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Introduction

In their recent paper [CH], Castella and Hsieh proved vanishing results for Selmer
groups associated with Galois representations attached to newforms twisted by Hecke
characters of an imaginary quadratic field. These results are obtained under the so-
called Heegner hypothesis that the imaginary quadratic field satisfies with respect to
the level of the modular form. In particular, Castella and Hsieh prove the rank 0 case
of the Bloch—Kato conjecture for L-functions of modular forms in their setting.

The key point of the work of Castella and Hsieh is a remarkable link between certain
arithmetic objects called generalized Heegner cycles that were introduced by Bertolini,
Darmon and Prasanna in [BDP] and suitably defined p-adic L-functions, which are
instead objects of p-adic analytic nature, interpolating special values of complex L-
series.

In this thesis, we extend several of the results of Castella—Hsieh to a quaternionic
setting, that is, the setting that arises when one works under a ‘“relaxed” Heegner hy-
pothesis. In particular, we are interested in an analogous link between the quaternionic
generalized Heegner cycles defined by Brooks in [Brooks| and suitable p-adic L-functions.

From a broader point of view, L-functions, be they complex or p-adic, are expected to
encode a lot of information on the arithmetic objects they are attached to (for examples,
abelian varieties, modular forms, Galois representations). Celebrated examples are the
class number formula

ress—1Gx (s) = hi,

which relates the residue at s = 1 of the Dedekind zeta function associated with a
number field K to the class number of K, and the Birch—Swinnerton-Dyer conjecture

ords—1 L(E /K, s) = rankz E(K),

which predicts an equality between the order of vanishing at s = 1 of the L-function
associated with an elliptic curve E over a number field K (the analytic rank of E over K)
with the rank of the finitely generated Mordell-Weil group F(K) of K-rational points
of E (the algebraic rank of E over K). The symbol = in the class number formula
means that the equality holds up to an explicit non-zero multiplicative factor that is
comparatively less important than the main terms.

Birch—Swinnerton-Dyer conjecture and Kolyvagin’s method

Let E be an elliptic curve over QQ of conductor N and let K be an imaginary quadratic
field satisfying the Heegner hypothesis relative to N:

e all the primes dividing N split in K.

In a series of landmark papers culminating in [Ko|, Kolyvagin proved that if a certain
distinguished K-rational point (called a Heegner point) on E is non-torsion then E(K)
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Introduction

has rank one. In combination with the Gross—Zagier formula for the central derivative
of L(E/K,s) (|GZ]) and other sophisticated results of an analytic nature, Kolyvagin’s
theorem gives a proof of the Birch—Swinnerton-Dyer conjecture for £ when the analytic
rank of E over QQ is at most 1.

The significance of Kolyvagin’s theorem, whose importance can be hardly overesti-
mated, lies not only in its statement but also in the strategy on which its proof is based.
More precisely, the proof builds essentially on two fundamental ingredients: Selmer
groups and the Fuler system of Heegner points.

In a nutshell, Kolyvagin proved his theorem by measuring the size of some Selmer
groups Sel,(E/K), which are suitable Galois cohomology groups associated with E/K
and primes p, via a method that is based on the formal Euler system properties of the
collection of Heegner points on E. These points give a systematic supply of distinguished
points on E that are rational over abelian estension of K and satisfy specific conditions
of compatibility with respect to trace maps. It is worth emphasizing that the Heegner
hypothesis is crucial for this construction.

Bloch—Kato conjecture

To an elliptic curve E/Q and a prime p we can attach a p-adic Galois representation

pEp : Gal(Q/Q) — Aut(TH(E)) = GLa(Zy) € GL2(Qp),

where T),(E) is the p-adic Tate module of E. In fact, all the arguments in Kolyvagin’s
strategy can be formulated in terms of Galois representations. Remarkably, it turns
out that the link between Heegner points, Selmer groups, Galois representations and
L-functions is a particular instance of a much more general phenomenon.

Namely, with every Galois representation V' and every number field K one can
associate a Selmer group Sel(K,V) and an L-function. The Bloch-Kato conjecture
(IBK]) predicts a relation of the form

Sel(K,V) +<— L-function associated with V.

Furthermore, as in the Birch—Swinnerton-Dyer conjecture for elliptic curves (or, more
generally, abelian varieties), the L-function should control the size of the Selmer group.
In fact, the Birch-Swinnerton-Dyer conjecture can be viewed as a special case of the
Bloch—Kato conjecture.

In this thesis, we are interested in the Galois representations attached by Deligne
to (higher weight) modular forms ([Del]).

Modular forms and Kolyvagin’s method for Heegner cycles

Thanks to sophisticated results due to Shimura, Deligne and Serre, it is possible to
attach to a large class of modular forms f a two-dimensional Galois representations of
the form

Vi Gg — GLa(F),

where Gg is the absolute Galois group Gal(Q/Q) of Q and F is a suitable p-adic field
(by which we mean, as customary, a finite extension of Q). These representations are
obtained from étale cohomology groups of Kuga—Sato varieties. More precisely, the two
dimensional Galois representation V; of Gg associated with a modular form f of weight
k and level N is obtained as a subspace of the étale cohomology group H, gt*l(Wk_g, Qp)
that is stable under the action of a certain Hecke algebra. Here Wj_5 is the Kuga—Sato
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Introduction

variety defined as a smooth compactification of the (k — 2)-fold fibre product of the
universal elliptic curve over the modular curve X;(N).

In this more general context, the role of Heegner points is played by Heegner cycles,
which are distinguished algebraic cycles in the Chow group CHF/ 2(Wy_2) of Wy_s.

In the case of modular forms of even weight k& > 4, Nekovaf built in [Nek92| an
Euler system made up of cohomology classes {c,},,, with ¢, € H'(K,,V;(k/2)). Here
H' stands for the first Galois cohomology group, K is an imaginary quadratic field
satisfying the Heegner hypothesis with respect to the level N of f, Vy(k/2) is the self-
dual (Tate) twist of the representation Vy and K, is the ring class field of K of conductor
n. These cohomology classes are obtained as the images of particular Heegner cycles
via the p-adic étale Abel-Jacobi maps

AJg, : CHF2(Wy_o/K,,)g — H (K, Vi(K/2)).

Extending the method of Kolyvagin, Nekovalf bounded the size of a Selmer group at-
tached to Vy and K. This led to a proof of the Bloch-Kato conjecture in a rank 1 situa-
tion and of the finiteness of a suitably chosen primary part of the relevant Shararevich—
Tate group.

Generalized Heegner cycles

Starting from a modular form f, we are interested in studying the representation Vy
defined as the twist of Vy(k/2) by a Galois character x.

In [BDP|, Bertolini, Darmon and Prasanna introduced a distinguished collection
of algebraic cycles, coming from graphs of isogenies between elliptic curves, lying in
the product of the Kuga—Sato variety Wj_o with a power of a fixed elliptic curve A.
These cycles are called generalized Heegner cycles and, roughly speaking, play the role
of Heegner cycles for Vy .

Later, Castella and Hsieh constructed in [CH] an Euler systems for generalized
Heegner cycles; they proved, among other results, a theorem that establishes, under
suitable hypotheses, the vanishing of the Selmer group Sel(K, V) associated with the
representation Vy,. This proves the Bloch-Kato conjecture in the setting of Castella
and Hsieh:

dimg Sel(K, Vy ) = orde—p 2 L(f, x,5) = 0.

Building upon results from [BDP], the proof by Castella—Hsieh is based on a link be-
tween this system of generalized Heegner cycles and a certain p-adic L-function attached
to f, and on a generalization of Kolyvagin’s method. We emphasize that the Heegner
hypothesis is essential in [CH].

The quaternionic setting: relaxing the Heegner hypothesis

What happens if we want to weaken the Heegner hypothesis? More explicitly, we would
like to generalize the work of Castella and Hsieh to the case of an imaginary quadratic
field K that does not satisfy the classical Heegner hypothesis, but instead satisfies the
following generalized Heegner hypothesis relative to the level N of the modular form f:

e no prime factor of N ramifies in K, if a prime ¢ is inert in K then ¢?> does not
divide N and the number of prime factors of N that are inert in K is even.

In this setting, we cannot work with Kuga—Sato varieties over classical modular curves,
as we are not able to construct Heegner cycles on these varieties without the Heegner
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hypothesis. The right substitutes for modular curves in this context are Shimura curves,
so it is natural to work with Kuga—Sato varieties fibered over Shimura curves.

In [Brooks]|, Brooks introduced a collection of generalized Heegner cycles on a Kuga—
Sato variety over a Shimura curve Sh, coming from graphs of isogenies between abelian
surfaces. The curve Sh has the form of a quotient of the complex upper half plane
under the action of a group that is determined by an order in an indefinite quaternion
algebra over Q. Brooks proved results that generalize (some of) those in [BDP]| to this
“quaternionic” setting, according to the following picture:

Heegner hypothesis <— Generalized Heegner hypothesis,
Modular curves <— Shimura curves,

Elliptic curves <+— Abelian surfaces.

Building on the work of Brooks, our goal is to generalize to a quaternionic context the
key result of [CH]| relating their p-adic L-function to the system of generalized Heegner
classes. As said before, this is a crucial point for the proof of the vanishing of the Selmer
group. We construct a system of generalized Heegner cycles on the Kuga—Sato variety
over the Shimura curve Sh and a p-adic L-function defined as a p-adic measure given
as a sum of values of a variation of f, as a modular form over our Shimura curve, at
certain CM abelian surfaces. With these ingredients at hand, we will prove results on
the Selmer group Sel(XK, Vi ).

It is worth remarking that we expect the results of this thesis to play a key role
in the proof of a generalization of Castella’s specialization results ([Cas|) for Howard’s
big Heegner points in Hida families ([How|) to the quaternionic big Heegner points
introduced by Longo and Vigni (|[LV]). We plan to address this question in a future
project.

Outline of the thesis

First of all, we fix some notation. Let f € Sp*(I'o(N)) be a newform of weight
k =2r+2 >4 and level N. Fix an odd prime p{ N and a field embedding i, : Q < C,,.
Let F' be a finite extension of @@, containing the image of the Fourier coefficients of
f under i, and let K be an imaginary quadratic field of discriminant Dy and ring
of integers O in which p splits as pOx = pp splits, with p determined by 7,. Let
X : Gal(Kgp/K) — Oj be a locally algebraic anticyclotomic character of infinity
type (j, —j) and conductor cop®Ok (see section 3.5). Denote by Vy, = V¢(k/2)® x the
twist of V(k/2) by x seen as a representation of Gal(Q/K), by L(f, x, s) the associated
Rankin L-series and by Sel(K, V) the Block-Kato Selmer group associated with V5,
and K. Assume that:

pt2N¢(NT) (where ¢ is Euler’s function);

o is prime to N, i.e., the conductor of x is prime to N;
either Dg > 3 is odd or 8 | Dg;

p = pp splits in K.

e e

Moreover, assume that K satisfies the generalized Heegner hypothesis relative to N as
described above, and factor N as N = NTN~, where N is a product of primes that
split in K and N~ is a (necessarily square-free) product of an even number of primes
that are inert in K.

Our first theorem on Selmer groups, which corresponds to Theorem 6.4.1, is a van-
ishing result.
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Theorem A. If f is p-ordinary and L(f, x,k/2) # 0, then
dimF Sel(K, Vf:X) =0.

Denote by €(Vy,) the sign of the functional equation of L(f,x,s). Our second
theorem on Selmer groups, which corresponds to Theorem 6.4.2, is a one-dimensionality
result.

Theorem B. Ife¢(Vyy) = —1 and z,, # 0, then
Sel(K, Viy) = F - zy.

In the statement above, z, is a suitable cohomology class in H'(K, V},) that comes
from an Euler system of generalized Heegner classes.

Let us conclude this introduction by briefly sketching the structure of the thesis.

In Chapter I we recall basic facts about quaternion algebras and Shimura curves as
moduli spaces of abelian surfaces. We introduce the Shimura curve Sh we will work
with and also the notions of modular forms and p-adic modular forms over Shimura
curves.

In Chapter II we review Serre—Tate theory and study deformations of abelian sur-
faces, which we will use to get power series expansions at ordinary CM points for
modular forms over Shimura curves (for which g-expansions are not available).

In Chapter III we define our analytic anticyclotomic p-adic L-function g ¢ as a
measure on Gal(Kpe/K) with values in the ring of Witt vectors W = W (F,), where
Kpo = UpKpn for Ky the ring class field of conductor p™ of K, F, is an algebraic
closure of the field IF,, with p elements and 1) is an anticyclotomic Hecke character of
infinity type (k/2, —k/2) and conductor Ok with (co, pNT) = 1. We close the chapter
with an interpolation formula for our p-adic L-function, which we will use later to obtain
the reciprocity law of Chapter VI, relating the value of sf/f v at ¢ to the central critical
value L(f, x, k/2), where ¢ is an anticyclotomic Hecke character of infinity type (n, —n)
with n > 0 and p-power conductor such that xy = ¥¢.

In Chapter IV, following Brooks, we introduce a family of generalized Heegner cycles
on the generalized Kuga—Sato variety over our Shimura curve Sh. More precisely, these
cycles live in a Chow group of the generalized Kuga—Sato variety A, = A" x A", where
A is the universal object of the fine moduli problem associated with Sh and A is a fixed
abelian surface with CM by K. Then we apply a p-adic Abel-Jacobi map to obtain
cohomology classes from generalized Heegner cycles. In this way, we construct a system
of generalized Heegner classes associated with f and y, and indexed by fractional ideals
of K, for which we prove compatibility properties. )

In Chapter V we establish a relation between values of f/f » at Galois characters ¢ of
infinity type (—k/2—j, k/2+7) and Bloch-Kato logarithms of generalized Heegner cycles
associated with y of infinity type (4, —j), with —k/2 < j < k/2, where xy = ¢~ 1¢~L.
This relation, for which we refer to Theorem 5.5.1, has the form

Dcffﬂ/,(gzﬁ) = (something) - (log, (2y), *) ,

where “something” is an explicit non-zero coefficient that is comparatively less important
than the main terms in the formula. The key ingredient to establish this Gross—Zagier
type formula is the work of Brooks: we link our p-adic L-function to the differential
operator 6 = t% on the Serre-Tate coordinates and then we use Brooks’s results to
obtain a formula suitably relating 6 to our generalized Heegner cycles.
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Finally, in Chapter VI we use the previous formula and the interpolation property
to establish, under a p-ordinarity assumption on f, a reciprocity law relating the an-
alytic p-adic L-function n?ﬁ ¢ to an algebraic p-adic L-function obtained as a sort of
image of an Iwasawa cohomology class z; € H'(Kp~,Vj(k/2)), obtained as an in-
verse limit of generalized Heegner classes, under a big logarithm map. This reciprocity
law and the costruction of an anticyclotomic Euler system associated with generalized
Heegner classes, combined with an extension of Kolyvagin’s method for anticyclotomic
Euler systems developed in [CH], lead to the proof of Theorem A. As for Theorem B,
its proof rests once again on an extension of Kolyvagin’s method applied to another
anticyclotomic FEuler system associated with generalized Heegner classes.
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Notation

If F'is a number field or a local field, whose ring of integers will be denoted by O, we
fix an algebraic closure F' of F and write G for the absolute Galois group Gal(F/F)
of F.

For any prime number p, we fix an immersion i, : Q — C,, where C, is the
completion of the chosen algebraic closure of Q.

Unadorned tensor products are always taken over Z.

We denote by Ap the adele ring of a number field F' and by F' the ring of finite
adeles of F'.

For an imaginary quadratic field K and an integer n > 1, we denote by K, the ring
class field of K of conductor n; in particular, K is the Hilbert class field of K.

Finally, for an integer n > 1, we write ¢, for the primitive n-th root of unity

27

en € C*.
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Chapter 1

Shimura curves

1.1 Shimura curves

In this section we give a short introduction to Shimura curves attached to quaternion
algebras over Q.

1.1.1 Quaternion algebras

We briefly introduce quaternion algebras, a standard reference for which is [Vi] (a nice
introduction to the subject can also be found in [Voi|).

Definition 1.1.1. A quaternion algebra over a field F' with char(F") # 2 is an algebra
B, that is a 4-dimensional vector space over I’ with a basis 1,4, j, k with the following
multiplicative relations:

i’ =a, j2=b, k=1ij = —ji,

for some a,b € F' . {0}. The quaternion algebra determined by elements a,b € F \ {0}
is denoted by (%’b)

Examples:

1. The R-algebra H = <_1ﬂ’{1) is the algebra of Hamilton’s quaternions.
2. The algebra of 2 x 2 matrices My (F') is a quaternion algebra over F'; indeed there
is an isomorphism (lﬁl) =~ My(F) induced by i — (§ °), j— (94). This the

only quaternion algebra over F' which is not a division algebra.

We are interested in rational quaternion algebras, i.e., quaternion algebras over Q.
Denote by 7 = H Z,, the profinite completion of Z and by Q:=Z®Q the ring of finite
adeles of Q. Let B be a rational quaternion algebra; for each place v of Q, possibly
v = oo, denote by B, := B ®g Q, and by B := B ®g Q the adelization of B. We
say that B is split at v if B, & M5(Q,) and it is ramified at v otherwise. Because
of the Hilbert’s reciprocity law, the numbers of ramified places in B is finite and even.
Furthermore, the set of primes ramified classifies completely (up to isomorphism) the
rational quaternion algebra B; for each finite even set S of primes (possibly containing
oo) there is a unique rational quaternion algebra B ramified at exactly the primes
of S. Denote by D := []} finite p the discriminant of B, which determines B up to

isomorphism. We say that aﬁlﬁiesd indefinite if B is split at oo, i.e., if there exists an
isomorphism of R-algebras @ : B ®g R = M»(R), and that B is definite otherwise.

Consider now a quaternion algebra B over a field F' of characteristic 0 and denote
by Of the ring of integers of F.

13



1. Shimura curves

Definition 1.1.2. An order R in B is a Op-lattice that is also a subring of B. An
order is said to be maximal if it is not properly contained in another order.

Another interesting type of order is an Eichler order, i.e., an order which is the
intersection of two maximal orders.

Take a quaternion algebra B over Q of discriminant D. If £ is a prime such that
¢ | D, then By has a unique maximal order Ry. If £1 D, we can choose an isomorphism
Oy : By =2 Ms(Qy) and consider Ry := &, (Ma(Zy)), which is a maximal order in B.
Then R := BN ][], R is a maximal order in B. If N is an integer prime to D, we
consider the order in B defined by

Ry+ :={be R| ®¢(b) = (5%) (mod ¢) for each £ | N*},

that is the standard Eichler order of B of level Nt in R (it depends on the choice of
the isomorphisms ®y).
Each quaternion algebra B over a field F' can be endowed with a standard involution.

Definition 1.1.3. An involution on B is an F-linear map (-)* : B — B such that

o 1* =1,
o(m)—ya:foranyxyeB;
o (z*)* =z for any z € B.

An involution is standard if z*z € I for all z € B.

1. If B= (a},b> with char(F') # 2, then the map
r=ut+vit+wj+zk—T=u—vi—wj—zk

defines a standard involution on B, called main involution.
2. If B = My(F), the map
(e8)— (%)

defines a standard involution on My (F).

Consider an indefinite rational quaternion algebra B. By the Skolem—Noether theorem,
any positive involution on B is given by b+ t~1bt with t? € Q¢, with b — b the main
involution.

1.1.2 Shimura curves

For a more general and detailed introduction to the theory of Shimura curves, see [Mi90].
Let B be an indefinite rational quaternion algebra, b — b* a positive involution on B,
and H* = C — R be the disjoint union of the upper and lower complex half planes.
Denote by Op a maximal order of B and fix an isomorphism &, : B ®@ R & My(R).
For K a compact open subgroup of B>, consider the double coset space

Shi(B) := B*\ (H* x B*) /K,
where the action is given by

for b € BX,z € H*,g € B* and k € K, ie., K acts naturally on the right on Bx
by right multiplication, B> acts on the left on B* through the diagonal embedding

14



1.1. Shimura curves

B < B and on H* through the fixed isomorphism @4 : B @ R = M5(R) by the usual
linear fractional transformations

cz+d

(ab),z az+b

When K is sufficiently small, Shi(B) is a finite disjoint union of quotients I'\'H, with
I' arithmetic subgroup of SLo(R), so it is a finite disjoint union of Riemann surfaces
and it has a structure of an algebraic curve over C (cf. [Mi90, Chapter II, §2]).
Let
Sh(B) :=lim Shi(B).

—
K

This is a scheme over C whose complex points are
Sh(B)(C) = B*\'H* x B*.
See [Mi90, Lemma 10.1]. There is a continuous action of B* on Sh(B) defined by

[(279)] “hi= [(ngh)]'

If K is normal then the action of B* is well defined also on Shg (B). Indeed, the action
of B* is defined by the maps

Shi(B) — Shyp-154(B)
[(z,9)] — [(z, gh)].

The scheme Sh(B) together with this continuous action of B* is called the Shimura
curve associated with the quaternionic algebra B. The operation defined by g € B*
on Sh(B) is called Hecke operator associated with g. For more details, see [Mi90,
Chapter IIJ.

The Shimura curve Sh(B) is the Shimura variety associated with the Shimura datum
(G, X) where G is the algebraic group over Q such that G(Q) = B* and X = HT seen
as the conjugacy class through the action of G(R) of a morphism h : C* — G(R). See
again [Mi90, Chapter II, §2|.

1.1.3 Shimura curves as moduli spaces

Shimura curves can be seen as moduli spaces classifying abelian surfaces with quater-
nionic multiplication by Op and certain level structures. An abelian surface over a
field F is a projective algebraic variety over F' of dimension 2 that is also an algebraic
group. A standard reference for abelian varieties is [Mum]|; another good source are
Milne’s notes [AV]. A quaternionic multiplication on an abelian surface A over F' is an
embedding Op — Endp(A). We will see this in more detail in the case of the Shimura
curve we will work with.

For a description of the moduli interpretation, we closely follow [Mi79, §1] and work
with an integral form of G, that is to say that we take G as the group scheme over Z
such that G(R) = (Op ® R)* for any ring R. Let V := V(Z) be a free Z-module of
rank 4 with an action of Op.

Lemma 1.1.4. There exists a unique nondegenerate alternating form ¢ : V(Q) X
V(Q) - Q on V(Q) :=V ®z Q such that

1. Y(V,V) C Z;

15



1. Shimura curves

2. Y(ut,u) <0 for allu # 0,u € V(R);

3. (bu,v) = P (u,b*v) for all u,v € V(Q);

4. for any B-automorphism o of V(Q) there exists pu(a) € Q* such that ¥(au, av) =
Y(u, aw) for all u,v € V(Q). Moreover if ¢' is another nondegenerate alternating
form on V(Q) satisfying (3) then there is ¢ € Q* such that (u,cv) = ¢ (u,v)
for all u,v € V(Q).

This means that on the complex manifold C?/V with the Op-action there exists a
Riemann form for V whose corresponding Rosati involution induces b — bx on B and
any such two forms are equivalent, i.e., there exists a unique polarization compatible
with the Opg-action.

Take V = V(Z) = Op with the natural action of Op. Note that for any ring R,
we can identify (Op ® R)* with Autp,gr(V(R)), because any Op ® R endomorphism
of V(R) = Op ® R is the right multiplication by an element of Op ® R. Taking now
R =R, we define a homomorphism h : C* — G(R) = Autp,gr(V(R)) such that k(i)
is the right multiplication by (% §), using the isomorphism ®o : G(R) = (B@R)* =
GL2(R). The form 1 of the previous lemma is a Riemann form on (V, h), so that (V,h)
defines an abelian surface A = V(R)/V over C with a QM-structure ¢ : Op — End¢(A)
induced by the Op-action on V. However, in this case, the QM-structure determines
the polarization up to a certain equivalence, so we do not need to include it in the
construction.

Denote by T(A) the complete Tate module of A that is the projective limit of the
torsion groups A[n], i.e.,

T(A) = lim Aln] = 174
n ¢

where T(A) is the usual f-adic Tate module of A. Then there is a natural isomorphism
T(A) = V(Z) given by

T(A) =lim A[n] = limn~'V/V = ImZ/nZ oV = Z® V.

~

If K is an open compact subgroup of G(Z) = Op and ai, a9 : T(A) = V(Z) two
isomorphisms, they are said to be K-equivalent if o = (— - k) o ay for some k € K.
For example, if K is the kernel of the natural map G(Z) — G(Z/MZ) then give a K-

equivalence class of isomorphisms T(A) 2 V/(Z) is the same as to give an isomorphism
V(Z/MZ) = A[M](C) that is a full level M structure.

Theorem 1.1.5. There is a bijection between the set of complex points Shyi(B)(C) =
BX\H* x BX/K and the set of isomorphism classes of triples (A, i, ), where A is an
abelian surface over C, v is a quaternionic multiplication ¢ : Op — End(A) and ¢ is a

K- equivalence class of isomorphisms T'(A) 5 V(Z).

We want to give explicitly the bijection z = (z,g) — (Aq, L, ¢2) of the previous the-
orem. If z =4, g =1then A, = A = V(R)/V, 1z = ¢ and ¢, is the class of the
natural isomorphism 7'(A) 5 V(Z) seen before. For a general = = (z,9) € H* x BX,
put V, = V(Z)g N V(Q) and h, : C* — G(R) defined by 7 — gooh(7)gz), where
gso € G(R) such that gooi = 2. Then A, is the abelian surface defined by (Vj,h.),
so Ay = V(R)/V, with ¢, defined by the action of Op on Vg and ¢, determlned by
T(Ay) = Vy(Z) = V(Z)g = V(Z), where the last 2 is right multiplication by ¢g—'. See
[Mi79] for details.
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1.2. Shimura curves of level V1(NT)

1.2 Shimura curves of level V;(N™)

We introduce now the Shimura curves we will work with. Let B be an indefinite rational
quaternion algebra of discriminant D and let H* = C — R be the disjoint union of the
upper and lower complex half planes. Fix isomorphisms ®, : By = My(Qy) for each
prime ¢ 1 D and denote by Op a maximal order of B such that each ®, induces an
isomorphism Op ® Zy = My(Zy). Fix also an isomorphism ®, : B @ R = M,(R). For
N7 positive integer prime to D, consider the map

my+ 1 Of - [[ (O @Z)* = [ GLa(Z¢) - GLo(Z/N'Z).
¢N+ ¢N+

Denote by fl, N+ the open compact subgroup of @E composed of the elements b € @E
such that mn+(b) € {(§7) € GL2(Z/NTZ)} . Consider the space of double cosets

XN+ = BX\H:‘: X BX/fLN+.

Here, as already seen before, IA“L ~+ acts naturally on the right on B* by right multipli-
cation, while B* acts on the left on B* through the diagonal embedding B < B and
on H* under the fixed isomorphism ®, by the usual linear fractional transformations

ab\ . at +b
(Cd) T_CT+d

This is the Shimura curve associated with the Shimura datum G(Q) = B*, X = H*
and K =T'; y+.
Because B is indefinite, there is a bijection

Xn+ =H/T N+,

where H is the classical upper half plane and I'; y+ is the subgroup of matrices in
@w((f17N+ N B)*) of determinant 1 (|[BD, §1.3]). This bijection endows X y+ with a
Riemann surface structure and gives, as a consequence, an analytic description of X y+.

The coset space X+ admits a model over Q, which is the fine moduli scheme
classifying abelian surfaces with quaternionic multiplication by Op and certain level
structures.

Definition 1.2.1. Let S be a Z[1/D]-scheme. An abelian surface with quater-
nionic multiplication by Op (abelian surface with QM, for short) over S is a pair
(A, i) where

1. A is an abelian scheme A/S of relative dimension 2;
2. i is an optimal inclusion i : Op < Endg(A) giving an action of Op on A.

A morphism of abelian surfaces with QM is a morphism of abelian surfaces that respects
the action of Op.

Abelian surfaces with quaternionic multiplication are often called false elliptic curves.

Definition 1.2.2. Let N > 0 be an integer prime to D. A level Vi(N™)-structure,
or an arithmetic level N T structure, on a QM abelian surface (A, 7) is an inclusion

BN+ X iyt < ANT]

of group schemes over S, commuting with the action of Op, where yu+ denotes the
group scheme of N'th roots of unity. The action of Op on the left hand side is via
the isomorphism Op ® Z/N*TZ = My(Z/N*Z) induced by the chosen isomorphisms
®, : By = M>(Qy), through which one has Op ® Z; = My (Zy) for each £ | NT.
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1. Shimura curves

A morphism of QM abelian surfaces with V3 (N T)-level structure is a morphism of QM
abelian surfaces that respects the level structures.

If A is an abelian surface over an algebraically closed field k, a V; (N T)-level structure
can be thought of as an orbit of full level NT structures, i.e., isomorphisms

Op ®Z/NTZ = A[NT]

commuting with the action of Op, under the natural action of the subgroup {(6 1) €
GLo(Z/NTZ)} of GLo(Z/NTZ). See [Brooks, §2.2] for details.

The moduli problem of QM abelian surfaces with V;(NT)-level structure is repre-
sentable, as asserted by

Theorem 1.2.3. For N* > 3, the moduli problem that assigns to a Z[1/DN*]-scheme
S the set of isomorphism classes of QM-abelian surfaces over S with Vi (N™T)-level struc-
ture is representable by a smooth proper Z[1/DN™]-scheme X .

For details, see [Brooks, §2.2. and §2.3|, [Buz, §2| or [Kas, §2 and §3|.

The complex points of X are naturally identified with the compact Riemann surface
Xn+ Z2H/Ty N+

The Z[1/DN"]-scheme X from Theorem 1.2.3 is called the Shimura curve of
level Vi(N1) associated to the indefinite quaternion algebra B and we will denote it
by X+, using the same notation for the scheme, the Riemann surface and the double
coset space.

Theorem 1.2.3 says that the scheme X+ /Z[1/DN™] represents the moduli functor

F :Sch/Z[1/DN"] — Set

given by
isomorphism classes of abelian surfaces (4, ¢, v)
F(S):= .

over S with QM and V;(N*)-level structure

Therefore there exists a universal object that is the isomorphism class of QM abelian
surfaces with V;(N*1)-level structure in F(Xy+) corresponding to idx,, through the
isomorphism

F(Xn+) & Homgp pn+)(Xn+, Xn+)-

We denote by 7 : A — X+ this universal QM abelian surface over X +. It is called
“universal” because every isomorphism class in F'(S) comes from A; more precisely, an
isomorphism class corresponding to a morphism f € X+ (S) = Homgp /pn+1(S, Xy+)
is the isomorphism class of (A, t4,v4) x ¢ S. For each geometric point = : Spec(L) — A,
the fiber A, := A x, Spec(L) is an abelian surface with QM by Opg and Vi (N™T)-level
structure defined over L, representing the isomorphism class that corresponds to the
point .

1.3 Hecke operators

The Shimura curve X+ comes equipped with a ring of Hecke correspondences, which
can be introduced by using the adelic description of X . See, for example, [BD, §1.5];
here the construction is for the Shimura curve relative to level structures “of type I'y”,
but it can be done also in our case. In terms of abelian surfaces the Hecke operators
acts in the following way. For a prime £, a QM abelian surface A over a field k of
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characteristic prime to £ has £+ 1 cyclic Op-submodules annihilated by £. Denote them
by Co,...,Cy and consider the isogenies ¢; : A — A/C; of QM abelian surfaces. If v4
is a Vi (NT)-level structure on A and £{ N, then 1); induces a V; (N T)-level structure
vaot; on A/C;. If £4 NTD, the “good” Hecke operator Ty can be described by

14

Ty(A,1a,va) = > (A/Ciyvivi).
i=0

For more details, see §4.1 and [Brooks, §3.6].

1.4 Igusa tower

We are interested in working with p-adic modular forms over our Shimura curve, which
are defined analogously to Katz’s generalized p-adic modular forms. Therefore we want
to work on a cover of the ordinary locus of the Shimura curve.

Fix a prime p { NTD. Since Xy+ is a scheme over Z[1/N*TD], it can be viewed
as a scheme over Z,). For simplicity, denote by Sh the curve X+ 2y Since Sh is
a fine moduli scheme for QM abelian surfaces over Z,-schemes with level structures,
there is a universal abelian surface A — Sh, which is the one associated with X+ but
tensored with Z,) over Z[1/DN™].

Recall that a QM abelian surface A over a field k£ of characteristic p is said to be
ordinary if Alp|(k) = (Z/pZ)?, and supersingular otherwise. Indeed, a QM abelian sur-
face in characteristic p, is either ordinary or supersingular; equivalently, it is isogenous
either to a product of ordinary elliptic curves or to a product of supersingular elliptic
curves, respectively. Consider the ordinary locus Sh°™d of Sh, i.e., the locus on which
the Hasse invariant does not vanish, that is the scheme obtained by removing the super-
singular points of Sh in the fiber at p, which are those points which correspond in the
moduli interpretation to abelian surfaces which have supersingular reduction modulo p.
See [Kas| for details about the ordinary locus and the Hasse invariant.

Let A°™d — Sho'd be the universal ordinary QM abelian surface over Sho™d, that
is the fiber product A4 = A x g, Sh'd. Consider the functor I, : Sch/gpora — Set
that takes an Sh°™-scheme S to the set of closed immersions puyn X pupn — A°4[p"] of
finite flat group schemes over S respecting the Og-action. This functor is representable
by a scheme I, /gpora. Then IH/Z(p) classifies quadruples (A, 4, v+, vpn), where A is an
abelian surface, ¢ a quaternionic multiplication, v+ a Vi(NT)-level structure and vpn
an Opg-immersion jpyn X pupn — A[p"]. There is a tower

e — Iy — Iy — Ly —

Consider the formal scheme [ Ly @n I, JZiy This formal scheme parametrizes
compatible sequences of isomorphism classes of quadruples (A, i, vy+,Vpn), where A
is an ordinary abelian surface, ¢ a quaternionic multiplication and vy+, vp» respec-
tively a Vi(NT) and Vi(p") level structures. But a sequence of compatible V;(p")-
level structures is the same as a Vj(p>)-level structure, that is an immersion vpe :
Jpoo X fupoe = A[p™]. Therefore this tower parametrizes isomorphism classes of quadru-
ples (A, 1, vn+, Vpo).
There is a bijection

I(C) = lim Xy 4,0 (C),
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1. Shimura curves

between complex points of I and compatible sequences {zy}, of complex points z, =
(Ayi,un+,vpn) € Xytpn (C).

See |Hi04] for details about Igusa schemes in the case of modular curves (§6.2.12)
and more in general for Shimura varieties (Ch. 8). See also [Hi09].

1.5 CM points on Shimura curves

In this section we will construct a collection of CM points in our Shimura curves, i.e.,
points that correspond to abelian surfaces with complex multiplication, indexed by
fractional ideals of orders in an imaginary quadratic field. We denote again by Sh the
curve Xn+ seen as a scheme over Z,. Since also Sh is the fine moduli scheme for
QM abelian surfaces over Z,)-schemes with level structure, it has a universal abelian
surface A — Sh, which is the one of X+ but tensored by Z, over Z[1/DN™].

1.5.1 Abelian surfaces with QM and CM over C
Theorem 1.5.1. Let (A,i) be an abelian surface with QM by Op over C. Then either

1. A is simple and End°(A) := End(A) ® Q = B, or
2. A is not simple, A ~ E? is isogenous to the product of an elliptic curve E with CM
by an imaginary quadratic field K which embeds in B and End®(A) = My (K).

In particular, we are interested in the second case of the previous theorem. Abelian
surfaces with QM that satisfy that second condition are said to have complex multi-
plication (CM for short) by K. Suppose that (A,i) is an abelian surface over C with
QM by Op and Vi (N*tp")-level structure. Then the ring

Endo,(A) := {f € End(A) | foi(b) =i(b)o f for all b€ Op}

is either Z or an order in an imaginary quadratic field K. If K is an imaginary quadratic
field and Endp,(A) = O., where O, is the order of conductor ¢ in O, then A is said
to have complex multiplication by O, and the point P = [(A,7)] € X+ ,n(C) is said to
be a CM point of conductor c.

1.5.2 Generalized Heegner hypothesis

Let K be an imaginary quadratic field of discriminant Dg and consider a positive integer
N, which will ultimately be the level of our modular form, such that (N, Dg) = 1.
Suppose that K satisfies the generalized Heegner hypothesis relative to IV:

e 1o prime factor of N ramifies in K, if a prime ¢ is inert in K then ¢? does not
divide N and the number of prime factors of N that are inert in K is even.

Factor N as a product N = NTN~ where N7 is a product of primes that split in K
and N~ is a (necessarily square-free) product of (an even number of) primes that are
inert in K.

Let B be the indefinite rational quaternion algebra over of discriminant D = N~
and fix a prime p{ N that splits in K and B. Then the field K embeds into B, thanks
to the following

Theorem 1.5.2. For a quadratic field K and a rational quaternion algebra B, the
following properties are equivalent:
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1. K embeds into B;
2. K splits B;
3. K s not split at any place where B is ramified.

Proof. This is a classical result: see, for example, [Voi, Chapter 5|. O

We will work with the Shimura curves Xy+,» defined before relatively to the fixed
K, B, p. This hypothesis concerning the behavior of primes dividing Np in K and B
will allow us to construct CM points on our Shimura curves. Regarding this, see [Dar,
Lemma 4.17| or |BD, §2.2| (here the Shimura curves considered are different but the
result holds also in our case).

1.5.3 Products of CM elliptic curves

Start with an elliptic curve E over C with complex multiplication by Ok, take E :=
C/Ok. Consider on E a I't(M)¥ilevel structure given by a morphism

pas v — E[M],

where M > 3 is an integer prime to D. Consider now the self product A := E x E that
is an abelian surface over C; then its endomorphism ring is End(A4) = My(End(FE)) =
M>(Ok). Since K splits B, we can embed K in B and choose a basis {b1, b2} of B over
K with by,by € Op. Then we have an an immersion B < My (K) = My(End®(E)) =
End®(A) such that Op < My(Ok) = Ma(End(E)) = End(A). See [Mi79, §2]. Hence
t: Op < End(A) is a quaternionic multiplication for A.

Consider the isomorphism ix : B ®g K = My(K) induced by ¢ and put

e =i ((49) € Bog K,

which is an idempotent such that e* = e. Then the decomposition of A is induced by
A=cAd(1l-eA=(}3)A® (}9)A = E x E (multiplication by o := ()}) gives
an isomorphism eA £ (1 —e)A). So A[M] = eA[M] & (1 — e)A[M]. The choice of a
level structure on eA[M] = E[M] induces a Vi(M)-level structure on A[M], because
of the request of compatibility of the level structure with respect to the action of Op
(and consequently of B). See also the last lines of [Brooks, §2.2]. Hence the fixed level
structure pps on E induces a Vi(M)-level structure

UMt s X e > A[M]

on A.

Therefore, starting from a I'y (N+p™)it]evel structure on E, we obtain a quadruple
(A, t, v+, vpn) which determines a CM point in Shy,(C). Starting from a I'; (N +p>)arit-
level structure on E, we obtain a quadruple (A, ¢, vy+,Vpee) which can be seen as a
compatible sequence of CM points in the Shimura tower X+ ,n.

Start now with the elliptic curve E, = C/O, over C with complex multiplication by
an order O, of K, with (¢, N) = 1. The isogeny

E=C/Ox —» E =C/O,
Z — CZ,

induces an isogeny
¢ A=EXFE— A, . =FE.x E,
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1. Shimura curves

of complex abelian surfaces. Take on A, the quaternionic multiplication ¢, : Op —
End(A.) determined by compatibility with ¢,:

te(b)(¢e(a)) = @e(u(b)a),

for any b € B, a € A. As before, a Fl(M)arit—level structure p. pr on E., with M prime
to D, induces a V;(M)-level structure v, ps on A..

Therefore, starting from a 'y (N +p™)itlevel structure on E,, we obtain a quadruple
(Acy tes Un+, Vpn) which determines a CM point of conductor ¢ in Xy+,»(C). Starting
from a I';(N*p>)ait level structure on E, we obtain a quadruple (A, i, Ve N+ Vepo)
which can be seen as a compatible sequence of CM points in the Shimura tower X+ pn.

Note that the isogeny ¢. doesn’t necessarily respect the chosen level structures if p
divides c.

1.5.4 The action of Pic(O,)

Denote by Pic(O,.) the Picard group of the order O, of conductor ¢ of an imaginary
quadratic field K, that is

PiC(OC) = KX\KX/@CX = Ic(oc)/PC(OC)’

where 1.(O,.) is the group of fractional ideals of O, coprime to ¢ and P.(O.) is the
subgroup of I.(O.) of principal fractional ideals.

Consider a quadruple (A, ¢, vn+, Vp) where (A4, ) is a QM abelian surface with CM
by O.. There is an action of Pic(O.) on the isomorphism classes of these quadruples,
defined by

ax (AaLa VN+7Vp°°) = (AaaLaaVa,N'*'aVu,p‘x’)»

where the representative a is chosen to be integral and prime to NTpc. Here A, :=
A/Ala], where Ala] is the subgroup of the elements of A that are killed by all the endo-
morphisms in a. The quaternionic multiplication ¢4 and the level structures v, n+, Vg poe
are induced by the ones of A. Denote by ¢, the quotient isogeny A — A/A[a], that is
an isogeny of degree N(a)? = (#0./a)? and so prime to N*p; define

tg: Op — End(A,)
b— (eel@) = pa(1B)(@)))

and

Vn+ Pa
Vo N+ | BN+ X iy A[NT] 2 AGNT],

Ya
Vapoo & fpoe X fpee > A[p™] = Aq[p™].

See [Brooks, §2.5].
If 04 € Gal(K./K) corresponds to a € Pic(O,) through the classical Artin reci-
procity map, then by Shimura’s reciprocity law there is an equality

(A, 1, Un+,Vp )7 = ax (A, 1, Un+, Vpeo).
See, again, [Brooks, §2.5].
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1.5.5 Construction of CM points

We want to introduce CM points indexed by ideals of orders of K.

Take an element [a] € Pic(O.) and choose the representative a to be integral and
prime to N*pc. Consider the elliptic curve E, := C/a~! with the I'y (N +p>)arith_Jevel
structure defined in [CH, §2.3 and §2.4|. Put A, := E, X E,, which, by the theory of
complex multiplication, is an abelian surface defined over the ring class field K. of K of
conductor c¢. The abelian surface A4 has QM by Op and we can consider the quadruple

l’(ﬂ) = (Aa) iau Va,N+7 Va,poo)a

where vy n+,Vapo are the level structures induced by the ones of E; (as in §1.5.3).
We write x(c) = (Ae¢, ic, Ve N+, Vepe) When a = O, and 2(1) = (A, 4, v+, Vp=) When
a=0 K-

We have already used the notation above in the previous section for the action of
the Picard group on a quadruple: the reason is that there is an equality

ax (Aca tey Ve N+ Z/C,poo) = (ACH ta, Vg N+ Va,poo)'

Indeed, ax A, = A./Ac[a] = E./E.la] x E./E.[a] because a C O, — M>(O,.) acts
diagonally and the level structures are induced by the isogeny ¢4 : A, — A./A.[a] that
is the product of the isogeny E. — E./E.[a].

1.6 Modular forms on Shimura curves

We recall here the definitions and some properties of modular forms and p-adic modular
forms on Shimura curves. The references are |Kas|, |[Brooks|, [EAVP], [Hi04].

1.6.1 Geometric modular forms on Shimura curves

We will need integrality conditions only at p, so we define modular forms over algebras
R over the localization Z,) of Z at the prime ideal generated by p. Let (A — Spec(R), )
be a QM abelian surface over a Z,-algebra R. Then m.Q 4/, where 24, is the bundle
of relative differentials, inherits an action of Op which tensored with the scalar action
of Zy, gives an action of M(Zp) on 7, 4/r. Write wy /g for emQyp. It A — Shis the
universal QM abelian surface, then A® R — Sh® R is the universal object for Sh® R.
In the particular case 7 : A ® R — Sh ® R of the universal QM abelian surface over a
Zy-algebra R, we just write wp for emQ 4o r/shoR-

In analogy with the case of elliptic modular forms (see, for example, [BDP, §1], in
particular equation (1.1.1)), we give a geometric definition & la Katz for modular forms
on Sh over a Z,-algebra R. For a nice exposition of Katz modular forms in the case
of modular curves, see [Go, Chapter 1|. The geometric definition for modular forms on
Shimura curves is due to Kassaei, see [Kas, §4.1]. We closely follow [Brooks|.

Definition 1.6.1. A modular form with respect to B of weight k£ € Z and level
Vi(N*) over R is a global section of w%*, i.e., an element of H'(Sh ® R,wi*). We
denote by My (Sh, R) the space of modular forms with respect to B, of weight k € Z
and level V1(N™T) over R.

Alternatively, one can define modular forms in the following ways.
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Definition 1.6.2. Let Ry be an R-algebra. A test object is a quadruple (A/Rg, ¢, v, w)
consisting of a QM abelian surface A over Ry, a V3(NT)-level structure v on A, and a
non-vanishing global section of w4 /g -

Two test objects (A/Rp,t,v,w) and (A'/Ro,/,V/,w') over Ry are isomorphic if
there is an isomorphism (A/Ry,t,v) — (A'/Ro,/ V'), of QM abelian surfaces with
V1(NT)-level structure, pulling w’ back to w.

A modular form of weight k and level V;(N™) over R is a rule F that assigns
to every isomorphism class of test objects (A/Ry,t,v,w) over every R-algebra Ry, a
value F'(A/Ry,t,v,w) € Ry, such that

e (Compatibility with base change) If ¢ : Ry — R|, is a map of R-algebras, inducing
¢:A— A®, R, then

F((A/Ro,1,v) ®y Rj,w) = ¢(F(A/Ro, 1, v,¢"(w))).

e (Weight condition) For any A € Ry, one has

F(A/Ry,t,v, \w) = AX"*F(A/Ry, 1, v,w).

Definition 1.6.3. A modular form of weight k and level V;(N ) over Risarule G
that, for any R-algebra Ry, assigns to any isomorphism class of QM abelian surfaces over
Ry with Vi(NT)-level structure (A/Rp,t,v), a translation-invariant section of gf’;RO,
subject to the following base-change axiom: if ¢ : Ry — R, is a map of R-algebras one
has

G((A/Ry,1,v) ®, R)) = ¢*G(A/Ry, L, v).

Given a modular form as in the third definition, we get a modular form as in the
first definition by taking the section assigned to the universal QM abelian surface with
level structure A ® R — Sh ® R. This is an equivalence because A ® R is universal.
The last two definitions are related by

G(A,1,v) = F(A, 1,v,w)w®",

where w is any translation-invariant global section. This expression is independent of
the choice of w.

1.6.2 p-adic modular forms on Shimura curves

Let R be a p-adic ring (for p-adic ring we mean a complete and separated, with respect
to the p-adic topology, Z,-algebra). Define the space V,(NT, R) of p-adic modular
forms of level V;(N™) by

Vo (N, R) o= lim HY(lm I, @ R/p™ R, Oy 1,08 /pm )

m n

> limlim HO(I, ® R/p™R, O, 0r/pm ),

where O is the structure sheaf. When n = 0 one can take the coordinate ring of
the affine scheme obtained from Sh ® R/p™R by deleting the supersingular points,
ie., HY((Sh® R/p™R)°™, O(sher/pmr)yera)- I m =0, we take H°((In/R: Or, ). Thus
elements in V,(NT, R) are formal functions on the tower I,,, i.e., f € V,(NT, R) is arule
that assigns to each quadruple (A, ¢, vy+,v5°), where (A, ¢, vn+,15°) is a QM abelian

24



1.6. Modular forms on Shimura curves

surface over an R-algebra Rg with Vi (N1 p™)-level structure, a value f(A, ¢, vy+, V) €
Ry, which depends only on the isomorphism class and that is compatible with base
changes. We say that a p-adic modular form f is of weight k € Z,, if for every u € Z,
we have

f(A L vn+, 7)) = u k(A L vN+ v, u),

where (A, ¢, vy+,v5°) is a QM abelian surface over an R-algebra with Vi (N*p*)-level
structure.

If f is a modular form with respect to B of weight k and level V1(N ™) over R as in
1.6.1, then we can see it as a p-adic modular form f as follows. The Vi (NTp™>)-level
structure on A/Ry determines a point P € €T}, A} (k), where Ay is the reduction mod p
of A. A point P € eT,Al(k) determines a differential wp € wy /Ro- Indeed, there is an
isomorphism

T,(A}) = Homgz, (A, Gyp,).

So, taking the homorphism ap corresponding to the point P, one can consider the
pullback wp = ap(dT'/T) € Wi R, = WA/Ry» Of the standard differential dT /T of Gy,.
See [Ka, §3.3] or the proof of [Brooks, Lemma 4.2| for details. One can define

f(A7 by VN+7VSO) = f(A7L7VN+)wP)-
It follows from the definition that if f is a geometric modular form of weight & and level
Vi(NT), then f is a p-adic modular form of weight k and level V(N ™).
1.6.3 Jacquet—Langlands correspondence

The Jacquet—Langlands correspondence establishes a Hecke-equivariant bijection be-
tween automorphic forms on GLo and automorphic forms on multiplicative groups of
quaternion algebras. In our setting, this can be stated as a correspondence between
classical modular forms and quaternionic modular forms.

Theorem 1.6.4 (Jacquet—Langlands). There is a canonical (up to scaling) isomorphism
M(Sh,C) — Si(T1(N), €)™,

where T'1(N) is the standard congruence group
[(N):={AeSLy(Z)|A=(}3) mod N},

and Si(L'1(N),C)P1V s the space of classical cuspidal eigenforms with respect to
' (N), of weight k and that are new at D. This bijection is compatible with the Hecke-
action and the Atkin-Lehner involutions on each of the spaces.

In particular, to each eigenform f € Sg(I'1(IN), C)P™" with Nebentypus ¢ s with respect
to the action of I'o(N), corresponds a unique (up to scaling) quaternionic form fp =
JL(f) € My(Sh,C) having the same Hecke eigenvalues as f for the good Hecke operators
Ty for (¢,D) =1 and the Atkin-Lehner involutions. Here

To(N):={Ae€SLa(Z) | A= (%) mod N}.

More precisely the Jacquet—Langlands correspondence asserts the existence of a holo-
morphic function fg on the upper half plane, determined only up to a scalar multiple,
such that fp is a modular form for the discrete subgroup I'; x+ of GLa(RR), of weight
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k, with the same eigenvalues as f for the good Hecke operators and with Nebentypus
ey for the action of T'y v+, where I'g v is the open compact subgroup of O composed

of the elements b € O3 such that my+(b) € {(§ %) € GLy(Z/N*Z)}, and Ly is the

subgroup of matrices in <I>OO((1A“0’ N+ N B)*) of determinant 1.

The function fp gives rise canonically, as in [Brooks, §2.7], to a modular form in the
sense of the geometric definition seen before, i.e., to a section of we = emQapc/shec- In
particular, if we start from a classical modular forms for I'y(N') we obtain a quaternionic
modular form with trivial Nebentypus with respect to to the action of I'y n+.
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Chapter 2

Deformation theory and
t-expansions for modular forms

In order to associate with modular forms over Shimura curves power series expansions
at CM points, we are interested in deformation theory. In particular, Serre-Tate defor-
mation theory provides us with a way to do this. Thus, in this chapter we will study the
deformation theory of QM abelian surfaces, which is closely related to the deformation
theory of elliptic curves, as is well explained in [Buz|. Then we will define power series
expansions for modular forms on Shimura curves.

As we will see, deformation theory is a tool to understand the local structure of a
moduli space. We begin with an introduction to deformation functors associated with
moduli problems.

2.1 Deformation functors
We start with a moduli functor F, which in our case is a contravariant functor

F: Sch‘w(k) — Set

from the category of schemes over the ring of Witt vectors W(k) over k := F, to the
category of sets. Since k is the residue field of W(k), there is a projection W(k) — k that
induces Spec(k) — Spec(W(k)), so we can see Spec(k) as a W(k)-scheme. We want to
analyze the local structure of F at a k-point of F, i.e., an element of F(k) := F(Spec(k)).

Consider the category C of local artinian rings with residue field isomorphic to k.
To be precise, an object of € is a couple (A, a4) where A is an artinian local ring with

maximal ideal m4 endowed with a fixed isomorphism a4 : A/my =ik Morphisms in
this category are homomorphisms of local rings inducing the identity on k: a morphism ¢
between (A1, 1) and (Az, a2) in € is a ring homomorphism satisfying ¢(ma,) C p(ma,)
or, equivalently, ¢ ~!(m,,) = ma, and such that the triangle

A1L>A2

s,
k

commutes. We will denote an object (A, a4) of € only by A, disregarding the isomor-
phism but keeping it in mind and remembering that a morphism in € must induce the
identity on k. The ring of Witt vectors W(k) with the natural projection is an object
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2. Deformation theory and t-expansions for modular forms

of € and for any ring A in € there exists a unique morphism W(k) — A (in €). Thus,
each ring in € has a canonical structure as a WW(k)-algebra and Spec(R) has a canonical
structure as a W(k)-scheme.

We associate with the functor F and a k-point = € F(k) a covariant deformation funtor

/3'\}6:6—>Set

given by R
R+~ F(R) := F(Spec(R)) Xz {7},

where the fiber product is determined by the diagram

F(Spec(R)) g {2} — {x}

| |

F(Spec(R)) — R g1

in which ag is the morphism that comes from the projection R — k induced by the
isomorphism associated with R. There is a natural identification

Fo(R) = {y € F(Spec(R)) | F(ar)(y) = «}.

The functor 5’} is called the completion of F at =x.

Suppose that the moduli functor ¥ is represented by a W(k)-scheme X (later on,
our aim will be to consider a deformation functor associated with our Igusa tower over
Shyyy = Sh @z, W(k)). Since X represents F, there is a natural isomorphism

F = Homyy () (—, X),

so for any ring R in C we have that F (Spec(R)) coincides with the set of R-points
X (R) := Homyy(y (Spec(R), X) of X. In light of this, we will usually not distinguish
between X and &F. In this case, one can describe f;"m as follows. Choose a k-point
x : Spec(k) — X in X (k). The formal completion of X at z is the deformation
functor

)?x : € — Set
R+ X,(R) := X(R) xx() {2},
so X, (R) = {ye X(R) |yoar =2z}
Because the only homomorphism k — k that respects the W(k)-algebra structures

is the identity, for every point z € X there is a unique k-point in X (k) with image z.
Indeed, each morphism 2’ : Spec(k) — X factors through the canonical morphism

i : Spec(k(z)) = X,
where k(z) is the residue field of z = im2’. Then there is a sequence
Spec(k) — Spec(k(z)) BEND Spec(W(k))
that is induced by the sequence of W(k)-algebras
W(k) — k(z) — k.
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2.1. Deformation functors

Then the first arrow W(k) — k(z) must be local and factor through k, so there is a

sequence
W(k) — k — k(z) — k

and k(z) = k.
Starting with k-points x1, z2 : Spec(k) — X with image z, we obtain a diagram
k
k.

Therefore the two isomorphisms from k(z) to k must be the same, so x; = x2. This
argument shows that there is a bijection between k-points of X as a W(k)-scheme and
points of X with residue field isomorphic to k. For this reason we identify our fixed
point € X (k) with its image. This implies that

X(R) = {y € X(R) | imy =z},

as the points y such that y o ag = = are exactly the R-points with image x.
For every z € X, there is a bijection

{ Spec(R) — X in } ~

1 - — Homj,. rings (OX,Z R)
Schy,,,,, with image 2 W(k)-alg. ’

fr— (% : Ox.. = Ospec(rymn = R).-
Since R is complete, we have

Homloc. rings (OX,27 R) = Homloc. rings (@X,m R),
W(k)-alg. W(k)-alg.

where @X,z is the completion of the local ring Ox ., which is the stalk at x of the
structure sheaf Ox of X.

If our fixed point x is a smooth point, the ring O x> is a complete noetherian local
ring with residue field k. If we denote by €’ the category of complete noetherian local
rings with residue field k, of which C is a full subcategory, then

Homq, rings (6X,aca R) = Home (@X,ma R) .
W(k)-alg.

Because of the functoriality of the bijections above, )?m is “quasi-represented” by O X ot

)?x = HOHl@/ (6)(733, —).

~

More precisely, X, is “pro-representable”, in the following sense. Every functor of
artinian rings G : € — 8et can be extended to a functor §’ : € — 8et by setting
§(R) := Hm G(R/m™) for every R in €’ with maximal ideal m. If §' is representable
by an element R in €', then § is said to be pro-representable. An element x of §'(R) is
called a formal element of G. By definition, a formal element x € G(R) can be repre-
sented as a system of elements {x,},, where z,, € §(R/m"), compatible with respect
to the maps G(R/m"*!) — G(R/m") induced by the projections R/m"*! — R/m". In
our case, X/, coincide with X, extended to € by the same rule R > X (R) Xx(k) 12}

so we will not distinguish between all these functors and simply denote them all by X,.
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2. Deformation theory and t-expansions for modular forms

2.2 Serre—Tate deformation theory

Following |Ka|, we introduce the Serre-Tate deformation theory for ordinary abelian
varieties, which provides a way to attach power series expansions to modular forms on
Shimura curves, replacing classical g-expansions for “elliptic” modular forms that are
not available in our case.

Fix an algebraically closed field & of characteristic p > 0 (for our goals, we can take
k = F,) and consider an ordinary abelian variety A over k. Recall that an abelian
variety A over k is said to be ordinary if A[p|(k) = (Z/pZ)3™ (A, Let A* be the dual
abelian variety, which is isogenous to A and hence ordinary too. Consider the Tate
modules

ToA:=lm Ap"I(k),  TpA = lim A'[p"] (k)

of A and A'. Because of the ordinarity assumption on A, T,A and T,A" are free Z,-
modules of rank g := dim A = dim A’

Definition 2.2.1. If R is an artinian local ring with maximal ideal mp and residue
field k, a deformation of A to R is an abelian scheme A over R together with an
identification A x g k = A.

Following a construction due to Serre and Tate, we attach to such a deformation a
Zy-bilinear form

q(A/R; —, =) : T,A x T,A' — G,,(R) = 1+ mpg,

where Gy, := Spf (k[T,S]/(T'S—1)) is the completion of the multiplicative group scheme
G := Spec(k[T, S]/(T'S — 1)) over k. This bilinear map is constructed from the Weil
pairings
epn  Alp"] x A'[p"] — jpn

of k-group schemes, as defined in [Oda]. These pairings come from Cartier duality for the
p-divisible groups A[p>°] and A![p>°](k) (duality of abelian schemes is compatible with
Cartier duality). Here pun is Spec(k[T]/(TP" —1)), the k-group scheme of p"-th roots of
unity, which can be seen inside G,,, through the map k[T, S]/(T'S —1) — k[T]/(T?" —1)
defined by T + T and S — TP"~!. For each k-algebra R, i, (R) corresponds to the
p"-torsion of G,,(R). See, e.g., |Lip, p. 16| or [Feng| for details.

We briefly sketch the construction of the bilinear map ¢(A/R; —,—). Choose an
integer n > 0 such that m% = 0. Since p € mpg, A(R) := ker(A(R) — A(k) = A(k))
is killed by p™. Let P € A(k); for any lift P € A(R) of P, since A(R) is killed by
p", we have that p"P is independent of the choice of the lift P. The existence of a
lift P € A(R) of P € A(k) is guaranteed by the smoothness of A/R ([Liu, Corollary

2.13]). Therefore we obtain a map A(k) RN A(R). If we take P € A[p"](k), then
“p"" P e A(R), so we get R
“pn” : A[pn] .A(R).

Because of the compatibility of the maps “p™” when n > 0, we obtain a homomorphism

@

P T, A —» Alp)(k) 2 A(R)

that is independent of n.
Now, restricting the Weil pairings

epn A\[pn} x Al [p"] — ppn
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2.2. Serre—Tate deformation theory

for every n > 1, we obtain a perfect pairing, and then an isomorphism
Alp"] — Homy,, (A"[p"], jpr)

of k-group-schemes. Because of the compatibility of the pairings with respect to n,
passing to the limit, we deduce an isomorphism

~

A(k) = Homgz,, (TpAt, @m),

of formal groups over k.
Since R is artinian, the p-divisible group A[p™] has a canonical structure of an
extension, as given by

0— A — Ap™®] — T,A x (Q,/Zy) — 0

of the constant p-divisible group T,A(k) x (Qp,/Z,) over R by A, which is the unique

~

toroidal formal group over R lifting A. Then the preceding two isomorphisms extend
uniquely to isomorphisms of R-group schemes

o

A[p"|(R) — Homyz, (A"[p"], )

and R N R
A(R) — Homg, (T,A", Gy,)

(see the proof of [Ka, Theorem 2.1|), giving pairings
epn,a + Alp"|(R) x A'p"] — ppn,

and

eq: A(R) X T,A" — Gom.
Finally, the map ¢(A/R; —, —) is defined by
q(A/R; P,Q") :=ea(“p"" P, Q"),
for P € TyA and Q' € T, A"
Theorem 2.2.2 (Serre-Tate). With notation as above, the construction
A/R — q(A/R; -, -) € Homg, (T,A ® T,A', Gy (R))
establishes a bijection

{ isomorphism classes of

=H T,A(k) @ T,AL (), Gm(R)).
deformations of A/k to R} omz, (TyA(k) ® TA'(R), G (R))

Furthermore, this correspondence is functorial in R, i.e., if F is the deformation functor
from the category C of artinian local rings with residue field k to the category of sets
given by

F:R— F(R) = {isomorphism classes of deformations of A/k to R},
then there is an isomorphism of functors
F ~ Homg, (T)A @ T,A',G,,).
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2. Deformation theory and t-expansions for modular forms

Proof. This is [Ka, Theorem 2.1, 1) and 2)|. O

The proof of the theorem rests on the fact that there is an equivalence

isomorphism classes of ~ isomorphism classes of
deformations A/R of A/k deformations A[p™]/R of A[p>=]/k [’

so deforming an ordinary abelian variety A/k is the same that deforming its p-divisible
group A[p*].

Taking inverse limits, we can replace the category of artinian local rings with the
category of complete noetherian local rings in the preceding discussion. We can do this
because of the compatibility of these correspondences with inverse limits and of the fact
that every complete noetherian local ring is the inverse limit of artinian local rings (if
R is a complete noetherian local ring with maximal ideal m, then R = l&nn R/m™).
However, the procedure for computing the pairings ¢ 4,r only makes sense for artinian
local rings.

Passing to complete noetherian local ring is useful because the deformation functor
is not representable by an artinian local ring in € but is pro-representable by a com-
plete noetherian local ring. Namely, the deformation functor F is pro-represented by
a complete local noetherian ring R* that is non-canonically isomorphic to the power
series ring W[[Tj;,1 < 4,5 < g]], where we have set YW := W(k). Therefore the functor
F can be seen as a formal scheme Spf(R*). Denote by A“/Spf(R") the universal for-
mal deformation of A/k, i.e., the formal element of F corresponding to the identity in
Homg(R", R").

Given elements P € T,A, P' € T,A", there is a map

F— @m
A/R +— q(A/R; P, P").
If we pick Z,-bases {Py, ..., Py} and {P},..., P} of T,A(k) and T, A*(k), respectively,
then we have g? functions
tij: F— @m
A/R — q(A/R; P, P})

called Serre—Tate coordinates and g? elements t”(ﬁ“/Ru) € R. Writing T;; =
tij — 1, there is a ring isomorphism

R* = WIH{Ti; 3.
We conclude with the following

Proposition 2.2.3. Let f : A — B be a morphism of ordinary abelian varieties over
k, let ft: Bt — A! be the dual morphism of f and let A/R and B/R be deformations
of A/k and B/k to R. Then f lifts to a morphism F : A — B of deformations if and

only if
q(A/R; P, f{(Q")) = a(B/R; f(P),Q")

for every P € T,A(k) and Q' € T,B'(k). Furthermore, if a lifting exists, then it is
UNIque.

Proof. This is |[Ka, Theorem 2.1, 4)]. O
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2.3 Serre—Tate coordinates for Shimura curves

Take now an ordinary QM abelian surface A over k with a V3(IN*)-level structure.
We want to deform our abelian surface not only as an abelian surface but also with
its structures. Thus, we consider the subfunctor M of F = Spf(R") which sends an
artinian local ring R with residue field &k to the set of deformations of A to R, where by
deformation of A to R we mean a deformation A of A to R together with an embedding
Op < Endg(A) deforming the given embedding Op < Endy(A) and a Vi (NT)-level
structure on A deforming the given V;(NT)-level structure on A. The Vi(NT)-level
structure automatically lifts uniquely, as A[Nt] is étale over R, so we can ignore it in
our discussion.

Consider the idempotent e that acts as (§§) € Ma(Z,) on T,A (ix and @, can be
chosen to be compatible, by the choice of p over p = pp split in K). We can find a Z,-
basis { P, P»} of T, A such that eP; = Py and eP, = 0, indeed TyA = eT,A® (1—e)T,A.
Then P} € (eT,A).

Proposition 2.3.1. The subfunctor M of F is pro-representable by a ring RS that is
a quotient of R*. In fact, RY is the quotient of R* by the closed ideal generated by the
relations R R
q(AY/RY;bP, Q") = q(A*/RY; P,b*Q")
for any b € B, P € T,A, Q" € T,A'. Furthermore, there is an isomorphism
RI = W],
where T11 = t11 — 1 and t11 corresponds to q(ﬁ“/R“; Py, Plt)

Proof. This is a consequence of Proposition 2.2.3. For details, see [Brooks, Proposition
4.5] and |[Mo, Proposition 3.3]. O

Thus, deformations of the QM abelian surface A/k depend only on the e-component
elp,A of T, A.
By what we have seen in §2.1, since the deformation functor M is the deformation

functor associated with Shf;ik), i.e., the ordinary part of Sh|w(k>, and the point x €

Sherd(k) corresponding to the fixed ordinary QM abelian surface A/k with Vi(N7T)-
—~ord
level structure, it follows that M is the formal completion S h;r of S h‘ﬁf\? at = and so

it is the formal spectrum Spf(@shord7x), where Ogjora  is the local ring of Sherd at .

2.4 Deformations of QM abelian surfaces

In the case of QM abelian surfaces, the coordinate ring of the deformation functor has
only one coordinate obtained by choosing a point P € T,A such that eP = P, as
we have seen in the previous section. Also in the case of elliptic curves there is only
one coordinate obtained by choosing a point P € T,E. Actually, there is a strict link
between deformations of QM abelian surfaces and deformations of elliptic curves.
Take an ordinary QM abelian surface A/k where k is again F,. Then, as already
pointed out, its deformation theory is equivalent to the deformation theory of the p-
divisible group A[p*] (see the proof of [Ka, Theorem 2.1]). The p-divisible group A[p>°]
attached to A inherits an action of Op and hence of Op ® Zj, which is identified with
M5(Z,) via the fixed isomorphism ®,. If we set e = ({3) € Ma(Z,) (the idempotent
e acts as (30) € My(Zy,) on A[p™]), then A[p™] splits as eA[p™] @ (1 — e)A[p™].
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2. Deformation theory and t-expansions for modular forms

Moreover, eA[p™] and (1 — e) A[p™] are isomorphic via multiplication by (§§). Since A
is ordinary, there is an isomorphism A[p>°] =2 E[p>]? for E/k an ordinary elliptic curve
with E[p™] = eA[p™] (see |Buz, Corollary 4.6]). Following [Buz|, we want to recover the
deformation theory of A from the deformation theory of an elliptic curve. Deforming
A[p™] with its Op-action is the same as deforming A[p>]| with its M(Z,) = Op @ Z,,-
action. According to Theorem 2.3.1, this is equivalent to deforming eA[p™], therefore
the deformation theory of A/k (or A[p™>]) is equivalent to the deformation theory of
E/k (or E[p™]).

We want to relate the bilinear map g4, associated with a deformation A/R of a QM
abelian surface A/k, to the map gg¢ associated with the deformation £/R, corresponding
to A/R, of an elliptic curve E/k, when there is an isomorphism of p-divisible groups

ot eAp™] = E[p™]

over k. So we start by comparing the Weil pairings. Since the Weil pairing comes
from Cartier duality for p-divisible groups, there is a commutative diagram for the Weil
pairings

p™,A

eA[p"] x (eAp™)t % pupn

lanx(am-l I:

enpn
E[p"] x E'p"] ——= pyn

where v, is the n-component of o and the first line in the diagram is the restriction of
the Weil pairing associated with A to eA[p"] x (eA[p™])! (Cartier duality is compatible
with duality of abelian schemes, so (eA[p"])! — (A[p"])! = Al[p"] and (eA[p"])! =
(E[p"])t = E*[p™]). This means that for each P € eA[p"|(k) and Q' € E'[p"](k), we
have
epr.a (P, 0 (Q)) = epn g (an(P), Q).
The same is true when we take inverse limits.
Considering the completions at the origin and restricting the pairings, we obtain

eAlp"] x (eAlp"))t 5 pipn
eA[p"] x (eAlp"))* -
Janx(aty
Elp"] x B'[p"] —"% puyn
because the functor G — G sending a p-divisible group to its completion at the origin is

exact and the connected-étale sequence is functorial. Then passing to the limits yields
pairings between Tate modules and the commutative diagram

eA(k) x (eT,A)t —245 G,

b T

E(k) x T,E! 2 G
When we extend these pairings to eA and €. , everything works well because of the
functoriality of the structure of extensions of p-divisible groups and the fact that we are

~

deforming also the action of Op and so the action of e, so that eA[p™] = £[p™].
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Observe everything works fine for the “p™” maps as well, and there is a commutative
diagram

T,E — E[p"] —— &(R

J J upn” —~

eT,A — eA[p"] —— eA(R),

~—

IR

again because we are deforming also the action of Op and so the action of e.
In conclusion, computing the bilinear map on eT,A x (eT,A)" is the same as com-
puting it on T,E x T,E", that is

q(A; P, Q") = q(E, a(P), (") H(@QY),

for all P € eT),A and Q' € (eT,A)t C T,A".

2.5 Deformation at points of /

If A/k is an ordinary QM abelian surface with A[p] = E[p]? as Op-group schemes,
where here Op acts via the natural action of Op ® F, 2 M(F,) on E[p]?, then there
is an induced isomorphism between the set of Vi (p)- level structures on A and the set
of T4ith(p)_level structures on E. In the same way, when A[p>®] = E[p™]? there is a
bijection between the set of V;(p™)- level structures on A and the set of T'3%ith(p°)-
level structures on E. Thus, the deformation theory of a k-point in I,,(k), or in the
Igusa tower, is equivalent to the deformation theory of the associated elliptic curve
viewed as a k-point of the scheme parameterizing elliptic curves with T (N+p")- or
I"ri‘rith(N Tp>)-level structures. In light of what we have seen in the previous section,
we can use this equivalence to compute Serre-Tate coordinates.

2.6 t-expansions for modular forms

Let us start from an F,-point z in the Igusa tower, i.e., the isomorphism class of a
quadruple (A/Fp,t,vn+,vpe). Then the Vi(p>)-level structure on A\Fp determines a

point P' € (eT,A)" (cf. |CH, §3.1]). Take P € eT,A corresponding to P’ via the
principal polarization. We fix the Serre-Tate coordinate t, around z to be

ty := q(—; P, P").

Denote by (A/WI[T]], ¢, vn+,Vp=) the universal deformation of z and note that we
can evaluate every p-adic modular form f € V,(N*, W) at (A/ WI[T]], ¢, vn+,vp=).
We call

f(tx) = f(A/W[[T]]7L7VN+7VP°°> € WHT”7

where T :=t, — 1, the t-expansion of f at =x.

2.7 On Serre—Tate coordinates at CM points

In this section we want to obtain a result analogous to [CH, Lemma 3.2] in our setting.
If a is a prime to ¢pN fractional ideal of O, with p 1 ¢, then A, has a model defined

over V := WNK®. Here z(a) = (Aq,ta, Vo N+, Vap) € I(V) is as defined in §1.5.5.
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2. Deformation theory and t-expansions for modular forms

Denote by ¢ the Serre-Tate coordinate around Z(a) := z(a) @y F,. Foru=1,...,p"—1
with (u,p) =1, set

2(a) x alu/p?) = a(cp)reer@ wmn ) Ly e [(V),

where recg : K*\K* — Gal(K?"/K) is the geometrically normalized reciprocity law
map, a € K> is such that a = a®, N K and the subscript by for b € Z) denotes its

image in K> under the inclusions Z; C pr C KX,

Lemma 2.7.1. With notation as above, one has that (z(a) * a(u/p™)) @y F), = Z(a)
_ —1
and t(z(a) * a(u/p™)) = CI;LUN(G) WEPk

Proof. The p-divisible module eA,[p™], with A, the QM abelian surface corresponding
to x = x(a) » a(u/p"), is exactly the p-divisible module associated with the point
zqxn(up~™) considered in [CH, Lemma 3.2] (cf. [CH, §4.5]). Hence, z in the deformation
space of Z(a) corresponds to z4 * n(up~™) in the deformation space of x4 @y F,, where
xq is the CM point defined in [CH, §2.4].

Set Ay := A ®y Fp and B, := E, Qy Ey, with F, the elliptic curve corresponding to
the CM point z4. Since the point P! € (eT,A4)! that is determined by the Vi (p™)-level
structure is the same as the point that is determined by the F?rith(poo)—level structure

on TPEE, the claim follows from the computations of §2.4 and [CH, Lemma 3.2]. O
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Chapter 3

Anticyclotomic p-adic L-functions

In this chapter we will define our p-adic L-function as a measure on Gal(Kp,~/K) with
values in W, which is again the ring of Witt vectors Witt(F,), i.e., the ring of integer
of the completion of the maximal unramified extension of Q,. In order to do this, we
study some theory of p-adic measures on Z, and of measures on Gal(Kp~/K).

3.1 Measures on Z,

We start by giving the definition of a p-adic measure and stating some properties; for
more details, the reader is referred to [Hi93, Chapter 3].
Let C(Zy, W) be the W-algebra of continuous functions Z, — W.

Definition 3.1.1. A p-adic measure on Z, with values in W is a W-linear function
p: C(Zy, W) — W such that there exists a constant B > 0 with

()], < Blelp
for each ¢ € C(Z,, W), where |¢|, := supxezp‘go(xﬂp.
We will write fzp wdp = p(p) for the value of a measure p on a continuous function ¢.
We denote by M (Z,, W) the space of p-adic measures on Z, with values in W. When
equipped with the norm

lulp = sup |p(o)],
lelp=1

the space M (Zy,, W) is a p-adic Banach W-module. In particular, if we have a sequence
of continuous functions ¢,, such that ¢, — ¢ in C(Z,, W) for n — oo and a measure
p € M(Zp, W), then

|1lpn) = u(@)],, < lulp - [on = @lp,
which means that

im pu(pn) = p( lim ¢n) = ().

In other words, we can exchange the integral and limit operations.
Consider now the binomial polynomial given by

n:

. x(x—1)~~~('x—n+1) ifn>1,
(2

1 ifn=0.
The function z — (i) is continuous on Z,,.
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3. Anticyclotomic p-adic L-functions

Proposition 3.1.2. A measure p is determined by the bounded sequence of numbers

UG} ew

neN

Conversely, given a bounded sequence {c,} of numbers in W, one can define uniquely a

p-adic measure | satisfying
T
[ (s
Zp, \T

Proof. This is [Hi93, §3.3, Theorem 1]. O

for every n.

Since (¥) € Q[z], the values pr (*)dp are uniquely determined by fzp x™dy for
m > 0.
Now, given a measure p € M (Zy,,V), consider the power series defined by

(1) == i (/Z <2>du> " e W{T]], with T :=¢— 1.

n=0

By Proposition 3.1.2, the measure 1 is determined by ®,, and, moreover, the following
result holds.

Proposition 3.1.3. The map

M (Zy, W) — W[T]

pr—r @,
is an isomorphism.
Proof. See [Hi93, §3.5]. O
There is an equality
d m
/ xdp = (tdt) P, |¢=1 for any m > 0. (3.1.1)
ZP

When z € W with |z|, < 1, the infinite sum

(1+2)" = i (Z)z"

n=0

is convergent for x € Z,. Thus, one can define the p-adic exponential by

= (e

Then

/ 2Cdp = Z/Z<>z—1”d,u D, (2) for €W with |z —1],<1. (3.1.2)
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3.2. Measures on Gal(Kp~/K)

The space of p-adic measures M (Z,, W) is naturally a C(Z,, W)-module in the following
way: for ¢ € C(Z,, W) and p € M(Zy, W), we set

/Zsodcb-u::/z ppdp

P P

for any ¢ € C(Zy,W). Furthermore, for ¢ € C(Z,, W) and p € M(Z,, W), we write
(61 () = Byu(t) = /Z (@)t dp € W[t — 1]].
P

Note that for m > 0
d m
[2™]®, = Pym,, = <t> o, (3.1.3)
dt
and for z € W with [z — 1], < 1
@.eu(t) = D, (12) € W[t — 1],

Consider now an element ¢ in the group p,» of p"-th roots of unity in the algebraic
closure of Frac(W). Since the only p-power unit in characterist p is 1, then ( —1 =0
mod the maximal ideal, so | — 1], < 1 and we can consider the exponential ¢* for
x € Zyp. Using the orthogonality relations

p" ifz=0b (modp"Zy)

Z C:Efb —

CEpipn 0 ifxz#b (modp"Z,),

we obtain that for ¢ : Z,/p"Z, = Z/p"Z — Frac(W)(p,») there is an equality

Gla)=p™ D " D b

(Eppn  BEL/PL

Thus, if we consider a locally constant function ¢ € C(Z,, W) that factors through
Zyp/p" Ly, then

610,(0) = Do) =p " 3 o) 3 T EWE-1]]  (3.14)

beZ/an Ce/"'p”

for p € M(Zy,, ). Observe that the notation [¢]®, coincides with that in [Bra, (8.1)]
and [Hi93, §3.5], and corresponds to ®, ® ¢ in [CH, §3.1]. Furthermore, there is an
equality

m _ d "
[ oweman= (1) (0100 (315

3.2 Measures on Gal(K, ,~/K)

Let aj,...,am be a complete set of representatives for Pic(O,,). As in [Bra, §8.2], there
is an explicit coset decomposition

H
Gal(Keopoe / K) = Pic Oggpe = | | a2, (3.2.6)
j=1
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3. Anticyclotomic p-adic L-functions

that allows us to construct a W-valued measure p on Pic Oy by constructing H
distinct W-valued measures pq; on Z;, so that for every continuous function ¢ :
Pic Ogype — W we have

pdpy = /w aldpif,a;
L. r= 3 [ el

cop™® aePic Oc,

where ¢ | [a] is ¢ restricted to a_lz;.
Therefore, a measure on Gal(Kyp~/K) is equivalent to a collection of H measures
on Zy:
T {:u’a}aEPic(co)'

3.3 Measure associated with a modular form

Let g be a p-adic modular form on Sh over W and let a € Pic(O,,). Define a W-valued
measure figq on Z, by

[ g = gtte) € Wt

Zyp

where t, is the Serre-Tate coordinate around x(a) ®yy F,, where z(a) is as defined in
Section 1.5.5. Indeed, if a is a prime-to-pN fractional ideal of O, and p 1 ¢, then z(a)
has a model defined over V := WNK?P. If fg,a is supported on Z;, then we can put
them together to obtain a measure pg on Gal(Kcype/K).

3.4 p-depletion of a modular form

In order to obtain measures supported on Z;, now we introduce the p-depletion of a
modular form. We follow [Brooks, §3.6].

Recall the operators U and V. Take a QM abelian surface A with ordinary reduction
over a p-adic field L. Then there is a unique p-torsion cyclic Op-submodule C' of A
which reduces mod p to the kernel of the Frobenius morphism, that is the canonical
subgroup (cf. [Kas, Theorem 1.1]). Denote by ¢; : A — A/C;, for i = 0,...,p, the
distinct p-isogenies of QM abelian surfaces on A ordered in such a way that Cj is the
canonical subgroup of A. If t : puy+ X pn+ < A[NT] is a V3(NT)-level structure on
A, then, since pt N, t; = ¢; ot is a Vi(N)-level structure on A/C;. Also if w is a
one-form on A, then there is a unique one-form w; on A/C; such that ¢jw; = w. If g is
a modular form, we can define another modular form g | V' by

g ’ V(A,t,(U) = g(A/CO7 1/pthpW0)

and also a modular form g | U by

p

g1 UAtw) =" g(A/Ci,ti,ws).

i=1
If [p] is the operator on modular forms that is given by g | [p|(A4, t,w) = g(A, pt, 1/pw),
then U and V' are related to the usual T}, operator by

T, =U +1/p[p]V-.

Furthermore, one has VU = id and the operators UV and VU — UV are idempotent.
The p-depletion of a modular form ¢ is defined to be

g =g | (id-UV)=g|(id =T,V + 1/p[p|]V?).
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3.5. Hecke characters and p-adic Galois characters

3.5 Hecke characters and p-adic Galois characters

Let K be our imaginary quadratic field and let m, n be integers.

Definition 3.5.1. A Hecke character of K of infinity type (m,n) is a continuous
homomorphism
x: K*\Ax — C*

satisfying

for every zo, € KX and z € K*.

In particular, the infinite component of x is given by xoo(2) = 2"Z". For each prime
q of K, denote by xq : K; — C* the g-component of x. The conductor of x is the
largest integral ideal ¢y of K such that xq(u) =1 for each element u € 1 + ¢;Of 4. As
it is known, one can identify a Hecke character y with a character on fractional ideals
of Ok prime to ¢y via the formula

x(a) = H Xq(ﬂq)vq(a)7

qlaprime

with 7y a uniformizer at q; the formula is independent of the choice of the uniformizer.
So, if x has conductor ¢ and a is any fractional ideal prime to ¢, we write x(a) for x(a),
where a € A% is an idele with aOx NK =aand ay =1 for all q | c.

A Hecke character y is called anticyclotomic if x is trivial on Aé. The p-adic

avatar y : K X\f( * — C, of a Hecke character x of infinity type (m,n) is defined by

m,..n
p Tp

(@) = x(@)a
with z € K* and p the chosen prime above p which splits in K. Every p-adic Galois
character p : Gxg — CJ can be seen as a p-adic character KX\K* — C, via the
geometrically normalized reciprocity law map recy : K*\K* — Gal(K*"/K).

A p-adic Galois character is said to be locally algebraic if it is the p-adic avatar
of some Hecke character. A locally algebraic character is called of infinity type (m,n)
if the associated Hecke character is of infinity type (m,n), and its conductor is the
conductor of the associated Hecke character.

3.6 Construction of a measure

Consider now our modular form f € SPV(I'o(N)), with £ > 4, and let F/Q, be a
finite extension containing the image of the Fourier coefficients of f. Via the Jacquet—
Langlands correspondence we can see f as a modular form in My(Sh,Op). Take the
p-depletion f®) of f and then consider it as a p-adic modular form f ®) in Vo(NT,0F)
of weight k.

Fix an anticyclotomic Hecke character v of infinity type (k/2,—k/2), and let coOk
be the prime to p part of the conductor of ¢. Take a finite extension of VW obtained
by adjoining values of the Hecke character ¢ and, with an abuse of notation, we still
denote it by W. Let 1& be the p-adic avatar of ¢». The W-valued measures p Fo) o 1€
given by

¢(G)N(ﬂ)_k/2¢pﬂf§p>,
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3. Anticyclotomic p-adic L-functions

where p i® is defined by

[ Faugr = 510 = 0@ VIR w1,

and t4 is the Serre Tate coordinate around z(a) @)y F,,.

Remark 3.6.1. The measure u F® associated with fa is supported on Z;. Indeed,

v f(p = 0 because VU = id. Since UV acts on the expansion in Serre-Tate coordi-
nates as UVg(t) = 1/p ZCG/Mp g(Ct) (see [Brooks, Proposition 4.17]), taking ¢ = 17

to be the characteristic function of Z, and using (3.1.4) yields

[Blgt) =p~" Y 6(b) > ¢ P(ct)

beZ/pZ CEpp

= [17,]9( Y g(ch).

CEMp
Hence, 1) o is supported on Z; as well.

Definition 3.6.2. Let i denote an anticyclotomic Hecke character of infinity type
(k/2,—k/2) and conductor cgOf with (co,pNT) = 1. The measure Zw associated
with f and 9 is the W-valued measure given by

agfz/)(@: Z /80‘ d#f(p)a

aePic(O,

for any continuous function ¢ : Gal(Kjpe/K) — W.

Therefore

Go) = X W@N@ [ duald g
a€Pic(Oc,) Lp
= Y ¢(Q)N(a)ik/Q(I)wpgoHa]dqu(p) li=1
a€Pic(O¢,) ¢
= S w(@N @) 2| [ £ (ta) 1=
aePic(Oc,)
= 5 w@N@) 2 e[l P (x(a)).
ClEPiC(OCO)

Notice that the second equality holds because p i® is supported on Z, . Indeed, for a
measure u supported on Zx one has fo ldp = fZ ldp =@, |4=1 .

Remark 3.6.3. We are interested in evaluating .,V/f » at continuous functions that

factor through Gal( p/K). In other words, we will view j 74 as a measure on

Now we state a result that we will use later. Let g € V,(NT,W) be a p-adic
modular form and let g, be defined as at the beginning of this section, so that g4(t) =

g(tN(C‘)_1 v *DKil) with ¢ the Serre-Tate coordinate around z(a) @y Fp.
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Proposition 3.6.4. If g € V,(Nt W) and ¢ : (Z/p"Z)* — C* is a primitive Dirichlet
character, then

[Plga(z(a) =p7"G(d) D ¢ (wg(w(a)x alu/p")),

u€(Z/p"Z)*

where G(¢) = ZUE(Z/an)X ¢(v)(yn is the Gauss sum of ¢.
Proof. The statement follows by applying (3.1.4) and Lemma 2.7.1. O

3.7 Interpolation properties

Working on B instead of GLQ(Q) and adapting the computations from [Hs|, one can
obtain an analogue of [Hs, Theorem 3.4] in our quaternionic setting and use it, as in
[CH]|, to get an interpolation formula for our p-adic L-function evaluated at Galois
characters that are p-adic avatars of anticyclotomic Hecke characters of infinity type
(n,—n) with n > 0. In particular, one can relate our p-adic L-function to the Rankin—
Selberg L-function associated with f and some anticyclotomic Hecke character y of
infinity type (k/2 + n,k/2 —n) with n > 0, i.e., the L-function associated with the
G k-representation Vi, = V¢(k/2) ® x.

In the statement of the following theorem, 1 is, as usual, an anticyclotomic Hecke
character of infinity type (k/2,—k/2) and conductor coOg with (co,pNT) = 1.

Theorem 3.7.1. Let gzg be the p-adic avatar of an anticyclotomic Hecke character ¢ of
infinity type (n, —n) with n > 0 and p-power conductor. Then there exists a non-zero
constant C(f,1, ¢, K) depending on f, 1, ¢, K such that C(f,v, ¢, K) - L(f, ¢, k/2)
1s an algebraic number and

(L) = C. 6. K) - L(F. 06, k/2).

where the equality holds via the fized embedding iy, : Q= Cp.

A proof of this result will appear in a future project.
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Chapter 4

Generalized Heegner cycles

Recall that K is an imaginary quadratic field, N is a positive integer with a factorization
N = NTN~ where NT is a product of primes that are split in K and N~ is a square-
free product of an even number of primes that are inert in K, B is again our indefinite
rational quaternion algebra of discriminant D = N~ and p is an odd prime that splits
in K and B and such that (p, N) = 1.

Consider then our Shimura curve Sh, our fixed modular form f in S, (I'o(V)) of
weight & = 2r + 2 > 4, which can be seen by Jacquet—Langlands as a modular form on
Sh, and the r-fold fiber product A" of the universal QM abelian surface over Sh with
itself.

Following the work of Brooks, [Brooks|, we want to define generalized Heegner cycles
associated with f lying over a Kuga—Sato variety over Sh. Indeed, these cycles will live
in the Chow groups of the generalized Kuga—Sato variety X, = A" x A", where A will
be a fixed QM abelian surface. Then, to obtain cohomology classes from the generalized
Heegner cycles, we will apply the p-adic Abel-Jacobi map. We will construct in this
way a system of generalized Heegner classes indexed by fractional ideals of K.

4.1 Kuga—Sato varieties

Consider the r-fold fiber product A" of the universal QM abelian surface A with itself
over Sh, which is called the r*P-Kuga—Sato variety over Sh.

We define the action of the Hecke operator Ty, for £ + N*D on the Kuga—Sato
variety A" as follows. Recall the interpretation of the Hecke operator T, on Sh as
correspondence. Let Sh({) be the Shimura curve classifying quadruples (A, ¢, v+, C),
where (A, t,vy+) is a QM abelian surface with V;(N7T)-level structure endowed with
a subgroup C' of A[(] stable under the action of Op and cyclic as Og-module. A[/]
has ¢ + 1 such Opg-submodules, all of them of order £2. Consider the natural forgetful
morphism of Shimura curves « : Sh(¢) — Sh and the morphism 3 : Sh(¢) — Sh given
by (A, t,vn+,C) = (A/C,tpe, Un+ ), Where Ly, Vn+ 4, are induced by the isogeny
o : A— AJC. Then Ty is defined by the correspondence

which means that T) = a0 B, i.e., Ty(x) = 3_,co-1(4) B(y). In other words, we recover
the definition given in Chapter 1.
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4. Generalized Heegner cycles

Now take the fiber product Ay := A xgp Sh(¢), which is the universal QM abelian
surface over Sh({), equipped with a subgroup scheme C of A[¢] that is an Op-module
of order £2. Consider the quotient Q := A,/C with induced QM and level structure and
the fiber products Aj and Q" over Sh(f). The action of the Hecke operator T, on the
Kuga—Sato variety A" is defined by the commutative diagram

A7 P A P or P2 g
Sh o Sh(#) A Sh,

where the two squares are cartesian, by the formula
To = p1, 09" o p3.

Write A" for the base change of A" to Q. The correspondence T} just defined induces an
endomorphism of the étale cohomology groups Hj (ZT, —), which will still be denoted
by Ty.

The reader is advised to compare with [Sch| for the definition of Hecke operators
on Kuga—Sato varieties over modular curves and with [EdVP] for the case of Shimura
curves relative to “I'g-type” level structures.

4.2 Generalized Kuga—Sato varieties

Fix the QM abelian surface A with V;(N™)-level structure and CM by O defined in
(1.5.5). Thanks to the assumption that p splits in K, the surface A is ordinary at p.
Our generalized Kuga—Sato variety is the product X, := A" x A". This enlarged
Kuga—Sato variety will be the space where our arithmetic cycles will live. As a piece of
notation, we shall write X, for the base change of X, to Q.

The usual Hecke correspondence Ty for a prime £{ NTD on the Kuga—Sato variety
A" induces a Hecke correspondence Ty x id on X., which will still be denoted by Tj.

4.3 Projectors on Kuga—Sato varieties

We will define our algebraic cycles as graphs of morphisms of QM abelian surfaces.
In order to make them homologically trivial, we will need to modify them by certain
projectors associated with the generalized Kuga—Sato variety. Consider the projectors
P € Corrgp(A") and €4 € Corr(A") defined in [Brooks, §6.1|. Then

PH (A", Zy) € Hg '(A', Zy)
and
eAHL (A" Z,) =0 ifi#k—2,
eAHE2(A",7,) = Sym* eH' (A, Z,).

Consider the variety X, together with the projector e = Pey € Corrgp (X, ). Thanks to

properties of the projectors, one has
eHL (X),Zy)=0 if i # 2k —3, 431)
- - o 4.3.1
eHZ3(X,,Z,) = PHY (A, Z,) ® Sym® eHY (A, Z).
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4.4. Galois representations and Kuga—Sato varieties over Shimura curves

We can prove these relations using the Kiinneth decomposition. More precisely, the
Kinneth decomposition for X,. = A, x A" reads

HY (X0, 2,) = @D HE (A, Zy) © HE (AT, Z,).

n+s=i

Indeed, the Kiinneth exact sequence for A, and A" (for which we refer, for example, to

ILEC, §22]) is

0— P Hi(AZ,) ® Hy (A", Z,) — Hiy (X, Z,) —

n+s=i

Since A is an abelian variety, by [AV, Theorem 12.1| the p-adic cohomology of A" s
a free Zy,-module, so the last term of the sequence above is 0. As a consequence, we
obtain the desired Kiinneth decomposition.

Now we want to apply the projector € and the twists. Since

PH. (A, Z,) =0 ifi#k—1
and
eAH (AT 2,) =0 ifi#k—2,
eAHY2(A"72,) = Sym™ e H' (A, Z,),
we deduce that
eH (X, ,Z,) =0 fori+#2k—3,

as in this case all the terms on the right hand side of the Kiinneth decomposition vanish
after applying the projectors. For ¢ = 2k — 3 the only term in the sum in the right
hand side of the Kiinneth decomposition that does not vanish after the application of
the projectors is PHE (A", Z,) @ eaHE 2(A", Z,), hence

5Hé?tk_3(yrv Zp) = PHé]ft_l(jr7 Zp) ® Sme’"eHélt(Z, Zp);

as desired.

4.4 Galois representations and Kuga—Sato varieties over
Shimura curves

Let V; be the 2-dimensional Galois representation attached to f € SpV(I'g(N)) by
Deligne (|Del]) and let V¢(k/2) be the self-dual twist of V. As explained, for example,
in [Nek92, §2 and §3|, V¢(k/2) can be realized as a direct summand of the (k — 1)-st
p-adic cohomology group of the Kuga—Sato variety over a certain modular curve.

Let ¢ be Euler’s function and observe that the index of I'; y+ in Iy y+ divides
#(NT) (see |Brooks, p. 4184]). From now on, we work under the following

Assumption 4.4.1. pf N¢(N™T).
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4. Generalized Heegner cycles

Consider now the r-th Kuga—Sato variety A" over the Shimura curve Sh. A similar
construction can be performed to obtain the representation Vy(k/2) from the étale
cohomology group Hg;l(ﬁ, Qp)(k/2) of A”. Namely, let F' be the finite extension of
Qp generated by the Fourier coefficients of f, whose valuation ring will be denoted by
Op. Moreover, let P be the projector from §4.3. Under Assumption 4.4.1, one can
define a Galois-equivariant surjection

PHg ' (A7, Zy) (k/2) — T,

where T' is a suitable Galois-stable Op-lattice inside V¢(k/2), whose definition can be
found, for example, in [Nek92] and [Ota| (see also [Nek93|). This can be done by
adapting the arguments in [IS, §5 and Appendix 10.1] to our setting, which coincides
with that of [Brooks|. Since the modifications required are straightforward, we leave
them to the interested reader. See also [EAVP, §3.3] for further details.

4.5 The p-adic Abel-Jacobi map

The p-adic Abel-Jacobi map is a map that sends algebraic cycles of an algebraic variety,
i.e., finite linear combinations of irreducible subvarieties with integer coeflicients, into
étale cohomology classes of the variety with respect to a p-adic sheaf.

Let us start with a smooth projective variety X of dimension d over a field F' of
characteristic 0. Let C*(X) denote the free abelian group generated by the irreducible
closed subvarieties of X of codimension s. Elements of C*(X) are called algebraic cycles
of codimension s on X. The quotient

CH*(X/F) := C*(X/F)/ ~at

of C*(X/F) by rational equivalence is the s-th Chow group of X. Two algebraic cycles
Y, W € C*(X/F) are said to be rationally equivalent if there exist an open subset
U C Py, acycle Z € C°(X xU) (Z can be seen as a family of algebraic cycles of
X parametrized by points of U) and two distinct points ¢1,ts of U such that YV =
ZNC*(X x{t1}) and W = ZNC*(X x {ta}).

Consider the p-adic étale sheaf Z, on X := X ®p F defined by the system of
the locally constant étale sheaves Z/p"Z. The p-adic cohomology group H{, (X, 7Z,) is

defined as the inverse limit

Hét(y¢ Zp) = l&n Hét(ya Z/an)

n

Let

clx : CHY(X/F) — HZ (X, Z,(s))¢F
denote the cycle class map in étale cohomology, where Zp(s) denote the s-th Tate twist
of Zy, and G is the absolute Galois group Gal(F'/F). See [LEC, §23| or [Mi80, Chapter

VI, §9] for the definition of the cycle map and [LEC, Chapter I] for an introduction to
étale and p-adic étale cohomology. We denote by

CH*(X/F)y := ker(cly)

the group of homologically trivial cycles of codimension s on X up to rational equiva-
lence.

Take now an element of CH®(X/F)o represented by an algebraic cycle Z, with Z/F
smooth. Consider the Gysin sequence in p-adic étale cohomology from [LEC, Corollary
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4.6. Generalized Heegner cycles

16.2]. Setting X = X, Z =2,U = X\ Z, r = s and F = Z,(s) in [LEC, Corollary
16.2], we obtain an exact sequence

0 — HZ X, Zp)(s) — HETNX\Z,Zy)(s) — HZ (X, Zy)(s)g — 0
in the category of continuous p-adic representations of G, where

HZ (X, Z,)(s)y = ker(HE (X, 2,)(s) - HE(X, Z,)(s))

is the kernel of the Gysin map i, and HZ;Z(Y7 Zp)(s) is the cohomology group with
)

support on Z (see [LEC, §18]). Recall that clx(Z) is defined to be the image of 1 under
the Gysin map

Ly = Hy(Z,Zy) — Hy5(X, Zp(s)) = Hz (X, Zp)(s)
such that B
1— CIJZ((Z) — clx (2)

(see [LEC, §23]), where Cl%(Z) € H%S (X, Zy(s)) is the class from which clx(Z) comes
from, and Z is homologically trivial, i.e., clx(Z) = 0. It follows that the map

v Ly — HZ (X, Zy(s))o
given by B
11— Cl)—Z((Z)

is well defined.
Pulling back the previous exact sequence by ~ gives the following commutative
diagram with exact rows, where the right square is cartesian:

0 —— HZ ™ (X,Z,)(s) » Bz » Ly 0

I ! b

0 y Hoo N (X, Zp)(s) —— Hg (X \Z,Zy)(s) — Hftfg(f Zp)(s)o — 0.

The p-adic étale Abel-Jacobi map is the map
Adpr s CHY(X/F)y — Bxt! (L, H;7\(X,2,)(s)) = H' (F, H; 7 (X, 2,)(s))

that sends the class of a homologically trivial cycle Z to the isomorphism class of
the extension Vz in the category of Galois representations, as determined by the last
commutative diagram.

4.6 Generalized Heegner cycles

For any morphism ¢ : (A,i,vy+) — (A',i,1}.) of abelian surfaces over a field FF 2 Q
with QM by Op and Vi(NT)-level structure, we can consider its graph T'y, C A x A’
Consider the point = in Sh(F) corresponding to the class of (A’,7’,v/},). There is an
embedding A’ = A, < A of the fiber of A above z in A that induces an embedding
iz : (A" < A". Via this embedding, we can view the (r)-power of the graph of ¢
inside A" x A":

i Xid

[ CA"x A" = A" x A" "= A" x A" = X,
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4. Generalized Heegner cycles

We define the generalized Heegner cycle A, associated with ¢ as
A, =cll, € CH* (X, /F),

where ¢ = Pey € Corrgy, (A, &) and F' is a field such that (A4’,7,v},,) and ¢ are
defined over F'.

One needs to apply the projector ¢ to make the cycle A, homologically trivial, that
means that we want the image of A, via the cycle map

cly, : CHMY( X, /F)o — HZ2(X,, Z,(k — 1))

to be trivial in order to apply the Abel-Jacobi map. Indeed, the cycle A, is homologi-
cally trivial, because, thanks to equation (4.3.1), one has e H2*"%(X,, Z,(k — 1)) = 0.
Therefore, we have that eCH*1(&, /F) C CH* (X, /F)o, hence A, is cohomolog-
ically trivial and we can consider the image of this cycle under the p-adic Abel-Jacobi
map
Alyp: CH YA, /F)g — HY(F,HZ (X, Z,(k - 1))).

Applying the projector ¢ in the construction of the Abel-Jacobi map (as in [BDP, §3.1]
for Kuga—Sato varieties over modular curves) we obtain a p-adic Abel-Jacobi map

Alyp: CHY YA, /F) — H'(F,eHZ3(X,,Zy(k - 1))).
Then, considering the twist in (4.3.1), one has
HZ (X, Zy(k — 1)) = PHE (A, Z,(k/2)) © Sym? e H) (A, Z,)(r),
so in the following we will see the Abel-Jacobi map as taking values in

HY(F,PHE (A", Z,)(k/2) ® Sym™ eH (A, Z,,)(r)).

4.7 A distinguished family of generalized Heegner cycles

With notation as in §1.5.5, start with the fixed QM abelian surface A. For any integer
¢ prime to N*, take the multiplication-by-c isogeny
. o .
(Aa L, VN+) — (A07 e, Vc,N+)7

which is an isogeny of QM abelian surfaces with V; (N 1)-level structures. For each class
[a] in Pic O., where the representative a is chosen to be integral and prime to N*pc,
consider the isogeny

g A — Aq,

defined as the composition
(A) i7 VN+) & (Aca iC) Vc,N+) ﬂ) (ACH /ia’ Va,N+)7

and then the cycle
Ay, € CHF YA, /K,).

In fact, both (Aq,iq, v y+) and the isogeny ¢, are defined over the ring class field K.
of K of conductor c.
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4.8. Generalized Heegner classes

4.8 Generalized Heegner classes

For any integer ¢ prime to N, consider the Abel-Jacobi map
Adp, : CHE Y X, /Ke)o — HY (Ko, PHEH (A, Z,) (k/2) ® Sym™ eHe, (A, Zp) (1))

Because V}(k/2) can be realized as a quotient of PHE (A", Z,(k/2)), then we can see
the Abel-Jacobi map as a map

CHk_l(XT/KC)Q — Hl(KC: T® Sme’”eHélt(Z, Zp)(r)),

where T is the Galois stable lattice in Vy(k/2). Since eHZ(A,Zy) = HL(E,Z,), then
we have a map

Sy, : CH" (X, /K.) — H' (K., T ® Sym* HY(E,Z,)(r)) — H' (K., T ® S(E)),

where, as in [CH, §4.2], we set S(E) := Sym* T),(E)(—r).
We define the generalized Heegner class z,, associated with an ideal a of O, to be

Zq i — (I)KC(A¢u).

4.9 y-components

As in [CH], we want to define “x-components” of the generalized Heegner classes and
construct classes z., € H YK,., T ® x), for x an anticyclotomic Galois character. For
this we will use S(F) = Sym? T,(E)(—r) appearing in the image of the Abel-Jacobi
map and we will do the same work as [CH]. So, closely following [CH, §4.4], let us start
with a positive integer ¢ coprime to pN ™, and let x : Gal(K¢ype/K) — OF (possibly
enlarging F' so that im(x) C Op) be a locally algebraic anticyclotomic character of
infinity type (j,7) with —k/2 < j < k/2 and conductor cop*Of.

Recall that F = C/Ok (cf. §1.5); note that E is denoted with A in [CH|. Consider
the abelian variety W) := Resg, /i E, obtained by Weil restriction of £ from K; to
K, defined as the product

w= ][] F,

ceGal(K1/K)
where E? is the curve determined by the polynomials obtained by applying ¢ to the
coefficients of the polynomials defining F. The Weil restriction W is again a CM
abelian variety but over K and of dimension [K; : K]. The endomorphism ring of W,
M = Endg (W)®Q, is a product of CM fields over K and dimW = [M : K| = [K; : K]
(see [Rub, §1] and [Wi] for a general introduction to the Weil restriction of abelian
varities). Since
_ oy _ Gk
(W) = H Tp(E7) = IndGK1 TH(E),
c€eGal(K1/K)

viewing Tate modules as Galois representations, where Ind is the induced representation,
we have an inclusion T},(E) — T,,(W). Define the G'x-module

S(W) := Sym? T,(W)(~r) ®z, O = Indgg1 S™(E) @z, OF.

By the discussion in [CH, §4.4|, there exists a finite order anticyclotomic character x;
such that x can be realized as a direct summand of S(W) ® x; as Gg-modules. Denote
by

ey 1 S(W)® xt — x
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the corresponding G g-equivariant projection. The character y; is unique up to multi-
plication by a character of Gal(K;/K) and it has the same conductor as x.

Since Ty, (E) — T,(W) and then S(E) < S(W), we can see the classes z, as elements
of HY(K., T ® S(W)), where a is a fractional ideal of O, with ¢ divisible by cop®.

For each integer c¢ divisible by the conductor cop® of x, put

2@ Xt =2 € HY (K., T ® S(W) ® x¢),
through the map HY (K., T ® S(W)) = HY (K., T @ S(W) ® x;) and define
Zey 1= (i[d®ey)(2e @ xt) € H (K., T ® X), (4.9.2)

the y-component of the class z..

4.10 Compatibility properties

First we study compatibility properties of the generalized Heegner classes defined in sec-
tion 4.8, by examining the action of the Hecke operators, and proving results analoguos
to [CH, Lemma 4.3 and Proposition 4.4].

Let I(Dg) denote the group of fractional ideals of K that are prime to Dx and let
Rg : I(Dg) — M* be the CM character associated to W (as in [CH, §4.4]), satisfying
the following properties:

o ip(aa) =+a-kg(a) for all a € I(Dg) and o € K* with « prime to Dg;
e For all a € I(Dg) and € W[m] with (m, N(a)) = 1, one has kg(a)(z) = oq4(x),
and if oq is trivial on K, then fp(a) € K* and o4(x) = [Fg(a)]z for all z € E[m].

Denote by kg : Gk — O} the p-adic avatar of &g, possibly enlarging F' so that M C F.

Proposition 4.10.1. Let a, b be fractional ideals in O, prime to cN+TDg. Suppose
that aOp is trivial in Pic Ok and put o := kg(a) € K*. Then

(id xa)"AZ = Ay,
where o4 € Gal(K® /K1) corresponds to a through the Artin reciprocity map.

Proof. Recall that the QM abelian surfaces A and A, are respectively the self-products
of elliptic curves F x E ad E, x E, for each fractional ideal a. Note that the isogenies
Pq : A - A, of QM abelian surfaces are the self-product of the isogenies E — Fj,
denoted with ¢4 by Castella and Hsieh and used by them to define their Heegner cycles
(cf. |CH, §4.1]), and also @ € K* acts on A (and A,) as the matrix multiplication
by (§9), hence as the multiplication by « in each component E (and Ej). Because
of this, the proof of [CH, Lemma 4.3] works also in our case, working component by
component. So we obtain that

(id x@) Tg* = (a x id),T7" = aogoe = T,y = Tap.

Oa —

Because z(b) (Ap,ip, vy N+)7% = a* (Ap,ip, Y n+) = (Aab, ab, Vap N+) = Tap 88
points in Sh, we have that the immersions i,p)sa and i,(qp) are equal, thus, taking the
r-power and applying the projector €, we have that

(id XO()*Aga = Agp,

and we are done. O

o2



4.10. Compatibility properties

Proposition 4.10.2. Suppose that p{c. For alln > 1, one has

k_2Z

Tpzepn—1 =p pn—2 + Corchn/chrh1 (Zepn)-

For (1 c that is inert in K, one has

TgZC = CorKcz/Kc (ch).

Proof. The operator T}, acts on the cycle A¢Cpn71 coming from the isogeny ¢gpn-1 :

A — A1 of QM abelian surfaces with V;(N*)-level structure and CM by K in the

following way
p+1

TpA¢6pn—1 = Z A¢z’
i=1

where the isogenies ¢; : A; — Apn-1 are p*-isogenies of QM abelian surfaces with
V1(NT)-level structures. These isogenies correspond to the p+ 1 sublattices of Ogpn—1 X
O¢pn—1 that are invariant under the action of Op. Since such a sublattice L is determined
by eL, one can work with sublattices of O, of index p. Therefore one can rearrange
the computation in the proof of [CH, Proposition 4.4] to obtain the formula in the
statement, using an analogue of [CH, Lemma 4.2| in this case. The second part of the
proposition can be proved analogously. O

The following result is analogous to [CH, Proposition 4.5].
Proposition 4.10.3. Let a be a fractional ideal of O, prime to cNTDy. Then

Xt(0a)(id ® €y) 27" = x(0a) Xeye(0a) (id © €y)za,
where Xcye 5 the p-adic cyclotomic character.

Proof. Denote by o4 € Gal(K./K) the image of a under the classical Artin reciprocity
map. We have

(id X a0y )+ g, = (id X da)s{(¢al2), 2) | z € A}
= {(()Oa¢0(z)790a01(2) | S A}
-1
as 0q(2) = a0k (2) for any z € A(C) and oq4(z) = @a(z) for any z € A.(C). Because

rJ® = xq, where x4 = (Aq, i, Vg y+) and z. = z0,, one has i 0. = i,,. Hence, applying

e to ((id x gpa@K)*F%)r = (ng)r, we obtain
(id X Qa0 )+Dg, = A
Then
200 = O (AG,) = i ((id X ©a):Ag,) = (id X a0y )+ i, (Ag,) = (id X L0y )+Za-

Observe that ¢q0, acts on SmeTeTp(Z) =~ Sym?'T, »(E) as its first component A\qo, :
E — E/E[aOk| = Eqo, . From the proof of [CH, Proposition 4.5|, we know that Ao,
acts on Sym?"HY(W,Z,)) as the push-forward [fg(aOf)]. of ip(aOk) € End(W),
which in turn induces the Galois action og. Since e, commutes with the action of G,
there are equalities

Xeye(0a)Xt(0a)ex (0 @ id @id -y) = ey ((0a @ Xiye(0a) @ xt(0a))(¥))
= ex(Ua y) = X(Ua)ex(y)’
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4. Generalized Heegner cycles

foranyy =y®1®1c S(W)®y, = Sym* HL(W,Z,) ® Xeye @ Xt- Therefore, viewing
299 2o € HY(K., T ® S(E)) C HY (K., T ® S(W)) as in §4.9 and letting 27¢ := 29° ® 1,
Zai= 2,01 € HY(K, T®S(W)® xt), we get
(id®ey)zl* = (Id ® ey )(id ® [RE(aOK)]«)2a
= X;yrc(gu)Xt_l(Ua)(id ® ex)(id ® 0q)za
= X&Z(%)X{l(%)x(aa)(id ® ex)zaa
which completes the proof. O

Finally, we conclude with two more propositions. As one can rearrange the proofs
of analogous results in [CH| to work also in our case, as we did in the proofs of the
previous results, we will skip details.

Proposition 4.10.4. Let 7 be the complex conjugation. Then

2oy = wp e x(0) - (zey1)°,

for some o € Gal(K./K), with wy = %1 the Atkin-Lehner eigenvalue of f.
Proof. Proceed as in the proof of [CH, Lemma 4.6]. O

Proposition 4.10.5. Let £ be a prime inert in K such that { { cNDy. Let X be a prime
of Q above €. Denote by Kcpn and K. x the completions of Ky and K., respectively, at
the prime above £ determined by X\, and write locy for the localization map. Then

loca(zer,x) = Resg,, k.., (106x (26 )7

Proof. Proceed as in the proof of [CH, Lemma 4.7]. O

o4



Chapter 5

A p-adic Gross—Zagier formula

We want our p-adic L-function to satisfy a p-adic Gross—Zagier formula that relates
Bloch—Kato logarithms of generalized Heegner cycles associated with characters x :
Gal(K,, /K)— Oép of infinity type (j, —j) with —k/2 < j < k/2, with its values, i.e.,
we look for a formula of the shape

L (4)(¢) = (something) - (log(zy), %) ,

where ¢ : Gal(K, /K) — Oép is the p-adic avatar of a Hecke character ¢ of infinity
type (—k/2 —j,k/2+ j) and x = ¥ 1¢~1. This formula provides a relation

DZ@/J) +— generalized Heegner cycles.

To establish a Gross—Zagier formula we will link our p-adic L-function to the differential
operator 6 = t% on the Serre-Tate coordinates and then we will use some results of
Brooks to obtain a key formula relating this operator 6 applied to the modular form

calculated on CM points with our generalized Heegner cycles.

5.1 The Bloch—Kato logarithm map

Let F,L be finite extensions of Q, and V' a F-vector space with a continuous linear
G := Gal(L/L)-action. Set DRy (V) := H(L,Bqr ® V) = (Bqr ® V)92, where
Bgg is the Fontaine’s de Rham periods ring. If V is a de Rham representation (i.e.,
dimp V = dimy, DR(V)), then we can consider the Bloch-Kato exponential map

DR(V)

T 2 HY(L,Y),
Fil' DR (V) SLY)

eXPBK -

that is the connecting homomorphism of the long exact sequence in cohomology coming
from the short exact sequence
0—V-—BloVaFIl°Bjr®V — Bgg — 0.

crys

See [BK, Definition 3.10, Corollary 3.8.4, Proposition 1.17|. Here H}(L,V) is the
Bloch—Kato finite part

H{(L,V) :=ker (Hl(L, V) — H{(L,V® Bcrys)),
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5. A p-adic Gross—Zagier formula

where B,y is Fontaine’s crystalline period ring. Consider now the inverse of this map,
the Bloch-Kato logarithm map

DRL(V)

logpp : HYL, V) = ——2LV)
epx  Hy(L,V) Fil DR.(V)

Since the long exact sequence in cohomology is functorial, the Bloch—-Kato logarithm
map is functorial as well, i.e., for any F-linear and Gp-equivariant morphism V — V'
there is a commutative square

1 logpx, DRp(V)
Hf(L’ V) " Fil° DLRL(V)

| |

1 loggr,  DRp(V)
Hf(L’ V') " Fil° DLLL(V/)'

Denote by V* := Homp(V, F') the dual of V' and consider the perfect de Rham pairing
(=, =) : DRL(V) x DR (V*(1)) — C,,.

Then we can consider the logarithm loggzz as a map

o DRL(V) . \
lo cHHL,V) — ———" =~ (Fil" DR (V*(1 , 5.1.1
soic s HH(LV) = ooy = (R DRL(V' (1)) (5.10)
which is again functorial.
5.2 The operator ¢
Recall the differential operator 6 := t% on the power series ring W[t — 1]]. For a

negative exponent j, one can define
67 := lim 7P
1—+00

Indeed, this limit makes sense because of [Brooks, Proposition 4.18], which implies
that ¢7+e—Dr" p = gi+@=Dr"F mod p"*! for m > n > 0 and F € W[t — 1]], so
’9j+(P—1)me _ ej-l—(p—l)pnF‘ < 1/pn+1.

S

For a positive integer m we know from equation (3.1.3) that
[z|F = 0™F,
but we are interested in the case when m is negative.
Fix an integer j < 0. For n > 0, one has j + (p — 1)p™ > 0, therefore
g+ (=P p — [0+ (=P

Denote by ¢y, the continuous map in C(Z,, W) given by z — ZHE=1P" for n > 0 and

by ¢ the continuous map in C(Zy, W) given by ¢(z) = 27, if z € ZX, and ¢(z) = 0
otherwise (Z, is open and closed in Z,). Consider |¢pn — ¢|p = supyez, |Pn(z) — ¢(2)]p.

Ifx e Z; then

|6n(@) = d(@)] ) = [27], - [P — 1], < 1/p"
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as ;L‘(p—l)pn =1 mod pn+1_ Ifxe ZP\Z;)( = pr, then x = phz with z € Z;; and h > 1’
SO

’gi)n(x) —¢() |p:| (phz)j+(P—1)P”‘p < 1/pj+(P—1)P".
Hence |¢ — ¢l < max {1/p"*, 1/pj+(p71)pn}, which means that ¢, — ¢ in C(Z,, W)

as n — oo. It follows that for a measure p € M(Z,, W) there are equalities

lim 1(6) = w( lim 6,) = u(6),

n—oo

so we can exchange the integral sign with the limit. Then

O'F = lim ¢7Te=0P"p = Jim [/ PP P = lim [ /TP R
n—oo n—o0 n—oo Zp
= lim gbn(:c)t‘”dF:/ lim ¢, (z)t*dF
n—oo Zp Zp n—oo
= / P(x)t"dF = / 2/t*dF = [27]F.
Zyp Zy

Here by [,x we mean fzp but with the characteristic function of Z) inside, so that
P

we can write 2/ in the integral. We conclude that, for any locally constant function
¢ € C(Zp, W), the formula

[ o@aaF = 0" ([9]F)|,oy (5.22)

holds also for a negative integer m.

5.3 CM periods and de Rham cohomology classes

Recall that A has a model defined over V := WNK?P. Fix a non-vanishing global section
wy of the line bundle e€Q 4/, on A, defined over V. Define a p-adic period €2, € C, by
the rule

wp = Qp(fj A

where w4 denote the section wp determined for A as in the last lines of 1.6.2 (which
depends upon the p>°- level structure on A).

Now, take a finite extension F' of Q, containing K and recall the fixed non-vanishing
differential w4 in eHC(A, Qu/r). We can see it as an element of Hl:(A/F). This
determines another element 74, as in the last lines of [Brooks, §2.8|, so that wi‘n?‘{*i
is a basis for Sym? eH}p(A/F), when i = 0,...,2r. We can arrange w4 and 14 in a
way such that they correspond to the elements wg, np € Hi (E/F) defined [CH, §4.5],
through the isomorphism eHy (A/F) = Hiy(E/F), keeping in mind that the elliptic
curve E is denoted by A in [CH].

5.4 A key formula

We want now to prove the key formula that relates this operator 6 applied to the
modular form calculated on CM points with our generalized Heegner cycles. The proof
of this formula is the same as the proof of [CH, (4.9)] but with [BDP, Proposition 3.24
and Lemmas 3.23, 3.22| replaced by [Brooks, Theorem 7.3, Lemma 8.6 and Proposition
7.4].
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5. A p-adic Gross—Zagier formula

5.4.1 Preliminaries

We briefly recall some results from |Brooks| that will be used later. Our notation is
as in [Brooks, §7.2], the only exception being that p-depletion is denoted here by (-)®)
instead of (-)°. Note that in the notation of [Brooks| a triple (A,t,w) consists of a QM
abelian surface A, a V3(NT)-level structure ¢ and a non-vanishing global section w. In
particular, the quaternionic multiplication is always understood.

The first result relates the operator 8 applied to f (P) to the components Qgp ) of the
Coleman primitive of w() associated with f ®),

Proposition 5.4.1 (Brooks). g§p) = g1 ),
Proof. This is [Brooks, Theorem 7.3]. O
(p)

Here g,”’ is the i-component of the Coleman primitive of w? as in [Brooks, §7.2|,
which is a locally analytic p-adic modular form (in the sense of the last lines of [Brooks,
§3.1]) of weight k — 2 — 2i.

The next result allows us to write the components of the Coleman primitive g
W(p) in terms of the components of the Coleman primitive g of wy.

(p) of

)

Lemma 5.4.2 (Brooks). If g is a locally analytic p-adic modular form of weight h such
that

T,g = by, (r) g =¢c5(p)g,

then

() Al SN — (A 4 ,_eg(p)b}“ 1o €5(p) -/ o 1

gPN (A A W) =g(A W) o g(p*(A,t,w))—i—thg(p * (A W)
for every CM triple (A, t',w').
Proof. This is [Brooks, Lemma 8.6]. O

Finally, we relate the components of the Coleman primitive of wy with the images
of the Heegner cycles through the Abel-Jacobi map.

Lemma 5.4.3 (Brooks). Let ¢ : (A t,w) — (A", t',0') be an isogeny of degree d. Then
AJp(Ay)(wr ® w%ni’q_i) = digi(A', W)

fori=0,...,2r.

Proof. This is [Brooks, Proposition 7.4]. O

Here F' is a finite extension of @, containing K1, such that A, is defined over F,
and wy can be seen as an element in Fil*~1 PHc’flg Y(A"/F) as in [Brooks|. Recall the
elements w’n% " € Sym® eH},(A/F) for i = 0,...,2r. Then

wr @wyny € FiI't! PHY (A" /F) @ Sym? eHjg (A/F) 2 Fil" e HiTH (X, / F).

See [Brooks| and [BDP, pp. 1050-1053] for an explanation in the case of modular curves.
Finally, AJr is the Abel-Jacobi map

AJp: CH*Y(X,/F)o — (Fil* teHIH (X, /F))”
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defined in §6.3, which is the composition of the usual Abel-Jacobi map
CH* (X, /F)o — H}(F,eHE (@, Q) (k- 1))
with the Bloch-Kato logarithm map

DR (e (@, Q) (k- 1))
Fil' (DRp (e HE ' (2,,Q)(k 1))

IOgBK : Hf (F €H4T+1( 7‘7@]7)( )) —

for the Galois representation V = ¢H 4r+1( T,Qp)( 1). Actually, the image of the
p-adic Abel-Jacobi map is contained in the subgroup H?} j(FeH (X, Q) (k— 1)) of

HY(F,eHI T (X,,Q,)(k — 1)), see [Nek00, Theorem 3.1].

Since the comparison isomorphism
® : DRp(eHy M (X,,Qp)) — eHig™ (X, F),

for which we refer to [Xa, Theorem 9], is compatible with the filtrations, and since the
Tate twist shifts the filtration, there are isomorphisms

Filj (DRF( H4r+1( v Qp)( ))) o~ Fﬂj+k—1 (DR ( H4r+1( . Qp)))
= PV e g (X F).
It follows that there is a functorial isomorphism

) DRF(5H4T+1( v Qp) (kK — )) =R €H§ﬁ+1(XT/F)
Fil’ DRp(eHy P (X, Q) (k- 1)) Fil"teH (X, /F)’

On the other hand, by Poincaré duality, there is an isomorphism

eHi M (X, /F)
FilkteH it (X, /F)

= il e HI (X, F)Y. (5.4.3)

Thus, writing V := 5H4r+1( r,Qp)(k — 1) in this case, we can view logpy as a map

~  DRp(V)

1 CHYFV) — ——— > FilFlegittl(x, /F)V.
O8BK f( ) Fil° DRp(V) 1 ar (Xr/F)

For more details, see [Brooks, §6.3].
Remark 5.4.4. We can restate |Brooks, Proposition 7.4| as
(logpk (&p),wp @ Whny ") = d'Gy(A', ¥, W),
where &, is the image of A, under the usual Abel-Jacobi map. Indeed, isomorphism

H4T+1(XT/F)
(543) sends 1OgBK(€‘P) S Filke_liF}{§§+1(Xr/F) to <10gBK(£SO)’ 7>

Since the comparison isomorphism respects the dualities, it is the same to compute
eHiLT (X /F)
Filk~LeH IR (X, /F)
z € FilF e (X, /F), and <logBK(§<p), d~1(x)) € Cp, where logg is considered to

have image in #R(()) and ®!(z) € Fil DR (V).

and

(logpr (§p),z) € C, where loggy is considered to have image in
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5. A p-adic Gross—Zagier formula

Remark 5.4.5. We want to apply the Bloch—Kato logarithm to the localization at p of
the generalized Heegner classes zq, regarded as elements of H'(K.,T ® x) via the map
id ®e,,, and also to the classes 2, € H'(K,T ® x) that will be defined in (5.5.4). Recall
the choice of the prime p of K over p. If M is a finite extension of K, then we write
M, for the completion of M at the prime over p determined by the fixed embedding
ip Q— C, and denote by loc, the localization map

locy : HY(M, V) — HY(M,,V),

for any representation V' of Gps. Thus, denote by log, the composition of the localization
at p with log g, so that log,(zq) (respectively, log,(2y)) is the image of the localization
locp(2a) € H} (Kep, T ® x) (respectively, of the localization locy(zy) € H}(Kp, T®x))

via the Bloch—Kato logarithm. Since V; can be realized as a quotient of PH, é“t_l (f, Zp),
by the comparison isomorphism recalled above we get a map

PHY Y (A"/F) 2 DRp(PHE Y (A", Z,)) — DRp(Vy),
and hence also a map
eHi (X, /F) — DRp (Vi (k/2) ® X)-
Therefore we can view the wy ® w£+k/2—1772/2—j—1 as elements of DRy (Vy(k/2) ® x),

which we will denote in the same way. Because of the functoriality of the logarithm and
because the comparison isomorphism preserves the dualities, there is an equality

i+k/2—1 k/2—j—1 i+k/2—1 k/2—j—1
<1C>gp(f<7c1)awf@"’qu+ / 77,4/ )= <10gp(f¢a)»wf®ij+ / 77A/ St
where &4, is the image of A, through the usual Abel-Jacobi map AJ, k, and the
wr ® wf4+k/2_1n2/2_J_1 are viewed as elements of FilDRg, (Vy(k/2) ® x) and of

Filk~1 sHéll’:rl (X,/Kcp), respectively.

5.4.2 A technical lemma

Evaluating the p-adic L-function at the p-adic avatar of an anticyclotomic Hecke char-
acter of infinity type (k/2 + j, —k/2 — j) with —k/2 < j < k/2 and conductor p"Og
withn > 1, we get H*j*k/zf(p) (z(cop™)?*), with z(cop™) the CM point defined in §1.5.5.
Now we want to relate this expression to the image of the Abel-Jacobi map of certain
Heegner classes.

Lemma 5.4.6. Set zc(,p) = zg — app2j_12a000pn—1 +p4j+k_32aocopn_2. Then

(cop"N(a))fjfk/QJrl .

e—j—k/z A(p) x(c \Oa) _
PO wteory = S

i+k/2—1 k/2—j—1
logp(zc((p))awf(@‘dix / 77A/ 2

Proof. We have
9*]'4@/2]3(17) (x(c()pn)au) _ gfjfk/2f(p)(Acopn’ Legp™s VN copn s (,:)Copn)o'a

1\ .
= <Q> 0 J k/zf(p)(a*(Acopn7LCoanVN+,Copn7w00pn))7
P
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5.5. A p-adic Gross—Zagier formula

as the form 6—7=%/2 ) has weight —2j and, by definition, Oeopr = (1/Qp)wegpn, with
Weopr induced by wa. Let gj(.’fk/zfl be the j + k/2 — 1-st component of the Coleman
primitive of w). Applying Proposition 5.4.1 yields

—j— £ n\o, 1 ~
07 k/2f(p)(37(00p )7) gt 1(a*(Acop”7Lcop"7’/N+,cop”7wcop"))‘

Writing 4 for ax (Acopn, tegpn, YN+ aopns Wegpn) = (Aa, Las VN+,q,Wa), by Lemma 5.4.2 one
has

. R 1
—j—k/2 £(p) n\oa\ __ ~
0 f (JC(COP ) ) = ng(j k2 — 1) [gj+k/271($a)
a,pik?
- pp_72j 9j+k/2-1(Ta0, p 1)

I
+ p 5T gj+k/2—1($u(9€0pn_2)}‘

Then, applying Lemma 5.4.3, and keeping Remark 5.4.5 in mind, we get

9*1’*’?/2]?(1)) (x(%pn)aa) _

N 1 : G+k/2—1 k/2—j—1
- Qz%j(j +k/2-1)! ' [ (copN (a))i+k/2-1 (logy(2za), wr ® W)y ny )
(:Lppj_k/2 it i
_ (CopnilN(a))j'ﬁ‘k’/Q—l . <]ng(2a(9c0pn_1),w]v ®WA n'y >
p2j71

itk/2—1 k/2—j—1
+ 108y 200,y 952 {20

(cap™2N (@) 72

Finally, if we set

- 4j+k—3
ZaOCOpn_l + p Zaocopn_z bl

then we obtain

(cop™ N (a))~7—H/2+1 (») Jok/21 k2
OY(j 4+ k/2—1)! A ’

67 F2 ) (3(cop™)7®) = - (logy(za"), wy ®wy

as was to be shown. O

5.5 A p-adic Gross—Zagier formula

In this section we finally state and prove the p-adic Gross—Zagier formula that we
are interested in, which relates our p-adic L-function to the Bloch—-Kato logarithm of
generalized Heegner classes.

First, we define cohomology class z, € H' (K, T ®Y) associated with f and x, which
will be linked with the p-adic L-function by our p-adic Gross—Zagier type formula. Recall
that f € SpeV(I'o(N)) is our fixed modular form and y : Gal(Kqp~/K) - OF is a
locally algebraic anticyclotomic character of infinity type (j,7) with —k/2 < j < k/2
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5. A p-adic Gross—Zagier formula

and conductor cop" Ok, where ¢g is prime to pN*. Put

2y 0= COrg, /K Zeop™ x
=Y o e @ X)
oeGal(K . pn /K)
= Z (id ® ey) (Xt(U)Zgop”)
UEG&](KCOPW /K) (554)
= Y (id®e)(xlon)2)
aePic O¢pn
= Z chyc(o-a) (ld ® eX) (Za)
acPic OCOP"

where the last equality holds by Proposition 4.10.3.

It is convenient to use, in the statement of the following theorem, the symbol = to
indicate that the claimed equality holds up to an explicit non-zero multiplicative factor
that is comparatively less important than the main terms. Recall that pOg = pp with
p and p distinct maximal ideals of Of.

Theorem 5.5.1. Let 1) be an anticyclotomic Hecke character of infinity type (k/2, —k/2)
and conductor coOx with (co, Np) = 1. If & : Gal(Kpp= /K) — Oép is the p-adic
avatar of an anticyclotomic Hecke character ¢ of infinity type (k/2 + j, —k/2 — j) with
—k/2 < j <k/2 and conductor p"Ok, n > 1, then

S

k/2 1 k/2 1
D) = (rog, )0y @770
p

where, as before, x := 1/3_1&5 and log, := logpk olocy.
Proof. By definition of 0/ 4 (cf. Definition 3.6.2), one has

Liwo = > @ k/Q/ Upd ! |[a]dp i -

Pic O,

Here qg_l‘[a] : Z, — CJ is given by (d;_l [a]) (z) == ¢~ H(z)d 1 (a), where z is viewed as
an element of K* via the chosen embedding Zy = Oy — Ky — K. Tt follows that

(67 la)) (@) = ¢~ @)y P97 @) = gy (@) M6 a),

as a € K(©P)X gatisfies a@K N K = a. Therefore

L= w(a)gb_l(a)N(a)_k/Q/Zx z/zpcb;l(x)x—’“/z‘jdufém

= Y G(@o ()N (@) 2 /Z oy @ g

This is a consequence of the fact that the measure is supported on Z,; . Then, in light
of what was explained in §5.2, we can bring out the differential operator 6 = tﬂd;‘tla from
the integral of z7%/2-7 and get

Lo =3 w(@e M a)N(a) 2072 [0 ) P (ta(a),

Pic O
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5.5. A p-adic Gross—Zagier formula

where t, is the Serre-Tate coordinate around the reduction modulo p of z,.
Setting & := 1~ 1¢, then we have

ST (@) a)N (@) 2y 12T fP (ta(a))

Pic(Og)

= Y Y a)N(a) e 02T FP) (to ).

Pic(Oc)

Note that, since €71 is a character of conductor cop" Oy, & lis a primitive Dirichlet
character mod p™ via the isomorphism (Z/p"Z)* = (O, p/p”)X = O,/1+p" By

Proposition 3.6.4, since (N (a)y/—Dg )*/2ti(9=3=k/2f®)), = =i~ k/zf(p) we obtain

= 3 M @N(@) (N () ~Dr)" e

PlC(OcO)

Z fp(u)H_k/z_jf(p) (za * a(u/p")).

u€(Z/p"Z)*

For positive exponents one obtains (N (a) —DK)fm(Hmf(p))u = Hmfc(lp) by an easy
computation; because 8™ = lim;_,o, ™T®P~DP' one has the same formula for negative
exponents. Now, as in the proof of [CH, Theorem 4.9] and applying Lemma 5.4.6, we
obtain

L@ TP D)2 R G (6 ) x (1)

0,7 (j+ k2 1)

Z xxi;c’“”(aa)<1ogp(zgp>) wf®w]+k/2 1 k/2 G— 1>
Pic(Ogqpn )

Finally, by the argument in [CH, Theorem 4.9] and by (5.5.4), we get

(! k(21 k
fg—(% ) C" - (logy(2y), wy ®wj+ /2 /2 ” 1>v
P
with i—k/2+1 ; ;
o (V=Dg)"*Hp I HAG (& ) xp (0")
' (j+k/2-1) ’
and the theorem is proved. O
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Chapter 6

Reciprocity law and Selmer groups

In this chapter we want to extend to our setting the reciprocity law of [CH, Theorem
5.7], relaxing the Heegner hypothesis and making use of generalized Heegner cycles on
generalized Kuga—Sato varieties over Shimura curves and our p-adic L-function. This
result will be important to prove (under certain assumptions) the vanishing of the Selmer
group associated with the twisted representation Vy, := V¢(k/2) ® x.

6.1 The algebraic anticyclotomic p-adic L-function L, ,

In this section we will construct an algebraic p-adic L-function in terms of a big log-
arithm map and some Iwasawa cohomology classes coming from generalized Heegner
classes. Assume for this section that our modular form f € S;¢*(I'g(NN)) is p-ordinary,
i.e., that the p-th Fourier coefficient a, is a unit of Op.

6.1.1 Perrin-Riou’s big logarithm

Let G be a commutative compact p-adic Lie group and L a complete discretely valued
extension of Q. Recall that a p-adic Lie group is a group G endowed with a structure of
a manifold over @, such that the group operation is locally analytic. For the definitions
of a manifold over Q, and of a locally analytic map, the reader is referred to [Schn].

Consider the noetherian topological Op-algebra O [G]; if L/Q), is a finite extension
then it is compact. Put Ar(G) := L ®p, OL[G], which is also noetherian; it is iso-
morphic to the continuous dual of the space C(G, L) of continuous L-valued functions
on G (cf. [LZ1, §2.2]). Now let Hy(G) denote the space of L-valued locally analytic
distributions on G i.e., the continuous dual of the space C'*(G, L) of L-valued locally
analytic functions on G. There is an injective algebra homomorphism

AL(G) — HL(G)

(see [Eme04, Proposition 2.2.7]), dual to the dense inclusion C'*(G,L) — C(G, L).
We endow Hp(G) with its natural topology as an inverse limit of Banach spaces, with
respect to which the map A (G) — H(G) is continuous.

If L is a finite unramified extension of Q, and G is the Galois group of a p-adic Lie
extension Lo, = U, L, with L,,/L finite and Galois, then define the Iwasawa cohomology
group

HY (Lo, V) o= (lm H (L0, T) ) @2, Qp,
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6. Reciprocity law and Selmer groups

where V' is a p-adic G-representation and T is a Galois stable lattice. The definition
is independent from the choice of 7. Now let F" the composite of @;T with a finite
extension F' of Q.

Suppose that V is a crystalline F-representation of Gy with non negative Hodge—
Tate weights and that V' has no quotient isomorphic to the trivial representation.
Let § be a relative height one Lubin-Tate formal group over Or/Z, and let T' :=
Gal(L($p=)/L) = Z). Let Beys be the Fontaine’s crystalline period ring and put

Derys, (V) := (V ®q, Berys)“%. Assume that YOG — .

Theorem 6.1.1. There exists a Zy[I']-linear map
Ly : Hllw(L(gp‘x’)v V) — Hpur (I') ®L Derys, (V)
such that for any z € H{, (L(Sp=),V) and any locally algebraic character x : T — @:
of Hodge-Tate weight j and conductor p™ there is an equality
—1)—J—1

P"P(x 1, ®) ((_;fm'logL,V(X—l)(Zxd)@t_j if j <0,

Ly(z)(x) = () 5z - _ .
P(Xap 1o 1) ]' . eXp*L7V(X71)*(1)(ZX 1) ®t/ Zf.] > 07

where
e =(x7Y) and P(xT!, ) are the e-factor and the L-factor (see [LZ1, p. 8]);

e ® denotes the crystalline Frobenius operator on @p QL Derys, (V) acting trivially
on first factor;

o zX € HY(L,V @ x7') is the specialization of z at x .

Proof. This is [CH, Theorem 5.1]. O

In the statement of this result, exp} Vix=1)*(1) is the dual exponential map
XL vix-1y-y - H (L, V(X)) = (Fil’ DRL(V(x)))"

of the Bloch-Kato exponential map of V (x~1)*(1).

We will apply Theorem 6.1.1 to some representation IV attached to a twist of
V¢(k/2) to obtain a map Lg+y. Let ¢ be an anticyclotomic Hecke character of infinity
type (k/2, —k/2) and conductor cOx with p{ ¢ and let ¢ : Gal(K o /K) — C, be its
p-adic avatar. Let F' be a finite extension of @, containing the Fourier coefficients of
f and the image of 1, so 1) : Gal(Kepe /K) — OF. Since p {1 N, if V; is the F-linear
Galois representation of G associated with f, then Vy ’GQp is crystalline. Because f is
p-ordinary, there is an exact sequence of Gg,-modules

0—FV;—V;—F V;—0

with £V & F and F+V} unramified (see [Wil, Theorem 2.1.4] or [SC, §12.5.3]). Recall
that T' C V¢(k/2) is a Galois-stable lattice; set

FYT .= FVe(k/2) N T;
FEV = TV (k/2) @ ¥y .
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6.1. The algebraic anticyclotomic p-adic L-function Ly

Consider the dual representation V* := Homp(V, F') of V' and, with notation as above,
define F£V* := Homp(FFV, F). Let Loo/L be the p-adic completion of K e /K.. The
big logarithm Lg+,, obtained on applying Theorem 6.1.1 to F*V as a representation
of G, is a map

Ly+y o Hiy (L(Fpe), FTV) — Hpur (Gal(L(Fpe) /L)) @1 Derys,£.(FHV).

Since Loo € L(Fp~), we can restrict Lg+y to the Galois group I' := Gal(L /L) =
Gal(Kcpo /K.) to obtain a map

H}y(Loo, FTV) — H pur (1) @1 Derys, . (FTV).

Recall the element wy € DRp(Vy) attached to f as in 5.4. Let t € Bgr denotes
Fontaine’s p-adic analogue of 27i. Define the class

Whap = wp @ @ wy € Derys, n.(VF),

where wy, € DcrysyL(@ZA)p(k/2)) is as in [CH, §5.3]. Denote again by wy,, its image under
the projection Depys, 1,(V*) = Derys, 1 (F~V).
There is a pairing

(= =)t Hpur () @L Derys, . (FTV) X Derys,.(FV*) — Hpur ().

Recall that Derys (FTV) = (Beays Qq, FTV)C and Derys,.(FV*) = (Bays Qq,
F-V*)%L Finally, the composition of Ls+y with the map

<_’wfﬂ/1> : /HFM (F) AL Dcrys,L(SH_V) — /Hﬁur (F)

has image contained in the Iwasawa algebra Az, () = Op,, [[] ® F% . For details,
see [CH, Lemma 5.5].

6.1.2 Iwasawa classes associated with generalized Heegner classes

Consider the Iwasawa cohomology group
iy (e T) i= (i (Gl (K Kiyn).T) ) 2, @,
n

where K’ is the maximal extension of K unramified outside the primes above pN¢ (the
representation 7' is unramified outside the prime above pN). Let o denote the root of
the Hecke polynomial 2% — apT + pF~1 that is a p-adic unit. For each fractional ideal
a of O, prime to cNpDy, recall the cohomology class z, introduced in §4.8 and define
the class

k—2

p
o a0

Zq — if p|e

c/p

Fa,o i = 1 pk/2-1 pk/2-1 .
ZOF (1— - ap) (1— - ag) czq ifpte,

which lives in H'(K.,T ® S(E)). By Proposition 4.10.2, one knows that

CorKCP/Kc (Zcp,a) = Q- Zca-

Now consider the projection e, for x = 1 and write z4 4,1 for the image of z,, under
id®ey : HY (K., T®S(W)) — H*(K,,T). Thus, it makes sense to consider the element

— i -n
Zeo = lma™ " 2egpn a1
n
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6. Reciprocity law and Selmer groups

in the Iwasawa cohomology group Hllw(choo,T).
There is an isomorphism

HIIW(KCPOO’T) ~H' (Kc’ Ts® OF[[F]]),

where I' := Gal(K~/K.) (see the proof of [LZ2, Proposition 2.4.2]). Put T, :=
Gal(Kcpeo /K) and consider the map

HY(Kepeo, T) =2 H' (K., T ® Op[[]) — H' (K., T ® Op[T.]);
we can view the classes z., as elements of H 1 (KC, T® Op [[fc]]) Then set
zp 1= Corg, /x(2ca) € H (K, T ® Op[L.]), (6.1.1)

where the subscript f is meant to remind that the class above, like the others already
defined, depends on it.

For any character y : T — Oép, we can consider the twist z}c € HY (K, T® ) of zf
through the y-specialization map

HI(K7T® OF[[fC]]) — H' (KaT® OF[[fC]] ®0Fﬂfcﬂ X) = HI(K7T®X)7

where y is extended to x : Of [[f‘c]] — OpF in the obvious way, possibly enlarging F' by
adding the image of x. Suppose that x is non-trivial, of finite order and with conductor
cp™; then

z3§ =a "z, (6.1.2)

where 2, € HY(K,T ® x) is as in (5.5.4). See [CH, Lemma 5.4] for details.

6.1.3 The algebraic anticyclotomic p-adic L-function

We want to apply the logarithm map Lg+y to the localization at p of the classes
Zea @ 1&‘1, so we need to check that these classes actually lie in HIIW(LOO,CT’”FV) =
Hi (Ko V) = H (K, V).

Similarly to what we said in §5.4.1, by [Nek00| one knows that z, lies in the Bloch—
Kato Selmer group Sel(K.,T ® S(F)), indeed z, is the image, through a morphism of
G.-modules, of a cohomology class in Sel(K.,eHg (X, Z,)(k — 1)), which is the
Abel-Jacobi image of the generalized Heegner cycle A,. Recall that the Bloch-Kato
Selmer group Sel(F, M) of a G p-representation M, with F' number field, is the subspace
of elements x of H (G g, M) such that for all finite place v of F', the localization loc, (z) €
H} (Fy, M). See §6.4 for more precise definitions. Thus, zepn o1 € Sel(Kepn, T) as well,
so locy (2epra,1) € H}(chn’;“T).

But H}(chnm,T) is identified with the image of the map H(Kopnp, FTT) —
HY(Kepnp, T) (cf. [CH, §5.5]), so we can view locy(zepn a,1) € HY (Kepn p, FTT). Since
Zc . 1s the inverse limit of the classes a™"z¢pn .1, One has

locy(2¢,a) € Hiy(Loo, FT).

We conclude that
10¢y (Zea @ 7Y € Hiy(Loo, FHV).
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Now, using notation similar to that in [CH|, we can define

L(zp® zﬂ*l) = Corg, /i (Lg+y (locp(zea @ 1&71)))
= Y Lyry(locy(22, @ Y ))d(0™)
oel:‘c/F
€ Dcrys,L (?+V) ® Afrur (fc),

where A 4, (Ce) = O frur [T.] ® F™ Finally, consider the restriction

Fu’r‘
Ly(zf) = Resk e (L*(2f @Y )) € Derys £ (FTV) ® Ap (1), (6.1.3)

where Resg o [, = Gal(K o /K) — T = Gal(Kp~/K) is the restriction map.

6.2 Reciprocity law

We start by giving a sketch of the proof of the following theorem, which is analogous
to that of [CH, Theorem 5.7].

Theorem 6.2.1. Let ¢ : K*/Ay — C* be an anticyclotomic Hecke character of
infinity type (k/2,—k/2) and conductor cOx with p { ¢ and suppose that f is p-ordinary.
Then

(Ly(zp),wp @t7F) = =T/ D )R P4 . oy € Apun (D),

where o1 = recy(_1) e T is an element of order 2.

|Kp°°

Sketch of proof. For any n > 1, let & : Gal(Kp~ k) — C, be the p-adic avatar of a
Hecke character ¢ of infinity type (k/2, —k/2) and conductor p". Moreover, define the
finite order character y := ¢~ 1¢. Recall that, by (6.1.2), we have

X — M.
2= Zx-

Now, since our wy and n4 are chosen to be compatible with the ones of [CH], so that
wana =t (see [CH, §5.3]), applying Theorem 5.5.1 with 7 = 0 and (6.1.2) yields the
expression <logp(z§§) ® th2 wr @ ') from %w(ng). Now, performing the same
computation as in the proof of [CH, Theorem 5.7| and applying Theorem 6.1.1 to the
expression (Ly(zyr),wy @ t17F), we obtain the formula of the statement evaluated at

gZ;_l for any p-adic avatar gZ; as above. By an argument that is formally identical to the
one at the end of the proof of [CH, Theorem 5.7|, one gets the desired equality. O

Now we state the reciprocity law that is the counterpart of [CH, Corollary 5.8|.

Theorem 6.2.2. Let x : Gal(Kpy~/K) — Of be a locally algebraic p-adic Galois
character of infinity type (4, —j) with j > k/2 and conductor cp"Og with p 1 ¢ and
suppose that f is p-ordinary. Then

_ _ o _ . 2 _
(exp*(locy (X)), wy @ w2 KN — D(f o T K) - LS, X k/2),

where D(f,v, x ™, K) is non-zero a constant depending on f,x, K and v, which is a
Hecke character of infinity type (k/2,—k/2) and conductor c.
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Sketch of proof. Let @Z : Gal(Kpeo /) — C, be the p-adic avatar of a Hecke charac-
ter ¢ of infinity type (k/2,—k/2) and conductor ¢, so that ¢ := yib~! is a locally
algebraic character of infinity type (j — k/2,—j + k/2) and conductor p™. The proof
proceeds by using Theorem 6.1.1 to extract the expression <exp*(locp(zx_1)),wf ®
wzk/%jﬂnzk/ﬂjﬂf from (L4 (2),wy ® t1=F) (qg) Now one can square and apply
Theorem 6.2.1 to recover the square of the p-adic L-function fff/ w(qg), and then use

the interpolation formula of Theorem 3.7.1 to obtain the statement. The constant
D(f, v, x¥~!, K) turns out to be

D(f, b, x¢™ " K) = a 2"e(0,¢, ' ¢, ) 2p*T(j — k/2+ 1)
Q22 T T O g T K,

For the details of the computation, see the proof of [CH, Corollary 5.8|. O

6.3 The anticyclotomic Euler system method

In this section we apply the Kolyvagin-type method developed in [CH, Section 7| to
our system of Heegner classes, in order to deduce results on the Selmer group of the
representation Vi, = Vi(k/2) |, @x, with x : Gal(Kcp~/K) — Of a locally
algebraic p-adic Galois character of infinity type (j, —j) with 5 > k/2 and conductor
cop®* Ok with ¢ = ¢op® and (pN, ¢p) = 1.

First of all, we introduce the objects and the properties of the Kolyvagin method
employed in [CH|. Then, we will apply it to our system of generalized Heegner cycles
and, finally, we will deduce results on Selmer groups. As will be clear, we follow [CH]
closely.

6.3.1 Anticyclotomic Euler systems

Let G, := Gal(K,/K) and let H'(K,,—) denote the cohomology group with respect
to Gal(K*"/K,), where ¥, is the finite set containig the prime factors of pNcyn and
K*» is the maximal extension of K unramified outside the primes above ¥,,.

By [Nek92, Proposition 3.1], there is a Gg-equivariant Op-linear perfect pairing

(—,—):TxT — Op(1)
that induces for each local field L the local Tate pairing
(=, =)y : H'(L,T) x HY(L,T) — Op. (6.3.4)

Here T is the Gg-stable Op-lattice inside V¢(k/2) that was fixed before. Let @ be a
uniformizer of O and let F := Op/(w) be the residue field. For every integer M > 1,
set Ty :=T/wMT.

For us, ¢ will always denote a prime inert in K and A will be the unique prime of
K above ¢; denote by Frob, the Frobenius element of A in Gg. Let H} (K, —) be the
finite part of H'(K),—) and put H}(K),—) = Hl(K/\,—)/H}(K,\,—), where K is
the completion of K at A. Denote by loc, : H'(K,—) — H(K),—) the localization
map at ¢ and write d,, : H'(K,—) — H!(Ky,—) for the composition of loc, with the
quotient map.

Let S be the set of square-free products of primes ¢ inert in K with £{2pNc¢y. Let
7 denote complex conjugation.
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6.3. The anticyclotomic Euler system method

Definition 6.3.1. An anticyclotomic Euler system for 7" and x is a collection
¢ = {cn},es of classes ¢, € H' (Kye, T ® x~ ') such that for any n = ml € S the
following properties hold:

L. Corg, /i, (cn) = ae(f) - em;

2. Tocelen) = Resie,._ i, (0cu(em)Fo00);
3. if x* =1 then ¢, = wy - x(0) - ¢5 for some o € Gal(K,./K),

where wy € {£1} is the Atkin-Lehner eigenvalue of f.

6.3.2 Kolyvagin’s derivative classes

Define the constant 3 as in [CH, (7.2)]. For any integer M > 1, denote by Spy C S the
set of square-free products of primes ¢ such that

£ is inert in K;

€1 2coNp;

oM | 041, a(f);

4. wMHBHLY 04 1 4 ay(f)0.

W N

A prime number satisfying all these conditions is called an M-admissible (Kolyvagin)
prime. By using the Cebotarev density theorem, it can be checked that there exist
infinitely many M-admissible primes.

Put G, := Gal(K,, /K1) = Gal(K,./K.) C Gne. Let n € Syy; since n is square-free,
there is a splitting G,, = H£|n Gy. Moreover, each ¢|n is inert in K, so the group
Gy = Gal(Ky/K;) is cyclic of order £ + 1. Fix a generator oy for each Gy and put

l
Dy := Ziaé € Z[Gy],

=1
Dy =[] De € Z[Gy) € Op(Gne].
Ln
The telescoping identity
(Ug — 1)Dg = (ﬁ—l— 1-— Tl"g),
where Try := Zfzo o}, holds in Z[Gy].
Now we choose a positive integer M’ such that p™’ annihilates
1. the kernel and the cokernel of Resy/f, : H' (K, Tyy@x ™) — H (Kp, Trr@x~1)9n

for all n, M € Z;
2. the local cohomology groups H'(K,, Ty; @ x 1) for all places v | coN.

One can prove that such an integer exists as in [Nek92, Proposition 6.3, Corollary 6.4
and Lemma 10.1].

Now consider an anticyclotomic Euler system ¢ = {¢,} for T" and x. Denote by
redy; the reduction H'(—, T ® x~ ') — HY(—, Ty ® x~!). For n € Sy, we want to
apply the derivative operators D,, to the classes ¢,,. For each n € Sy there is a unique
class Dys(n) € HY (K., Tyy ® x~1) such that

Resg/k,, (Dm(n)) = ngl redys(Dncn),

because of the properties of M’. Define the derivative class by

Pypy-1(n) == Corg, /i (Dr(n)) € HY(K, Ty @ x71). (6.3.5)
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6. Reciprocity law and Selmer groups

6.3.3 Local conditions

Now we introduce Selmer groups imposing local conditions at p at the cohomology
classes, through the choices of subspaces of H' (K, Vi(k/2) @ x~ 1) @& H' (K, Vi (k/2) ®
x~1), recall that p = pp splits in K.

Let F C HY(K,, Vi(k/2) ® x ) ® H (K5, Vi(k/2) ® x!) be an F-subspace and
let F* C HY(K,, Vy(k/2) @ x) ® H (K, Vi(k/2) ® x) be the orthogonal complement
of F with respect to the local Tate pairing of equation (6.3.4). Assume that F* =
Fif x* = 1. Define Fp C HY (K, Vy(k/2) @ x ') & H' (K5, Vi(k/2) ® x ) to be
the F-subspace obtained as the inverse image of F under the direct sum of the maps
HY (K, Tox™ ') = H'(Ky, Vy(k/2)@x ), H{(K5, Tox ) = HY (K5, Vi(k/2)@x ™)
and Fyy € HY(Kp, Ty ® x 1) @ HY (K, Ty ® x ') as the image of Fr through the
reduction map. Put Yy := Ty ® x~'. Now define
loc,(z) € H}(KU,YM) if v )(pn}

Sel™ (K, Vi) ==z € HY(K,Y;
F ) { ( M)|locp€.7-"M ifpin

where loc, = loc, @ locg. Note that if p | n then the choice of Fjy is irrelevant. If n = 1
we abbreviate Selr(K,Yyy) := Sel(]})(K, Yas). Define then

Sels(K, T ®x ') = lim Sel 7 (K, Yar).
M

If ¢ = {cn},cs is an anticyclotomic Euler system for 7" and Y, let
ck = Corg,/rc(c1) € HY(K, T @ x ).

Then
PM,X—I(].) = p3M l“edM(CK),

since the square

OI‘KC/K

C
HY K., Tox ") — HY(K,T®x™")

lred M \Ll‘ed M

C X
H' (Ko, Tar ©xY) — HY (K, Tay @ x7)
is commutative. Using [Nek92, Proposition 10.2| we obtain that
Pyt (n) € Sel T (K, Yay).

Here we do not bother about F because p | pn.

Definition 6.3.2. An anticyclotomic Euler system ¢ = {c, },,cs for T" and x has local
condition F if it satisfies

4. cx € Selp(K, T ® x7 ') and ¢} € Selr (K, T ® x~ 1), that is loc,(ck) € Fr and
loc,(cl) € Frs

5. for every M and n € Sy, one has
P (n) -1
Mx-1(n) € Sel 2/ (K, Ty @ x77),
that is, locy(Py,-1(n)) € Fu (these two conditions are equivalent because

Pyry1(n) € Sel ) (K, Yar)).
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6.3. The anticyclotomic Euler system method

Now we state an important technical result.

Theorem 6.3.3. Let ¢ = {cp}, g be an anticyclotomic Euler system for T and x with
local condition F. If cx # 0, then

Selr«(K, V@ x ') =F-ck.

Proof. This is |CH, Theorem 7.3|. O

6.3.4 Construction of Euler systems for generalized Heegner cycles

We keep notation and assumptions introduced at the beginning of this section, but now
we assume that

e x has infinity type (j, —j) with 7 > k/2;
e f is ordinary at p.

Recall the cohomology class z; € HY(K,T ® Op[L.]) defined in (6.1.1) and consider
its y-specialization z;f € H'(K,T ® x). Let us consider for v = p,p the subspace L, of
HY(K,,V ® x) spanned by locv(z}‘) and put

Ly =L, NH' (K, T®x) = Opw “loc,(z}) + H'(K,,T)

tor?

where a,, is some positive integer and the subscript tor denotes the torsion subgroup.
Set L* := L, & Lg. Choose M large enough so that p™ H'(K,,T)ir = 0 for v = p, p.
Recall the cohomology classes 2, o € H (K, T) and for n € S set

Cp = ZX71 S Hl(KncaT®X_1)7

cn,o

where zéﬁ; L is the specialization at xy~! obtained via the map

HIlw(KncpoovT) — Hl(KnC’ T ® X_l)'

Finally, define
= ohes = {r5) 630

We would like to prove that this collection of cohomology classes is an anticyclotomic
Euler system with local condition £*.

Proposition 6.3.4. The collection ¢ := {cu},cs s an anticyclotomic Euler system
—1

with local condition L*. Moroever, cx = z}c

Proof. If c is an anticyclotomic Euler system, then

cx = Corg, /i (c1) = CorKc/K(zéf;l) = CorKc/K(zc,&)’(1 =z}
Analogously to (6.1.2), we obtain

v —t
zn,a = - Zng

for each non-trivial finite order character ¢ : Gal(Kcypoo/Key) — Oép of conductor
¢ = cop®. By Propositions 4.10.2, 4.10.4, 4.10.5, we know that
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6. Reciprocity law and Selmer groups

1. COI'KnC/KmC(ch,z/;) = a((f) * Zmeas

2. locy(2pe,y) = ReSK, .. /Kne (loce(Zme, v :
3. 2oy =wyp-Y(0) - 2y, -1 for some o € Gal(Kp./K).

)F‘robg)

—1
Upon taking 1) = 1, we deduce these properties for the classes z,. and then for z%c,a
by specializing the relations at xy~'. This proves that c¢ is an anticyclotomic Euler
system. The last thing we need to show is that ¢ has local condition £*, which can be

checked as in the proof of [CH, Proposition 7.8|. O
Proposition 6.3.5. If loc, (Z}(_1> £ 0, then Sel(K, Vi(k/2) ® x) = 0.

Proof. The proof is completely analogous to that of [CH, Theorem 7.9], so we will briefly
sketch the arguments. For each choice of subspaces F, C H'(K,, Vy(k/2) ® x) with
v = p, P, consider the "generalized Selmer group” given by

loc,(z) € H}(Vf(k:/2) ®x) ifvip
locy(z) € F, ifvlp |

Hy, 70 (K, Vi(k/2)©x) = {a: € H'(K,V;(k/2) ® x)

Thanks to Proposition 6.3.4, we know that c is an anticyclotomic Euler system for T°
—1 —1
and x with local condition £* such that cx = z}‘ . Since locp(z}c ) # 0, it follows

that z}(l # 0, so Theorem 6.3.3 ensures that

H}ZP’EF(K, Vi(k/2) @ x) = Selg (K, Vi(k/2) @ x) = F- (2} )" =F-z}.
We have that

Hép,O(K7 Vf(k/Q) ® X) - H}:p7LF(K, Vf(]{:/Q) ® X) =F. z;g

Since IOCE(Z;S)T = locp(z}(l), also loc§(z3§)7 # 0, hence z?ﬁ ¢ H}p,O(K, Vi(k/2) @ x). Tt
follows that
HE, oK Vi (k/2) © ) = 0.

There is a Poitou—Tate exact sequence
1
0 — Hy (K, Vy(k/2) ©x 1) — Hpy o (K, Vi(k/2) @ x71) = L;
— Hjo(K, Vy(k/2) © x)" — H}, oK, Vi (k/2) @ x)" — 0,

where () indicates that we are imposing no condition. Then HéO(K, Vi(k/2) ® X) =0.
Since, by [CH, (6.2)], there is an equality

HY (K, Vi(k/2)®x) ifv=p
Hj (Ko, Vi(k/2) ® ) = ( )
{0} if v="5,
we conclude that Sel(K, Vy(k/2) ® x) = Hé,o (K, Vi(k/2)®x) =0. O

Now we construct another anticyclotomic Euler system associated with our gener-
alized Heegner cycles. In the remainder of this subsection, we assume that

e x has infinity type (j, —j) with —k/2 < j < k/2.
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6.3. The anticyclotomic Euler system method

Notice that this time we do not need to assume that f is ordinary at p. Recall the
cohomology classes z,, -1 € H' (K, T ® x ') defined in (4.9.2). For n € S, set

&= 21 € B (e TO X,

and define
== {cn},cs = {Zenx-1}nes - (6.3.7)

Denote by Lpk the direct sum of the Bloch—Kato finite subspaces
Lpi = H(Ky, Vi(k/2) @ x7") @ Hp (Kg, Vi(k/2) @ x71).

We would like to prove that this collection of cohomology classes is an anticyclotomic
Euler system with local condition Lggk.

Proposition 6.3.6. The collection ¢’ := {c},},cs is an anticyclotomic Euler system

with local condition L. Moreover, ¢’ = z,-1.

X

Proof. If ¢ is an anticyclotomic Euler system, then (5.5.4) implies that

¢y = Corg, /i(cy) = Corge, /i (2ep-1) = Zy-1.

By Propositions 4.10.2, 4.10.4, 4.10.5, we know that

1. CorKnc/ch(an,x_l) = ae(f) . ch,x—l;
2. locy(zpe 1) = RGSKM,A/KM,A(10‘34(ch,><‘1 ;
3 LT =wy - ¢(0’) . 29 for some o € Gal(Knc/K)

ne,x 1 ne,x

)Frobg)

It follows that ¢’ is an anticyclotomic Euler system.
The last thing we need to show is that ¢’ has local condition Lpk. In analogy to
what was remarked at the beginning of §6.1.3, the results in [Nek00| ensure that
Znex-1 € Sel(Kne, T®X7Y),  2,-1 € Sel(K,T®x™ ') = Selg,, (K, T®x ).
Since 7 induces an isomorphism

Hi(K, Tox ") e H(Ks Tox ) 2 H (K, T®x) & Hj (KT ® x),
we deduce that also ¢ = z;,l € Selgx (K, T ® x). Furthermore, one has
loc, (RGSKC/KM (DM(n))) = loc, (p?’M/ red s (Dnznqx—l)) € H} (Knews T @ X_l)
for v =p,p. In light of [CH, Lemma 7.5|, it follows that
locy (Dar(n)) € Hj(Kew, Ty @ X7,

which implies that loc,, (PM’X—l (n)) € LBr,M- 0

75
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6.4 Results on Selmer groups

In this final section, we use the anticyclotomic Euler system method to deduce results
on the Selmer group of V. First of all, we recall notation and assumptions.

As usual, f € SHV(I'o(N)) is our newform of weight £ = 2r + 2 > 4 and level
N, x : Gal(K¢ype/K) = Op is a locally algebraic anticyclotomic character of infinity
type (j, —j) and conductor cop®*Og with (co,pN) =1, Vi, = Vf(k:/2)|GK ® x is the
twist of V¢(k/2) by x, L(f,x,s) is the associated Rankin L-series and Sel(K,Vy, ) is
the Block-Kato Selmer group of V;, over K. Assume that:

p12NG(N*);

co is prime to N;

either D > 3 is odd or 8 | D;

p = pp splits in K;

N = N*N~ where NT is a product of primes that split in K and N~ is a square
free product of an even number of primes that are inert in K.

U W=

As before, the last condition can be expressed by saying that K satisfies a generalized
Heegner hypothesis relative to V.

Recall now the definition of the Bloch-Kato Selmer group. If v is a place of K
such that v { p, we consider the inertia group Ix, € Gg,. The unramified subgroup of
HY(K,,V},) is defined by

(Ko, Vi) = Ker (Y (K, Vi) — H' (T, Vi)
Set H}(Kv, Vi) == HL(Ky, Viy). If vis a place of K such that v|p, then we set
H} (Ko, Vi) o= ker (' (Ko, Vi) — (K, Vi ©g, Beri) )

The global Bloch-Kato Selmer group Sel(K, Vy,) of Vy, over K is the subspace
of HY(K,V;,) given by

Sel(K, Vi) = {x € HY(K,V;,)

locy(z) € HY (Ky, Viy) ifvtp
locy,(x) € H}(Kv,Vf,X) ifv|p|

Now we can prove our theorems on Selmer groups, the first of which is a vanishing
result.

Theorem 6.4.1. Suppose that f is p-ordinary. If L(f,x,k/2) # 0, then
dimp Sel(K, V) = 0.
Of course, we can equivalently assert that Sel(/, V¢, ) = 0.
Proof. Let €(Vy,) € {£1} be the sign of the functional equation for L(f, x,s). Then
eViy)=—-1 = —k/2<j<k/2

Indeed, €(Vy,) is a product

(Vo) = [ [ e(1/2, 7, ® x0)

v
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of local signs, where 7w is the base change to K of the automorphic representation
of GL2(Aq) associated with f, mg, are the local factors of mx and the local e-factors
€(1/2, 7k, ® Xxv) are defined as follows. If F is a finite extension of Qy and 7’ is an
irreducible representation of GL,,(F'), then

(s, ') == e(s, 7, R),

where ¢ = 1 o Trp/q, is the standard additive character. (see, e.g., [Schm] for the
definition). It follows that

(Vi) =[] e(1/2, 7k, ©® X0, ¥K,)-

v

Each of these local factors is equal either to 1 or to —1. Because N~ is an even product
of inert primes, the product of the local factors at the finite places is equal to 1. Thus,
the global e-factor depends only on the infinite part. Furthermore, by [Ta, (3.2.5)], one
has

1 1 (k_1,. 1 (ri1s 1427121 — k9
€(§,7Too®xooa¢Koo):6(§’M(2 2+J)7¢Kw)€(§,ﬂ 2+2+])’¢K00):Z|k’ 1+42j]4|1 k+2j|’

where p1: 2 € C* + Z € C*. Hence, one can check that

e(Viy) =—1 &= —k/2<j<k/2
eViy) =41 <= j<—k/20rj>k/2.

Since L(f,x,k/2) # 0, we know that €(Vy,) = +1, therefore either j < —k/2 or
j > k/2. As before, let 7 be complex conjugation; set x"(g) := x(rg7). There is
an equality of L-functions L(f,x,k/2) = L(f,x",k/2) and the action of 7 induces an
isomorphism Sel(K, Vy,) = Sel(K, V). This shows that we can assume j > k/2.

Finally, since L(f, x,k/2) # 0, by Theorem 6.2.2 we know that loc, (z}(l) # 0, and

then Proposition 6.3.5 gives Sel(K, Vs, ) = 0. O
Our second theorem on Selmer groups gives a one-dimensonality result.
Theorem 6.4.2. If ¢(Vyy) = —1 and z,, # 0, then
Sel(K, Vi) = Fzy.
Proof. Since zy # 0, also z;* # 0. Because €(Vyy) = —1, we know that —k/2 < j <
k/2. Then, by Proposition 6.3.6, the collection ¢’ is an anticyclotomic Euler system for

T and xy~! with local condition £px. Since = zy~1, applying Theorem 6.3.3, we
obtain that Sel(K, Vy,y) = Selge (K, Viy) = Fzy. O

7






Bibliography

[BD]

[BDP]

[BK]

[Bra]

|[Brooks|

[Buz|

[Cas|

|CH]

[Dar]

[Del]

[EdVP]

[Feng]

[Gol

1GZ]

M. Bertolini, H. Darmon, Heegner points on Mumford—Tate curves, Invent.
Math. 126, 1996, no. 3, 413-456.

M. Bertolini, H. Darmon, K. Prasanna, Generalized Heegner cycles and p-adic
Rankin L-series, Duke Math. J. 162, 2013, no. 6, pp 1033-1148.

S. Bloch, K. Kato, L-functions and Tamagawa numbers of motives, in The
Grothendieck Festschrift, Vol. I, 333—400, Progr. Math., 86, Birkh&duser Boston,
Boston, MA, 1990.

M. Brakocevi¢, Anticyclotomic p-adic L-function of central critical Rankin-
Selberg L-value, Int. Math. Res. Not. IMRN 2011, no. 21, 4967-5018.

E. H. Brooks, Shimura curves and special values of p-adic L-functions, Int.
Math. Res. Not. IMRN 2015, no. 12, 4177-4241.

K. Buzzard, Integral models of certain Shimura curves, Duke Math. J. 87,
1997, no. 3, 591-612.

F. Castella, On the p-adic variation of Heegner points, J. Inst. Math. Jussieu,
to appear.

F. Castella, M. Hsieh, Heegner cycles and p-adic L-functions, Math. Ann.,
370, Springer, 2018, Issue 1-2, pp 567-628.

H. Darmon, Rational points on modular elliptic curves, CBMS Regional Con-
ference Series in Mathematics, 101. Published for the Conference Board of
the Mathematical Sciences, Washington, DC; by the American Mathematical
Society, Providence, RI, 2004.

P. Deligne, Formes modulaires et représentations l-adiques, in Séminaire Bour-
baki. Vol. 1968/69: Exposés 347-363, Exp. No. 355, 139-172, Lecture Notes
in Math., 175, Springer, Berlin, 1971.

Y. Elias, C. de Vera-Piquero, CM cycles on Kuga-Sato varieties over Shimura
curves and Selmer groups, Forum Math. 30, 2018, no.2, 321-346.

T. Feng, Abelian Varities, Lecture Notes from the Stanford course given by B.
Conrad, available at http://web.stanford.edu/ tonyfeng/249C.pdf.

F. Q. Gouvéa, Arithmetic of p-adic modular forms, Lecture Notes in Mathe-
matics, 1304, Springer-Verlag, Berlin, 1988.

B. H. Gross, D. B. Zagier, Heegner points and derivatives of L-series, Invent.
Math. 84, 1986, no. 2, 225-320.

79



[Hi93]

[Hi04]

[Hi09]

[How|

[Hs

[1S]

[Kas]

[Kal

Kol

[Lip]

[Liu]

[LZ1]

|LZ2]

[LV]

[AV]

[LEC]

[Mi79]

[Mi80]

80

BIBLIOGRAPHY

H. Hida, Elementary theory of L-functions and Eisenstein series, London
Mathematical Society Student Texts, 26, Cambridge University Press, Cam-
bridge, 1993.

H. Hida, p-Adic Automorphic Forms on Shimura Varieties, Springer Mono-
graphs in Mathematics, 2004, Springer.

H. Hida, Irreducibility of the Iqusa tower, Acta Math. Sin. (Engl. Ser.) 25,
2009, 1-20.

B. Howard, Variation of Heegner points in Hida families, Invent. Math. 167,
2007, no. 1, 91-128.

M.-L., Hsieh, Special values of anticyclotomic Rankin-Selberg L-functions, Doc.
Math. 19, 2014, 709-767.

A. Tovita, M. Spie, Derivatives of p-adic L-functions, Heegner cycles and
monodromy modules attached to modular forms, Invent. Math. 154, 2003, no.
2, 333-384.

P. Kassaei, p-adic modular forms over Shimura Curves over Q, Ph. D. thesis,
available online.

N. Katz, Serre-Tate local moduli, in Algebraic surfaces (Orsay, 1976-78), pp
138-202, Lecture Notes in Mathematics, 868, Springer, Berlin-New York, 1981.

V. A. Kolyvagin, Fuler Systems, in The Grothendieck Festschrift, Vol. 1I,
Progr. Math., 87, Birkhduser Boston, Boston, MA, 1990, 435-483.

M. Lipnowski, p-divisible groups, expository writing available at https://
services.math.duke.edu/"malipnow/expository/pdiv.pdf.

Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in
Mathematics, 6, Oxford Science Publications, Oxford University Press, Ox-
ford, 2002.

D. Loeffler, S. L. Zerbes, [wasawa theory and p-adic L-functions over Zf,—
extensions, Int. J. Number Theory 10, 2014, no. 8, pp 2045-2095.

D. Loeffler, S. L. Zerbes, Rankin—Fisenstein classes in Coleman families, Res.
Math. Sci. 3, 2016, Paper No. 29, 53.

M. Longo, S. Vigni, Quaternion algebras, Heegner points and the arithmetic
of Hida families, Manuscripta Math. 135, 2011, no. 3-4, 273-328.

J. Milne, Abelian Varieties, notes available at www. jmilne.org/math/.

J. Milne, Lectures on Etale cohomology, notes available at www.jmilne.org/
math/.

J. Milne, Points on Shimura varieties mod p in Automorphic forms, represen-
tations and L-functions, Proc. Sympos. Pure Math., XXXIII, Amer. Math.
Soc., Providence, R.I., 1979.

J. Milne, Etale Cohomology, Princeton University Press, 1980.



BIBLIOGRAPHY

[Mi90]

[Mol

[Mum)|

[Nek92)

[Nek93|

[Nek00]

[SC

[Oda]

[Otal

[Rub]

[Schm]

[Schn]

[Sch]

[Tal

[Vi]

[Voi]

[Will

[Wil

J. Milne, Canonical models of (mized) Shimura varieties and automorphic vec-
tor bundles, Perspect. Math. 10, Academic Press, Boston, MA, 1990.

A. Mori, Power series expansions of modular forms and their interpolation
properties, Int. J. Number Theory 7, 2011, no. 2, 529-77.

D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Stud-
ies in Mathematics, 5, published for the Tata Institute of Fundamental Re-
search, Bombay; Oxford University Press, London, 1970.

J. Nekovar, Kolyvagin’s method for Chow groups of Kuga-Sato varieties, In-
vent. Math. 107, 1992, pp 99 — 125.

J. Nekovar, On the p-adic height of Heegner cycles, Math. Ann. 302 (1995),
no. 4, 609-686.

J. Nekovar, p-adic Abel-Jacobi maps and p-adic heights, in The arithmetic and
geometry of algebraic cycles (Banff, AB, 1998), CRM Proc. Lecture Notes, 24,
Amer. Math. Soc., Providence, RI, 2000, 367-379.

J. Nekovar, Selmer complexes, Astérisque 310, 2006.

T. Oda, The first de Rham cohomology group and Dieudonné modules, Ann.
Sci. Ecole Norm. Sup. (4) 2, 1969, 63-135.

K. Ota, Big Heegner points and generalized Heegner cycles, J. Number Theory
208 (2020), 305-334.

K. Rubin, Elliptic curves with complex multiplication and the conjecture of
Birch and Swinnerton-Dyer, Invent. Math. 64, 1981, no. 3, 455—470.

R. Schmidt, Some remarks on local newforms for GL(2), J. Ramanujan Math.
Soc. 17, 2002, no. 2, pp 115-147.

P. Schneider, p-adic Lie groups, Grundlehren der Mathematischen Wis-
senschaften, 344. Springer, Heidelberg, 2011.

A. J. Scholl, Motives for modular forms, Invent. Math. 100, 1990, no. 2, 419—
430.

J. Tate, Number theoretic background, in Automorphic forms, representations
and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis,
Ore., 1977), Part 2, pp. 3-26.

M.-F. Vignéras, Arithmétique des algébres de quaternions, Lecture Notes in
Mathematics, 800, Springer, Berlin, 1980.

J. Voight, Quaternion algebras, notes available at https://math.dartmouth.
edu/~jvoight/.

A. Wiles, On ordinary A-adic representations associated to modular forms,
Invent. Math. 94, 1988, Issue 3, pp 529-573.

L. Wilson, Q-Curves with complex multiplication, The University of Sydney
PhD thesis, 2010.

81



[Xa]

82

BIBLIOGRAPHY

X. Xarles, Comparison theorems between crystalline and étale cohomology:
a short introduction, available at http://mat.uab.es/ xarles/comparison.
pdf.



