operators nssociated with the phase field variable, An alternative solution scheme
wonld encompass n staggered Jacobi-type method which can be easily recalled by eliminating the coupling stiffness matrices
and adopting an alternate minimization procedure



