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Abstract The isotropic compliance property is examined in the Special Euclidean Group
SE(3) in the case of redundant manipulators. The redundancy problem is solved by means
of the QR decomposition of the transposed Jacobian matrix, and the compliance property is
achieved by means of active stiffness regulation. Thanks to the defined control matrices, the
control system realizes the isotropy condition. The local optimization of the joint torques is
discussed. In particular, the joint control torques work is minimized obtaining an analytic
solution through a Lyapunov equation. The proposed approach is applied to a 7R and to a
9R serial manipulator, and verified by means of multibody dynamics simulations.

Keywords Isotropic Compliance · Stiffness Matrix · Redundancy · QR decomposition ·
Torque minimization

1 Introduction

In the last decades, many investigations were conducted to improve the kinematic perfor-
mance of manipulators [1–6], and the Jacobian matrix has been widely considered a key tool
to evaluate these performance. For example, Yoshikawa defined the concept of manipulabil-
ity as the square root of the determinant of the product of the Jacobian by its transpose [7],
whereas Salisbury and Craig [8] introduced a performance index based on the Jacobian con-
dition number. They introduced also the concept of isotropic point: a point of the workspace
where the Jacobian matrix becomes isotropic, i.e. its condition number becomes equal to
unity. Isotropy has been also discussed in the case of parallel manipulators [9, 10], and
extended to various manipulator properties, such as force, stiffness, even repeatability and
mass [11].
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The concept of isotropic compliance was initially introduced in E(3) and achieved by
means of active joint stiffness regulation [12, 13]. When this property is verified, the end-
effector displacement is parallel to the applied force. The basic condition for the achieve-
ment of this property lies on the manipulator compliance matrix, C, defined in the task space,
which has to be a scalar matrix. More specifically, this property implies C = Jk−1JT = λI,
where J is the Jacobian matrix, k is the joint stiffness matrix, λ is a scalar and I is the
identity matrix. Generally, matrix k originates from the passive compliance of the joints.
Therefore, k is a diagonal matrix, but its elements are not necessarily equal. However, a
control loop could be implemented, which makes the off-diagonal elements no longer null.
This consideration, indeed, gave rise to the concept of isotropic compliance, which basi-
cally differs from kinematic isotropy. In fact, considering the singular values of J, a serial
non-redundant manipulator is defined isotropic when its Jacobian matrix satisfies the rela-
tion JJT = λI [6, 14]. Therefore, kinematic isotropy implies isotropic compliance only if all
the joints have the same stiffness, i.e. k is a scalar matrix. As a consequence, the range of
applications of the isotropic compliance is wider than the one related to kinematic isotropy:
the former refers to manipulators characterized by a non-scalar stiffness matrix, the latter to
manipulators with scalar stiffness matrix (all joints with equal stiffness value).

The feasibility of the isotropic compliance property was investigated in Ref. [15], where
a workspace classification was proposed considering different types of isotropic compli-
ance subsets. Therefore, isotropic compliance was extended to the Special Euclidean Group
SE(3), considering the relation between the wrench applied to the end-effector and the re-
sulting twist [16]. In particular, two properties were introduced: local isotropic compliance,
verified if the force vector and the torque axis are parallel to the end-effector displacement
vector and to the rotation axis, respectively, and screw isotropic compliance, verified if the
wrench screw axis is parallel to the twist screw axis. In the latter case, wrench and twist
screw axes are in general parallel but not coincident. For this reason, two particular cases
were considered: task screw isotropic compliance, verified if the screw axes are coincident,
and tool screw isotropic compliance, verified if the common screw axis passes through the
end-effector contact point. Two arrangements have been taken into account in Ref. [16] for
the control system, operating either in parallel or as a series with the passive joint stiff-
ness. The investigation was limited to a 6-DoF manipulator, therefore redundancy was not
considered.

Generally, the capability of controlling the compliance response of a manipulator repre-
sents an opportunity that has been adopted in several systems [17]. For example, the compli-
ance behavior of a finger of a robogami has been modeled and then controlled along different
directions with both simulations and experiments [18]. A further example of the capability
of controlling compliance along different directions has been also provided to synthesize
compliance in a microgripper [19]. Finally, a compliance adaptation method has been also
proposed to optimize the performance of robots employed in cyclic tasks [20] with the pur-
pose of minimizing actuation forces and energy. Interestingly, the latter goal can be pursued
also in the rather different case of redundant driven parallel manipulators, sometimes with a
significant reduction of energy consumption [21].

In fact, redundancy can be used to meet user-defined tasks or additional constraints on the
kinematic or dynamic control problem, such as obstacles [22–24] or joint–drift [25] avoid-
ance, joint limitations [26–28], singularity avoidance [29, 30], energy saving optimization
[31–33], torque [34–37] and antagonistic stiffness [38] optimization, force or torque con-
trol [39–42], impact force reduction [43], collision safety evaluation [44], to name the most
relevant ones.
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Many solutions have been proposed for the kinematic control problem of redundant
manipulators, such as simple Jacobian-based techniques, gradient projection method, task-
space augmentation, inverse kinematic functions [45], and quadratic programs-based opti-
mization schemes [46].

Simple Jacobian-based techniques focus on the solution of the equation ṡ = Jq̇ , where
q and s are the vectors of joint and task variables, respectively. The joint velocities vector
q̇ is determined by considering a suitable control matrix based on the Jacobian, such as
the Moore–Penrose pseudoinverse [47] or the damped least-square inverse [48] of J. Other
solutions consider the Jacobian transpose [49].

The gradient projection method generalizes the pseudoinverse minimum-norm solution
by adding a homogeneous term defined by a projection operator. Such operator projects an
arbitrary joint velocity vector q̇0 in the nullspace of J, therefore q̇0 produces only internal
motions. The vector q̇0 is usually determined by optimizing a cost function related to, for
example, joint range availability, obstacle avoidance, actuator energy consumption, torque
and acceleration minimization, or other various criteria [45, 49, 50].

Considering the task-space augmentation method, a suitable constraint task is added to
the end-effector task [51], whereas the inverse kinematic function approach consists in find-
ing an inverse kinematic function on a workspace subset and in defining some optimization
criteria [52].

Quadratic programs-based optimization schemes have been recently implemented to
solve inequality and repeatability problems related to the constraints imposed by the sys-
tem or the environment. Generally, these problems can be solved by means of numerical
methods or neural networks, the latter based on parallel processing [53, 54].

Solving the inverse dynamics problem of redundant manipulators, formulated in the re-
dundant coordinate set approach that is typical of modern multibody dynamics, has been
recently addressed in Ref. [42].

In the present investigation, the isotropic compliance property is extended to the case
of serial redundant manipulators. With respect to the previous investigation in SE(3) [16],
an optimization procedure is presented to solve the redundancy problem. More specifically,
the proposed method is based on the QR decomposition of the transposed Jacobian matrix
and on the minimization of the joint control torques work. An analytic solution is obtained
through the Lyapunov matrix equation. Then proper control stiffness matrices are deter-
mined in the joint space.

In the present investigation, the isotropic compliance property is extended to the case of
serial redundant manipulators. With respect to the previous investigation in SE(3) [16], an
optimization procedure is presented to solve the redundancy problem. The proposed method
is based on the Jacobian transpose and on the minimization of the joint control torques work.
More specifically, the novelty of this contribution lies on:

– the implementation of the QR decomposition for the transposed Jacobian matrix;
– the definition of the matrix γ for the minimization of the cost function;
– the analytical solution obtained through a Lyapunov algebraic matrix equation.

Then, proper control stiffness matrices are determined in the joint space.
The paper is organized as follows. In Sect. 2, the isotropic compliance problem is de-

scribed and motivated; in Sect. 3, some basic concepts of the redundancy problem are re-
called, whereas in Sect. 4 and the solution strategy is described. In Sect. 5, the isotropic
compliance condition is formulated in the case of redundant manipulators, and in Sect. 6
a solution based on the minimization of the work done by the joint control torques is pre-
sented. Finally, in Sect. 7, two examples of application are presented considering a 7R and
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a 9R serial manipulator, and the achievement of the desired compliance isotropy is verified
by means of accurate multibody dynamics simulations.

2 Local isotropic compliance in SE(3): problem formulation

According to the Denavit–Hartemberg convention, two fundamental reference frames can be
defined in a serial manipulator, which are the base frame and the tool frame. With reference
to Fig. 1a, the origin P of the tool frame, Rn ≡ {P,xn, yn, zn}, is determined by the position

vector
−−→
O0P , where O0 is the origin of the base frame R0 ≡ {O0, x0, y0, z0}. To define the

isotropic compliance property in SE(3), a new frame with origin in P can be introduced,
RP ≡ {P,x, y, z}, with axes x, y, and z, defined by the unit vectors î, ĵ , and k̂, respectively.
The definition of this frame is based on the wrench w = {φĵ ;μû} acting on the end-effector.

In the figure, the unit vector ĵ corresponds to the force line of action, φ is the force
magnitude, û is the unit vector corresponding to the axis torque u, and μ is the torque
magnitude. The unit vector k̂ is defined as the unit vector perpendicular to ĵ and belonging to
the plane defined by ĵ and û, whose sense is the same as the component of û perpendicular
to ĵ . It follows that î = ĵ × k̂.

The torque component μû of the wrench is equal to the sum of a component parallel to
the force line of action, λφĵ , where λ is the wrench pitch, and a component perpendicular
to such line, that is, φp × ĵ = φpî × ĵ = φpk̂. We define o as the screw axis of the wrench,

and O the point defined by the position vector p = −→
PO. Also, we define π as the plane xy,

and σ as the plane normal to the unit vector û.
As is well known [55], the wrench w is energetically conjugated to the twist t =

{Θ�ĥ;�P v̂}, where Θ� is the rotation angle of the end-effector about the unit vector ĥ,
and �P v̂ is the end-effector displacement vector. We define h as the screw axis of the twist,
ĥ as the unit vector of h, and χ as the plane normal ĥ. Also, we define r = −→

PH the vec-
tor representing the position of h with respect to P . Therefore, �P v̂ = Θ�νĥ + Θ�r × ĥ,
where ν twist pitch.

Generally, there are no particular relations between the directions of the unit vectors ĵ

and v̂, which represent the directions of the applied force and of the displacement, respec-
tively, nor between the unit vectors û and ĥ, the unit vectors corresponding to the axis torque
and to the screw axis of the twist, respectively [16]. This case is represented in Fig. 1a. The
conditions of parallelism between the unit vectors ĵ and v̂, and between the unit vectors û

and ĥ correspond to the local isotropic compliance in SE(3), and it is represented in Fig. 1b.
A practical application of the isotropic compliance condition is depicted in Fig. 2, where

a manipulator end-effector is grasping a cylindrical object in a structured workspace delim-
ited by the plane π and, in quasi-static conditions, the interaction load is represented by the
wrench w = {φĵ ;μû}. During its task, the end-effector must avoid collisions between the
carried object and the planar boundary.

If the isotropic compliance condition not verified, as depicted in Fig. 2a, the generalized
displacement is composed of a translation �P v̂ and of a rotation Θ�ĥ. Since there is no
control over the end-effector, the handled object could collide with the surface π .

If the local isotropic compliance condition is verified in SE(3), as showed in Fig. 2b, the
translation �P v̂ of the end-effector is parallel to the force φĵ , and the rotation axis ĥ is
parallel to the torque axis k̂, avoiding risk of collision to the workspace boundary.
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Fig. 1 (a) General case and
(b) local isotropic compliance
condition

3 Kinematics of redundant manipulation

The relation between the task-space velocity vector, ṡ ∈ R
r×1, and the joint velocity vector,

q̇ ∈R
n×1, can be written as

ṡ = Jq̇, (1)

where J ∈ R
r×n is the manipulator’s Jacobian matrix. In case of redundant manipulators

(r < n), a general solution of Eq. (1) is given by

q̇ = J+ṡ + Nq̇0, (2)

where J+ ∈ R
n×r is a generalized inverse of J, q̇0 ∈R

n×1 is an arbitrary joint velocity vector,
and N ∈R

n×n is a projection operator which projects q̇0 into the nullspace of J, i.e. JN ≡ 0.
The first term of Eq. (2), q̇∗ = J+ṡ, defines the joint velocities necessary to obtain the

given task-space velocity and represents a particular solution of Eq. (1). The second term,
q̇N = Nq̇0, does not contribute to the task-space velocity, but only to the motion in the
nullspace, that is, the self-motion of the redundant manipulator.

The matrices J+, N and the vector q̇0 are not uniquely defined. A common approach to
solving the redundancy problem consists in choosing a suitable symmetric positive-definite
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Fig. 2 End-effector handling a
tool in a structured workspace:
(a) general case and (b) local
isotropic compliance condition in
SE(3)

weighting matrix, W ∈R
n×n, in order to define the weighted right pseudoinverse of J as

J+ = W−1JT
(
JW−1JT

)−1
. (3)

Considering the self-motions, the matrix

N = I − J+J, (4)

can be assumed as the nullspace projector, whereas the arbitrary joint velocity vector q̇0 is
usually determined by optimizing an objective function w(q) of the joint variables, as [45]

q̇0 =
(

∂w(q)

∂q

)T

. (5)

4 Solution of the redundancy problem

In this investigation, it is assumed that the Jacobian matrix is of full (row) rank r . Since we
are dealing with an essentially static problem, the relations between the task-space velocity
and the joint velocity vectors can be reformulated in terms of small end-effector displace-
ments and rotations, �s, and small perturbations of the configuration vector, �q , as

�s = J�q, (6)

where

�s =
[

0 I
I 0

]
, t =

[
�P v̂

Θ�ĥ

]
(7)

and

�q = J+�s + N�q0 (8)

is a general solution of Eq. (6).
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To address redundancy, the perturbation vector

�q = Q1�σ + Q2�α (9)

considered as a particular solution of Eq. (6). Firstly, matrices Q1 and Q2 are introduced.
Then, the role of vectors �σ ∈ R

r×1 and �α ∈R
(n−r)×1 is explained.

The matrices Q1 ∈ R
n×r and Q2 ∈ R

n×(n−r) result from the QR decomposition of JT ∈
R

n×r [56], that is,

JT = QR = [
Q1 Q2

][
R1

0

]
= Q1R1, (10)

where Q ∈ R
n×n is an orthogonal matrix, R1 ∈ R

r×r is an upper triangular matrix, and 0 ∈
R

(n−r)×r is the zero matrix.
By assuming W = I in Eq. (3), the right pseudoinverse can be chosen as an inverse of the

Jacobian matrix, that is,

J+ = JT
(
JJT

)−1
. (11)

By making use of Eq. (10), the Jacobian matrix and its pseudoinverse become

J = RT
1 QT

1 (12)

and

J+ = Q1R−T
1 , (13)

respectively.
Alternatively, for W �= I, one obtains

J+ = W−1Q1

(
QT

1 W−1Q1

)−1
R−T

1 (14)

Focusing on Eq. (9), it can be rewritten as

�q = �q∗ + �qN, (15)

where

�q∗ = Q1�σ (16)

defines the perturbations of the configuration vector necessary to obtain the given task-space
displacement, and

�qN = Q2�α (17)

defines displacements that take place in the nullspace of the Jacobian matrix and do not
contribute to the task-space displacement. In fact, the columns of Q1 form an orthonormal
base for the range of JT ,

R(Q1) = R
(
JT

)
, (18)

whereas the columns of Q2 form an orthonormal base for its orthogonal complement, that
is, the nullspace of J,

R(Q2) = R
(
JT

)⊥ = N (J). (19)
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The role of the orthonormal bases associated with matrices Q1 and Q2 can be exemplified
by considering the linear mapping between �q and �s. By pre-multiplying both sides of
Eq. (9) by J, it follows that

J�q = JQT
1 �σ + JQ2�α. (20)

Then, by making use of Eq. (12), Eq. (20) becomes

RT
1 QT

1 �q = RT
1 QT

1 (Q1�σ + Q2�α) = RT
1 �σ (21)

and, simplifying,

�s = RT
1 �σ . (22)

It is clear that only �σ , associated with Q1 and �q∗, contributes to �s, whereas �α,
associated with Q2 and �qN , does not affect the end-effector pose in the task space.

The vector �σ ∈R
r×1 can be obtained from Eq. (22) as

�σ = R−T
1 �s. (23)

The vector �α ∈R
(n−r)×1, associated with the nullspace, can be determined by optimiz-

ing an arbitrarily chosen objective function of the joint coordinates perturbations, w(�q), by
analogy with the determination of the joint velocity vector q̇0 obtained by means of Eq. (5).

5 Local isotropic compliance

In order to obtain the desired isotropic compliance, suitable joint torques need to be added
to the intrinsic compliance of the manipulator. In the present discussion, the case of paral-
lel compliance is considered, i.e. the motor torques are acting in parallel with the passive
compliance of the joints.

Let �s be a perturbation of the configuration—displacement and rotation—in the end-
effector space. Let �w be a corresponding perturbation of force and moment. They are
related by K ∈R

r×r , the stiffness matrix in the end-effector space,

�w = K�s. (24)

The inverse relationship makes use of the compliance matrix C = K−1,

�s = C�w. (25)

Let �q be a perturbation of the joint coordinates. The corresponding perturbation of joint
torques �τ ∈ R

n×1 can be determined considering the joint stiffness matrix, k ∈ R
n×n, by

means of the relation

�τ = k�q. (26)

The inverse relationship makes use of the joint compliance matrix c = k−1,

�q = c�τ . (27)
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The perturbation of the end-effector configuration is related to the perturbation of the joint
coordinates by the Jacobian matrix J,

�s = J�q. (28)

The equivalence between the work done by a perturbation of joint torques and of end-
effector force and moment for the corresponding joint and end-effector motion perturbation
�qT �τ = �sT �w = �qT JT �w yields the relationship between end-effector loads and
joint torques

�τ = JT �w. (29)

Expressing the end-effector force and moment and the joint torques as functions of the
corresponding configuration perturbations through the previously introduced constitutive
relationships, �qT k�q = �sT K�s = �qT JT KJ�q yields the relationship between the
stiffness matrix in the end-effector space and the corresponding joint stiffness matrix,

k = JT KJ. (30)

Similarly, considering the inverse of the constitutive relationships, �wT C�w = �τ T c�τ =
�wT JcJT �w one obtains the relationship between the joint compliance and the end-
effector compliance matrix,

C = JcJT , (31)

whose inverse yields a direct relationship between the joint stiffness matrix and the corre-
sponding end-effector stiffness matrix,

K = (
Jk−1JT

)−1
(32)

Isotropic compliance is obtained by adding a control stiffness, i.e. the “active” stiffness
that is needed to obtain the desired end-effector stiffness K, by means of the joint motors.
The control stiffness

kc = −kp + JT KJ (33)

replaces the passive stiffness kp with a matrix that provides the desired end-effector stiff-
ness, such that k = kp + kc = JT KJ.

In case of manipulator redundancy, the control stiffness is not uniquely defined. In gen-
eral, it can be formulated as

kc = −kp + JT KJ + QT
2 γ Q2, (34)

where the symmetric matrix γ does not affect the stiffness in the end-effector space. It
represents the degree of arbitrariness provided by the redundancy, which can be determined
by minimizing some cost function.

Theorem 1 γ ∈ Sym(n − r) does not affect the Cartesian stiffness matrix.
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Proof The joint stiffness matrix, k = kp + kc , is expressed in the rangespace and nullspace
of the joint Jacobian matrix,

QT kQ =
[

R1KRT
1 0

0 γ

]
(35)

It is worth noticing that the choice of γ affects the definiteness of the matrix in Eq. (35)
with respect to coordinates that express the solution in the nullspace of J, Q2. For example,
γ = 0 would make matrix k singular with respect to joint displacement perturbations in the
nullspace of J, whereas a non-definite matrix would make the reference solution unstable.
To overcome such problems, γ > 0 is required.

From Eq. (35), the inverse of the reoriented joint stiffness matrix can be determined as

k−1 = Q
[

R−T
1 K−1R−1

1 0
0 γ −1

]
QT (36)

and used to compute the tool space compliance matrix, C.
In fact, the compliance matrix in the joint space is mapped into the Cartesian space by

means of the Jacobian as

C = JcJT , (37)

where c = k−1. Therefore, by substituting Eq. (36) in Eq. (37), and by making use of
Eq. (12), it follows that

C = RT
1 QT

1 Q
[

R−T
1 K−1R−1

1 0
0 γ −1

]
QT Q1R1,

where C = K−1. �

6 Redundancy exploitation

The redundancy is exploited by choosing matrix γ such that some cost function is mini-
mized. Although several cost functions can be envisaged, in the following the work done
by control torques in vector �τ c for the corresponding joint motion is considered, namely
min(�qT �τ c)

2. Since the problem results in a positive-definite quadratic cost function, an
analytical solution can be obtained through a Lyapunov algebraic matrix equation.

The control torque perturbations vector is required, which is defined as

�τ c = kc�q = (−kp + JT KJ + Q2γ QT
2

)
�q. (38)

Considering the coordinate transformation �q = Q1�σ + Q2�α of Eq. (9), the work, pos-
sibly with some weight W on each joint’s contribution, is

L = �qT W�τ c

=
{

σ

α

}T
[

QT
1 W

(
JT KRT

1 − kpQ1

)
QT

1 W
(
Q2γ − kpQ2

)

QT
2 W

(
JT KRT

1 − kpQ1

)
QT

2 W
(
Q2γ − kpQ2

)

]{
σ

α

}

=
{

σ

α

}T [
M11 M12

M21 M22

]{
σ

α

}
, (39)
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with straightforward definition of the block-elements Mij, i, j = 1,2, of matrix M, thus,
noticing that only M12 and M22 depend on γ ,

(L)2 = LT L

= tr

({
σ

α

}T [
MT

11 MT
21

MT
12 MT

22

]{
σ

α

}{
σ

α

}T [
M11 M12

M21 M22

]{
σ

α

})

= tr

({
σ

α

}{
σ

α

}T [
MT

11 MT
21

MT
12 MT

22

]{
σ

α

}{
σ

α

}T [
M11 M12

M21 M22

])

= tr

([
H11 H12

HT
12 H22

][
MT

11 MT
21

MT
12 MT

22

][
H11 H12

HT
12 H22

][
M11 M12

M21 M22

])

= tr

(
H12MT

12 (H11M11 + H12M21)

+ H12MT
22

(
HT

12M11 + H22M21

)
)

+ tr

( (
HT

12MT
11 + H22MT

12

)
(H11M12 + H12M22)

+ (
HT

12MT
21 + H22MT

22

) (
HT

12M12 + H22M22

)
)

+ · · · (terms that do not depend on γ ), (40)

where the symmetric, positive-definite matrix H, and the corresponding sub-matrices H11,
H22, and H12, represent the importance associated with each of the degrees of freedom of
the system, which stems from independently perturbing each of the coordinates, namely

H =
∑

i=1,N

wieie
T
i (41)

with respect to base ei , weighted by wi > 0. It is the identity matrix in the case of equal
weight for all directions, regardless of the base, since an orthogonal coordinate transforma-
tion is used in Eq. (9).

The minimization of the cost function implies the solution of the Lyapunov equation

0 = H−1
22 QT

2 WQHQT WQ2γ + γ QT
2 WQHQT WQ2H−1

22

+ H−1
22 QT

2 WQH
[

M11

M21

]
H12H−1

22

− H−1
22 QT

2 WQHQT WkpQ2 − QT
2 kpWQHQT WQ2H−1

22

+ H−1
22 HT

12

[
MT

11 MT
21

]
HQT WQ2H−1

22 . (42)

For H = I, i.e. H11 = I, H22 = I, and H12 = 0, one obtains

0 = QT
2 W2Q2γ + γ QT

2 W2Q2 − QT
2

(
W2kp + kpW2)Q2 (43)

Furthermore, for W = I, i.e. when the actual work is minimized, the solution is

γ = QT
2 kpQ2, (44)

which yields the control stiffness matrix

kc = JT KJ + Q2QT
2 kpQ2QT

2 − kp. (45)
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Table 1 7R manipulator:
Denavit–Hartenberg parameters
and joint passive stiffness
coefficients

Joint d (m) a (m) α (deg) kp (Nm/rad)

1 0 0 90 800

2 0 0.432 0 880

3 0.150 0.020 −90 710

4 0.432 0 90 730

5 0 0 −90 660

6 0 0.200 0 750

7 0.250 0.250 −90 690

From a physical point of view, the control system does not work against the passive stiffness
in the nullspace of JT .

7 Examples of application

In this section, the local isotropic compliance property is achieved in two redundant sys-
tems with different degrees of redundancy, which are a 7R and a 9R serial manipulator,
considering active and passive stiffness in parallel arrangement.

7.1 Seven-DoF manipulator

The 7R manipulator under study is depicted in Fig. 3a in its reference posture (q = 0).
Table 1 lists its Denavit–Hartenberg parameters and joint passive stiffness coefficients
kp1 , . . . , kp7 .

The perturbation load is applied to the tip of the end-effector. The property is achieved
in two different postures, defined in radians by the joint coordinates vectors

qa = [0,−0.39,−0.45,−0.35,0.45,−0.39,0.52],
qb = [0,0.10,−1.85,−1.55,1.55,1.85,−1.20],

and depicted in Figs. 3b and 3c, respectively.

7.1.1 Control-matrix computation

The control matrix can be computed according to the following algorithm. Firstly, the de-
sired compliance response of the end-effector is defined by the assigning compliance matrix
in the Cartesian space. In order to achieve the isotropic condition, C must be a block matrix
whose diagonal blocks are scalar matrices and whose off-diagonal blocks are zero matrices,
i.e.

C =
[

c̃dI 0
0 c̃rI

]
. (46)

In Eq. (46), I ∈R
3×3 is the identity matrix, 0 ∈R

3×3 is the zero matrix, and c̃d and c̃r are the
compliance coefficients associated to linear displacements and rotations, respectively. For
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Fig. 3 Seven-DoF manipulator
in: (a) posture defined by q = 0;
(b) posture defined by qa ;
(c) posture defined by qb
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Fig. 4 Seven-DoF manipulator
in the posture qa : end-effector
displacements and rotations, with
and without control action, for
the first 3 s of simulation (force
applied in the x-axis direction)

the following examples, the compliance coefficients are set as

c̃d = 2.0 · 10−3 m N−1,

c̃r = 1.7 · 10−3 N−1 m−1 rad.
(47)

Then, the stiffness matrix can be calculated as K = C−1.
Considering the first posture, the Jacobian matrix corresponding to qa is

J =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

0.287 1.209 0.000 0.000 0.000 1.000
−0.197 0.000 1.208 0.000 −1.000 0.000
−0.362 0.000 0.810 0.000 −1.000 0.000

0.092 0.249 −0.102 0.746 0.000 0.666
−0.049 0.141 0.477 −0.228 −0.940 0.255

0.138 0.393 −0.125 0.400 0.148 0.904
0.028 0.243 −0.052 0.400 0.148 0.904

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

,

and its QR decomposition can performed as in Eq. (10), in order to obtain Q1, Q2 and R1.
Therefore, the matrix γ can be determined by using Eq. (44), considering the values of kp
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Fig. 5 Seven-DoF manipulator
in the posture qa : end-effector
displacements and rotations, with
and without control action, for
the simulation time from 12 s to
15 s (moment applied in the
y-axis direction)

listed in Table 1. Finally, the control stiffness matrix, from Eq. (34), results in

kc =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

5.68e2 −2.66e1 −6.45e1 5.70e2 2.36e2 7.27e2 7.23e2
−2.66e1 4.58e2 1.11e3 −6.81e1 8.47e2 −1.89e2 −1.13e2
−6.45e1 1.11e3 2.90e2 -7.95e1 7.42e2 −6.87e1 −1.75e2

5.70e2 −6.81e1 −7.95e1 −7.67e1 4.80e0 4.84e2 6.34e2
2.36e2 8.47e2 7.42e2 4.80e0 6.09e1 −6.64e1 4.36e1
7.27e2 −1.89e2 −6.87e1 4.84e2 −6.64e1 4.05e2 3.34e2
7.23e2 −1.13e2 −1.75e2 6.34e2 4.36e1 3.34e2 1.29e2

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

.

By following an analogous procedure, the matrices J and kc can be evaluated for the
second posture, qb , resulting in

J =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

−0.104 0.937 0.000 0.000 0.000 1.000
0.413 0.000 0.937 0.000 −1.000 0.000
0.456 0.000 0.508 0.000 −1.000 0.000
0.045 0.338 0.250 0.98399 0.000 −0.178

−0.242 0.149 0.047 0.17821 −0.021 0.984
−0.364 0.010 −0.080 0.024168 1.000 0.017
−0.184 0.007 −0.169 0.024168 1.000 0.017

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦
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Fig. 6 Seven-DoF manipulator
in the posture qb : end-effector
displacements and rotations, with
and without control action, for
the first 3 s of simulation (force
applied in the x-axis direction)

Fig. 7 Seven-DoF manipulator
in the posture qb : end-effector
displacements and rotations, with
and without control action, for
the simulation time from 12 s to
15 s (moment applied in the
y-axis direction)

and

kc =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

2.33e2 −2.13e1 −2.42e1 5.13e1 6.61e2 3.32e1 2.30e1
−2.13e1 3.32e2 7.35e2 1.28e2 −1.42e1 −8.58e2 −6.35e2
−2.42e1 7.35e2 4.59e2 7.04e1 −3.41e1 −3.98e2 −8.05e2

5.13e1 1.28e2 7.04e1 −5.22e1 2.56e1 −7.21e0 −1.05e1
6.61e2 −1.42e1 −3.41e1 2.56e1 −3.01e1 4.05e1 2.00e1
3.32e1 −8.58e2 −3.98e2 −7.21e0 4.05e1 1.55e2 5.17e2
2.30e1 −6.35e2 −8.05e2 −1.05e1 2.00e1 5.17e2 −2.06e1

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

,

respectively.

7.1.2 Verification by multibody simulation

The system response has been verified by means of a dynamic simulation performed using
MBDyn, a free general-purpose multibody solver developed at Politecnico di Milano [57].
The multibody model is made of seven rigid bodies and seven revolute joints. The constitu-
tive law of each joint is characterized by the corresponding nominal torsional stiffness, kp , as
listed in Table 1, and a viscous damping term equal to 10−3 · kp Nm s/rad. Inertia properties
have not been considered, since only (quasi-)static problems have been addressed.

A sequence of three independent forces and three independent moments is applied to the
end-effector. Each force and moment is directed, respectively, along and about one of the
coordinate axes; the magnitude of each force and moment is equal to 0.2 N and 0.5 Nm,
respectively. These values have been chosen to produce a detectable configuration change,
yet small enough to neglect kinematic nonlinearities in the perturbed solution. Each force
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Table 2 9R manipulator:
Denavit–Hartenberg parameters
and joint passive stiffness
coefficients

Joint d (m) a (m) α (deg) kp (Nm/rad)

1 0.200 0 90 800

2 0 0 −90 880

3 0.200 0 90 710

4 0 0 −90 730

5 0.200 0 90 660

6 0 0 −90 750

7 0.200 0 90 690

8 0 0 −90 640

9 0.100 0 0 730

Fig. 8 Nine-DoF serial
manipulator: initial posture and
prescribed end-effector trajectory
parallel to the y-axis (red line)

and moment is slowly increased following a regular pattern (a sequence of (1 − cos(t))-
shaped trajectories), then kept constant for some time, and subsequently slowly brought back
to zero. The small applied loads induce correspondingly small changes of configuration;
thus, the feedback gain matrix can be held constant.

The results presented in Fig. 4 refer to the first posture, qa , defined in Sect. 7.1.1. The fig-
ure shows the applied loads and the corresponding end-effector displacements and rotations,
u and Θ , computed with and without the control action. The first 3 seconds of simulation
refer to the loading cycle along the x axis. It is clear that when the feedback action is present,
the solution provides almost perfectly the sought local isotropic compliance. Figure 5 shows
the range between 15 s and 18 s of the simulation, which refer to the moment loading along
the y axis. The responses obtained when the end-effector is loaded with a force or a mo-
ment in the other directions are qualitatively identical, and reported in the appendix. It is
worth noting that, during the loading and unloading phases, the end-effector presents some
negligible deviations (three orders of magnitudes) from the isotropic compliance behavior
because of unavoidable viscous friction terms.

As a further verification of the proposed approach, Figs. 6 and 7 report, under the same
loads, the end-effector displacement and finite rotations vectors obtained, with feedback,
with the second posture, qb , defined in Sect. 7.1.1. Further results are reported in Appendix.
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Fig. 9 Nine-DoF manipulator
end-effector paths: no
perturbation forces at the tip
(asterisk), perturbation forces at
the tip with no feedback control
(circle), and perturbation forces
at the tip with feedback control
(square)

Fig. 10 Nine-DoF manipulator:
end-effector displacements with
respect to the prescribed path

7.2 Nine-DoF manipulator

In this subsection, a more complex case is examined. In fact, a higher degree of redundancy
is introduced and, instead of an assigned posture, an assigned task is considered. Table 2
lists the Denavit–Hartenberg parameters and the joint passive stiffness coefficients of a 9R
serial manipulator.

The assigned task consists of the generation of a straight path for the end-effector, keep-
ing it in a constant orientation. More specifically, starting from the posture defined by the
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Fig. 11 Nine-DoF manipulator:
end-effector rotations with
respect to the prescribed path

Fig. 12 Seven-DoF manipulator
in the posture qa : end-effector
displacements and rotations, with
and without control action, for
the simulation time from 3 s to
6 s (force applied in the y-axis
direction)
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Fig. 13 Seven-DoF manipulator
in the posture qa : end-effector
displacements and rotations, with
and without control action, for
the simulation time from 6 s to
9 s (force applied in the z-axis
direction)

joint coordinates vector

q = [−0.77,0.98,0.66,1.42,−0.16,0.66,0.83,0.87,−0.40],
a line segment parallel to the y-axis and with length equal to 10 cm is considered. Both
the manipulator in the initial posture and the prescribed path are depicted in Fig. 8. The
line segment is defined by 100 equally spaced points, and for each point the corresponding
joint coordinates values are calculated. Any intermediate reference posture during the sim-
ulation is computed by linearly interpolating, as a function of time, the joint coordinates.
To verify the effectiveness of the proposed control approach, the control stiffness matrix kc

is also computed at each point, and linearly interpolated for any intermediate posture. The
compliance coefficients are set as

c̃d = 2.0 · 10−5 mN−1,

c̃r = 1.7 · 10−5 N−1 m−1 rad.
(48)

During a simulation time of 1 s, a constant disturbance force, f = [2,2,2] N, is applied to
the end-effector. Figure 9 compares the end-effector paths in three different cases: (a) no
perturbation forces at the tip, (b) perturbation forces at the tip with no feedback control, (c)
perturbation forces at the tip with feedback control. As it can be seen from the figure, in the
case of active stiffness regulation the end-effector path is parallel to the prescribed one, with
a constant displacement equal to s = [4,4,4] · 10−5 m.
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Fig. 14 Seven-DoF manipulator
in the posture qa : end-effector
displacements and rotations, with
and without control action, for
the simulation time from 9 s to
12 s (moment applied in the
x-axis direction)

Figure 10 compares the end-effector displacements due to the perturbation forces with
and without the effects of the control action. Analogously, Fig. 11 reports the end-effector
rotations. From these figures, the control action demonstrates to be effective in the achieve-
ment of the isotropic compliance property, showing the ability to maintain the parallelism
between the prescribed and the target paths and preventing any undesired rotation.

8 Conclusions

In this paper, the isotropic compliance property has been investigated in the Special Eu-
clidean Group SE(3), considering serial redundant manipulators. The solution of the redun-
dancy problem is based on the QR decomposition of the transpose of the Jacobian matrix.
The determined control stiffness matrices allow the control system to minimize the work
of the joint control torques retaining the isotropic compliance property. Multibody dynamic
simulations have been performed by implementing the developed method. Results confirm
the feasibility of the proposed approach in manipulators with different degree of redundancy
and for prescribed tasks.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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Fig. 15 Seven-DoF manipulator
in the posture qa : end-effector
displacements and rotations, with
and without control action, for
the simulation time from 15 s to
18 s (moment applied in the
z-axis direction)

Fig. 16 Seven-DoF manipulator
in the posture qb : end-effector
displacements and rotations, with
and without control action, for
the simulation time from 3 s to
6 s (force applied in the y-axis
direction)

Appendix

The first posture (qa) end-effector response, in the case of a force applied along the y direc-
tion with and without control action, is reported in Fig. 12. Analogously, the cases regarding
the force on the z direction, the moment about the x direction, and the moment about the
z direction are reported in Fig. 13, Fig. 14, and Fig. 15, respectively. The correspondent
end-effector responses for the second case (qb) are reported in Fig. 16, Fig. 17, Fig. 18 and
Fig. 19.
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Fig. 17 Seven-DoF manipulator
in the posture qb : end-effector
displacements and rotations, with
and without control action, for
the simulation time from 6 s to
9 s (force applied in the z-axis
direction)

Fig. 18 Seven-DoF manipulator
in the posture qb : end-effector
displacements and rotations, with
and without control action, for
the simulation time from 9 s to
12 s (moment applied in the
x-axis direction)

Fig. 19 Seven-DoF manipulator
in the posture qb : end-effector
displacements and rotations, with
and without control action, for
the simulation time from 15 s to
18 s (moment applied in the
z-axis direction)
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