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Introduction

In their recent paper [CH], Castella and Hsieh proved vanishing results for Selmer
groups associated with Galois representations attached to newforms twisted by Hecke
characters of an imaginary quadratic field. These results are obtained under the so-
called Heegner hypothesis that the imaginary quadratic field satisfies with respect to
the level of the modular form. In particular, Castella and Hsieh prove the rank 0 case
of the Bloch–Kato conjecture for L-functions of modular forms in their setting.

The key point of the work of Castella and Hsieh is a remarkable link between certain
arithmetic objects called generalized Heegner cycles that were introduced by Bertolini,
Darmon and Prasanna in [BDP] and suitably defined p-adic L-functions, which are
instead objects of p-adic analytic nature, interpolating special values of complex L-
series.

In this thesis, we extend several of the results of Castella–Hsieh to a quaternionic
setting, that is, the setting that arises when one works under a “relaxed” Heegner hy-
pothesis. In particular, we are interested in an analogous link between the quaternionic
generalized Heegner cycles defined by Brooks in [Brooks] and suitable p-adic L-functions.

From a broader point of view, L-functions, be they complex or p-adic, are expected to
encode a lot of information on the arithmetic objects they are attached to (for examples,
abelian varieties, modular forms, Galois representations). Celebrated examples are the
class number formula

ress=1ζK(s)
.
= hK ,

which relates the residue at s = 1 of the Dedekind zeta function associated with a
number field K to the class number of K, and the Birch–Swinnerton-Dyer conjecture

ords=1L(E/K, s) = rankZE(K),

which predicts an equality between the order of vanishing at s = 1 of the L-function
associated with an elliptic curve E over a number fieldK (the analytic rank of E overK)
with the rank of the finitely generated Mordell–Weil group E(K) of K-rational points
of E (the algebraic rank of E over K). The symbol .

= in the class number formula
means that the equality holds up to an explicit non-zero multiplicative factor that is
comparatively less important than the main terms.

Birch–Swinnerton-Dyer conjecture and Kolyvagin’s method

Let E be an elliptic curve over Q of conductor N and let K be an imaginary quadratic
field satisfying the Heegner hypothesis relative to N :

• all the primes dividing N split in K.

In a series of landmark papers culminating in [Ko], Kolyvagin proved that if a certain
distinguished K-rational point (called a Heegner point) on E is non-torsion then E(K)

5



Introduction

has rank one. In combination with the Gross–Zagier formula for the central derivative
of L(E/K, s) ([GZ]) and other sophisticated results of an analytic nature, Kolyvagin’s
theorem gives a proof of the Birch–Swinnerton-Dyer conjecture for E when the analytic
rank of E over Q is at most 1.

The significance of Kolyvagin’s theorem, whose importance can be hardly overesti-
mated, lies not only in its statement but also in the strategy on which its proof is based.
More precisely, the proof builds essentially on two fundamental ingredients: Selmer
groups and the Euler system of Heegner points.

In a nutshell, Kolyvagin proved his theorem by measuring the size of some Selmer
groups Selp(E/K), which are suitable Galois cohomology groups associated with E/K
and primes p, via a method that is based on the formal Euler system properties of the
collection of Heegner points on E. These points give a systematic supply of distinguished
points on E that are rational over abelian estension of K and satisfy specific conditions
of compatibility with respect to trace maps. It is worth emphasizing that the Heegner
hypothesis is crucial for this construction.

Bloch–Kato conjecture

To an elliptic curve E/Q and a prime p we can attach a p-adic Galois representation

ρE,p : Gal(Q/Q) −→ Aut
(
Tp(E)

) ∼= GL2(Zp) ⊆ GL2(Qp),

where Tp(E) is the p-adic Tate module of E. In fact, all the arguments in Kolyvagin’s
strategy can be formulated in terms of Galois representations. Remarkably, it turns
out that the link between Heegner points, Selmer groups, Galois representations and
L-functions is a particular instance of a much more general phenomenon.

Namely, with every Galois representation V and every number field K one can
associate a Selmer group Sel(K,V ) and an L-function. The Bloch–Kato conjecture
([BK]) predicts a relation of the form

Sel(K,V ) ←→ L-function associated with V.

Furthermore, as in the Birch–Swinnerton-Dyer conjecture for elliptic curves (or, more
generally, abelian varieties), the L-function should control the size of the Selmer group.
In fact, the Birch–Swinnerton-Dyer conjecture can be viewed as a special case of the
Bloch–Kato conjecture.

In this thesis, we are interested in the Galois representations attached by Deligne
to (higher weight) modular forms ([Del]).

Modular forms and Kolyvagin’s method for Heegner cycles

Thanks to sophisticated results due to Shimura, Deligne and Serre, it is possible to
attach to a large class of modular forms f a two-dimensional Galois representations of
the form

Vf : GQ −→ GL2(F ),

where GQ is the absolute Galois group Gal(Q/Q) of Q and F is a suitable p-adic field
(by which we mean, as customary, a finite extension of Qp). These representations are
obtained from étale cohomology groups of Kuga–Sato varieties. More precisely, the two
dimensional Galois representation Vf of GQ associated with a modular form f of weight
k and level N is obtained as a subspace of the étale cohomology group Hk−1

ét (Wk−2,Qp)
that is stable under the action of a certain Hecke algebra. Here Wk−2 is the Kuga–Sato
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variety defined as a smooth compactification of the (k − 2)-fold fibre product of the
universal elliptic curve over the modular curve X1(N).

In this more general context, the role of Heegner points is played by Heegner cycles,
which are distinguished algebraic cycles in the Chow group CHk/2(Wk−2) of Wk−2.

In the case of modular forms of even weight k ≥ 4, Nekovář built in [Nek92] an
Euler system made up of cohomology classes {cn}n, with cn ∈ H1

(
Kn, Vf (k/2)

)
. Here

H1 stands for the first Galois cohomology group, K is an imaginary quadratic field
satisfying the Heegner hypothesis with respect to the level N of f , Vf (k/2) is the self-
dual (Tate) twist of the representation Vf andKn is the ring class field ofK of conductor
n. These cohomology classes are obtained as the images of particular Heegner cycles
via the p-adic étale Abel–Jacobi maps

AJKn : CHk/2(Wk−2/Kn)0 −→ H1
(
Kn, Vf (k/2)

)
.

Extending the method of Kolyvagin, Nekovář bounded the size of a Selmer group at-
tached to Vf and K. This led to a proof of the Bloch–Kato conjecture in a rank 1 situa-
tion and of the finiteness of a suitably chosen primary part of the relevant Shararevich–
Tate group.

Generalized Heegner cycles

Starting from a modular form f , we are interested in studying the representation Vf,χ
defined as the twist of Vf (k/2) by a Galois character χ.

In [BDP], Bertolini, Darmon and Prasanna introduced a distinguished collection
of algebraic cycles, coming from graphs of isogenies between elliptic curves, lying in
the product of the Kuga–Sato variety Wk−2 with a power of a fixed elliptic curve A.
These cycles are called generalized Heegner cycles and, roughly speaking, play the role
of Heegner cycles for Vf,χ.

Later, Castella and Hsieh constructed in [CH] an Euler systems for generalized
Heegner cycles; they proved, among other results, a theorem that establishes, under
suitable hypotheses, the vanishing of the Selmer group Sel(K,Vf,χ) associated with the
representation Vf,χ. This proves the Bloch–Kato conjecture in the setting of Castella
and Hsieh:

dimF Sel(K,Vf,χ) = ords=k/2L(f, χ, s) = 0.

Building upon results from [BDP], the proof by Castella–Hsieh is based on a link be-
tween this system of generalized Heegner cycles and a certain p-adic L-function attached
to f , and on a generalization of Kolyvagin’s method. We emphasize that the Heegner
hypothesis is essential in [CH].

The quaternionic setting: relaxing the Heegner hypothesis

What happens if we want to weaken the Heegner hypothesis? More explicitly, we would
like to generalize the work of Castella and Hsieh to the case of an imaginary quadratic
field K that does not satisfy the classical Heegner hypothesis, but instead satisfies the
following generalized Heegner hypothesis relative to the level N of the modular form f :

• no prime factor of N ramifies in K, if a prime ` is inert in K then `2 does not
divide N and the number of prime factors of N that are inert in K is even.

In this setting, we cannot work with Kuga–Sato varieties over classical modular curves,
as we are not able to construct Heegner cycles on these varieties without the Heegner
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hypothesis. The right substitutes for modular curves in this context are Shimura curves,
so it is natural to work with Kuga–Sato varieties fibered over Shimura curves.

In [Brooks], Brooks introduced a collection of generalized Heegner cycles on a Kuga–
Sato variety over a Shimura curve Sh, coming from graphs of isogenies between abelian
surfaces. The curve Sh has the form of a quotient of the complex upper half plane
under the action of a group that is determined by an order in an indefinite quaternion
algebra over Q. Brooks proved results that generalize (some of) those in [BDP] to this
“quaternionic” setting, according to the following picture:

Heegner hypothesis ←→ Generalized Heegner hypothesis,
Modular curves ←→ Shimura curves,
Elliptic curves ←→ Abelian surfaces.

Building on the work of Brooks, our goal is to generalize to a quaternionic context the
key result of [CH] relating their p-adic L-function to the system of generalized Heegner
classes. As said before, this is a crucial point for the proof of the vanishing of the Selmer
group. We construct a system of generalized Heegner cycles on the Kuga–Sato variety
over the Shimura curve Sh and a p-adic L-function defined as a p-adic measure given
as a sum of values of a variation of f , as a modular form over our Shimura curve, at
certain CM abelian surfaces. With these ingredients at hand, we will prove results on
the Selmer group Sel(K,Vf,χ).

It is worth remarking that we expect the results of this thesis to play a key role
in the proof of a generalization of Castella’s specialization results ([Cas]) for Howard’s
big Heegner points in Hida families ([How]) to the quaternionic big Heegner points
introduced by Longo and Vigni ([LV]). We plan to address this question in a future
project.

Outline of the thesis

First of all, we fix some notation. Let f ∈ Snew
k (Γ0(N)) be a newform of weight

k = 2r+2 ≥ 4 and level N . Fix an odd prime p - N and a field embedding ip : Q ↪→ Cp.
Let F be a finite extension of Qp containing the image of the Fourier coefficients of
f under ip and let K be an imaginary quadratic field of discriminant DK and ring
of integers OK in which p splits as pOK = pp splits, with p determined by ip. Let
χ : Gal(Kc0p∞/K) → O×F be a locally algebraic anticyclotomic character of infinity
type (j,−j) and conductor c0p

sOK (see section 3.5). Denote by Vf,χ := Vf (k/2)⊗χ the
twist of Vf (k/2) by χ seen as a representation of Gal(Q/K), by L(f, χ, s) the associated
Rankin L-series and by Sel(K,Vf,χ) the Block–Kato Selmer group associated with Vf,χ
and K. Assume that:

1. p - 2Nφ(N+) (where φ is Euler’s function);
2. c0 is prime to N , i.e., the conductor of χ is prime to N ;
3. either DK > 3 is odd or 8 | DK ;
4. p = pp splits in K.

Moreover, assume that K satisfies the generalized Heegner hypothesis relative to N as
described above, and factor N as N = N+N−, where N+ is a product of primes that
split in K and N− is a (necessarily square-free) product of an even number of primes
that are inert in K.

Our first theorem on Selmer groups, which corresponds to Theorem 6.4.1, is a van-
ishing result.
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Theorem A. If f is p-ordinary and L(f, χ, k/2) 6= 0, then

dimF Sel(K,Vf,χ) = 0.

Denote by ε(Vf,χ) the sign of the functional equation of L(f, χ, s). Our second
theorem on Selmer groups, which corresponds to Theorem 6.4.2, is a one-dimensionality
result.

Theorem B. If ε(Vf,χ) = −1 and zχ 6= 0, then

Sel(K,Vf,χ) = F · zχ.

In the statement above, zχ is a suitable cohomology class in H1(K,Vf,χ) that comes
from an Euler system of generalized Heegner classes.

Let us conclude this introduction by briefly sketching the structure of the thesis.
In Chapter I we recall basic facts about quaternion algebras and Shimura curves as

moduli spaces of abelian surfaces. We introduce the Shimura curve Sh we will work
with and also the notions of modular forms and p-adic modular forms over Shimura
curves.

In Chapter II we review Serre–Tate theory and study deformations of abelian sur-
faces, which we will use to get power series expansions at ordinary CM points for
modular forms over Shimura curves (for which q-expansions are not available).

In Chapter III we define our analytic anticyclotomic p-adic L-function Lf,ψ as a
measure on Gal(Kp∞/K) with values in the ring of Witt vectors W = W (Fp), where
Kp∞ = ∪nKpn for Kpn the ring class field of conductor pn of K, Fp is an algebraic
closure of the field Fp with p elements and ψ is an anticyclotomic Hecke character of
infinity type (k/2,−k/2) and conductor c0OK with (c0, pN

+) = 1. We close the chapter
with an interpolation formula for our p-adic L-function, which we will use later to obtain
the reciprocity law of Chapter VI, relating the value ofLf,ψ at φ to the central critical
value L(f, χ, k/2), where φ is an anticyclotomic Hecke character of infinity type (n,−n)
with n ≥ 0 and p-power conductor such that χ = ψφ.

In Chapter IV, following Brooks, we introduce a family of generalized Heegner cycles
on the generalized Kuga–Sato variety over our Shimura curve Sh. More precisely, these
cycles live in a Chow group of the generalized Kuga–Sato variety Xr = Ar ×Ar, where
A is the universal object of the fine moduli problem associated with Sh and A is a fixed
abelian surface with CM by K. Then we apply a p-adic Abel–Jacobi map to obtain
cohomology classes from generalized Heegner cycles. In this way, we construct a system
of generalized Heegner classes associated with f and χ, and indexed by fractional ideals
of K, for which we prove compatibility properties.

In Chapter V we establish a relation between values ofLf,ψ at Galois characters φ of
infinity type (−k/2−j, k/2+j) and Bloch–Kato logarithms of generalized Heegner cycles
associated with χ of infinity type (j,−j), with −k/2 < j < k/2, where χ = ψ−1φ−1.
This relation, for which we refer to Theorem 5.5.1, has the form

Lf,ψ(φ) = (something) · 〈logp(zχ), ∗〉 ,

where “something” is an explicit non-zero coefficient that is comparatively less important
than the main terms in the formula. The key ingredient to establish this Gross–Zagier
type formula is the work of Brooks: we link our p-adic L-function to the differential
operator θ = t ddt on the Serre–Tate coordinates and then we use Brooks’s results to
obtain a formula suitably relating θ to our generalized Heegner cycles.
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Finally, in Chapter VI we use the previous formula and the interpolation property
to establish, under a p-ordinarity assumption on f , a reciprocity law relating the an-
alytic p-adic L-function Lf,ψ to an algebraic p-adic L-function obtained as a sort of
image of an Iwasawa cohomology class zf ∈ H1

(
Kp∞ , Vf (k/2)

)
, obtained as an in-

verse limit of generalized Heegner classes, under a big logarithm map. This reciprocity
law and the costruction of an anticyclotomic Euler system associated with generalized
Heegner classes, combined with an extension of Kolyvagin’s method for anticyclotomic
Euler systems developed in [CH], lead to the proof of Theorem A. As for Theorem B,
its proof rests once again on an extension of Kolyvagin’s method applied to another
anticyclotomic Euler system associated with generalized Heegner classes.
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Notation

If F is a number field or a local field, whose ring of integers will be denoted by OF , we
fix an algebraic closure F of F and write GF for the absolute Galois group Gal(F/F )
of F .

For any prime number p, we fix an immersion ip : Q ↪→ Cp, where Cp is the
completion of the chosen algebraic closure of Qp.

Unadorned tensor products are always taken over Z.
We denote by AF the adele ring of a number field F and by F̂ the ring of finite

adeles of F .
For an imaginary quadratic field K and an integer n ≥ 1, we denote by Kn the ring

class field of K of conductor n; in particular, K1 is the Hilbert class field of K.
Finally, for an integer n ≥ 1, we write ζn for the primitive n-th root of unity

e
2πi
n ∈ C×.
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Chapter 1

Shimura curves

1.1 Shimura curves

In this section we give a short introduction to Shimura curves attached to quaternion
algebras over Q.

1.1.1 Quaternion algebras

We briefly introduce quaternion algebras, a standard reference for which is [Vi] (a nice
introduction to the subject can also be found in [Voi]).

Definition 1.1.1. A quaternion algebra over a field F with char(F ) 6= 2 is an algebra
B, that is a 4-dimensional vector space over F with a basis 1, i, j, k with the following
multiplicative relations:

i2 = a, j2 = b, k = ij = −ji,
for some a, b ∈ F r {0}. The quaternion algebra determined by elements a, b ∈ F r {0}
is denoted by

(a,b
F

)
.

Examples:

1. The R-algebra H =
(
−1,−1

R

)
is the algebra of Hamilton’s quaternions.

2. The algebra of 2× 2 matrices M2(F ) is a quaternion algebra over F ; indeed there
is an isomorphism

(
1,1
F

)
∼= M2(F ) induced by i 7→

(
1 0
0 −1

)
, j 7→ ( 0 1

1 0 ). This the
only quaternion algebra over F which is not a division algebra.

We are interested in rational quaternion algebras, i.e., quaternion algebras over Q.
Denote by Ẑ :=

∏
p Zp the profinite completion of Z and by Q̂ := Ẑ⊗Q the ring of finite

adeles of Q. Let B be a rational quaternion algebra; for each place v of Q, possibly
v = ∞, denote by Bv := B ⊗Q Qv and by B̂ := B ⊗Q Q̂ the adelization of B. We
say that B is split at v if Bv ∼= M2(Qv) and it is ramified at v otherwise. Because
of the Hilbert’s reciprocity law, the numbers of ramified places in B is finite and even.
Furthermore, the set of primes ramified classifies completely (up to isomorphism) the
rational quaternion algebra B; for each finite even set S of primes (possibly containing
∞) there is a unique rational quaternion algebra B ramified at exactly the primes
of S. Denote by D :=

∏
p finite
ramified

p the discriminant of B, which determines B up to

isomorphism. We say that B is indefinite if B is split at ∞, i.e., if there exists an
isomorphism of R-algebras Φ∞ : B ⊗Q R ∼= M2(R), and that B is definite otherwise.

Consider now a quaternion algebra B over a field F of characteristic 0 and denote
by OF the ring of integers of F .

13



1. Shimura curves

Definition 1.1.2. An order R in B is a OF -lattice that is also a subring of B. An
order is said to be maximal if it is not properly contained in another order.

Another interesting type of order is an Eichler order, i.e., an order which is the
intersection of two maximal orders.

Take a quaternion algebra B over Q of discriminant D. If ` is a prime such that
` | D, then B` has a unique maximal order R`. If ` - D, we can choose an isomorphism
Φ` : B` ∼= M2(Q`) and consider R` := Φ−1

` (M2(Z`)), which is a maximal order in B`.
Then R := B ∩

∏
`R` is a maximal order in B. If N+ is an integer prime to D, we

consider the order in B defined by

RN+ :=
{
b ∈ R | Φ`(b) ≡

( ∗ ∗
0 ∗
)

(mod `) for each ` | N+
}
,

that is the standard Eichler order of B of level N+ in R (it depends on the choice of
the isomorphisms Φ`).

Each quaternion algebra B over a field F can be endowed with a standard involution.

Definition 1.1.3. An involution on B is an F -linear map (·)∗ : B → B such that

• 1∗ = 1;
• (xy)∗ = y∗x∗ for any x, y ∈ B;
• (x∗)∗ = x for any x ∈ B.

An involution is standard if x∗x ∈ F for all x ∈ B.

1. If B =
(
a, b
F

)
with char(F ) 6= 2, then the map

x = u+ vi+ wj + zk 7−→ x = u− vi− wj − zk

defines a standard involution on B, called main involution.
2. If B = M2(F ), the map (

a b
c d

)
7−→

(
d −b
−c a

)
defines a standard involution on M2(F ).

Consider an indefinite rational quaternion algebra B. By the Skolem–Noether theorem,
any positive involution on B is given by b 7→ t−1bt with t2 ∈ Q<0, with b 7→ b the main
involution.

1.1.2 Shimura curves

For a more general and detailed introduction to the theory of Shimura curves, see [Mi90].
Let B be an indefinite rational quaternion algebra, b 7→ b∗ a positive involution on B,
and H± = C − R be the disjoint union of the upper and lower complex half planes.
Denote by OB a maximal order of B and fix an isomorphism Φ∞ : B ⊗ R ∼= M2(R).
For K a compact open subgroup of B̂×, consider the double coset space

ShK(B) := B×
∖(
H± × B̂×

)/
K,

where the action is given by

b · (z, g) · k := (bz, bgk)

for b ∈ B×, z ∈ H±, g ∈ B̂× and k ∈ K, i.e., K acts naturally on the right on B̂×

by right multiplication, B× acts on the left on B̂× through the diagonal embedding

14



1.1. Shimura curves

B ↪→ B̂ and on H± through the fixed isomorphism Φ∞ : B ⊗ R ∼= M2(R) by the usual
linear fractional transformations (

a b
c d

)
· z :=

az + b

cz + d
.

When K is sufficiently small, ShK(B) is a finite disjoint union of quotients Γ\H, with
Γ arithmetic subgroup of SL2(R), so it is a finite disjoint union of Riemann surfaces
and it has a structure of an algebraic curve over C (cf. [Mi90, Chapter II, §2]).

Let
Sh(B) := lim←−

K

ShK(B).

This is a scheme over C whose complex points are

Sh(B)(C) = B×\H± × B̂×.

See [Mi90, Lemma 10.1]. There is a continuous action of B̂× on Sh(B) defined by

[(z, g)] · h := [(z, gh)].

If K is normal then the action of B̂× is well defined also on ShK(B). Indeed, the action
of B̂× is defined by the maps

ShK(B) −→ Shh−1Kh(B)

[(z, g)] 7−→ [(z, gh)].

The scheme Sh(B) together with this continuous action of B̂× is called the Shimura
curve associated with the quaternionic algebra B. The operation defined by g ∈ B̂×
on Sh(B) is called Hecke operator associated with g. For more details, see [Mi90,
Chapter II].

The Shimura curve Sh(B) is the Shimura variety associated with the Shimura datum
(G,X) where G is the algebraic group over Q such that G(Q) = B× and X = H± seen
as the conjugacy class through the action of G(R) of a morphism h : C× → G(R). See
again [Mi90, Chapter II, §2].

1.1.3 Shimura curves as moduli spaces

Shimura curves can be seen as moduli spaces classifying abelian surfaces with quater-
nionic multiplication by OB and certain level structures. An abelian surface over a
field F is a projective algebraic variety over F of dimension 2 that is also an algebraic
group. A standard reference for abelian varieties is [Mum]; another good source are
Milne’s notes [AV]. A quaternionic multiplication on an abelian surface A over F is an
embedding OB ↪→ EndF (A). We will see this in more detail in the case of the Shimura
curve we will work with.

For a description of the moduli interpretation, we closely follow [Mi79, §1] and work
with an integral form of G, that is to say that we take G as the group scheme over Z
such that G(R) = (OB ⊗ R)× for any ring R. Let V := V (Z) be a free Z-module of
rank 4 with an action of OB.

Lemma 1.1.4. There exists a unique nondegenerate alternating form ψ : V (Q) ×
V (Q)→ Q on V (Q) := V ⊗Z Q such that

1. ψ(V, V ) ⊆ Z;

15



1. Shimura curves

2. ψ(ut, u) < 0 for all u 6= 0, u ∈ V (R);
3. ψ(bu, v) = ψ(u, b∗v) for all u, v ∈ V (Q);
4. for any B-automorphism α of V (Q) there exists µ(α) ∈ Q× such that ψ(αu, αv) =

ψ(u, αv) for all u, v ∈ V (Q). Moreover if φ′ is another nondegenerate alternating
form on V (Q) satisfying (3) then there is q ∈ Q× such that ψ(u, cv) = ψ′(u, v)
for all u, v ∈ V (Q).

This means that on the complex manifold C2/V with the OB-action there exists a
Riemann form for V whose corresponding Rosati involution induces b 7→ b∗ on B and
any such two forms are equivalent, i.e., there exists a unique polarization compatible
with the OB-action.

Take V = V (Z) = OB with the natural action of OB. Note that for any ring R,
we can identify (OB ⊗R)× with AutOB⊗R(V (R)), because any OB ⊗R endomorphism
of V (R) = OB ⊗ R is the right multiplication by an element of OB ⊗ R. Taking now
R = R, we define a homomorphism h : C× → G(R) = AutOB⊗R(V (R)) such that h(i)
is the right multiplication by

(
0 1
−1 0

)
, using the isomorphism Φ∞ : G(R) = (B ⊗R)× ∼=

GL2(R). The form ψ of the previous lemma is a Riemann form on (V, h), so that (V, h)
defines an abelian surface A = V (R)/V over C with a QM-structure ι : OB ↪→ EndC(A)
induced by the OB-action on V . However, in this case, the QM-structure determines
the polarization up to a certain equivalence, so we do not need to include it in the
construction.

Denote by T (A) the complete Tate module of A that is the projective limit of the
torsion groups A[n], i.e.,

T (A) := lim←−
n

A[n] ∼=
∏
`

T`(A),

where T`(A) is the usual `-adic Tate module of A. Then there is a natural isomorphism
T (A) ∼= V (Ẑ) given by

T (A) = lim←−
n

A[n] = lim←−
n

n−1V/V ∼= lim←−
n

Z/nZ⊗ V = Ẑ⊗ V.

If K is an open compact subgroup of G(Ẑ) = ÔB and α1, α2 : T (A) ∼= V (Ẑ) two
isomorphisms, they are said to be K-equivalent if α1 = (− · k) ◦ α2 for some k ∈ K.
For example, if K is the kernel of the natural map G(Ẑ) → G(Z/MZ) then give a K-
equivalence class of isomorphisms T (A) ∼= V (Ẑ) is the same as to give an isomorphism
V (Z/MZ) ∼= A[M ](C) that is a full level M structure.

Theorem 1.1.5. There is a bijection between the set of complex points ShK(B)(C) =
B×\H± × B̂×/K and the set of isomorphism classes of triples (A, ι, φ), where A is an
abelian surface over C, ι is a quaternionic multiplication ι : OB ↪→ End(A) and φ is a
K- equivalence class of isomorphisms T (A)

∼=→ V (Ẑ).

We want to give explicitly the bijection x = (z, g) 7→ (Ax, ιx, φx) of the previous the-
orem. If z = i, g = 1 then Ax = A = V (R)/V , ιx = ι and φx is the class of the
natural isomorphism T (A)

∼=→ V (Ẑ) seen before. For a general x = (z, g) ∈ H± × B̂×,
put Vg = V (Ẑ)g ∩ V (Q) and hz : C× → G(R) defined by τ 7→ g∞h(τ)g−1

∞ , where
g∞ ∈ G(R) such that g∞i = z. Then Ax is the abelian surface defined by (Vg, hz),
so Ax = V (R)/Vg with ιx defined by the action of OB on Vg and φx determined by
T (Ax) ∼= Vg(Ẑ) = V (Ẑ)g ∼= V (Ẑ), where the last ∼= is right multiplication by g−1. See
[Mi79] for details.
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1.2. Shimura curves of level V1(N+)

1.2 Shimura curves of level V1(N
+)

We introduce now the Shimura curves we will work with. Let B be an indefinite rational
quaternion algebra of discriminant D and let H± = C− R be the disjoint union of the
upper and lower complex half planes. Fix isomorphisms Φ` : B` ∼= M2(Q`) for each
prime ` - D and denote by OB a maximal order of B such that each Φ` induces an
isomorphism OB ⊗ Z` ∼= M2(Z`). Fix also an isomorphism Φ∞ : B ⊗ R ∼= M2(R). For
N+ positive integer prime to D, consider the map

πN+ : Ô×B �
∏
`|N+

(OB ⊗ Z`)× ∼=
∏
`|N+

GL2(Z`) � GL2(Z/N+Z).

Denote by Γ̂1,N+ the open compact subgroup of Ô×B composed of the elements b ∈ Ô×B
such that πN+(b) ∈ {( ∗ ∗0 1 ) ∈ GL2(Z/N+Z)} . Consider the space of double cosets

XN+ := B×\H± × B̂×/Γ̂1,N+ .

Here, as already seen before, Γ̂1,N+ acts naturally on the right on B̂× by right multipli-
cation, while B× acts on the left on B̂× through the diagonal embedding B ↪→ B̂ and
on H± under the fixed isomorphism Φ∞ by the usual linear fractional transformations(

a b
c d

)
· τ :=

aτ + b

cτ + d
.

This is the Shimura curve associated with the Shimura datum G(Q) = B×, X = H±
and K = Γ̂1,N+ .

Because B is indefinite, there is a bijection

XN+
∼= H/Γ1,N+ ,

where H is the classical upper half plane and Γ1,N+ is the subgroup of matrices in
Φ∞((Γ̂1,N+ ∩ B)×) of determinant 1 ([BD, §1.3]). This bijection endows XN+ with a
Riemann surface structure and gives, as a consequence, an analytic description of XN+ .

The coset space XN+ admits a model over Q, which is the fine moduli scheme
classifying abelian surfaces with quaternionic multiplication by OB and certain level
structures.

Definition 1.2.1. Let S be a Z[1/D]-scheme. An abelian surface with quater-
nionic multiplication by OB (abelian surface with QM, for short) over S is a pair
(A, i) where

1. A is an abelian scheme A/S of relative dimension 2;
2. i is an optimal inclusion i : OB ↪→ EndS(A) giving an action of OB on A.

A morphism of abelian surfaces with QM is a morphism of abelian surfaces that respects
the action of OB.

Abelian surfaces with quaternionic multiplication are often called false elliptic curves.

Definition 1.2.2. Let N+ > 0 be an integer prime to D. A level V1(N+)-structure,
or an arithmetic level N+ structure, on a QM abelian surface (A, i) is an inclusion

lµ.. N+ × lµ.. N+ ↪−→ A[N+]

of group schemes over S, commuting with the action of OB, where lµ.. N+ denotes the
group scheme of N+th roots of unity. The action of OB on the left hand side is via
the isomorphism OB ⊗ Z/N+Z ∼= M2(Z/N+Z) induced by the chosen isomorphisms
Φ` : B` ∼= M2(Q`), through which one has OB ⊗ Z` ∼= M2(Z`) for each ` | N+.
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1. Shimura curves

A morphism of QM abelian surfaces with V1(N+)-level structure is a morphism of QM
abelian surfaces that respects the level structures.

If A is an abelian surface over an algebraically closed field k, a V1(N+)-level structure
can be thought of as an orbit of full level N+ structures, i.e., isomorphisms

OB ⊗ Z/N+Z ∼= A[N+]

commuting with the action of OB, under the natural action of the subgroup
{

( ∗ ∗0 1 ) ∈
GL2(Z/N+Z)

}
of GL2(Z/N+Z). See [Brooks, §2.2] for details.

The moduli problem of QM abelian surfaces with V1(N+)-level structure is repre-
sentable, as asserted by

Theorem 1.2.3. For N+ > 3, the moduli problem that assigns to a Z[1/DN+]-scheme
S the set of isomorphism classes of QM-abelian surfaces over S with V1(N+)-level struc-
ture is representable by a smooth proper Z[1/DN+]-scheme X.

For details, see [Brooks, §2.2. and §2.3], [Buz, §2] or [Kas, §2 and §3].
The complex points of X are naturally identified with the compact Riemann surface

XN+
∼= H/Γ1,N+ .

The Z[1/DN+]-scheme X from Theorem 1.2.3 is called the Shimura curve of
level V1(N+) associated to the indefinite quaternion algebra B and we will denote it
by XN+ , using the same notation for the scheme, the Riemann surface and the double
coset space.

Theorem 1.2.3 says that the scheme XN+/Z[1/DN+] represents the moduli functor

F : Sch /Z[1/DN+] −→ Set

given by

F (S) :=

{
isomorphism classes of abelian surfaces (A, ι, ν)

over S with QM and V1(N+)-level structure

}
.

Therefore there exists a universal object that is the isomorphism class of QM abelian
surfaces with V1(N+)-level structure in F (XN+) corresponding to idXN+ through the
isomorphism

F (XN+) ∼= HomZ[1/DN+](XN+ , XN+).

We denote by π : A → XN+ this universal QM abelian surface over XN+ . It is called
“universal” because every isomorphism class in F (S) comes from A; more precisely, an
isomorphism class corresponding to a morphism f ∈ XN+(S) = HomZ[1/DN+](S,XN+)
is the isomorphism class of (A, ιA, νA)×f S. For each geometric point x : Spec(L)→ A,
the fiber Ax := A×x Spec(L) is an abelian surface with QM by OB and V1(N+)-level
structure defined over L, representing the isomorphism class that corresponds to the
point x.

1.3 Hecke operators

The Shimura curve XN+ comes equipped with a ring of Hecke correspondences, which
can be introduced by using the adelic description of XN+ . See, for example, [BD, §1.5];
here the construction is for the Shimura curve relative to level structures “of type Γ0”,
but it can be done also in our case. In terms of abelian surfaces the Hecke operators
acts in the following way. For a prime `, a QM abelian surface A over a field k of
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characteristic prime to ` has `+1 cyclic OB-submodules annihilated by `. Denote them
by C0, . . . , C` and consider the isogenies ψi : A � A/Ci of QM abelian surfaces. If νA
is a V1(N+)-level structure on A and ` - N+, then ψi induces a V1(N+)-level structure
νA ◦ ψi on A/Ci. If ` - N+D, the “good” Hecke operator T` can be described by

T`(A, ιA, νA) =
∑̀
i=0

(A/Ci, ιi, νi).

For more details, see §4.1 and [Brooks, §3.6].

1.4 Igusa tower

We are interested in working with p-adic modular forms over our Shimura curve, which
are defined analogously to Katz’s generalized p-adic modular forms. Therefore we want
to work on a cover of the ordinary locus of the Shimura curve.

Fix a prime p - N+D. Since XN+ is a scheme over Z[1/N+D], it can be viewed
as a scheme over Z(p). For simplicity, denote by Sh the curve XN+/Z(p)

. Since Sh is
a fine moduli scheme for QM abelian surfaces over Z(p)-schemes with level structures,
there is a universal abelian surface A → Sh, which is the one associated with XN+ but
tensored with Z(p) over Z[1/DN+].

Recall that a QM abelian surface A over a field k of characteristic p is said to be
ordinary if A[p](k) ∼= (Z/pZ)2, and supersingular otherwise. Indeed, a QM abelian sur-
face in characteristic p, is either ordinary or supersingular; equivalently, it is isogenous
either to a product of ordinary elliptic curves or to a product of supersingular elliptic
curves, respectively. Consider the ordinary locus Shord of Sh, i.e., the locus on which
the Hasse invariant does not vanish, that is the scheme obtained by removing the super-
singular points of Sh in the fiber at p, which are those points which correspond in the
moduli interpretation to abelian surfaces which have supersingular reduction modulo p.
See [Kas] for details about the ordinary locus and the Hasse invariant.

Let Aord → Shord be the universal ordinary QM abelian surface over Shord, that
is the fiber product Aord = A ×Sh Shord. Consider the functor In : Sch/Shord → Set
that takes an Shord-scheme S to the set of closed immersions lµ.. pn × lµ.. pn ↪→ Aord[pn] of
finite flat group schemes over S respecting the OB-action. This functor is representable
by a scheme In/Shord . Then In/Z(p)

classifies quadruples (A, i, νN+ , νpn), where A is an
abelian surface, ι a quaternionic multiplication, νN+ a V1(N+)-level structure and νpn
an OB-immersion lµ.. pn × lµ.. pn ↪→ A[pn]. There is a tower

· · · −→ In+1 −→ In −→ In−1 −→ · · · .

Consider the formal scheme I/Z(p)
:= lim←−n In/Z(p)

. This formal scheme parametrizes
compatible sequences of isomorphism classes of quadruples (A, i, νN+ , νpn), where A
is an ordinary abelian surface, ι a quaternionic multiplication and νN+ , νpn respec-
tively a V1(N+) and V1(pn) level structures. But a sequence of compatible V1(pn)-
level structures is the same as a V1(p∞)-level structure, that is an immersion νp∞ :

lµ.. p∞×lµ.. p∞ ↪→ A[p∞]. Therefore this tower parametrizes isomorphism classes of quadru-
ples (A, i, νN+ , νp∞).

There is a bijection
I(C) ∼= lim←−

n

XN+pn(C),
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1. Shimura curves

between complex points of I and compatible sequences {xn}n of complex points xn =
(A, i, νN+ , νpn) ∈ XN+pn(C).

See [Hi04] for details about Igusa schemes in the case of modular curves (§6.2.12)
and more in general for Shimura varieties (Ch. 8). See also [Hi09].

1.5 CM points on Shimura curves

In this section we will construct a collection of CM points in our Shimura curves, i.e.,
points that correspond to abelian surfaces with complex multiplication, indexed by
fractional ideals of orders in an imaginary quadratic field. We denote again by Sh the
curve XN+ seen as a scheme over Z(p). Since also Sh is the fine moduli scheme for
QM abelian surfaces over Z(p)-schemes with level structure, it has a universal abelian
surface A → Sh, which is the one of XN+ but tensored by Z(p) over Z[1/DN+].

1.5.1 Abelian surfaces with QM and CM over C

Theorem 1.5.1. Let (A, i) be an abelian surface with QM by OB over C. Then either

1. A is simple and End0(A) := End(A)⊗Q = B, or
2. A is not simple, A ∼ E2 is isogenous to the product of an elliptic curve E with CM

by an imaginary quadratic field K which embeds in B and End0(A) ∼= M2(K).

In particular, we are interested in the second case of the previous theorem. Abelian
surfaces with QM that satisfy that second condition are said to have complex multi-
plication (CM for short) by K. Suppose that (A, i) is an abelian surface over C with
QM by OB and V1(N+pn)-level structure. Then the ring

EndOB (A) :=
{
f ∈ End(A) | f ◦ i(b) = i(b) ◦ f for all b ∈ OB

}
is either Z or an order in an imaginary quadratic field K. If K is an imaginary quadratic
field and EndOB (A) = Oc, where Oc is the order of conductor c in OK , then A is said
to have complex multiplication by Oc and the point P = [(A, i)] ∈ XN+pn(C) is said to
be a CM point of conductor c.

1.5.2 Generalized Heegner hypothesis

LetK be an imaginary quadratic field of discriminantDK and consider a positive integer
N , which will ultimately be the level of our modular form, such that (N,DK) = 1.
Suppose that K satisfies the generalized Heegner hypothesis relative to N :

• no prime factor of N ramifies in K, if a prime ` is inert in K then `2 does not
divide N and the number of prime factors of N that are inert in K is even.

Factor N as a product N = N+N− where N+ is a product of primes that split in K
and N− is a (necessarily square-free) product of (an even number of) primes that are
inert in K.

Let B be the indefinite rational quaternion algebra over of discriminant D = N−

and fix a prime p - N that splits in K and B. Then the field K embeds into B, thanks
to the following

Theorem 1.5.2. For a quadratic field K and a rational quaternion algebra B, the
following properties are equivalent:
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1. K embeds into B;
2. K splits B;
3. K is not split at any place where B is ramified.

Proof. This is a classical result: see, for example, [Voi, Chapter 5].

We will work with the Shimura curves XN+pn defined before relatively to the fixed
K, B, p. This hypothesis concerning the behavior of primes dividing Np in K and B
will allow us to construct CM points on our Shimura curves. Regarding this, see [Dar,
Lemma 4.17] or [BD, §2.2] (here the Shimura curves considered are different but the
result holds also in our case).

1.5.3 Products of CM elliptic curves

Start with an elliptic curve E over C with complex multiplication by OK , take E :=
C/OK . Consider on E a Γ1(M)arit-level structure given by a morphism

µM : lµ.. M ↪−→ E[M ],

where M > 3 is an integer prime to D. Consider now the self product A := E×E that
is an abelian surface over C; then its endomorphism ring is End(A) ∼= M2(End(E)) ∼=
M2(OK). Since K splits B, we can embed K in B and choose a basis {b1, b2} of B over
K with b1, b2 ∈ OB. Then we have an an immersion B ↪→ M2(K) = M2(End0(E)) =
End0(A) such that OB ↪→ M2(OK) = M2(End(E)) = End(A). See [Mi79, §2]. Hence
ι : OB ↪→ End(A) is a quaternionic multiplication for A.

Consider the isomorphism iK : B ⊗Q K ∼= M2(K) induced by ι and put

e := i−1
K (( 1 0

0 0 )) ∈ B ⊗Q K,

which is an idempotent such that e∗ = e. Then the decomposition of A is induced by
A = eA ⊕ (1 − e)A = ( 1 0

0 0 )A ⊕ ( 0 0
0 1 )A ∼= E × E (multiplication by α := ( 0 1

1 0 ) gives
an isomorphism eA ·α∼= (1 − e)A). So A[M ] = eA[M ] ⊕ (1 − e)A[M ]. The choice of a
level structure on eA[M ] = E[M ] induces a V1(M)-level structure on A[M ], because
of the request of compatibility of the level structure with respect to the action of OB
(and consequently of B). See also the last lines of [Brooks, §2.2]. Hence the fixed level
structure µM on E induces a V1(M)-level structure

νM : lµ.. M × lµ.. M ↪−→ A[M ]

on A.
Therefore, starting from a Γ1(N+pn)arit-level structure on E, we obtain a quadruple

(A, ι, νN+ , νpn) which determines a CM point in Shn(C). Starting from a Γ1(N+p∞)arit-
level structure on E, we obtain a quadruple (A, ι, νN+ , νp∞) which can be seen as a
compatible sequence of CM points in the Shimura tower XN+pn .

Start now with the elliptic curve Ec = C/Oc over C with complex multiplication by
an order Oc of K, with (c,N) = 1. The isogeny

E = C/OK −� E = C/Oc
z 7−→ cz,

induces an isogeny
φc : A = E × E −� Ac := Ec × Ec
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1. Shimura curves

of complex abelian surfaces. Take on Ac the quaternionic multiplication ιc : OB ↪→
End(Ac) determined by compatibility with φc:

ιc(b)(φc(a)) = φc(ι(b)a),

for any b ∈ B, a ∈ A. As before, a Γ1(M)arit-level structure µc,M on Ec, with M prime
to D, induces a V1(M)-level structure νc,M on Ac.

Therefore, starting from a Γ1(N+pn)arit-level structure on Ec, we obtain a quadruple
(Ac, ιc, νN+ , νpn) which determines a CM point of conductor c in XN+pn(C). Starting
from a Γ1(N+p∞)arit-level structure on E, we obtain a quadruple (A, i, νc,N+ , νc,p∞)
which can be seen as a compatible sequence of CM points in the Shimura tower XN+pn .

Note that the isogeny φc doesn’t necessarily respect the chosen level structures if p
divides c.

1.5.4 The action of Pic(Oc)

Denote by Pic(Oc) the Picard group of the order Oc of conductor c of an imaginary
quadratic field K, that is

Pic(Oc) = K×\K̂×/Ôc
×

= Ic(Oc)/Pc(Oc),

where Ic(Oc) is the group of fractional ideals of Oc coprime to c and Pc(Oc) is the
subgroup of Ic(Oc) of principal fractional ideals.

Consider a quadruple (A, ι, νN+ , νp∞) where (A, ι) is a QM abelian surface with CM
by Oc. There is an action of Pic(Oc) on the isomorphism classes of these quadruples,
defined by

a ? (A, ι, νN+ , νp∞) := (Aa, ιa, νa,N+ , νa,p∞),

where the representative a is chosen to be integral and prime to N+pc. Here Aa :=
A/A[a], where A[a] is the subgroup of the elements of A that are killed by all the endo-
morphisms in a. The quaternionic multiplication ιa and the level structures νa,N+ , νa,p∞

are induced by the ones of A. Denote by ϕa the quotient isogeny A � A/A[a], that is
an isogeny of degree N(a)2 = (#Oc/a)2 and so prime to N+p; define

ιa : OB ↪−→ End(Aa)

b 7−→
(
ϕa(x) 7→ ϕa

(
ι(b)(x)

))
and

νa,N+ : lµ.. N+ × lµ.. N+

νN+

↪−→ A[N+]
ϕa∼= Aa[N

+],

νa,p∞ : lµ.. p∞ × lµ.. p∞
νp∞
↪−→ A[p∞]

ϕa∼= Aa[p
∞].

See [Brooks, §2.5].
If σa ∈ Gal(Kc/K) corresponds to a ∈ Pic(Oc) through the classical Artin reci-

procity map, then by Shimura’s reciprocity law there is an equality

(A, ι, νN+ , νp∞)σa = a ? (A, ι, νN+ , νp∞).

See, again, [Brooks, §2.5].
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1.5.5 Construction of CM points

We want to introduce CM points indexed by ideals of orders of K.
Take an element [a] ∈ Pic(Oc) and choose the representative a to be integral and

prime to N+pc. Consider the elliptic curve Ea := C/a−1 with the Γ1(N+p∞)arith-level
structure defined in [CH, §2.3 and §2.4]. Put Aa := Ea × Ea, which, by the theory of
complex multiplication, is an abelian surface defined over the ring class field Kc of K of
conductor c. The abelian surface Aa has QM by OB and we can consider the quadruple

x(a) := (Aa, ia, νa,N+ , νa,p∞),

where νa,N+ , νa,p∞ are the level structures induced by the ones of Ea (as in §1.5.3).
We write x(c) = (Ac, ic, νc,N+ , νc,p∞) when a = Oc, and x(1) = (A, i, νN+ , νp∞) when
a = OK .

We have already used the notation above in the previous section for the action of
the Picard group on a quadruple: the reason is that there is an equality

a ? (Ac, ic, νc,N+ , νc,p∞) = (Aa, ia, νa,N+ , νa,p∞).

Indeed, a ? Ac = Ac/Ac[a] ∼= Ec/Ec[a] × Ec/Ec[a] because a ⊆ Oc ↪→ M2(Oc) acts
diagonally and the level structures are induced by the isogeny ϕa : Ac � Ac/Ac[a] that
is the product of the isogeny Ec � Ec/Ec[a].

1.6 Modular forms on Shimura curves

We recall here the definitions and some properties of modular forms and p-adic modular
forms on Shimura curves. The references are [Kas], [Brooks], [EdVP], [Hi04].

1.6.1 Geometric modular forms on Shimura curves

We will need integrality conditions only at p, so we define modular forms over algebras
R over the localization Z(p) of Z at the prime ideal generated by p. Let (A→ Spec(R), ι)
be a QM abelian surface over a Z(p)-algebra R. Then π∗ΩA/R, where ΩA/R is the bundle
of relative differentials, inherits an action of OB which tensored with the scalar action
of Zp gives an action of M2(Zp) on π∗ΩA/R. Write ωA/R for eπ∗ΩA/R. If A → Sh is the
universal QM abelian surface, then A⊗R→ Sh⊗R is the universal object for Sh⊗R.
In the particular case π : A⊗ R → Sh⊗ R of the universal QM abelian surface over a
Zp-algebra R, we just write ωR for eπ∗ΩA⊗R/Sh⊗R.

In analogy with the case of elliptic modular forms (see, for example, [BDP, §1], in
particular equation (1.1.1)), we give a geometric definition à la Katz for modular forms
on Sh over a Z(p)-algebra R. For a nice exposition of Katz modular forms in the case
of modular curves, see [Go, Chapter 1]. The geometric definition for modular forms on
Shimura curves is due to Kassaei, see [Kas, §4.1]. We closely follow [Brooks].

Definition 1.6.1. A modular form with respect to B of weight k ∈ Z and level
V1(N+) over R is a global section of ω⊗kR , i.e., an element of H0(Sh ⊗ R,ω⊗kR ). We
denote by Mk(Sh,R) the space of modular forms with respect to B, of weight k ∈ Z
and level V1(N+) over R.

Alternatively, one can define modular forms in the following ways.
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1. Shimura curves

Definition 1.6.2. Let R0 be an R-algebra. A test object is a quadruple (A/R0, ι, ν, ω)
consisting of a QM abelian surface A over R0, a V1(N+)-level structure ν on A, and a
non-vanishing global section of ωA/R0

.
Two test objects (A/R0, ι, ν, ω) and (A′/R0, ι

′, ν ′, ω′) over R0 are isomorphic if
there is an isomorphism (A/R0, ι, ν) → (A′/R0, ι

′, ν ′), of QM abelian surfaces with
V1(N+)-level structure, pulling ω′ back to ω.

A modular form of weight k and level V1(N+) over R is a rule F that assigns
to every isomorphism class of test objects (A/R0, ι, ν, ω) over every R-algebra R0, a
value F (A/R0, ι, ν, ω) ∈ R0, such that

• (Compatibility with base change) If ϕ : R0 → R′0 is a map of R-algebras, inducing
ϕ : A→ A⊗ϕ R′0, then

F ((A/R0, ι, ν)⊗ϕ R′0, ω) = ϕ(F (A/R0, ι, ν, ϕ
∗(ω))).

• (Weight condition) For any λ ∈ R0, one has

F (A/R0, ι, ν, λω) = λ−kF (A/R0, ι, ν, ω).

Definition 1.6.3. Amodular form of weight k and level V1(N+) over R is a ruleG
that, for any R-algebra R0, assigns to any isomorphism class of QM abelian surfaces over
R0 with V1(N+)-level structure (A/R0, ι, ν), a translation-invariant section of ω⊗kA/R0

,
subject to the following base-change axiom: if ϕ : R0 → R′0 is a map of R-algebras one
has

G((A/R0, ι, ν)⊗ϕ R′0) = ϕ∗G(A/R0, ι, ν).

Given a modular form as in the third definition, we get a modular form as in the
first definition by taking the section assigned to the universal QM abelian surface with
level structure A ⊗ R → Sh ⊗ R. This is an equivalence because A ⊗ R is universal.
The last two definitions are related by

G(A, ι, ν) = F (A, ι, ν, ω)ω⊗k ,

where ω is any translation-invariant global section. This expression is independent of
the choice of ω.

1.6.2 p-adic modular forms on Shimura curves

Let R be a p-adic ring (for p-adic ring we mean a complete and separated, with respect
to the p-adic topology, Zp-algebra). Define the space Vp(N+, R) of p-adic modular
forms of level V1(N+) by

Vp(N
+, R) := lim←−

m

H0(lim←−
n

In ⊗R/pmR,Olim←−n In⊗R/p
mR)

∼= lim←−
m

lim−→
n

H0(In ⊗R/pmR,OIn⊗R/pmR),

where O is the structure sheaf. When n = 0 one can take the coordinate ring of
the affine scheme obtained from Sh ⊗ R/pmR by deleting the supersingular points,
i.e., H0((Sh⊗R/pmR)ord,O(Sh⊗R/pmR)ord). If m = 0, we take H0((In/R,OIn/R). Thus
elements in Vp(N+, R) are formal functions on the tower In, i.e., f ∈ Vp(N+, R) is a rule
that assigns to each quadruple (A, ι, νN+ , ν∞p ), where (A, ι, νN+ , ν∞p ) is a QM abelian
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1.6. Modular forms on Shimura curves

surface over an R-algebra R0 with V1(N+p∞)-level structure, a value f(A, ι, νN+ , ν∞p ) ∈
R0, which depends only on the isomorphism class and that is compatible with base
changes. We say that a p-adic modular form f is of weight k ∈ Zp, if for every u ∈ Z×p ,
we have

f(A, ι, νN+ , ν∞p ) = u−kf(A, ι, νN+ , ν∞p u),

where (A, ι, νN+ , ν∞p ) is a QM abelian surface over an R-algebra with V1(N+p∞)-level
structure.

If f is a modular form with respect to B of weight k and level V1(N+) over R as in
1.6.1, then we can see it as a p-adic modular form f̂ as follows. The V1(N+p∞)-level
structure on A/R0 determines a point P ∈ eTpAt0(k), where A0 is the reduction mod p
of A. A point P ∈ eTpAt0(k) determines a differential ωP ∈ ωA/R0

. Indeed, there is an
isomorphism

Tp(A
t
0) ∼= HomZp(Â, Ĝm).

So, taking the homorphism αP corresponding to the point P , one can consider the
pullback ωP := α∗P (dT/T ) ∈ ωÂ/R0

= ωA/R0
, of the standard differential dT/T of Ĝm.

See [Ka, §3.3] or the proof of [Brooks, Lemma 4.2] for details. One can define

f̂(A, ι, νN+ , ν∞p ) := f(A, ι, νN+ , ωP ).

It follows from the definition that if f is a geometric modular form of weight k and level
V1(N+), then f̂ is a p-adic modular form of weight k and level V1(N+).

1.6.3 Jacquet–Langlands correspondence

The Jacquet–Langlands correspondence establishes a Hecke-equivariant bijection be-
tween automorphic forms on GL2 and automorphic forms on multiplicative groups of
quaternion algebras. In our setting, this can be stated as a correspondence between
classical modular forms and quaternionic modular forms.

Theorem 1.6.4 (Jacquet–Langlands). There is a canonical (up to scaling) isomorphism

Mk(Sh,C)
∼=−→
JL

Sk(Γ1(N),C)D-new,

where Γ1(N) is the standard congruence group

Γ1(N) := {A ∈ SL2(Z) | A ≡ ( 1 ∗
0 1 ) mod N} ,

and Sk(Γ1(N),C)D-new is the space of classical cuspidal eigenforms with respect to
Γ1(N), of weight k and that are new at D. This bijection is compatible with the Hecke-
action and the Atkin-Lehner involutions on each of the spaces.

In particular, to each eigenform f ∈ Sk(Γ1(N),C)D-new with Nebentypus εf with respect
to the action of Γ0(N), corresponds a unique (up to scaling) quaternionic form fB =
JL(f) ∈Mk(Sh,C) having the same Hecke eigenvalues as f for the good Hecke operators
T` for (`,D) = 1 and the Atkin–Lehner involutions. Here

Γ0(N) := {A ∈ SL2(Z) | A ≡ ( ∗ ∗0 ∗ ) mod N} .

More precisely the Jacquet–Langlands correspondence asserts the existence of a holo-
morphic function fB on the upper half plane, determined only up to a scalar multiple,
such that fB is a modular form for the discrete subgroup Γ1,N+ of GL2(R), of weight
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k, with the same eigenvalues as f for the good Hecke operators and with Nebentypus
εf for the action of Γ0,N+ , where Γ̂0,N+ is the open compact subgroup of Ô×B composed
of the elements b ∈ Ô×B such that πN+(b) ∈ {( ∗ ∗0 ∗ ) ∈ GL2(Z/N+Z)}, and Γ+

0,N+ is the
subgroup of matrices in Φ∞((Γ̂0,N+ ∩B)×) of determinant 1.

The function fB gives rise canonically, as in [Brooks, §2.7], to a modular form in the
sense of the geometric definition seen before, i.e., to a section of ωC = eπ∗ΩA⊗C/Sh⊗C. In
particular, if we start from a classical modular forms for Γ0(N) we obtain a quaternionic
modular form with trivial Nebentypus with respect to to the action of Γ0,N+ .
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Chapter 2

Deformation theory and
t-expansions for modular forms

In order to associate with modular forms over Shimura curves power series expansions
at CM points, we are interested in deformation theory. In particular, Serre–Tate defor-
mation theory provides us with a way to do this. Thus, in this chapter we will study the
deformation theory of QM abelian surfaces, which is closely related to the deformation
theory of elliptic curves, as is well explained in [Buz]. Then we will define power series
expansions for modular forms on Shimura curves.

As we will see, deformation theory is a tool to understand the local structure of a
moduli space. We begin with an introduction to deformation functors associated with
moduli problems.

2.1 Deformation functors

We start with a moduli functor F, which in our case is a contravariant functor

F : Sch|W(k)
−→ Set

from the category of schemes over the ring of Witt vectors W(k) over k := Fp to the
category of sets. Since k is the residue field ofW(k), there is a projectionW(k) � k that
induces Spec(k)→ Spec(W(k)), so we can see Spec(k) as a W(k)-scheme. We want to
analyze the local structure of F at a k-point of F, i.e., an element of F(k) := F(Spec(k)).

Consider the category C of local artinian rings with residue field isomorphic to k.
To be precise, an object of C is a couple (A,αA) where A is an artinian local ring with
maximal ideal mA endowed with a fixed isomorphism αA : A/mA

∼=−→ k. Morphisms in
this category are homomorphisms of local rings inducing the identity on k: a morphism φ
between (A1, α1) and (A2, α2) in C is a ring homomorphism satisfying ϕ(mA1) ⊆ ϕ(mA2)
or, equivalently, ϕ−1(mA2) = mA1 and such that the triangle

A1 A2

k

ϕ

αA1
αA2

commutes. We will denote an object (A,αA) of C only by A, disregarding the isomor-
phism but keeping it in mind and remembering that a morphism in C must induce the
identity on k. The ring of Witt vectors W(k) with the natural projection is an object
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2. Deformation theory and t-expansions for modular forms

of C and for any ring A in C there exists a unique morphism W(k) → A (in C). Thus,
each ring in C has a canonical structure as aW(k)-algebra and Spec(R) has a canonical
structure as a W(k)-scheme.

We associate with the functor F and a k-point x ∈ F(k) a covariant deformation funtor

F̂x : C −→ Set

given by
R 7−→ F̂x(R) := F(Spec(R))×F(k) {x} ,

where the fiber product is determined by the diagram

F(Spec(R))×F(k) {x} {x}

F(Spec(R)) F(k)
F(αR)

in which αR is the morphism that comes from the projection R � k induced by the
isomorphism associated with R. There is a natural identification

F̂x(R) =
{
y ∈ F(Spec(R)) | F(αR)(y) = x

}
.

The functor F̂x is called the completion of F at x.
Suppose that the moduli functor F is represented by a W(k)-scheme X (later on,

our aim will be to consider a deformation functor associated with our Igusa tower over
Sh|W(k)

:= Sh⊗Z(p)
W(k)). Since X represents F, there is a natural isomorphism

F ∼= HomW(k)(−, X),

so for any ring R in C we have that F
(
Spec(R)

)
coincides with the set of R-points

X(R) := HomW(k)

(
Spec(R), X

)
of X. In light of this, we will usually not distinguish

between X and F. In this case, one can describe F̂x as follows. Choose a k-point
x : Spec(k) → X in X(k). The formal completion of X at x is the deformation
functor

X̂x : C −→ Set

R 7−→ X̂x(R) := X(R)×X(k) {x} ,

so X̂x(R) =
{
y ∈ X(R) | y ◦ αR = x

}
.

Because the only homomorphism k → k that respects the W(k)-algebra structures
is the identity, for every point z ∈ X there is a unique k-point in X(k) with image z.
Indeed, each morphism x′ : Spec(k)→ X factors through the canonical morphism

iz : Spec(k(z))→ X,

where k(z) is the residue field of z = imx′. Then there is a sequence

Spec(k) −→ Spec(k(z))
iz−→ X −→ Spec

(
W(k)

)
that is induced by the sequence of W(k)-algebras

W(k) −→ k(z) −→ k.
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2.1. Deformation functors

Then the first arrow W(k) → k(z) must be local and factor through k, so there is a
sequence

W(k) −� k −→ k(z) −→ k

and k(z) ∼= k.
Starting with k-points x1, x2 : Spec(k)→ X with image z, we obtain a diagram

k

W(k) k(z)

k.

∼=

∼=

Therefore the two isomorphisms from k(z) to k must be the same, so x1 = x2. This
argument shows that there is a bijection between k-points of X as a W(k)-scheme and
points of X with residue field isomorphic to k. For this reason we identify our fixed
point x ∈ X(k) with its image. This implies that

X̂(R) =
{
y ∈ X(R) | im y = x

}
,

as the points y such that y ◦ αR = x are exactly the R-points with image x.
For every z ∈ X, there is a bijection{

Spec(R)→ X in
Sch|W(k)

with image z

}
∼=−→ Hom loc. rings

W(k)-alg.
(OX,z, R)

f 7−→
(
f# : OX,z → OSpec(R),mR = R

)
.

Since R is complete, we have

Hom loc. rings
W(k)-alg.

(OX,z, R) = Hom loc. rings
W(k)-alg.

(
ÔX,z, R

)
,

where ÔX,z is the completion of the local ring OX,z, which is the stalk at x of the
structure sheaf OX of X.

If our fixed point x is a smooth point, the ring ÔX,z is a complete noetherian local
ring with residue field k. If we denote by C′ the category of complete noetherian local
rings with residue field k, of which C is a full subcategory, then

Hom loc. rings
W(k)-alg.

(
ÔX,x, R

)
= HomC′

(
ÔX,x, R

)
.

Because of the functoriality of the bijections above, X̂x is “quasi-represented” by ÔX,x:

X̂x
∼= HomC′

(
ÔX,x,−

)
.

More precisely, X̂x is “pro-representable”, in the following sense. Every functor of
artinian rings G : C → Set can be extended to a functor G′ : C′ → Set by setting
G′(R) := lim←−n G(R/mn) for every R in C′ with maximal ideal m. If G′ is representable
by an element R in C′, then G is said to be pro-representable. An element x of G′(R) is
called a formal element of G. By definition, a formal element x ∈ G(R) can be repre-
sented as a system of elements {xn}n, where xn ∈ G(R/mn), compatible with respect
to the maps G(R/mn+1)→ G(R/mn) induced by the projections R/mn+1 → R/mn. In
our case, X̂ ′x coincide with X̂x extended to C′ by the same rule R 7→ X(R) ×X(k) {x},
so we will not distinguish between all these functors and simply denote them all by X̂x.
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2. Deformation theory and t-expansions for modular forms

2.2 Serre–Tate deformation theory

Following [Ka], we introduce the Serre–Tate deformation theory for ordinary abelian
varieties, which provides a way to attach power series expansions to modular forms on
Shimura curves, replacing classical q-expansions for “elliptic” modular forms that are
not available in our case.

Fix an algebraically closed field k of characteristic p > 0 (for our goals, we can take
k = Fp) and consider an ordinary abelian variety A over k. Recall that an abelian
variety A over k is said to be ordinary if A[p](k) ∼= (Z/pZ)dim(A). Let At be the dual
abelian variety, which is isogenous to A and hence ordinary too. Consider the Tate
modules

TpA := lim←−
n

A[pn](k), TpA
t := lim←−

n

At[pn](k)

of A and At. Because of the ordinarity assumption on A, TpA and TpAt are free Zp-
modules of rank g := dimA = dimAt.

Definition 2.2.1. If R is an artinian local ring with maximal ideal mR and residue
field k, a deformation of A to R is an abelian scheme A over R together with an
identification A×R k ∼= A.

Following a construction due to Serre and Tate, we attach to such a deformation a
Zp-bilinear form

q(A/R;−,−) : TpA× TpAt −→ Ĝm(R) = 1 + mR,

where Ĝm := Spf
(
k[T, S]/(TS−1)

)
is the completion of the multiplicative group scheme

Gm := Spec
(
k[T, S]/(TS − 1)

)
over k. This bilinear map is constructed from the Weil

pairings
epn : A[pn]×At[pn] −→ lµ.. pn

of k-group schemes, as defined in [Oda]. These pairings come from Cartier duality for the
p-divisible groups A[p∞] and At[p∞](k) (duality of abelian schemes is compatible with
Cartier duality). Here lµ.. pn is Spec

(
k[T ]/(T p

n−1)
)
, the k-group scheme of pn-th roots of

unity, which can be seen inside Gm through the map k[T, S]/(TS−1)→ k[T ]/(T p
n−1)

defined by T 7→ T and S 7→ T p
n−1. For each k-algebra R, lµ.. pn(R) corresponds to the

pn-torsion of Gm(R). See, e.g., [Lip, p. 16] or [Feng] for details.
We briefly sketch the construction of the bilinear map q(A/R;−,−). Choose an

integer n ≥ 0 such that mn
R = 0. Since p ∈ mR, Â(R) := ker

(
A(R) → A(k) = A(k)

)
is killed by pn. Let P ∈ A(k); for any lift P̃ ∈ A(R) of P , since Â(R) is killed by
pn, we have that pnP̃ is independent of the choice of the lift P̃ . The existence of a
lift P̃ ∈ A(R) of P ∈ A(k) is guaranteed by the smoothness of A/R ([Liu, Corollary
2.13]). Therefore we obtain a map A(k)

“pn”−→ A(R). If we take P ∈ A[pn](k), then
“pn”P ∈ Â(R), so we get

“pn” : A[pn] −→ Â(R).

Because of the compatibility of the maps “pn” when n� 0, we obtain a homomorphism

“pn” : TpA −� A[pn](k)
“pn”−→ Â(R)

that is independent of n.
Now, restricting the Weil pairings

epn : Â[pn]×At[pn] −→ lµ.. pn
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2.2. Serre–Tate deformation theory

for every n ≥ 1, we obtain a perfect pairing, and then an isomorphism

Â[pn]
∼=−→ HomZp

(
At[pn], lµ.. pn

)
of k-group-schemes. Because of the compatibility of the pairings with respect to n,
passing to the limit, we deduce an isomorphism

Â(k)
∼=−→ HomZp

(
TpA

t, Ĝm

)
,

of formal groups over k.
Since R is artinian, the p-divisible group A[p∞] has a canonical structure of an

extension, as given by

0 −→ Â −→ A[p∞] −→ TpA× (Qp/Zp) −→ 0

of the constant p-divisible group TpA(k) × (Qp/Zp) over R by Â, which is the unique
toroidal formal group over R lifting Â. Then the preceding two isomorphisms extend
uniquely to isomorphisms of R-group schemes

Â[pn](R)
∼=−→ HomZp

(
At[pn], lµ.. pn

)
and

Â(R)
∼=−→ HomZp

(
TpA

t, Ĝm

)
(see the proof of [Ka, Theorem 2.1]), giving pairings

epn,A : Â[pn](R)×At[pn] −→ lµ.. pn ,
and

eA : Â(R)× TpAt −→ Ĝm.

Finally, the map q(A/R;−,−) is defined by

q
(
A/R;P,Qt

)
:= eA

(
“pn”P,Qt

)
,

for P ∈ TpA and Qt ∈ TpAt.

Theorem 2.2.2 (Serre–Tate). With notation as above, the construction

A/R 7−→ q(A/R;−,−) ∈ HomZp
(
TpA⊗ TpAt, Ĝm(R)

)
establishes a bijection{

isomorphism classes of
deformations of A/k to R

}
∼=−→ HomZp(TpA(k)⊗ TpAt(k), Ĝm(R)).

Furthermore, this correspondence is functorial in R, i.e., if F is the deformation functor
from the category C of artinian local rings with residue field k to the category of sets
given by

F : R 7−→ F(R) :=
{
isomorphism classes of deformations of A/k to R

}
,

then there is an isomorphism of functors

F ∼ HomZp
(
TpA⊗ TpAt, Ĝm

)
.
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Proof. This is [Ka, Theorem 2.1, 1) and 2)].

The proof of the theorem rests on the fact that there is an equivalence{
isomorphism classes of

deformations A/R of A/k

}
∼=−→

{
isomorphism classes of

deformations A[p∞]/R of A[p∞]/k

}
,

so deforming an ordinary abelian variety A/k is the same that deforming its p-divisible
group A[p∞].

Taking inverse limits, we can replace the category of artinian local rings with the
category of complete noetherian local rings in the preceding discussion. We can do this
because of the compatibility of these correspondences with inverse limits and of the fact
that every complete noetherian local ring is the inverse limit of artinian local rings (if
R is a complete noetherian local ring with maximal ideal m, then R ∼= lim←−nR/m

n).
However, the procedure for computing the pairings qA/R only makes sense for artinian
local rings.

Passing to complete noetherian local ring is useful because the deformation functor
is not representable by an artinian local ring in C but is pro-representable by a com-
plete noetherian local ring. Namely, the deformation functor F is pro-represented by
a complete local noetherian ring Ru that is non-canonically isomorphic to the power
series ring W[[Tij , 1 ≤ i, j ≤ g]], where we have set W :=W(k). Therefore the functor
F can be seen as a formal scheme Spf(Ru). Denote by Âu/ Spf(Ru) the universal for-
mal deformation of A/k, i.e., the formal element of F corresponding to the identity in
Hom

Ĉ
(Ru,Ru).

Given elements P ∈ TpA, P t ∈ TpAt, there is a map

F −→ Ĝm

A/R 7−→ q(A/R;P, P t).

If we pick Zp-bases {P1, . . . , Pg} and {P t1, . . . , P tg} of TpA(k) and TpAt(k), respectively,
then we have g2 functions

tij : F −→ Ĝm

A/R 7−→ q(A/R;Pi, P
t
j )

called Serre–Tate coordinates and g2 elements tij(Âu/Ru) ∈ R. Writing Tij :=
tij − 1, there is a ring isomorphism

Ru ∼=W[[{Tij}]].

We conclude with the following

Proposition 2.2.3. Let f : A → B be a morphism of ordinary abelian varieties over
k, let f t : Bt → At be the dual morphism of f and let A/R and B/R be deformations
of A/k and B/k to R. Then f lifts to a morphism F : A → B of deformations if and
only if

q
(
A/R;P, f t(Qt)

)
= q
(
B/R; f(P ), Qt

)
for every P ∈ TpA(k) and Qt ∈ TpB

t(k). Furthermore, if a lifting exists, then it is
unique.

Proof. This is [Ka, Theorem 2.1, 4)].
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2.3. Serre–Tate coordinates for Shimura curves

2.3 Serre–Tate coordinates for Shimura curves

Take now an ordinary QM abelian surface A over k with a V1(N+)-level structure.
We want to deform our abelian surface not only as an abelian surface but also with
its structures. Thus, we consider the subfunctor M of F = Spf(Ru) which sends an
artinian local ring R with residue field k to the set of deformations of A to R, where by
deformation of A to R we mean a deformation A of A to R together with an embedding
OB ↪→ EndR(A) deforming the given embedding OB ↪→ Endk(A) and a V1(N+)-level
structure on A deforming the given V1(N+)-level structure on A. The V1(N+)-level
structure automatically lifts uniquely, as A[N+] is étale over R, so we can ignore it in
our discussion.

Consider the idempotent e that acts as ( 1 0
0 0 ) ∈ M2(Zp) on TpA (iK and Φp can be

chosen to be compatible, by the choice of p over p = pp split in K). We can find a Zp-
basis {P1, P2} of TpA such that eP1 = P1 and eP2 = 0, indeed TpA = eTpA⊕(1−e)TpA.
Then P t1 ∈ (eTpA)t.

Proposition 2.3.1. The subfunctor M of F is pro-representable by a ring Rf that is
a quotient of Ru. In fact, Rf is the quotient of Ru by the closed ideal generated by the
relations

q
(
Âu/Ru; bP,Qt

)
= q
(
Âu/Ru;P, b∗Qt

)
for any b ∈ B,P ∈ TpA,Qt ∈ TpAt. Furthermore, there is an isomorphism

Rf ∼=W[[T11]],

where T11 = t11 − 1 and t11 corresponds to q
(
Âu/Ru;P1, P

t
1

)
.

Proof. This is a consequence of Proposition 2.2.3. For details, see [Brooks, Proposition
4.5] and [Mo, Proposition 3.3].

Thus, deformations of the QM abelian surface A/k depend only on the e-component
eTpA of TpA.

By what we have seen in §2.1, since the deformation functorM is the deformation
functor associated with Shord

|W(k)
, i.e., the ordinary part of Sh|W(k)

, and the point x ∈
Shord(k) corresponding to the fixed ordinary QM abelian surface A/k with V1(N+)-
level structure, it follows thatM is the formal completion Ŝh

ord

x of Shord
|W at x and so

it is the formal spectrum Spf(ÔShord,x), where OShord,x is the local ring of Shord at x.

2.4 Deformations of QM abelian surfaces

In the case of QM abelian surfaces, the coordinate ring of the deformation functor has
only one coordinate obtained by choosing a point P ∈ TpA such that eP = P , as
we have seen in the previous section. Also in the case of elliptic curves there is only
one coordinate obtained by choosing a point P ∈ TpE. Actually, there is a strict link
between deformations of QM abelian surfaces and deformations of elliptic curves.

Take an ordinary QM abelian surface A/k where k is again Fp. Then, as already
pointed out, its deformation theory is equivalent to the deformation theory of the p-
divisible group A[p∞] (see the proof of [Ka, Theorem 2.1]). The p-divisible group A[p∞]
attached to A inherits an action of OB and hence of OB ⊗ Zp, which is identified with
M2(Zp) via the fixed isomorphism Φp. If we set e = ( 1 0

0 0 ) ∈ M2(Zp) (the idempotent
e acts as ( 1 0

0 0 ) ∈ M2(Zp) on A[p∞]), then A[p∞] splits as eA[p∞] ⊕ (1 − e)A[p∞].
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2. Deformation theory and t-expansions for modular forms

Moreover, eA[p∞] and (1− e)A[p∞] are isomorphic via multiplication by ( 0 1
1 0 ). Since A

is ordinary, there is an isomorphism A[p∞] ∼= E[p∞]2 for E/k an ordinary elliptic curve
with E[p∞] ∼= eA[p∞] (see [Buz, Corollary 4.6]). Following [Buz], we want to recover the
deformation theory of A from the deformation theory of an elliptic curve. Deforming
A[p∞] with its OB-action is the same as deforming A[p∞] with its M2(Zp) ∼= OB ⊗ Zp-
action. According to Theorem 2.3.1, this is equivalent to deforming eA[p∞], therefore
the deformation theory of A/k (or A[p∞]) is equivalent to the deformation theory of
E/k (or E[p∞]).

We want to relate the bilinear map qA, associated with a deformation A/R of a QM
abelian surface A/k, to the map qE associated with the deformation E/R, corresponding
to A/R, of an elliptic curve E/k, when there is an isomorphism of p-divisible groups

α : eA[p∞]
∼=−→ E[p∞]

over k. So we start by comparing the Weil pairings. Since the Weil pairing comes
from Cartier duality for p-divisible groups, there is a commutative diagram for the Weil
pairings

eA[pn]× (eA[pn])t lµ.. pn

E[pn]× Et[pn] lµ.. pn

epn,A

αn×(αtn)−1
=

epn,E

where αn is the n-component of α and the first line in the diagram is the restriction of
the Weil pairing associated with A to eA[pn]× (eA[pn])t (Cartier duality is compatible
with duality of abelian schemes, so (eA[pn])t ↪→ (A[pn])t ∼= At[pn] and (eA[pn])t ∼=
(E[pn])t ∼= Et[pn]). This means that for each P ∈ eA[pn](k) and Qt ∈ Et[pn](k), we
have

epn,A
(
P, αtn(Qt)

)
= epn,E

(
αn(P ), Qt

)
.

The same is true when we take inverse limits.
Considering the completions at the origin and restricting the pairings, we obtain

eÂ[pn]× (eA[pn])t lµ.. pn

êA[pn]× (eA[pn])t

Ê[pn]× Et[pn] lµ.. pn

∼=

epn,A

=

αn×(αtn)−1

epn,E

because the functor G 7→ Ĝ sending a p-divisible group to its completion at the origin is
exact and the connected-étale sequence is functorial. Then passing to the limits yields
pairings between Tate modules and the commutative diagram

eÂ(k)× (eTpA)t Ĝm

Ê(k)× TpEt Ĝm.

α×(αt)−1

EA

=

EE

When we extend these pairings to eÂ and Ê , everything works well because of the
functoriality of the structure of extensions of p-divisible groups and the fact that we are
deforming also the action of OB and so the action of e, so that eA[p∞] ∼= E [p∞].
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2.5. Deformation at points of I

Observe everything works fine for the “pn” maps as well, and there is a commutative
diagram

TpE E[pn] Ê(R)

eTpA eA[pn] eÂ(R),

∼= ∼=

“pn”

∼=

“pn”

again because we are deforming also the action of OB and so the action of e.
In conclusion, computing the bilinear map on eTpA × (eTpA)t is the same as com-

puting it on TpE × TpEt, that is

q(A;P,Qt) = q
(
E,α(P ), (αt)−1(Qt)

)
,

for all P ∈ eTpA and Qt ∈ (eTpA)t ⊆ TpAt.

2.5 Deformation at points of I

If A/k is an ordinary QM abelian surface with A[p] ∼= E[p]2 as OB-group schemes,
where here OB acts via the natural action of OB ⊗ Fp ∼= M2(Fp) on E[p]2, then there
is an induced isomorphism between the set of V1(p)- level structures on A and the set
of Γarith

1 (p)-level structures on E. In the same way, when A[p∞] ∼= E[p∞]2 there is a
bijection between the set of V1(p∞)- level structures on A and the set of Γarith

1 (p∞)-
level structures on E. Thus, the deformation theory of a k-point in In(k), or in the
Igusa tower, is equivalent to the deformation theory of the associated elliptic curve
viewed as a k-point of the scheme parameterizing elliptic curves with Γarith

1 (N+pn)- or
Γarith

1 (N+p∞)-level structures. In light of what we have seen in the previous section,
we can use this equivalence to compute Serre–Tate coordinates.

2.6 t-expansions for modular forms

Let us start from an Fp-point x in the Igusa tower, i.e., the isomorphism class of a
quadruple (A/Fp, ι, νN+ , νp∞). Then the V1(p∞)-level structure on A|Fp determines a
point P t ∈ (eTpA)t (cf. [CH, §3.1]). Take P ∈ eTpA corresponding to P t via the
principal polarization. We fix the Serre–Tate coordinate tx around x to be

tx := q(−;P, P t).

Denote by
(
A/W[[T ]], ι,νN+ ,νp∞

)
the universal deformation of x and note that we

can evaluate every p-adic modular form f ∈ Vp(N
+,W) at

(
A/W[[T ]], ι,νN+ ,νp∞

)
.

We call
f(tx) := f

(
A/W[[T ]], ι,νN+ ,νp∞

)
∈ W[[T ]],

where T := tx − 1, the t-expansion of f at x.

2.7 On Serre–Tate coordinates at CM points

In this section we want to obtain a result analogous to [CH, Lemma 3.2] in our setting.
If a is a prime to cpN fractional ideal of Oc with p - c, then Aa has a model defined

over V := W ∩Kab. Here x(a) = (Aa, ιa, νa,N+ , νa,p∞) ∈ I(V) is as defined in §1.5.5.
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2. Deformation theory and t-expansions for modular forms

Denote by t the Serre–Tate coordinate around x(a) := x(a)⊗V Fp. For u = 1, . . . , pn−1
with (u, p) = 1, set

x(a) ? α(u/pn) := x(cpn)recK(a−1upp
−n
p ) · u ∈ I(V),

where recK : K×\K̂× → Gal(Kab/K) is the geometrically normalized reciprocity law
map, a ∈ K̂(cp)× is such that a = aÔc ∩K and the subscript bp for b ∈ Z×p denotes its
image in K̂× under the inclusions Z×p ⊆ K×p ⊆ K̂×.

Lemma 2.7.1. With notation as above, one has that
(
x(a) ? α(u/pn)

)
⊗V Fp = x(a)

and t
(
x(a) ? α(u/pn)

)
= ζ

−uN(a)−1
√
−DK

−1

pn .

Proof. The p-divisible module eAx[p∞], with Ax the QM abelian surface corresponding
to x = x(a) ? α(u/pn), is exactly the p-divisible module associated with the point
xa?n(up−n) considered in [CH, Lemma 3.2] (cf. [CH, §4.5]). Hence, x in the deformation
space of x(a) corresponds to xa ? n(up−n) in the deformation space of xa ⊗V Fp, where
xa is the CM point defined in [CH, §2.4].

Set Aa := Aa⊗V Fp and Ea := Ea⊗V Fp, with Ea the elliptic curve corresponding to
the CM point xa. Since the point P t ∈ (eTpAa)

t that is determined by the V1(p∞)-level
structure is the same as the point that is determined by the Γarith

1 (p∞)-level structure
on TpE

t
a, the claim follows from the computations of §2.4 and [CH, Lemma 3.2].
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Chapter 3

Anticyclotomic p-adic L-functions

In this chapter we will define our p-adic L-function as a measure on Gal(Kp∞/K) with
values in W, which is again the ring of Witt vectors Witt(Fp), i.e., the ring of integer
of the completion of the maximal unramified extension of Qp. In order to do this, we
study some theory of p-adic measures on Zp and of measures on Gal(Kp∞/K).

3.1 Measures on Zp
We start by giving the definition of a p-adic measure and stating some properties; for
more details, the reader is referred to [Hi93, Chapter 3].

Let C(Zp,W) be the W-algebra of continuous functions Zp →W.

Definition 3.1.1. A p-adic measure on Zp with values in W is a W-linear function
µ : C(Zp,W)→W such that there exists a constant B ≥ 0 with∣∣µ(ϕ)

∣∣
p
≤ B|ϕ|p

for each ϕ ∈ C(Zp,W), where |ϕ|p := supx∈Zp
∣∣ϕ(x)

∣∣
p
.

We will write
∫
Zp ϕdµ := µ(ϕ) for the value of a measure µ on a continuous function ϕ.

We denote by M(Zp,W) the space of p-adic measures on Zp with values in W. When
equipped with the norm

|µ|p := sup
|ϕ|p=1

∣∣µ(ϕ)
∣∣
p
,

the space M(Zp,W) is a p-adic BanachW-module. In particular, if we have a sequence
of continuous functions ϕn such that ϕn → ϕ in C(Zp,W) for n → ∞ and a measure
µ ∈M(Zp,W), then ∣∣µ(ϕn)− µ(ϕ)

∣∣
p
≤ |µ|p · |ϕn − ϕ|p,

which means that
lim
n→∞

µ(ϕn) = µ
(

lim
n→∞

ϕn
)

= µ(ϕ).

In other words, we can exchange the integral and limit operations.
Consider now the binomial polynomial given by(

x

n

)
:=


x(x−1)···(x−n+1)

n! if n ≥ 1,

1 if n = 0.

The function x 7→
(
x
n

)
is continuous on Zp.
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3. Anticyclotomic p-adic L-functions

Proposition 3.1.2. A measure µ is determined by the bounded sequence of numbers{∫
Zp

(
x

n

)
dµ

}
n∈N

⊆ W .

Conversely, given a bounded sequence {cn} of numbers in W, one can define uniquely a
p-adic measure µ satisfying ∫

Zp

(
x

n

)
dµ = cn

for every n.

Proof. This is [Hi93, §3.3, Theorem 1].

Since
(
x
n

)
∈ Q[x], the values

∫
Zp

(
x
n

)
dµ are uniquely determined by

∫
Zp x

mdµ for
m ≥ 0.

Now, given a measure µ ∈M(Zp,W), consider the power series defined by

Φµ(t) :=
∞∑
n=0

(∫
Zp

(
x

n

)
dµ

)
Tn ∈ W[[T ]], with T := t− 1.

By Proposition 3.1.2, the measure µ is determined by Φµ and, moreover, the following
result holds.

Proposition 3.1.3. The map

M(Zp,W)
∼=−→W[[T ]]

µ 7−→ Φµ

is an isomorphism.

Proof. See [Hi93, §3.5].

There is an equality∫
Zp
xmdµ =

(
t
d

dt

)m
Φµ |t=1 for any m ≥ 0. (3.1.1)

When z ∈ W with |z|p < 1, the infinite sum

(1 + z)x =

∞∑
n=0

(
x

n

)
zn

is convergent for x ∈ Zp. Thus, one can define the p-adic exponential by

zx :=
∞∑
n=0

(
x

n

)
(z − 1)n.

Then∫
Zp
zxdµ =

∞∑
n=0

∫
Zp

(
x

n

)
(z − 1)ndµ = Φµ(z) for z ∈ W with | z − 1 |p< 1. (3.1.2)
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The space of p-adic measuresM(Zp,W) is naturally a C(Zp,W)-module in the following
way: for φ ∈ C(Zp,W) and µ ∈M(Zp,W), we set∫

Zp
ϕdφ · µ :=

∫
Zp
ϕφdµ

for any ϕ ∈ C(Zp,W). Furthermore, for φ ∈ C(Zp,W) and µ ∈M(Zp,W), we write

[φ]Φµ(t) := Φφµ(t) =

∫
Zp
φ(x)txdµ ∈ W[[t− 1]].

Note that for m ≥ 0

[xm]Φµ = Φxmµ =

(
t
d

dt

)m
Φµ (3.1.3)

and for z ∈ W with |z − 1|p < 1

Φzx·µ(t) = Φµ(tz) ∈ W[[t− 1]].

Consider now an element ζ in the group µpn of pn-th roots of unity in the algebraic
closure of Frac(W). Since the only p-power unit in characterist p is 1, then ζ − 1 ≡ 0
mod the maximal ideal, so |ζ − 1|p < 1 and we can consider the exponential ζx for
x ∈ Zp. Using the orthogonality relations

∑
ζ∈µpn

ζx−b =

p
n if x ≡ b (mod pnZp)

0 if x 6≡ b (mod pnZp),

we obtain that for φ : Zp/pnZp ∼= Z/pnZ→ Frac(W)(µpn) there is an equality

φ(x) = p−n
∑
ζ∈µpn

ζx
∑

b∈Z/pnZ

φ(b)ζ−b.

Thus, if we consider a locally constant function φ ∈ C(Zp,W) that factors through
Zp/pnZp, then

[φ]Φµ(t) = Φφµ(t) = p−n
∑

b∈Z/pnZ

φ(b)
∑
ζ∈µpn

ζ−bΦµ(ζt) ∈ W[[t− 1]] (3.1.4)

for µ ∈ M(Zp,W). Observe that the notation [φ]Φµ coincides with that in [Bra, (8.1)]
and [Hi93, §3.5], and corresponds to Φµ ⊗ φ in [CH, §3.1]. Furthermore, there is an
equality ∫

Zp
φ(x)xmdµ =

(
t
d

dt

)m
([φ]Φµ)|t=1. (3.1.5)

3.2 Measures on Gal(Kc0p∞/K)

Let a1, . . . , aH be a complete set of representatives for Pic(Oc0). As in [Bra, §8.2], there
is an explicit coset decomposition

Gal(Kc0p∞/K) = PicOc0p∞ =

H⊔
j=1

a−1
j Z×p , (3.2.6)
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3. Anticyclotomic p-adic L-functions

that allows us to construct a W-valued measure µ on PicOc0p∞ by constructing H
distinct W-valued measures µaj on Z×p , so that for every continuous function ϕ :
PicOc0p∞ →W we have∫

PicOc0p∞
ϕdµf =

∑
a∈PicOc0

∫
Z×p
ϕ | [a]dµf,a,

where ϕ | [a] is ϕ restricted to a−1Z×p .
Therefore, a measure on Gal(Kc0p∞/K) is equivalent to a collection of H measures

on Z×p :
µ←→ {µa}a∈Pic(c0) .

3.3 Measure associated with a modular form

Let g be a p-adic modular form on Sh over W and let a ∈ Pic(Oc0). Define a W-valued
measure µg,a on Zp by ∫

Zp
txdµg,a = g(ta) ∈ W[[ta]],

where ta is the Serre–Tate coordinate around x(a) ⊗W Fp, where x(a) is as defined in
Section 1.5.5. Indeed, if a is a prime-to-pN fractional ideal of Oc and p - c, then x(a)
has a model defined over V := W ∩Kab. If µg,a is supported on Z×p , then we can put
them together to obtain a measure µg on Gal(Kc0p∞/K).

3.4 p-depletion of a modular form

In order to obtain measures supported on Z×p , now we introduce the p-depletion of a
modular form. We follow [Brooks, §3.6].

Recall the operators U and V . Take a QM abelian surface A with ordinary reduction
over a p-adic field L. Then there is a unique p-torsion cyclic OB-submodule C of A
which reduces mod p to the kernel of the Frobenius morphism, that is the canonical
subgroup (cf. [Kas, Theorem 1.1]). Denote by φi : A → A/Ci, for i = 0, . . . , p, the
distinct p-isogenies of QM abelian surfaces on A ordered in such a way that C0 is the
canonical subgroup of A. If t : lµ.. N+ × lµ.. N+ ↪→ A[N+] is a V1(N+)-level structure on
A, then, since p - N+, ti = φi ◦ t is a V1(N+)-level structure on A/Ci. Also if ω is a
one-form on A, then there is a unique one-form ωi on A/Ci such that φ∗iωi = ω. If g is
a modular form, we can define another modular form g | V by

g | V (A, t, ω) := g(A/C0, 1/pt0, pω0)

and also a modular form g | U by

g | U(A, t, ω) :=

p∑
i=1

g(A/Ci, ti, ωi).

If [p] is the operator on modular forms that is given by g | [p](A, t, ω) = g(A, pt, 1/pω),
then U and V are related to the usual Tp operator by

Tp = U + 1/p[p]V.

Furthermore, one has V U = id and the operators UV and V U − UV are idempotent.
The p-depletion of a modular form g is defined to be

g(p) := g | (id−UV ) = g | (id−TpV + 1/p[p]V 2).
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3.5. Hecke characters and p-adic Galois characters

3.5 Hecke characters and p-adic Galois characters

Let K be our imaginary quadratic field and let m, n be integers.

Definition 3.5.1. A Hecke character of K of infinity type (m,n) is a continuous
homomorphism

χ : K×\A×K −→ C×

satisfying
χ(x · z∞) = χ(x)zm∞z

n
∞,

for every z∞ ∈ K×∞ and x ∈ K̂×.

In particular, the infinite component of χ is given by χ∞(z) = zmzn. For each prime
q of K, denote by χq : K×q → C× the q-component of χ. The conductor of χ is the
largest integral ideal cf of K such that χq(u) = 1 for each element u ∈ 1 + cfOK,q. As
it is known, one can identify a Hecke character χ with a character on fractional ideals
of OK prime to cf via the formula

χ(a) =
∏

q|aprime

χq(πq)
vq(a),

with πq a uniformizer at q; the formula is independent of the choice of the uniformizer.
So, if χ has conductor c and a is any fractional ideal prime to c, we write χ(a) for χ(a),
where a ∈ A×K is an idele with aÔK ∩K = a and aq = 1 for all q | c.

A Hecke character χ is called anticyclotomic if χ is trivial on A×Q. The p-adic
avatar χ̂ : K×\K̂× → C×p of a Hecke character χ of infinity type (m,n) is defined by

χ̂(x) = χ(x)xmp x
n
p

with x ∈ K̂× and p the chosen prime above p which splits in K. Every p-adic Galois
character ρ : GK → C×p can be seen as a p-adic character K×\K̂× → C×p via the
geometrically normalized reciprocity law map recK : K×\K̂× → Gal(Kab/K).

A p-adic Galois character is said to be locally algebraic if it is the p-adic avatar
of some Hecke character. A locally algebraic character is called of infinity type (m,n)
if the associated Hecke character is of infinity type (m,n), and its conductor is the
conductor of the associated Hecke character.

3.6 Construction of a measure

Consider now our modular form f ∈ Snew
k (Γ0(N)), with k ≥ 4, and let F/Qp be a

finite extension containing the image of the Fourier coefficients of f . Via the Jacquet–
Langlands correspondence we can see f as a modular form in Mk(Sh,OF ). Take the
p-depletion f (p) of f and then consider it as a p-adic modular form f̂ (p) in Vp(N+,OF )
of weight k.

Fix an anticyclotomic Hecke character ψ of infinity type (k/2,−k/2), and let c0OK
be the prime to p part of the conductor of ψ. Take a finite extension of W obtained
by adjoining values of the Hecke character ψ and, with an abuse of notation, we still
denote it by W. Let ψ̂ be the p-adic avatar of ψ. The W-valued measures µf̂ (p),a are
given by

ψ(a)N(a)−k/2ψpµf̂ (p)a
,
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3. Anticyclotomic p-adic L-functions

where µ
f̂
(p)
a

is defined by∫
Zp
txdµ

f̂
(p)
a

= f̂
(p)
a (ta) := f̂ (p)(t

N(a−1)
√

(−DK)
−1

a ) ∈ W[[ta − 1]],

and ta is the Serre–Tate coordinate around x(a)⊗W Fp.

Remark 3.6.1. The measure µ
f̂
(p)
a

associated with f̂ (p)
a is supported on Z×p . Indeed,

UV f̂ (p) = 0 because V U = id. Since UV acts on the expansion in Serre–Tate coordi-
nates as UV g(t) = 1/p

∑
ζ∈lµ.. p

g(ζt) (see [Brooks, Proposition 4.17]), taking φ = 1Z×p
to be the characteristic function of Z×p and using (3.1.4) yields

[φ]g(t) = p−1
∑

b∈Z/pZ

φ(b)
∑
ζ∈µp

ζ−bg(ζt)

= [1Zp ]g(t)− p−1
∑
ζ∈µp

g(ζt).

Hence, µf̂ (p),a is supported on Z×p as well.

Definition 3.6.2. Let ψ denote an anticyclotomic Hecke character of infinity type
(k/2,−k/2) and conductor c0OK with (c0, pN

+) = 1. The measure Lf,ψ associated
with f and ψ is the W-valued measure given by

Lf,ψ(ϕ) =
∑

a∈Pic(Oc0 )

∫
Z×p
ϕ
∣∣[a]dµf̂ (p),a

for any continuous function ϕ : Gal(Kc0p∞/K)→W.

Therefore

Lf,ψ(ϕ) =
∑

a∈Pic(Oc0 )

ψ(a)N(a)−k/2
∫
Z×p
ψpϕ

∣∣[a]dµ
f̂
(p)
a

=
∑

a∈Pic(Oc0 )

ψ(a)N(a)−k/2Φψpϕ|[a]dµ
f̂
(p)
a

|t=1

=
∑

a∈Pic(Oc0 )

ψ(a)N(a)−k/2[ψpϕ
∣∣[a]]f̂

(p)
a (ta) |t=1

=
∑

a∈Pic(Oc0 )

ψ(a)N(a)−k/2[ψpϕ
∣∣[a]]f̂

(p)
a

(
x(a)

)
.

Notice that the second equality holds because µ
f̂
(p)
a

is supported on Z×p . Indeed, for a
measure µ supported on Z×p one has

∫
Z×p 1dµ =

∫
Zp 1dµ = Φµ |t=1 .

Remark 3.6.3. We are interested in evaluating Lf,ψ at continuous functions that
factor through Gal(Kp∞/K). In other words, we will view Lf,ψ as a measure on
Gal(Kp∞/K).

Now we state a result that we will use later. Let g ∈ Vp(N
+,W) be a p-adic

modular form and let ga be defined as at the beginning of this section, so that ga(t) =

g
(
tN(a)−1

√
−DK

−1)
with t the Serre–Tate coordinate around x(a)⊗W Fp.
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Proposition 3.6.4. If g ∈ Vp(N+,W) and φ : (Z/pnZ)× → C× is a primitive Dirichlet
character, then

[φ]ga(x(a)) = p−nG(φ)
∑

u∈(Z/pnZ)×

φ−1(u)g(x(a) ? α(u/pn)),

where G(φ) =
∑

v∈(Z/pnZ)× φ(v)ζvpn is the Gauss sum of φ.

Proof. The statement follows by applying (3.1.4) and Lemma 2.7.1.

3.7 Interpolation properties

Working on B̂ instead of GL2(Q̂) and adapting the computations from [Hs], one can
obtain an analogue of [Hs, Theorem 3.4] in our quaternionic setting and use it, as in
[CH], to get an interpolation formula for our p-adic L-function evaluated at Galois
characters that are p-adic avatars of anticyclotomic Hecke characters of infinity type
(n,−n) with n ≥ 0. In particular, one can relate our p-adic L-function to the Rankin–
Selberg L-function associated with f and some anticyclotomic Hecke character χ of
infinity type (k/2 + n, k/2 − n) with n ≥ 0, i.e., the L-function associated with the
GK-representation Vf,χ = Vf (k/2)⊗ χ.

In the statement of the following theorem, ψ is, as usual, an anticyclotomic Hecke
character of infinity type (k/2,−k/2) and conductor c0OK with (c0, pN

+) = 1.

Theorem 3.7.1. Let φ̂ be the p-adic avatar of an anticyclotomic Hecke character φ of
infinity type (n,−n) with n ≥ 0 and p-power conductor. Then there exists a non-zero
constant C(f, ψ, φ,K) depending on f , ψ, φ, K such that C(f, ψ, φ,K) · L(f, ψφ, k/2)
is an algebraic number and(

Lf,ψ(φ̂)
)2

= C(f, ψ, φ,K) · L(f, ψφ, k/2),

where the equality holds via the fixed embedding ip : Q ↪→ Cp.

A proof of this result will appear in a future project.
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Chapter 4

Generalized Heegner cycles

Recall thatK is an imaginary quadratic field, N is a positive integer with a factorization
N = N+N− where N+ is a product of primes that are split in K and N− is a square-
free product of an even number of primes that are inert in K, B is again our indefinite
rational quaternion algebra of discriminant D = N− and p is an odd prime that splits
in K and B and such that (p,N) = 1.

Consider then our Shimura curve Sh, our fixed modular form f in Sk(Γ0(N)) of
weight k = 2r + 2 ≥ 4, which can be seen by Jacquet–Langlands as a modular form on
Sh, and the r-fold fiber product Ar of the universal QM abelian surface over Sh with
itself.

Following the work of Brooks, [Brooks], we want to define generalized Heegner cycles
associated with f lying over a Kuga–Sato variety over Sh. Indeed, these cycles will live
in the Chow groups of the generalized Kuga–Sato variety Xr = Ar × Ar, where A will
be a fixed QM abelian surface. Then, to obtain cohomology classes from the generalized
Heegner cycles, we will apply the p-adic Abel–Jacobi map. We will construct in this
way a system of generalized Heegner classes indexed by fractional ideals of K.

4.1 Kuga–Sato varieties

Consider the r-fold fiber product Ar of the universal QM abelian surface A with itself
over Sh, which is called the rth-Kuga–Sato variety over Sh.

We define the action of the Hecke operator T`, for ` - N+D on the Kuga–Sato
variety Ar as follows. Recall the interpretation of the Hecke operator T` on Sh as
correspondence. Let Sh(`) be the Shimura curve classifying quadruples (A, ι, νN+ , C),
where (A, ι, νN+) is a QM abelian surface with V1(N+)-level structure endowed with
a subgroup C of A[`] stable under the action of OB and cyclic as OB-module. A[`]
has ` + 1 such OB-submodules, all of them of order `2. Consider the natural forgetful
morphism of Shimura curves α : Sh(`)→ Sh and the morphism β : Sh(`)→ Sh given
by (A, ι, νN+ , C) 7→ (A/C, ιψC , νN+,ψC ), where ιψC , νN+,ψC are induced by the isogeny
ψC : A� A/C. Then T` is defined by the correspondence

Sh(`)

Sh Sh,

βα

which means that T` = α∗ ◦β∗, i.e., T`(x) =
∑

y∈α−1(x) β(y). In other words, we recover
the definition given in Chapter 1.
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4. Generalized Heegner cycles

Now take the fiber product A` := A×Sh Sh(`), which is the universal QM abelian
surface over Sh(`), equipped with a subgroup scheme C of A[`] that is an OB-module
of order `2. Consider the quotient Q := A`/C with induced QM and level structure and
the fiber products Ar` and Qr over Sh(`). The action of the Hecke operator T` on the
Kuga–Sato variety Ar is defined by the commutative diagram

Ar Ar` Qr Ar

Sh Sh(`) Sh,

ψp1 p2

α β

where the two squares are cartesian, by the formula

T` = p1∗ ◦ ψ∗ ◦ p∗2.

Write Ar for the base change of Ar to Q. The correspondence T` just defined induces an
endomorphism of the étale cohomology groups H∗ét(A

r
,−), which will still be denoted

by T`.
The reader is advised to compare with [Sch] for the definition of Hecke operators

on Kuga–Sato varieties over modular curves and with [EdVP] for the case of Shimura
curves relative to “Γ0-type” level structures.

4.2 Generalized Kuga–Sato varieties

Fix the QM abelian surface A with V1(N+)-level structure and CM by OK defined in
(1.5.5). Thanks to the assumption that p splits in K, the surface A is ordinary at p.
Our generalized Kuga–Sato variety is the product Xr := Ar × Ar. This enlarged
Kuga–Sato variety will be the space where our arithmetic cycles will live. As a piece of
notation, we shall write X r for the base change of Xr to Q.

The usual Hecke correspondence T` for a prime ` - N+D on the Kuga–Sato variety
Ar induces a Hecke correspondence T` × id on Xr, which will still be denoted by T`.

4.3 Projectors on Kuga–Sato varieties

We will define our algebraic cycles as graphs of morphisms of QM abelian surfaces.
In order to make them homologically trivial, we will need to modify them by certain
projectors associated with the generalized Kuga–Sato variety. Consider the projectors
P ∈ CorrSh(Ar) and εA ∈ Corr(Ar) defined in [Brooks, §6.1]. Then

PH∗ét(A
r
,Zp) ⊆ Hk−1

ét (Ar,Zp)

and

εAH
i
ét(A

r
,Zp) = 0 if i 6= k − 2,

εAH
k−2
ét (A

r
,Zp) = Sym2reH1(A,Zp).

Consider the variety Xr together with the projector ε = PεA ∈ CorrSh(Xr). Thanks to
properties of the projectors, one has

εH i
ét
(
X r,Zp

)
= 0 if i 6= 2k − 3,

εH2k−3
ét

(
X r,Zp

) ∼= PHk−1
ét
(
Ar,Zp

)
⊗ Sym2reH1

ét
(
A,Zp

)
.

(4.3.1)
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4.4. Galois representations and Kuga–Sato varieties over Shimura curves

We can prove these relations using the Künneth decomposition. More precisely, the
Künneth decomposition for Xr = Ar ×Ar reads

H i
ét
(
X r,Zp

) ∼= ⊕
n+s=i

Hn
ét
(
Ar,Zp

)
⊗Hs

ét
(
A
r
,Zp
)
.

Indeed, the Künneth exact sequence for Ar and Ar (for which we refer, for example, to
[LEC, §22]) is

0 −→
⊕
n+s=i

Hn
ét
(
Ar,Zp

)
⊗Hs

ét
(
A
r
,Zp
)
−→ H i

ét
(
Xr,Zp

)
−→

−→
⊕

n+s=i+1

TorZp1

(
Hn

ét
(
Ar,Zp

)
, Hs

ét
(
A
r
,Zp
))
−→ 0.

Since A is an abelian variety, by [AV, Theorem 12.1] the p-adic cohomology of Ar is
a free Zp-module, so the last term of the sequence above is 0. As a consequence, we
obtain the desired Künneth decomposition.

Now we want to apply the projector ε and the twists. Since

PH i
ét(Ar,Zp) = 0 if i 6= k − 1

and

εAH
i
ét(A

r
,Zp) = 0 if i 6= k − 2,

εAH
k−2
ét (A

r
,Zp) = Sym2reH1(A,Zp),

we deduce that
εH i

ét(X r,Zp) = 0 for i 6= 2k − 3,

as in this case all the terms on the right hand side of the Künneth decomposition vanish
after applying the projectors. For i = 2k − 3 the only term in the sum in the right
hand side of the Künneth decomposition that does not vanish after the application of
the projectors is PHk−1

ét (Ar,Zp)⊗ εAHk−2
ét (A

r
,Zp), hence

εH2k−3
ét (X r,Zp) = PHk−1

ét (Ar,Zp)⊗ Sym2reH1
ét(A,Zp),

as desired.

4.4 Galois representations and Kuga–Sato varieties over
Shimura curves

Let Vf be the 2-dimensional Galois representation attached to f ∈ Snew
k (Γ0(N)) by

Deligne ([Del]) and let Vf (k/2) be the self-dual twist of Vf . As explained, for example,
in [Nek92, §2 and §3], Vf (k/2) can be realized as a direct summand of the (k − 1)-st
p-adic cohomology group of the Kuga–Sato variety over a certain modular curve.

Let φ be Euler’s function and observe that the index of Γ1,N+ in Γ0,N+ divides
φ(N+) (see [Brooks, p. 4184]). From now on, we work under the following

Assumption 4.4.1. p - Nφ(N+).
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4. Generalized Heegner cycles

Consider now the r-th Kuga–Sato variety Ar over the Shimura curve Sh. A similar
construction can be performed to obtain the representation Vf (k/2) from the étale
cohomology group Hk−1

ét (Ar,Qp)(k/2) of Ar. Namely, let F be the finite extension of
Qp generated by the Fourier coefficients of f , whose valuation ring will be denoted by
OF . Moreover, let P be the projector from §4.3. Under Assumption 4.4.1, one can
define a Galois-equivariant surjection

PHk−1
ét
(
Ar,Zp

)
(k/2) −� T,

where T is a suitable Galois-stable OF -lattice inside Vf (k/2), whose definition can be
found, for example, in [Nek92] and [Ota] (see also [Nek93]). This can be done by
adapting the arguments in [IS, §5 and Appendix 10.1] to our setting, which coincides
with that of [Brooks]. Since the modifications required are straightforward, we leave
them to the interested reader. See also [EdVP, §3.3] for further details.

4.5 The p-adic Abel–Jacobi map

The p-adic Abel–Jacobi map is a map that sends algebraic cycles of an algebraic variety,
i.e., finite linear combinations of irreducible subvarieties with integer coefficients, into
étale cohomology classes of the variety with respect to a p-adic sheaf.

Let us start with a smooth projective variety X of dimension d over a field F of
characteristic 0. Let Cs(X) denote the free abelian group generated by the irreducible
closed subvarieties of X of codimension s. Elements of Cs(X) are called algebraic cycles
of codimension s on X. The quotient

CHs(X/F ) := Cs(X/F )/ ∼rat

of Cs(X/F ) by rational equivalence is the s-th Chow group of X. Two algebraic cycles
Y,W ∈ Cs(X/F ) are said to be rationally equivalent if there exist an open subset
U ⊂ P1, a cycle Z ∈ Cs(X × U) (Z can be seen as a family of algebraic cycles of
X parametrized by points of U) and two distinct points t1, t2 of U such that Y =
Z ∩ Cs(X × {t1}) and W = Z ∩ Cs(X × {t2}).

Consider the p-adic étale sheaf Zp on X := X ⊗F F defined by the system of
the locally constant étale sheaves Z/pnZ. The p-adic cohomology group H i

ét(X,Zp) is
defined as the inverse limit

H i
ét(X,Zp) := lim←−

n

H i
ét(X,Z/pnZ).

Let
clX : CHs(X/F )→ H2s

ét (X,Zp(s))GF

denote the cycle class map in étale cohomology, where Zp(s) denote the s-th Tate twist
of Zp and GF is the absolute Galois group Gal(F/F ). See [LEC, §23] or [Mi80, Chapter
VI, §9] for the definition of the cycle map and [LEC, Chapter I] for an introduction to
étale and p-adic étale cohomology. We denote by

CHs(X/F )0 := ker(clX)

the group of homologically trivial cycles of codimension s on X up to rational equiva-
lence.

Take now an element of CHs(X/F )0 represented by an algebraic cycle Z, with Z/F
smooth. Consider the Gysin sequence in p-adic étale cohomology from [LEC, Corollary
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4.6. Generalized Heegner cycles

16.2]. Setting X = X, Z = Z, U = X \ Z, r = s and F = Zp(s) in [LEC, Corollary
16.2], we obtain an exact sequence

0 −→ H2s−1
ét (X,Zp)(s) −→ H2s−1

ét (X \ Z,Zp)(s) −→ H2s
ét,Z(X,Zp)(s)0 −→ 0

in the category of continuous p-adic representations of GF , where

H2s
ét,Z(X,Zp)(s)0 := ker

(
H2s

ét,Z(X,Zp)(s)
i∗−→ H2s

ét (X,Zp)(s)
)

is the kernel of the Gysin map i∗ and H2s
ét,Z

(X,Zp)(s) is the cohomology group with
support on Z (see [LEC, §18]). Recall that clX(Z) is defined to be the image of 1 under
the Gysin map

Zp = H0
ét(Z,Zp)

∼=−→ H2s
ét,Z

(
X,Zp(s)

) i∗−→ H2s
ét (X,Zp)(s)

such that
1 7−→ clX

Z
(Z) 7−→ clX(Z)

(see [LEC, §23]), where clX
Z

(Z) ∈ H2s
Z

(
X,Zp(s)

)
is the class from which clX(Z) comes

from, and Z is homologically trivial, i.e., clX(Z) = 0. It follows that the map

γ : Zp −→ H2s
Z

(X,Zp(s))0

given by
1 7−→ clX

Z
(Z)

is well defined.
Pulling back the previous exact sequence by γ gives the following commutative

diagram with exact rows, where the right square is cartesian:

0 H2s−1
ét (X,Zp)(s) EZ Zp 0

0 H2s−1
ét (X,Zp)(s) H2s−1

ét (X \ Z,Zp)(s) H2s
ét,Z

(X,Zp)(s)0 0.

= γ

The p-adic étale Abel–Jacobi map is the map

AJp,F : CHs(X/F )0 −→ Ext1
(
Zp, H2s−1

ét (X,Zp)(s)
)
∼= H1

(
F,H2s−1

ét (X,Zp)(s)
)

that sends the class of a homologically trivial cycle Z to the isomorphism class of
the extension VZ in the category of Galois representations, as determined by the last
commutative diagram.

4.6 Generalized Heegner cycles

For any morphism ϕ : (A, i, νN+)→ (A′, i′, ν ′N+) of abelian surfaces over a field F ⊇ Q
with QM by OB and V1(N+)-level structure, we can consider its graph Γϕ ⊆ A × A′.
Consider the point x in Sh(F ) corresponding to the class of (A′, i′, ν ′N+). There is an
embedding A′ = Ax ↪→ A of the fiber of A above x in A that induces an embedding
ix : (A′)r ↪→ Ar. Via this embedding, we can view the (r)-power of the graph of ϕ
inside Ar ×Ar:

Γrϕ ⊆ Ar ×A′r = A′r ×Ar ix×id
↪→ Ar ×Ar = Xr.
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4. Generalized Heegner cycles

We define the generalized Heegner cycle ∆ϕ associated with ϕ as

∆ϕ := εΓrϕ ∈ CHk−1(Xr/F ),

where ε = PεA ∈ CorrrSh(Xr,Xr) and F is a field such that (A′, i′, ν ′N+) and ϕ are
defined over F .

One needs to apply the projector ε to make the cycle ∆ϕ homologically trivial, that
means that we want the image of ∆ϕ via the cycle map

clXr : CHk−1(Xr/F )0 → H2k−2
ét (X r,Zp(k − 1))

to be trivial in order to apply the Abel–Jacobi map. Indeed, the cycle ∆ϕ is homologi-
cally trivial, because, thanks to equation (4.3.1), one has εH2k−2

ét (X r,Zp(k − 1)) = 0.
Therefore, we have that εCHk−1(Xr/F ) ⊆ CHk−1(Xr/F )0, hence ∆ϕ is cohomolog-

ically trivial and we can consider the image of this cycle under the p-adic Abel–Jacobi
map

AJp,F : CHk−1(Xr/F )0 −→ H1
(
F,H2k−3

ét (X r,Zp(k − 1))
)
.

Applying the projector ε in the construction of the Abel–Jacobi map (as in [BDP, §3.1]
for Kuga–Sato varieties over modular curves) we obtain a p-adic Abel–Jacobi map

AJp,F : CHk−1(Xr/F ) −→ H1
(
F, εH2k−3

ét (X r,Zp(k − 1))
)
.

Then, considering the twist in (4.3.1), one has

εH2k−3
ét (X r,Zp(k − 1)) = PHk−1

ét (Ar,Zp(k/2))⊗ Sym2reH1
ét(A,Zp)(r),

so in the following we will see the Abel–Jacobi map as taking values in

H1
(
F, PHk−1

ét (Ar,Zp)(k/2)⊗ Sym2reH1
ét(A,Zp)(r)

)
.

4.7 A distinguished family of generalized Heegner cycles

With notation as in §1.5.5, start with the fixed QM abelian surface A. For any integer
c prime to N+, take the multiplication-by-c isogeny

(A, i, νN+)
φc−→ (Ac, ic, νc,N+),

which is an isogeny of QM abelian surfaces with V1(N+)-level structures. For each class
[a] in PicOc, where the representative a is chosen to be integral and prime to N+pc,
consider the isogeny

φa : A −→ Aa,

defined as the composition

(A, i, νN+)
φc−→ (Ac, ic, νc,N+)

ϕa−→ (Aa, ia, νa,N+),

and then the cycle
∆φa ∈ CHk−1(Xr/Kc).

In fact, both (Aa, ia, νa,N+) and the isogeny φa are defined over the ring class field Kc

of K of conductor c.
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4.8 Generalized Heegner classes

For any integer c prime to N+, consider the Abel–Jacobi map

AJp,Kc : CHk−1(Xr/Kc)0 −→ H1(Kc, PH
k−1
ét (Ar,Zp)(k/2)⊗ Sym2reH1

ét(A,Zp)(r)).

Because Vf (k/2) can be realized as a quotient of PHk−1
ét (Ar,Zp(k/2)), then we can see

the Abel–Jacobi map as a map

CHk−1(Xr/Kc)Q −→ H1(Kc, T ⊗ Sym2reH1
ét(A,Zp)(r)),

where T is the Galois stable lattice in Vf (k/2). Since eH1
ét(A,Zp) ∼= H1

ét(E,Zp), then
we have a map

ΦKc : CHk−1(Xr/Kc) −→ H1
(
Kc, T ⊗ Sym2rH1

ét(E,Zp)(r)
)
−→ H1

(
Kc, T ⊗ S(E)

)
,

where, as in [CH, §4.2], we set S(E) := Sym2rTp(E)(−r).
We define the generalized Heegner class za, associated with an ideal a of Oc, to be

za := ΦKc(∆φa).

4.9 χ-components

As in [CH], we want to define “χ-components” of the generalized Heegner classes and
construct classes zc,χ ∈ H1(Kc, T ⊗ χ), for χ an anticyclotomic Galois character. For
this we will use S(E) = Sym2rTp(E)(−r) appearing in the image of the Abel–Jacobi
map and we will do the same work as [CH]. So, closely following [CH, §4.4], let us start
with a positive integer c0 coprime to pN+, and let χ : Gal(Kc0p∞/K)→ O×F (possibly
enlarging F so that im(χ) ⊆ O×F ) be a locally algebraic anticyclotomic character of
infinity type (j, j) with −k/2 < j < k/2 and conductor c0p

sOK .
Recall that E = C/OK (cf. §1.5); note that E is denoted with A in [CH]. Consider

the abelian variety W/K := ResK1/K E, obtained by Weil restriction of E from K1 to
K, defined as the product

W =
∏

σ∈Gal(K1/K)

Eσ,

where Eσ is the curve determined by the polynomials obtained by applying σ to the
coefficients of the polynomials defining E. The Weil restriction W is again a CM
abelian variety but over K and of dimension [K1 : K]. The endomorphism ring of W ,
M := EndK(W )⊗Q, is a product of CM fields overK and dimW = [M : K] = [K1 : K]
(see [Rub, §1] and [Wi] for a general introduction to the Weil restriction of abelian
varities). Since

Tp(W ) =
∏

σ∈Gal(K1/K)

Tp(E
σ) = IndGKGK1

Tp(E),

viewing Tate modules as Galois representations, where Ind is the induced representation,
we have an inclusion Tp(E) ↪→ Tp(W ). Define the GK-module

S(W ) := Sym2r Tp(W )(−r)⊗Zp OF = IndGKGK1
Sr(E)⊗Zp OF .

By the discussion in [CH, §4.4], there exists a finite order anticyclotomic character χt
such that χ can be realized as a direct summand of S(W )⊗χt as GK-modules. Denote
by

eχ : S(W )⊗ χt −� χ
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4. Generalized Heegner cycles

the corresponding GK-equivariant projection. The character χt is unique up to multi-
plication by a character of Gal(K1/K) and it has the same conductor as χ.

Since Tp(E) ↪→ Tp(W ) and then S(E) ↪→ S(W ), we can see the classes za as elements
of H1(Kc, T ⊗ S(W )), where a is a fractional ideal of Oc with c divisible by c0p

s.
For each integer c divisible by the conductor c0p

s of χ, put

zc ⊗ χt := zc ∈ H1(Kc, T ⊗ S(W )⊗ χt),

through the map H1(Kc, T ⊗ S(W ))→ H1(Kc, T ⊗ S(W )⊗ χt) and define

zc,χ := (id⊗eχ)(zc ⊗ χt) ∈ H1(Kc, T ⊗ χ), (4.9.2)

the χ-component of the class zc.

4.10 Compatibility properties

First we study compatibility properties of the generalized Heegner classes defined in sec-
tion 4.8, by examining the action of the Hecke operators, and proving results analoguos
to [CH, Lemma 4.3 and Proposition 4.4].

Let I(DK) denote the group of fractional ideals of K that are prime to DK and let
κ̃E : I(DK)→ M× be the CM character associated to W (as in [CH, §4.4]), satisfying
the following properties:

• κ̃E(αa) = ±α · κ̃E(a) for all a ∈ I(DK) and α ∈ K× with α prime to DK ;
• For all a ∈ I(DK) and x ∈ W [m] with (m,N(a)) = 1, one has κ̃E(a)(x) = σa(x),

and if σa is trivial on K1, then κ̃E(a) ∈ K× and σa(x) = [κ̃E(a)]x for all x ∈ E[m].

Denote by κE : GK → O×F the p-adic avatar of κ̃E , possibly enlarging F so thatM ⊆ F .

Proposition 4.10.1. Let a, b be fractional ideals in Oc prime to cN+DK . Suppose
that aOK is trivial in PicOK and put α := κ̃E(a) ∈ K×. Then

(id×α)∗∆σa
φb

= ∆φab ,

where σa ∈ Gal(Kab/K1) corresponds to a through the Artin reciprocity map.

Proof. Recall that the QM abelian surfaces A and Aa are respectively the self-products
of elliptic curves E × E ad Ea × Ea for each fractional ideal a. Note that the isogenies
φa : A � Aa of QM abelian surfaces are the self-product of the isogenies E � Ea,
denoted with ϕa by Castella and Hsieh and used by them to define their Heegner cycles
(cf. [CH, §4.1]), and also α ∈ K× acts on A (and Aa) as the matrix multiplication
by ( α 0

0 α ), hence as the multiplication by α in each component E (and Ea). Because
of this, the proof of [CH, Lemma 4.3] works also in our case, working component by
component. So we obtain that

(id×α)∗Γσab = (α× id)∗Γ
σa
b = Γα◦φσab = Γφab = Γab.

Because x(b)σa = (Ab, ib, νb,N+)σa = a ? (Ab, ib, νb,N+) = (Aab, iab, νab,N+) = xab as
points in Sh, we have that the immersions ix(b)σa and ix(ab) are equal, thus, taking the
r-power and applying the projector ε, we have that

(id×α)∗∆σa
b = ∆ab,

and we are done.
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Proposition 4.10.2. Suppose that p - c. For all n > 1, one has

Tpzcpn−1 = pk−2zpn−2 + CorKcpn/Kcpn−1
(zcpn).

For ` - c that is inert in K, one has

T`zc = CorKc`/Kc(zc`).

Proof. The operator Tp acts on the cycle ∆φcpn−1 coming from the isogeny φcpn−1 :

A → Acpn−1 of QM abelian surfaces with V1(N+)-level structure and CM by K in the
following way

Tp∆φcpn−1 =

p+1∑
i=1

∆φi ,

where the isogenies φi : Ai → Acpn−1 are p2-isogenies of QM abelian surfaces with
V1(N+)-level structures. These isogenies correspond to the p+1 sublattices of Ocpn−1×
Ocpn−1 that are invariant under the action ofOB. Since such a sublattice L is determined
by eL, one can work with sublattices of Oc of index p. Therefore one can rearrange
the computation in the proof of [CH, Proposition 4.4] to obtain the formula in the
statement, using an analogue of [CH, Lemma 4.2] in this case. The second part of the
proposition can be proved analogously.

The following result is analogous to [CH, Proposition 4.5].

Proposition 4.10.3. Let a be a fractional ideal of Oc prime to cN+DK . Then

χt(σa)(id⊗ eχ)zσac = χ(σa)χ
−r
cyc(σa)(id⊗ eχ)za,

where χcyc is the p-adic cyclotomic character.

Proof. Denote by σa ∈ Gal(Kc/K) the image of a under the classical Artin reciprocity
map. We have

(id× ϕaOK )∗Γφa = (id× φa)∗
{

(φa(z), z) | z ∈ A
}

=
{

(ϕaφc(z), ϕaOKz) | z ∈ A
}

= Γσaφc ,

as σa(z) = ϕaOK (z) for any z ∈ A(C) and σa(z) = ϕa(z) for any z ∈ Ac(C). Because
xσac = xa, where xa = (Aa, ia, νa,N+) and xc = xOc , one has ixσac = ixa . Hence, applying
ε to

(
(id× ϕaOK )∗Γφa

)r
=
(
Γσaφc
)r, we obtain

(id× ϕaOK )∗∆φa = ∆σa
φc
.

Then

zσac = ΦKc(∆
a
φc) = ΦKc((id× ϕa)∗∆φa) = (id× ϕaOK )∗ΦKc(∆φa) = (id× ϕaOK )∗za.

Observe that ϕaOK acts on Sym2reTp(A) ∼= Sym2rTp(E) as its first component λaOK :
E → E/E[aOK ] = EaOK . From the proof of [CH, Proposition 4.5], we know that λaOK
acts on Sym2rH1

ét(W,Zp)) as the push-forward [κ̃E(aOK)]∗ of κ̃E(aOK) ∈ End(W ),
which in turn induces the Galois action σa. Since eχ commutes with the action of GK ,
there are equalities

χrcyc(σa)χt(σa)eχ
(
σa ⊗ id⊗ id ·y

)
= eχ

(
(σa ⊗ χrcyc(σa)⊗ χt(σa))(y)

)
= eχ(σa · y) = χ(σa)eχ(y),
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4. Generalized Heegner cycles

for any y = y⊗ 1⊗ 1 ∈ S(W )⊗χt = Sym2rH1
ét(W,Zp)⊗χrcyc⊗χt. Therefore, viewing

zσac , za ∈ H1(Kc, T ⊗ S(E)) ⊆ H1(Kc, T ⊗ S(W )) as in §4.9 and letting zσac := zσac ⊗ 1,
za := za ⊗ 1 ∈ H1(Kc, T ⊗ S(W )⊗ χt), we get

(id⊗ eχ)zσac = (id⊗ eχ)(id⊗ [κ̃E(aOK)]∗)za

= χ−rcyc(σa)χ
−1
t (σa)(id⊗ eχ)(id⊗ σa)za

= χ−rcyc(σa)χ
−1
t (σa)χ(σa)(id⊗ eχ)za,

which completes the proof.

Finally, we conclude with two more propositions. As one can rearrange the proofs
of analogous results in [CH] to work also in our case, as we did in the proofs of the
previous results, we will skip details.

Proposition 4.10.4. Let τ be the complex conjugation. Then

zτc,χ = wf · χ(σ) · (zc,χ−1)σ,

for some σ ∈ Gal(Kc/K), with wf = ±1 the Atkin–Lehner eigenvalue of f .

Proof. Proceed as in the proof of [CH, Lemma 4.6].

Proposition 4.10.5. Let ` be a prime inert in K such that ` - cNDK . Let λ be a prime
of Q above `. Denote by Kc`,λ and Kc,λ the completions of Kc` and Kc, respectively, at
the prime above ` determined by λ, and write locλ for the localization map. Then

locλ(zc`,χ) = ResKc`,λ/Kc,λ
(
locλ(zc,χ)Frob`

)
.

Proof. Proceed as in the proof of [CH, Lemma 4.7].
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Chapter 5

A p-adic Gross–Zagier formula

We want our p-adic L-function to satisfy a p-adic Gross–Zagier formula that relates
Bloch–Kato logarithms of generalized Heegner cycles associated with characters χ :
Gal(Kp∞/K)→ O×Cp of infinity type (j,−j) with −k/2 < j < k/2, with its values, i.e.,
we look for a formula of the shape

Lf (ψ)(φ̂) = (something) · 〈log(zχ), ∗〉 ,

where φ̂ : Gal(Kp∞/K) → O×Cp is the p-adic avatar of a Hecke character φ of infinity
type (−k/2− j, k/2 + j) and χ = ψ̂−1φ̂−1. This formula provides a relation

Lf (ψ) ←→ generalized Heegner cycles.

To establish a Gross–Zagier formula we will link our p-adic L-function to the differential
operator θ = t ddt on the Serre–Tate coordinates and then we will use some results of
Brooks to obtain a key formula relating this operator θ applied to the modular form
calculated on CM points with our generalized Heegner cycles.

5.1 The Bloch–Kato logarithm map

Let F,L be finite extensions of Qp and V a F -vector space with a continuous linear
GL := Gal(L/L)-action. Set DRL(V ) := H0(L,BdR ⊗ V ) = (BdR ⊗ V )GL , where
BdR is the Fontaine’s de Rham periods ring. If V is a de Rham representation (i.e.,
dimF V = dimLDRL(V )), then we can consider the Bloch–Kato exponential map

expBK :
DRL(V )

Fil0DRL(V )

∼=−→ H1
f (L, V ),

that is the connecting homomorphism of the long exact sequence in cohomology coming
from the short exact sequence

0 −→ V −→ Bφ=1
crys ⊗ V ⊕ Fil0BdR ⊗ V −→ BdR −→ 0.

See [BK, Definition 3.10, Corollary 3.8.4, Proposition 1.17]. Here H1
f (L, V ) is the

Bloch–Kato finite part

H1
f (L, V ) := ker

(
H1(L, V ) −→ H1

f (L, V ⊗Bcrys)
)
,
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5. A p-adic Gross–Zagier formula

where Bcrys is Fontaine’s crystalline period ring. Consider now the inverse of this map,
the Bloch–Kato logarithm map

logBK : H1
f (L, V )

∼=−→ DRL(V )

Fil0DRL(V )
.

Since the long exact sequence in cohomology is functorial, the Bloch–Kato logarithm
map is functorial as well, i.e., for any F -linear and GL-equivariant morphism V → V ′

there is a commutative square

H1
f (L, V ) DRL(V )

Fil0DRL(V )

H1
f (L, V ′) DRL(V ′)

Fil0DLL(V ′)
.

logBK

logBK

Denote by V ∗ := HomF (V, F ) the dual of V and consider the perfect de Rham pairing

〈−,−〉 : DRL(V )×DRL
(
V ∗(1)

)
−→ Cp.

Then we can consider the logarithm logBK as a map

logBK : H1
f (L, V )

∼=−→ DRL(V )

Fil0DLF (V )
∼=
(

Fil0DRL
(
V ∗(1)

))∨
, (5.1.1)

which is again functorial.

5.2 The operator θ

Recall the differential operator θ := t ddt on the power series ring W [[t − 1]]. For a
negative exponent j, one can define

θj := lim
i→∞

θj+(p−1)pi .

Indeed, this limit makes sense because of [Brooks, Proposition 4.18], which implies
that θj+(p−1)pmF ≡ θj+(p−1)pnF mod pn+1 for m ≥ n � 0 and F ∈ W [[t − 1]], so∣∣θj+(p−1)pmF − θj+(p−1)pnF

∣∣
p
≤ 1/pn+1.

For a positive integer m we know from equation (3.1.3) that

[xm]F = θmF,

but we are interested in the case when m is negative.
Fix an integer j < 0. For n� 0, one has j + (p− 1)pn ≥ 0, therefore

θj+(p−1)pnF = [xj+(p−1)pn ]F.

Denote by φn the continuous map in C(Zp,W ) given by z 7→ zj+(p−1)pn for n� 0 and
by φ the continuous map in C(Zp,W ) given by φ(z) = zj , if z ∈ Z×p , and φ(z) = 0
otherwise (Z×p is open and closed in Zp). Consider |φn − φ|p = supx∈Zp |φn(x)− φ(x)|p.
If x ∈ Z×p then ∣∣φn(x)− φ(x)

∣∣
p

= |xj |p · |x(p−1)pn − 1|p ≤ 1/pn+1,
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5.3. CM periods and de Rham cohomology classes

as x(p−1)pn ≡ 1 mod pn+1. If x ∈ Zp \Z×p = pZp, then x = phz with z ∈ Z×p and h ≥ 1,
so ∣∣φn(x)− φ(x) |p=| (phz)j+(p−1)pn

∣∣
p
≤ 1/pj+(p−1)pn .

Hence |φn − φ|p ≤ max
{

1/pn+1, 1/pj+(p−1)pn
}
, which means that φn → φ in C(Zp,W )

as n→∞. It follows that for a measure µ ∈M(Zp,W ) there are equalities

lim
n→∞

µ(φn) = µ( lim
n→∞

φn) = µ(φ),

so we can exchange the integral sign with the limit. Then

θjF = lim
n→∞

θj+(p−1)pnF = lim
n→∞

[xj+(p−1)pn ]F = lim
n→∞

∫
Zp
xj+(p−1)pntxdF

= lim
n→∞

∫
Zp
φn(x)txdF =

∫
Zp

lim
n→∞

φn(x)txdF

=

∫
Zp
φ(x)txdF =

∫
Z×p
xjtxdF = [xj ]F.

Here by
∫
Z×p we mean

∫
Zp but with the characteristic function of Z×p inside, so that

we can write xj in the integral. We conclude that, for any locally constant function
φ ∈ C(Zp,W), the formula ∫

Zp
φ(x)xmdF = θm([φ]F )|t=1 (5.2.2)

holds also for a negative integer m.

5.3 CM periods and de Rham cohomology classes

Recall that A has a model defined over V :=W ∩Kab. Fix a non-vanishing global section
ωA of the line bundle eΩA/V on A, defined over V. Define a p-adic period Ωp ∈ Cp by
the rule

ωA = Ωpω̂A

where ω̂A denote the section ωP determined for A as in the last lines of 1.6.2 (which
depends upon the p∞- level structure on A).

Now, take a finite extension F of Qp containingK1 and recall the fixed non-vanishing
differential ωA in eH0(A,ΩA/F ). We can see it as an element of H1

dR(A/F ). This
determines another element ηA, as in the last lines of [Brooks, §2.8], so that ωiAη

2r−i
A

is a basis for Sym2r eH1
dR(A/F ), when i = 0, . . . , 2r. We can arrange ωA and ηA in a

way such that they correspond to the elements ωE , ηE ∈ H1
dR(E/F ) defined [CH, §4.5],

through the isomorphism eH1
dR(A/F ) ∼= H1

dR(E/F ), keeping in mind that the elliptic
curve E is denoted by A in [CH].

5.4 A key formula

We want now to prove the key formula that relates this operator θ applied to the
modular form calculated on CM points with our generalized Heegner cycles. The proof
of this formula is the same as the proof of [CH, (4.9)] but with [BDP, Proposition 3.24
and Lemmas 3.23, 3.22] replaced by [Brooks, Theorem 7.3, Lemma 8.6 and Proposition
7.4].
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5. A p-adic Gross–Zagier formula

5.4.1 Preliminaries

We briefly recall some results from [Brooks] that will be used later. Our notation is
as in [Brooks, §7.2], the only exception being that p-depletion is denoted here by (·)(p)

instead of (·)[. Note that in the notation of [Brooks] a triple (A, t, ω) consists of a QM
abelian surface A, a V1(N+)-level structure t and a non-vanishing global section ω. In
particular, the quaternionic multiplication is always understood.

The first result relates the operator θ applied to f (p) to the components g̃(p)
i of the

Coleman primitive of ωf (p) associated with f (p).

Proposition 5.4.1 (Brooks). g̃(p)
i = i!θ−1−if (p).

Proof. This is [Brooks, Theorem 7.3].

Here g̃(p)
i is the i-component of the Coleman primitive of ω(p)

f as in [Brooks, §7.2],
which is a locally analytic p-adic modular form (in the sense of the last lines of [Brooks,
§3.1]) of weight k − 2− 2i.

The next result allows us to write the components of the Coleman primitive g̃(p)
i of

ωf (p) in terms of the components of the Coleman primitive g̃ of ωf .

Lemma 5.4.2 (Brooks). If g is a locally analytic p-adic modular form of weight h such
that

Tpg̃ = bpg̃, 〈p〉 g̃ = εg̃(p)g̃,

then

g̃(p)(A′, t′, ω′) = g̃(A′, t′, ω′)− εg̃(p)bp
ph

g̃
(
p ? (A′, t′, ω′)

)
+
εg̃(p)

ph+1
g̃
(
p2 ? (A′, t′, ω′)

)
for every CM triple (A′, t′, ω′).

Proof. This is [Brooks, Lemma 8.6].

Finally, we relate the components of the Coleman primitive of ωf with the images
of the Heegner cycles through the Abel–Jacobi map.

Lemma 5.4.3 (Brooks). Let ϕ : (A, t, ω)→ (A′, t′, ω′) be an isogeny of degree d. Then

AJF (∆ϕ)(ωf ⊗ ωiAη2r−i
A ) = dig̃i(A

′, t′, ω′)

for i = 0, . . . , 2r.

Proof. This is [Brooks, Proposition 7.4].

Here F is a finite extension of Qp, containing K1, such that ∆ϕ is defined over F ,
and ωf can be seen as an element in Filk−1 PHk−1

dR (Ar/F ) as in [Brooks]. Recall the
elements ωiAη

2r−i
A ∈ Sym2r eH1

dR(A/F ) for i = 0, . . . , 2r. Then

ωf ⊗ ωiAη2r−i
A ∈ Filr+1 PHk−1

dR (Ar/F )⊗ Sym2r eH1
dR(A/F ) ∼= Filk−1 εH4r+1

dR (Xr/F ).

See [Brooks] and [BDP, pp. 1050–1053] for an explanation in the case of modular curves.
Finally, AJF is the Abel–Jacobi map

AJF : CHk−1(Xr/F )0 −→ (Filk−1 εH4r+1
dR

(
Xr/F )

)∨
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defined in §6.3, which is the composition of the usual Abel–Jacobi map

CHk−1(Xr/F )0 −→ H1
f

(
F, εH4r+1

ét (X r,Qp)(k − 1)
)

with the Bloch–Kato logarithm map

logBK : H1
f

(
F, εH4r+1

ét (X r,Qp)(k − 1)
)
−→

DRF

(
εH4r+1

ét (X r,Qp)(k − 1)
)

Fil0
(
DRF

(
εH4r+1

ét (X r,Qp)(k − 1)
))

for the Galois representation V = εH4r+1
ét

(
X r,Qp

)
(k − 1). Actually, the image of the

p-adic Abel–Jacobi map is contained in the subgroup H1
f (F, εH4r+1

ét (X r,Qp)(k − 1)) of
H1(F, εH4r+1

ét (X r,Qp)(k − 1)), see [Nek00, Theorem 3.1].
Since the comparison isomorphism

Φ : DRF
(
εH4r+1

ét (X r,Qp)
) ∼=−→ εH4r+1

dR (Xr/F ),

for which we refer to [Xa, Theorem 9], is compatible with the filtrations, and since the
Tate twist shifts the filtration, there are isomorphisms

Filj
(
DRF

(
εH4r+1

ét (X r,Qp)(k − 1)
)) ∼= Filj+k−1

(
DRF

(
εH4r+1

ét (X r,Qp)
))

∼= Filj+k−1 εH4r+1
dR (Xr/F ).

It follows that there is a functorial isomorphism

Φ :
DRF

(
εH4r+1

ét (X r,Qp)(k − 1)
)

Fil0DRF
(
εH4r+1

ét (X r,Qp)(k − 1)
) ∼=−→

εH4r+1
dR (Xr/F )

Filk−1 εH4r+1
dR (Xr/F )

.

On the other hand, by Poincaré duality, there is an isomorphism

εH4r+1
dR (Xr/F )

Filk−1 εH4r+1
dR (Xr/F )

∼= Filk−1 εH4r+1
dR (Xr/F )∨. (5.4.3)

Thus, writing V := εH4r+1
ét (X r,Qp)(k − 1) in this case, we can view logBK as a map

logBK : H1
f (F, V )

∼=−→ DRF (V )

Fil0DRF (V )
∼= Filk−1 εH4r+1

dR (Xr/F )∨.

For more details, see [Brooks, §6.3].

Remark 5.4.4. We can restate [Brooks, Proposition 7.4] as〈
logBK(ξϕ), ωf ⊗ ωiAηr−iA

〉
= diGi(A

′, t′, ω′),

where ξϕ is the image of ∆ϕ under the usual Abel–Jacobi map. Indeed, isomorphism

(5.4.3) sends logBK(ξϕ) ∈ εH4r+1
dR (Xr/F )

Filk−1 εH4r+1
dR (Xr/F )

to
〈

logBK(ξϕ),−
〉
.

Since the comparison isomorphism respects the dualities, it is the same to compute
〈logBK(ξϕ), x〉 ∈ Cp where logBK is considered to have image in εH4r+1

dR (Xr/F )

Filk−1 εH4r+1
dR (Xr/F )

and

x ∈ Filk−1 εH4r+1
dR (Xr/F ), and 〈logBK(ξϕ),Φ−1(x)〉 ∈ Cp, where logBK is considered to

have image in DRF (V )

Fil0DRF (V )
and Φ−1(x) ∈ Fil0DRL(V ).
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5. A p-adic Gross–Zagier formula

Remark 5.4.5. We want to apply the Bloch–Kato logarithm to the localization at p of
the generalized Heegner classes za, regarded as elements of H1(Kc, T ⊗ χ) via the map
id⊗eχ, and also to the classes zχ ∈ H1(K,T ⊗χ) that will be defined in (5.5.4). Recall
the choice of the prime p of K over p. If M is a finite extension of K, then we write
Mp for the completion of M at the prime over p determined by the fixed embedding
ip : Q ↪→ Cp and denote by locp the localization map

locp : H1(M,V ) −→ H1(Mp, V ),

for any representation V ofGM . Thus, denote by logp the composition of the localization
at p with logBK , so that logp(za) (respectively, logp(zχ)) is the image of the localization
locp(za) ∈ H1

f (Kc,p, T ⊗ χ) (respectively, of the localization locp(zχ) ∈ H1
f (Kp, T ⊗ χ))

via the Bloch–Kato logarithm. Since Vf can be realized as a quotient of PHk−1
ét (Ar,Zp),

by the comparison isomorphism recalled above we get a map

PHk−1
dR (Ar/F ) ∼= DRF

(
PHk−1

ét (Ar,Zp)
)
−→ DRF (Vf ),

and hence also a map

εH4r+1
dR (Xr/F ) −→ DRF

(
Vf (k/2)⊗ χ

)
.

Therefore we can view the ωf ⊗ ω
j+k/2−1
A η

k/2−j−1
A as elements of DRF

(
Vf (k/2) ⊗ χ

)
,

which we will denote in the same way. Because of the functoriality of the logarithm and
because the comparison isomorphism preserves the dualities, there is an equality〈

logp(za), ωf ⊗ ω
j+k/2−1
A η

k/2−j−1
A

〉
=
〈

logp(ξφa), ωf ⊗ ω
j+k/2−1
A η

k/2−j−1
A

〉
,

where ξφa is the image of ∆a through the usual Abel–Jacobi map AJp,Kc and the
ωf ⊗ ω

j+k/2−1
A η

k/2−j−1
A are viewed as elements of Fil0 DRKc,p(Vf (k/2) ⊗ χ) and of

Filk−1 εH4r+1
dR (Xr/Kc,p), respectively.

5.4.2 A technical lemma

Evaluating the p-adic L-function at the p-adic avatar of an anticyclotomic Hecke char-
acter of infinity type (k/2 + j,−k/2 − j) with −k/2 < j < k/2 and conductor pnOK
with n ≥ 1, we get θ−j−k/2f̂ (p)(x(c0p

n)σa), with x(c0p
n) the CM point defined in §1.5.5.

Now we want to relate this expression to the image of the Abel–Jacobi map of certain
Heegner classes.

Lemma 5.4.6. Set z(p)
a := za − app2j−1zaOc0pn−1 + p4j+k−3zaOc0pn−2 . Then

θ−j−k/2f̂ (p)(x(c0p
n)σa) =

(c0p
nN(a))−j−k/2+1

Ω2j
p (j + k/2− 1)!

·
〈

logp(z
(p)
a ), ωf ⊗ ω

j+k/2−1
A η

k/2−j−1
A

〉
.

Proof. We have

θ−j−k/2f̂ (p)
(
x(c0p

n)σa
)

= θ−j−k/2f (p)(Ac0pn , ιc0pn , νN+,c0pn , ω̂c0pn)σa

=

(
1

Ωp

)2j

θ−j−k/2f (p)
(
a ? (Ac0pn , ιc0pn , νN+,c0pn , ωc0pn)

)
,
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5.5. A p-adic Gross–Zagier formula

as the form θ−j−k/2f (p) has weight −2j and, by definition, ω̂c0pn = (1/Ωp)ωc0pn , with
ωc0pn induced by ωA. Let g̃(p)

j+k/2−1 be the j + k/2− 1-st component of the Coleman
primitive of ωf (p) . Applying Proposition 5.4.1 yields

θ−j−k/2f̂ (p)(x(c0p
n)σa) =

1

Ω2j
p (j + k/2− 1)!

· g̃(p)
j+k/2−1

(
a ? (Ac0pn , ιc0pn , νN+,c0pn , ωc0pn)

)
.

Writing xa for a?(Ac0pn , ιc0pn , νN+,c0pn , ωc0pn) = (Aa, ιa, νN+,a, ωa), by Lemma 5.4.2 one
has

θ−j−k/2f̂ (p)
(
x(c0p

n)σa
)

=
1

Ω2j
p (j + k/2− 1)!

[
g̃j+k/2−1(xa)

− app
−j−k/2

p−2j
g̃j+k/2−1(xaOc0pn−1 )

+
1

p−2j+1
g̃j+k/2−1(xaOc0pn−2 )

]
.

Then, applying Lemma 5.4.3, and keeping Remark 5.4.5 in mind, we get

θ−j−k/2f̂ (p)
(
x(c0p

n)σa
)

=

=
1

Ω2j
p (j + k/2− 1)!

·
[ 1

(c0pnN(a))j+k/2−1

〈
logp(za), ωf ⊗ ω

j+k/2−1
A η

k/2−j−1
A

〉
− app

j−k/2

(c0pn−1N(a))j+k/2−1
·
〈

logp(zaOc0pn−1 ), ωf ⊗ ω
j+k/2−1
A η

k/2−j−1
A

〉
+

p2j−1

(c0pn−2N(a))j+k/2−1
·
〈

logp(zaOc0pn−2 ), ωf ⊗ ω
j+k/2−1
A η

k/2−j−1
A

〉]
.

Finally, if we set

z
(p)
a := za − app2j−1zaOc0pn−1 + p4j+k−3zaOc0pn−2 ,

then we obtain

θ−j−k/2f̂ (p)
(
x(c0p

n)σa
)

=
(c0p

nN(a))−j−k/2+1

Ω2j
p (j + k/2− 1)!

·
〈

logp(z
(p)
a ), ωf ⊗ ω

j+k/2−1
A η

k/2−j−1
A

〉
,

as was to be shown.

5.5 A p-adic Gross–Zagier formula

In this section we finally state and prove the p-adic Gross–Zagier formula that we
are interested in, which relates our p-adic L-function to the Bloch–Kato logarithm of
generalized Heegner classes.

First, we define cohomology class zχ ∈ H1(K,T ⊗χ) associated with f and χ, which
will be linked with the p-adic L-function by our p-adic Gross–Zagier type formula. Recall
that f ∈ Snew

k (Γ0(N)) is our fixed modular form and χ : Gal(Kc0p∞/K) → O×F is a
locally algebraic anticyclotomic character of infinity type (j, j) with −k/2 < j < k/2
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and conductor c0p
nOK , where c0 is prime to pN+. Put

zχ : = CorKc0pn/K
zc0pn,χ

=
∑

σ∈Gal(Kc0pn/K)

σ · (id⊗ eχ)(zc0pn ⊗ χt)

=
∑

σ∈Gal(Kc0pn/K)

(id⊗ eχ)
(
χt(σ)zσc0pn

)
=

∑
a∈PicOc0pn

(id⊗ eχ)
(
χt(σa

)
zσac0pn)

=
∑

a∈PicOc0pn
χε−rcyc(σa)(id⊗ eχ)(za),

(5.5.4)

where the last equality holds by Proposition 4.10.3.
It is convenient to use, in the statement of the following theorem, the symbol .= to

indicate that the claimed equality holds up to an explicit non-zero multiplicative factor
that is comparatively less important than the main terms. Recall that pOK = pp with
p and p distinct maximal ideals of OK .

Theorem 5.5.1. Let ψ be an anticyclotomic Hecke character of infinity type (k/2,−k/2)
and conductor c0OK with (c0, Np) = 1. If φ̂ : Gal(Kc0p∞/K) → O×Cp is the p-adic
avatar of an anticyclotomic Hecke character φ of infinity type (k/2 + j,−k/2− j) with
−k/2 < j < k/2 and conductor pnOK , n ≥ 1, then

Lp,ψ(f)(φ̂−1)

Ω∗p

.
=
〈

logp(zf,χ), ωf ⊗ ω
k/2+j−1
A η

k/2−j−1
A

〉
,

where, as before, χ := ψ̂−1φ̂ and logp := logBK ◦ locp.

Proof. By definition of Lf,ψ (cf. Definition 3.6.2), one has

Lf,ψ(φ̂−1) =
∑

PicOc0

ψ(a)N(a)−k/2
∫
Z×p
ψpφ̂

−1
∣∣[a]dµ

f̂
(p)
a
.

Here φ̂−1
∣∣[a] : Z×p → C×p is given by

(
φ̂−1

∣∣[a]
)
(x) := φ̂−1(x)φ̂−1(a), where x is viewed as

an element of K̂× via the chosen embedding Z×p ∼= OK,p ↪→ K×p ↪→ K̂×. It follows that(
φ̂−1

∣∣[a]
)
(x) = φ−1(x)x

−k/2−j
p x

k/2+j
p φ−1(a) = φ−1

p (x)x−k/2−jφ−1(a),

as a ∈ K̂(c0p)× satisfies aÔK ∩K = a. Therefore

Lf,ψ(φ̂−1) =
∑

Pic(Oc0 )

ψ(a)φ−1(a)N(a)−k/2
∫
Z×p
ψpφ

−1
p (x)x−k/2−jdµ

f̂
(p)
a

=
∑

Pic(Oc0 )

ψ(a)φ−1(a)N(a)−k/2
∫
Zp
ψpφ

−1
p (x)x−k/2−jdµ

f̂
(p)
a
.

This is a consequence of the fact that the measure is supported on Z×p . Then, in light
of what was explained in §5.2, we can bring out the differential operator θ = ta

d
dta

from
the integral of x−k/2−j and get

Lf,ψ(φ̂−1) =
∑

PicOc0

ψ(a)φ−1(a)N(a)−k/2θ−k/2−j [ψpφ
−1
p ]f̂

(p)
a

(
ta(xa)

)
,
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where ta is the Serre–Tate coordinate around the reduction modulo p of xa.
Setting ξ := ψ−1φ, then we have

Lf,ψ(φ̂−1) =
∑

Pic(Oc0 )

ψ(a)φ−1(a)N(a)−k/2[ψpφ
−1
p ]θ−k/2−j f̂

(p)
a

(
ta(xa)

)
=

∑
Pic(Oc0 )

ξ−1(a)N(a)−k/2[ξ−1
p ]θ−k/2−j f̂

(p)
a

(
ta(xa)

)
.

Note that, since ξ−1 is a character of conductor c0p
nOK , ξ−1

p is a primitive Dirichlet
character mod pn via the isomorphism (Z/pnZ)× ∼= (OK,p/pn)× ∼= O×K,p/1 + pn. By

Proposition 3.6.4, since (N(a)
√
−DK)k/2+j(θ−j−k/2f̂ (p))a = θ−j−k/2f̂

(p)
a , we obtain

Lf,ψ(φ̂−1) =
∑

Pic(Oc0 )

ξ−1(a)N(a)−k/2
(
N(a)

√
−DK

)k/2+j
p−nG(ξ−1

p )

·
∑

u∈(Z/pnZ)×

ξp(u)θ−k/2−j f̂ (p)
(
xa ? α(u/pn)

)
.

For positive exponents one obtains
(
N(a)

√
−DK

)−m
(θmf̂ (p))a = θmf̂

(p)
a by an easy

computation; because θm = limi→∞ θ
m+(p−1)pi , one has the same formula for negative

exponents. Now, as in the proof of [CH, Theorem 4.9] and applying Lemma 5.4.6, we
obtain

Lf,ψ(φ̂−1)

Ω−2j
p

=
c
−j−k/2+1
0 (

√
−DK)k/2+jpn(−j−k/2)G(ξ−1

p )χp(p
n)

(j + k/2− 1)!

·
∑

Pic(Oc0pn )

χχ1−k/2
cyc (σa)

〈
logp(z

(p)
a ), ωf ⊗ ω

j+k/2−1
A η

k/2−j−1
A

〉
.

Finally, by the argument in [CH, Theorem 4.9] and by (5.5.4), we get

Lf,ψ(φ̂−1)

Ω−2j
p

= C ′ ·
〈

logp(zχ), ωf ⊗ ω
j+k/2−1
A η

k/2−j−1
A

〉
,

with

C ′ :=
c
−j−k/2+1
0 (

√
−DK)k/2+jpn(−j−k/2)G(ξ−1

p )χp(p
n)

(j + k/2− 1)!
,

and the theorem is proved.
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Chapter 6

Reciprocity law and Selmer groups

In this chapter we want to extend to our setting the reciprocity law of [CH, Theorem
5.7], relaxing the Heegner hypothesis and making use of generalized Heegner cycles on
generalized Kuga–Sato varieties over Shimura curves and our p-adic L-function. This
result will be important to prove (under certain assumptions) the vanishing of the Selmer
group associated with the twisted representation Vf,χ := Vf (k/2)⊗ χ.

6.1 The algebraic anticyclotomic p-adic L-function Lp,ψ

In this section we will construct an algebraic p-adic L-function in terms of a big log-
arithm map and some Iwasawa cohomology classes coming from generalized Heegner
classes. Assume for this section that our modular form f ∈ Snewk (Γ0(N)) is p-ordinary,
i.e., that the p-th Fourier coefficient ap is a unit of OF .

6.1.1 Perrin-Riou’s big logarithm

Let G be a commutative compact p-adic Lie group and L a complete discretely valued
extension of Qp. Recall that a p-adic Lie group is a group G endowed with a structure of
a manifold over Qp such that the group operation is locally analytic. For the definitions
of a manifold over Qp and of a locally analytic map, the reader is referred to [Schn].

Consider the noetherian topological OL-algebra OLJGK; if L/Qp is a finite extension
then it is compact. Put ΛL(G) := L ⊗OL OLJGK, which is also noetherian; it is iso-
morphic to the continuous dual of the space C(G,L) of continuous L-valued functions
on G (cf. [LZ1, §2.2]). Now let HL(G) denote the space of L-valued locally analytic
distributions on G i.e., the continuous dual of the space C la(G,L) of L-valued locally
analytic functions on G. There is an injective algebra homomorphism

ΛL(G) ↪−→ HL(G)

(see [Eme04, Proposition 2.2.7]), dual to the dense inclusion C la(G,L) ↪→ C(G,L).
We endow HL(G) with its natural topology as an inverse limit of Banach spaces, with
respect to which the map ΛL(G) ↪→ HL(G) is continuous.

If L is a finite unramified extension of Qp and G is the Galois group of a p-adic Lie
extension L∞ = ∪nLn with Ln/L finite and Galois, then define the Iwasawa cohomology
group

H1
Iw(L∞, V ) :=

(
lim←−
n

H1(Ln, T )
)
⊗Zp Qp,
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where V is a p-adic GL-representation and T is a Galois stable lattice. The definition
is independent from the choice of T . Now let F̂ ur the composite of Q̂ur

p with a finite
extension F of Qp.

Suppose that V is a crystalline F -representation of GL with non negative Hodge–
Tate weights and that V has no quotient isomorphic to the trivial representation.
Let F be a relative height one Lubin–Tate formal group over OL/Zp and let Γ :=
Gal(L(Fp∞)/L) ∼= Z×p . Let Bcrys be the Fontaine’s crystalline period ring and put
Dcrys,L(V ) := (V ⊗Qp Bcrys)

GL . Assume that V GL(Fp∞ ) = 0.

Theorem 6.1.1. There exists a ZpJΓK-linear map

LV : H1
Iw(L(Fp∞), V ) −→ HF̂ur(Γ)⊗L Dcrys,L(V )

such that for any z ∈ H1
Iw(L(Fp∞), V ) and any locally algebraic character χ : Γ → Q×p

of Hodge-Tate weight j and conductor pn there is an equality

LV (z)(χ) = ε(χ−1) · ΦnP (χ−1,Φ)

P (χ, p−1Φ−1)
·


(−1)−j−1

(−j−1)! · logL,V (χ−1)(z
χ−1

)⊗ t−j if j < 0,

j! · exp∗L,V (χ−1)∗(1)(z
χ−1

)⊗ t−j if j ≥ 0,

where

• ε(χ−1) and P (χ±1,−) are the ε-factor and the L-factor (see [LZ1, p. 8]);

• Φ denotes the crystalline Frobenius operator on Qp ⊗L Dcrys,L(V ) acting trivially
on first factor;

• zχ
−1 ∈ H1(L, V ⊗ χ−1) is the specialization of z at χ−1.

Proof. This is [CH, Theorem 5.1].

In the statement of this result, exp∗L,V (χ−1)∗(1) is the dual exponential map

exp∗L,V (χ−1)∗(1) : H1(L, V (χ))→ (Fil0DRL(V (χ)))∨

of the Bloch–Kato exponential map of V (χ−1)∗(1).
We will apply Theorem 6.1.1 to some representation F+V attached to a twist of

Vf (k/2) to obtain a map LF+V . Let ψ be an anticyclotomic Hecke character of infinity
type (k/2,−k/2) and conductor cOK with p - c and let ψ̂ : Gal(Kcp∞/K)→ C×p be its
p-adic avatar. Let F be a finite extension of Qp containing the Fourier coefficients of
f and the image of ψ̂, so ψ̂ : Gal(Kcp∞/K) → O×F . Since p - N , if Vf is the F -linear
Galois representation of GQ associated with f , then Vf |GQp is crystalline. Because f is
p-ordinary, there is an exact sequence of GQp-modules

0 −→ F+Vf −→ Vf −→ F−Vf −→ 0

with F±Vf ∼= F and F+Vf unramified (see [Wil, Theorem 2.1.4] or [SC, §12.5.3]). Recall
that T ⊆ Vf (k/2) is a Galois-stable lattice; set

F+T := F+Vf (k/2) ∩ T ;

V := Vf (k/2)⊗ ψ̂−1
p , where ψ̂p := ψ̂ |Kp ;

F±V := F±Vf (k/2)⊗ ψ̂−1
p .
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Consider the dual representation V ∗ := HomF (V, F ) of V and, with notation as above,
define F±V ∗ := HomF (F∓V, F ). Let L∞/L be the p-adic completion of Kcp∞/Kc. The
big logarithm LF+V , obtained on applying Theorem 6.1.1 to F+V as a representation
of GL, is a map

LF+V : H1
Iw

(
L(Fp∞),F+V

)
−→ HF̂ur

(
Gal(L(Fp∞)/L)

)
⊗L Dcrys,L(F+V ).

Since L∞ ⊆ L(Fp∞), we can restrict LF+V to the Galois group Γ := Gal(L∞/L) ∼=
Gal(Kcp∞/Kc) to obtain a map

H1
Iw(L∞,F

+V ) −→ HF̂ur(Γ)⊗L Dcrys,L(F+V ).

Recall the element ωf ∈ DRL(Vf ) attached to f as in 5.4. Let t ∈ BdR denotes
Fontaine’s p-adic analogue of 2πi. Define the class

ωf,ψ := ωf ⊗ t1−2r ⊗ ωψ ∈ Dcrys,L(V ∗),

where ωψ ∈ Dcrys,L(ψ̂p(k/2)) is as in [CH, §5.3]. Denote again by ωf,ψ its image under
the projection Dcrys,L(V ∗) � Dcrys,L(F−V ∗).

There is a pairing

〈−,−〉 : HF̂ur(Γ)⊗L Dcrys,L(F+V )×Dcrys,L(F−V ∗) −→ HF̂ur(Γ).

Recall that Dcrys,L(F+V ) = (Bcrys ⊗Qp F+V )GL and Dcrys,L(F−V ∗) = (Bcrys ⊗Qp
F−V ∗)GL Finally, the composition of LF+V with the map

〈−, ωf,ψ〉 : HF̂ur(Γ)⊗L Dcrys,L(F+V ) −→ HF̂ur(Γ)

has image contained in the Iwasawa algebra ΛF̂ur(Γ) := OF̂urJΓ̃K ⊗ F̂ ur. For details,
see [CH, Lemma 5.5].

6.1.2 Iwasawa classes associated with generalized Heegner classes

Consider the Iwasawa cohomology group

H1
Iw(Kcp∞ , T ) :=

(
lim←−
n

H1(Gal(K ′/Kcpn), T )

)
⊗Zp Qp,

where K ′ is the maximal extension of K unramified outside the primes above pNc (the
representation T is unramified outside the prime above pN). Let α denote the root of
the Hecke polynomial x2 − apx + pk−1 that is a p-adic unit. For each fractional ideal
a of Oc prime to cNpDK , recall the cohomology class za introduced in §4.8 and define
the class

za,α :=


za − pk−2

α · zaOc/p if p | c

1
#O×c

(
1− pk/2−1

α σp

)(
1− pk/2−1

α σp

)
· za if p - c,

which lives in H1
(
Kc, T ⊗ S(E)

)
. By Proposition 4.10.2, one knows that

CorKcp/Kc(zcp,α) = α · zc,α.

Now consider the projection eχ for χ = 1 and write za,α,1 for the image of za,α under
id⊗e1 : H1

(
Kc, T ⊗S(W )

)
→ H1(Kc, T ). Thus, it makes sense to consider the element

zc,α := lim←−
n

α−nzcpn,α,1
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in the Iwasawa cohomology group H1
Iw(Kcp∞ , T ).

There is an isomorphism

H1
Iw(Kcp∞ , T ) ∼= H1

(
Kc, T ⊗OF JΓK

)
,

where Γ := Gal(Kcp∞/Kc) (see the proof of [LZ2, Proposition 2.4.2]). Put Γ̃c :=
Gal(Kcp∞/K) and consider the map

H1(Kcp∞ , T ) ∼= H1
(
Kc, T ⊗OF JΓK

)
−→ H1

(
Kc, T ⊗OF JΓ̃cK

)
;

we can view the classes zc,α as elements of H1
(
Kc, T ⊗OF JΓ̃cK

)
. Then set

zf := CorKc/K(zc,α) ∈ H1
(
K,T ⊗OF JΓ̃cK

)
, (6.1.1)

where the subscript f is meant to remind that the class above, like the others already
defined, depends on it.

For any character χ : Γ̃c → O×Cp , we can consider the twist zχf ∈ H
1(K,T ⊗χ) of zf

through the χ-specialization map

H1
(
K,T ⊗OF JΓ̃cK

)
−→ H1

(
K,T ⊗OF JΓ̃cK⊗OF JΓ̃cK χ

)
= H1(K,T ⊗ χ),

where χ is extended to χ : OF JΓ̃cK → OF in the obvious way, possibly enlarging F by
adding the image of χ. Suppose that χ is non-trivial, of finite order and with conductor
cpn; then

zχf = α−nzχ, (6.1.2)

where zχ ∈ H1(K,T ⊗ χ) is as in (5.5.4). See [CH, Lemma 5.4] for details.

6.1.3 The algebraic anticyclotomic p-adic L-function

We want to apply the logarithm map LF+V to the localization at p of the classes
zc,α ⊗ ψ̂−1, so we need to check that these classes actually lie in H1

Iw(L∞,F
+V ) =

H1
Iw(Kcp∞,p,F

+V ) ↪→ H1
Iw(Kcp∞,p, V ).

Similarly to what we said in §5.4.1, by [Nek00] one knows that za lies in the Bloch–
Kato Selmer group Sel(Kc, T ⊗ S(E)), indeed za is the image, through a morphism of
GKc-modules, of a cohomology class in Sel(Kc, εH

4r+1
ét (X r,Zp)(k − 1)), which is the

Abel–Jacobi image of the generalized Heegner cycle ∆a. Recall that the Bloch–Kato
Selmer group Sel(F,M) of a GF -representationM , with F number field, is the subspace
of elements x ofH1(GF ,M) such that for all finite place v of F , the localization locv(x) ∈
H1
f (Fv,M). See §6.4 for more precise definitions. Thus, zcpn,α,1 ∈ Sel(Kcpn , T ) as well,

so locp(zcpn,α,1) ∈ H1
f (Kcpn,p, T ).

But H1
f (Kcpn,p, T ) is identified with the image of the map H1(Kcpn,p,F

+T ) →
H1(Kcpn,p, T ) (cf. [CH, §5.5]), so we can view locp(zcpn,α,1) ∈ H1(Kcpn,p,F

+T ). Since
zc,α is the inverse limit of the classes α−nzcpn,α,1, one has

locp(zc,α) ∈ H1
Iw(L∞,F

+T ).

We conclude that
locp(zc,α ⊗ ψ̂−1) ∈ H1

Iw(L∞,F
+V ).
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Now, using notation similar to that in [CH], we can define

L∗(zf ⊗ ψ̂−1) := CorKc/K(LF+V (locp(zc,α ⊗ ψ̂−1)))

=
∑

σ∈Γ̃c/Γ

LF+V (locp(z
σ
c,α ⊗ ψ̂−1))ψ̂(σ−1)

∈ Dcrys,L(F+V )⊗ ΛF̂ur(Γ̃c),

where ΛF̂ur(Γ̃c) = OF̂urJΓ̃cK⊗ F̂
ur.Finally, consider the restriction

Lψ(zf ) := ResKp∞ (L∗(zf ⊗ ψ̂−1)) ∈ Dcrys,L(F+V )⊗ ΛF̂ur(Γ̃), (6.1.3)

where ResKp∞ : Γ̃c = Gal(Kcp∞/K)→ Γ̃ = Gal(Kp∞/K) is the restriction map.

6.2 Reciprocity law

We start by giving a sketch of the proof of the following theorem, which is analogous
to that of [CH, Theorem 5.7].

Theorem 6.2.1. Let ψ : K×/A×K → C× be an anticyclotomic Hecke character of
infinity type (k/2,−k/2) and conductor cOK with p - c and suppose that f is p-ordinary.
Then 〈

Lψ(zf ), ωf ⊗ t1−k
〉

= −c−j−k/2+1(
√
−DK)k/2+j ·Lf,ψ ·σ−1,p ∈ ΛF̂ur(Γ̃),

where σ−1,p := recp(−1)|Kp∞ ∈ Γ̃ is an element of order 2.

Sketch of proof. For any n > 1, let φ̂ : Gal(Kp∞/K) → C×p be the p-adic avatar of a
Hecke character φ of infinity type (k/2,−k/2) and conductor pn. Moreover, define the
finite order character χ := ψ̂−1φ̂. Recall that, by (6.1.2), we have

zχ = α−n · zχ.

Now, since our ωA and ηA are chosen to be compatible with the ones of [CH], so that
ωAηA = t (see [CH, §5.3]), applying Theorem 5.5.1 with j = 0 and (6.1.2) yields the
expression

〈
logp(z

χ
f ) ⊗ tk/2, ωf ⊗ t1−k

〉
from Lf,ψ(φ̂−1). Now, performing the same

computation as in the proof of [CH, Theorem 5.7] and applying Theorem 6.1.1 to the
expression

〈
Lψ(zf ), ωf ⊗ t1−k

〉
, we obtain the formula of the statement evaluated at

φ̂−1 for any p-adic avatar φ̂ as above. By an argument that is formally identical to the
one at the end of the proof of [CH, Theorem 5.7], one gets the desired equality.

Now we state the reciprocity law that is the counterpart of [CH, Corollary 5.8].

Theorem 6.2.2. Let χ : Gal(Kp∞/K) → O×F be a locally algebraic p-adic Galois
character of infinity type (j,−j) with j ≥ k/2 and conductor cpnOK with p - c and
suppose that f is p-ordinary. Then

〈exp∗(locp(z
χ−1

)), ωf ⊗ ω
−k/2−j+1
A η

−k/2+j+1
A 〉

2
= D(f, ψ, χψ−1,K) · L(f, χ, k/2),

where D(f, ψ, χψ−1,K) is non-zero a constant depending on f, χ,K and ψ, which is a
Hecke character of infinity type (k/2,−k/2) and conductor c.
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Sketch of proof. Let ψ̂ : Gal(Kp∞/K) → C×p be the p-adic avatar of a Hecke charac-
ter ψ of infinity type (k/2,−k/2) and conductor c, so that φ̂ := χψ̂−1 is a locally
algebraic character of infinity type (j − k/2,−j + k/2) and conductor pn. The proof
proceeds by using Theorem 6.1.1 to extract the expression

〈
exp∗(locp(z

χ−1
)), ωf ⊗

ω
−k/2−j+1
A η

−k/2+j+1
A

〉2 from 〈Lp,ψ(z), ωf ⊗ t1−k〉 (φ̂). Now one can square and apply
Theorem 6.2.1 to recover the square of the p-adic L-function Lf,ψ(φ̂), and then use
the interpolation formula of Theorem 3.7.1 to obtain the statement. The constant
D(f, ψ, χψ−1,K) turns out to be

D(f, ψ, χψ−1,K) = α−2nε(0, φ−1
p φ−1

p )−2p2nrΓ(j − k/2 + 1)−2

· Ω−4j
p c−2j−k+2

√
−DK

k+2j
C(f, ψ, χψ−1,K).

For the details of the computation, see the proof of [CH, Corollary 5.8].

6.3 The anticyclotomic Euler system method

In this section we apply the Kolyvagin-type method developed in [CH, Section 7] to
our system of Heegner classes, in order to deduce results on the Selmer group of the
representation Vf,χ := Vf (k/2) |GK ⊗χ, with χ : Gal(Kc0p∞/K) → O×F a locally
algebraic p-adic Galois character of infinity type (j,−j) with j ≥ k/2 and conductor
c0p

sOK with c = c0p
s and (pN, c0) = 1.

First of all, we introduce the objects and the properties of the Kolyvagin method
employed in [CH]. Then, we will apply it to our system of generalized Heegner cycles
and, finally, we will deduce results on Selmer groups. As will be clear, we follow [CH]
closely.

6.3.1 Anticyclotomic Euler systems

Let Gn := Gal(Kn/K) and let H1(Kn,−) denote the cohomology group with respect
to Gal(KΣn/Kn), where Σn is the finite set containig the prime factors of pNc0n and
KΣn is the maximal extension of K unramified outside the primes above Σn.

By [Nek92, Proposition 3.1], there is a GQ-equivariant OF -linear perfect pairing

〈−,−〉 : T × T −→ OF (1)

that induces for each local field L the local Tate pairing

〈−,−〉L : H1(L, T )×H1(L, T ) −→ OF . (6.3.4)

Here T is the GQ-stable OF -lattice inside Vf (k/2) that was fixed before. Let $ be a
uniformizer of OF and let F := OF /($) be the residue field. For every integer M ≥ 1,
set TM := T/$MT .

For us, ` will always denote a prime inert in K and λ will be the unique prime of
K above `; denote by Frob` the Frobenius element of λ in GK . Let H1

f (Kλ,−) be the
finite part of H1(Kλ,−) and put H1

s (Kλ,−) := H1(Kλ,−)/H1
f (Kλ,−), where Kλ is

the completion of K at λ. Denote by loc` : H1(K,−) → H1(Kλ,−) the localization
map at ` and write δn : H1(K,−) → H1

s (Kλ,−) for the composition of loc` with the
quotient map.

Let S be the set of square-free products of primes ` inert in K with ` - 2pNc0. Let
τ denote complex conjugation.
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6.3. The anticyclotomic Euler system method

Definition 6.3.1. An anticyclotomic Euler system for T and χ is a collection
c = {cn}n∈S of classes cn ∈ H1(Knc, T ⊗ χ−1) such that for any n = m` ∈ S the
following properties hold:

1. CorKnc/Kmc(cn) = a`(f) · cm;

2. loc`(cn) = ResKmc,λ/Knc,λ(loc`(cm)Frob`);

3. if χ2 = 1 then cτn = wf · χ(σ) · cσn for some σ ∈ Gal(Knc/K),

where wf ∈ {±1} is the Atkin–Lehner eigenvalue of f .

6.3.2 Kolyvagin’s derivative classes

Define the constant β as in [CH, (7.2)]. For any integer M ≥ 1, denote by SM ⊆ S the
set of square-free products of primes ` such that

1. ` is inert in K;
2. ` - 2c0Np;
3. $M | `+ 1, a`(f);
4. $M+β+1 - `+ 1± a`(f)`1−r.

A prime number satisfying all these conditions is called anM-admissible (Kolyvagin)
prime. By using the Čebotarev density theorem, it can be checked that there exist
infinitely many M -admissible primes.

Put Gn := Gal(Kn/K1) ∼= Gal(Knc/Kc) ⊆ Gnc. Let n ∈ SM ; since n is square-free,
there is a splitting Gn =

∏
`|nG`. Moreover, each ` |n is inert in K, so the group

G` ∼= Gal(K`/K1) is cyclic of order `+ 1. Fix a generator σ` for each G` and put

D` :=
∑̀
i=1

iσi` ∈ Z[G`],

Dn :=
∏
`|n

D` ∈ Z[Gn] ⊆ OF [Gnc].

The telescoping identity
(σ` − 1)D` = (`+ 1− Tr`),

where Tr` :=
∑`

i=0 σ
i
`, holds in Z[G`].

Now we choose a positive integer M ′ such that pM ′ annihilates

1. the kernel and the cokernel of ResK/Kn : H1(K,TM⊗χ−1)→ H1(Kn, TM⊗χ−1)Gn

for all n,M ∈ Z+;
2. the local cohomology groups H1(Kv, TM ⊗ χ−1) for all places v | c0N .

One can prove that such an integer exists as in [Nek92, Proposition 6.3, Corollary 6.4
and Lemma 10.1].

Now consider an anticyclotomic Euler system c = {cn} for T and χ. Denote by
redM the reduction H1(−, T ⊗ χ−1) → H1(−, TM ⊗ χ−1). For n ∈ SM , we want to
apply the derivative operators Dn to the classes cn. For each n ∈ SM there is a unique
class DM (n) ∈ H1(Kc, TM ⊗ χ−1) such that

ResK/Kn(DM (n)) = p3M ′ redM (Dncn),

because of the properties of M ′. Define the derivative class by

PM,χ−1(n) := CorKc/K(DM (n)) ∈ H1(K,TM ⊗ χ−1). (6.3.5)
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6. Reciprocity law and Selmer groups

6.3.3 Local conditions

Now we introduce Selmer groups imposing local conditions at p at the cohomology
classes, through the choices of subspaces of H1(Kp, Vf (k/2)⊗χ−1)⊕H1(Kp, Vf (k/2)⊗
χ−1), recall that p = pp splits in K.

Let F ⊆ H1(Kp, Vf (k/2) ⊗ χ−1) ⊕ H1(Kp, Vf (k/2) ⊗ χ−1) be an F -subspace and
let F∗ ⊆ H1(Kp, Vf (k/2) ⊗ χ) ⊕ H1(Kp, Vf (k/2) ⊗ χ) be the orthogonal complement
of F with respect to the local Tate pairing of equation (6.3.4). Assume that F∗ =
F if χ2 = 1. Define FT ⊆ H1(Kp, Vf (k/2) ⊗ χ−1) ⊕ H1(Kp, Vf (k/2) ⊗ χ−1) to be
the F -subspace obtained as the inverse image of F under the direct sum of the maps
H1(Kp, T⊗χ−1)→ H1(Kp, Vf (k/2)⊗χ−1), H1(Kp, T⊗χ−1)→ H1(Kp, Vf (k/2)⊗χ−1)
and FM ⊆ H1(Kp, TM ⊗ χ−1) ⊕ H1(Kp, TM ⊗ χ−1) as the image of FT through the
reduction map. Put YM := TM ⊗ χ−1. Now define

Sel
(n)
F (K,YM ) :=

{
x ∈ H1(K,YM ) |

locv(x) ∈ H1
f (Kv, YM ) if v - pn

locp ∈ FM if p - n

}
,

where locp = locp⊕ locp. Note that if p | n then the choice of FM is irrelevant. If n = 1

we abbreviate SelF (K,YM ) := Sel
(1)
F (K,YM ). Define then

SelF (K,T ⊗ χ−1) := lim−→
M

SelF (K,YM ).

If c = {cn}n∈S is an anticyclotomic Euler system for T and χ, let

cK := CorKc/K(c1) ∈ H1(K,T ⊗ χ−1).

Then
PM,χ−1(1) = p3M ′ redM (cK),

since the square

H1(Kc, T ⊗ χ−1) H1(K,T ⊗ χ−1)

H1(Kc, TM ⊗ χ−1) H1(K,TM ⊗ χ−1)

CorKc/K

redM redM

CorKc/K

is commutative. Using [Nek92, Proposition 10.2] we obtain that

PM,χ−1(n) ∈ Sel
(np)
F (K,YM ).

Here we do not bother about F because p | pn.

Definition 6.3.2. An anticyclotomic Euler system c = {cn}n∈S for T and χ has local
condition F if it satisfies

4. cK ∈ SelF (K,T ⊗ χ−1) and cτK ∈ SelF∗(K,T ⊗ χ−1), that is locp(cK) ∈ FT and
locp(c

τ
K) ∈ F∗T ;

5. for every M and n ∈ SM , one has

PM,χ−1(n) ∈ Sel
(n)
F (K,TM ⊗ χ−1),

that is, locp(PM,χ−1(n)) ∈ FM (these two conditions are equivalent because
PM,χ−1(n) ∈ Sel

(np)
F (K,YM )).
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6.3. The anticyclotomic Euler system method

Now we state an important technical result.

Theorem 6.3.3. Let c = {cn}n∈S be an anticyclotomic Euler system for T and χ with
local condition F . If cK 6= 0, then

SelF∗(K,V ⊗ χ−1) = F · cτK .

Proof. This is [CH, Theorem 7.3].

6.3.4 Construction of Euler systems for generalized Heegner cycles

We keep notation and assumptions introduced at the beginning of this section, but now
we assume that

• χ has infinity type (j,−j) with j ≥ k/2;

• f is ordinary at p.

Recall the cohomology class zf ∈ H1
(
K,T ⊗ OF JΓ̃cK

)
defined in (6.1.1) and consider

its χ-specialization zχf ∈ H
1(K,T ⊗ χ). Let us consider for v = p, p the subspace Lv of

H1(Kv, V ⊗ χ) spanned by locv(z
χ
f ) and put

Lv,T := Lv ∩H1(K,T ⊗ χ) = OF$−av locv(z
χ
f ) +H1(Kv, T )tor,

where av is some positive integer and the subscript tor denotes the torsion subgroup.
Set L∗ := L∗p ⊕ L∗p. Choose M

′ large enough so that pM ′H1(Kv, T )tor = 0 for v = p, p.
Recall the cohomology classes zm,α ∈ H1(Km∞ , T ) and for n ∈ S set

cn := zχ
−1

cn,α ∈ H1(Knc, T ⊗ χ−1),

where zχ
−1

cn,α is the specialization at χ−1 obtained via the map

H1
Iw(Kncp∞ , T ) −→ H1(Knc, T ⊗ χ−1).

Finally, define
c := {cn}n∈S =

{
zχ
−1

cn,α

}
n∈S

. (6.3.6)

We would like to prove that this collection of cohomology classes is an anticyclotomic
Euler system with local condition L∗.

Proposition 6.3.4. The collection c := {cn}n∈S is an anticyclotomic Euler system
with local condition L∗. Moroever, cK = zχ

−1

f .

Proof. If c is an anticyclotomic Euler system, then

cK = CorKc/K(c1) = CorKc/K(zχ
−1

c,α ) = CorKc/K(zc,α)χ
−1

= zχ
−1

f .

Analogously to (6.1.2), we obtain

zψn,α = α−t · zn,ψ

for each non-trivial finite order character ψ : Gal(Kc0p∞/Kc0) → O×Cp of conductor
c = c0p

s. By Propositions 4.10.2, 4.10.4, 4.10.5, we know that
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6. Reciprocity law and Selmer groups

1. CorKnc/Kmc(znc,ψ) = a`(f) · zmc,ψ;
2. loc`(znc,ψ) = ResKmc,λ/Knc,λ(loc`(zmc,ψ)Frob`);
3. zτnc,ψ = wf · ψ(σ) · zσnc,ψ−1 for some σ ∈ Gal(Knc/K).

Upon taking ψ = 1, we deduce these properties for the classes znc,α and then for zχ
−1

nc,α

by specializing the relations at χ−1. This proves that c is an anticyclotomic Euler
system. The last thing we need to show is that c has local condition L∗, which can be
checked as in the proof of [CH, Proposition 7.8].

Proposition 6.3.5. If locp

(
zχ
−1

f

)
6= 0, then Sel

(
K,Vf (k/2)⊗ χ

)
= 0.

Proof. The proof is completely analogous to that of [CH, Theorem 7.9], so we will briefly
sketch the arguments. For each choice of subspaces Fv ⊂ H1

(
Kv, Vf (k/2) ⊗ χ

)
with

v = p, p, consider the ”generalized Selmer group” given by

H1
Fp,Fp

(
K,Vf (k/2)⊗χ

)
:=

x ∈ H1(K,Vf (k/2)⊗ χ)

∣∣∣∣ locv(x) ∈ H1
f (Vf (k/2)⊗ χ) if v - p

locv(x) ∈ Fv if v | p

 .

Thanks to Proposition 6.3.4, we know that c is an anticyclotomic Euler system for T
and χ with local condition L∗ such that cK = zχ

−1

f . Since locp(z
χ−1

f ) 6= 0, it follows

that zχ
−1

f 6= 0, so Theorem 6.3.3 ensures that

H1
Lp,Lp

(
K,Vf (k/2)⊗ χ

)
= SelL

(
K,Vf (k/2)⊗ χ

)
= F · (zχ

−1

f )τ = F · zχf .

We have that

H1
Lp,0
(
K,Vf (k/2)⊗ χ

)
⊆ H1

Lp,Lp
(
K,Vf (k/2)⊗ χ

)
= F · zχf

Since locp(z
χ
f )τ = locp(z

χ−1

f ), also locp(z
χ
f )τ 6= 0, hence zχf /∈ H1

Lp,0(K,Vf (k/2)⊗ χ). It
follows that

H1
Lp,0(K,Vf (k/2)⊗ χ) = 0.

There is a Poitou–Tate exact sequence

0 −→ H1
0,∅(K,Vf (k/2)⊗ χ−1) −→ H1

L∗p ,∅(K,Vf (k/2)⊗ χ−1)
locp−−→ L∗p

−→ H1
∅,0(K,Vf (k/2)⊗ χ)∨ −→ H1

Lp,0(K,Vf (k/2)⊗ χ)∨ −→ 0,

where ∅ indicates that we are imposing no condition. Then H1
∅,0
(
K,Vf (k/2)⊗ χ

)
= 0.

Since, by [CH, (6.2)], there is an equality

H1
f

(
Kv, Vf (k/2)⊗ χ

)
=

H
1
(
Kv, Vf (k/2)⊗ χ

)
if v = p

{0} if v = p,

we conclude that Sel
(
K,Vf (k/2)⊗ χ

)
= H1

∅,0
(
K,Vf (k/2)⊗ χ

)
= 0.

Now we construct another anticyclotomic Euler system associated with our gener-
alized Heegner cycles. In the remainder of this subsection, we assume that

• χ has infinity type (j,−j) with −k/2 < j < k/2.
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6.3. The anticyclotomic Euler system method

Notice that this time we do not need to assume that f is ordinary at p. Recall the
cohomology classes zn,χ−1 ∈ H1(Kn, T ⊗ χ−1) defined in (4.9.2). For n ∈ S, set

c′n := zcn,χ−1 ∈ H1(Knc, T ⊗ χ−1),

and define

c′ :=
{
c′n
}
n∈S =

{
zcn,χ−1

}
n∈S . (6.3.7)

Denote by LBK the direct sum of the Bloch–Kato finite subspaces

LBK := H1
f

(
Kp, Vf (k/2)⊗ χ−1

)
⊕H1

f

(
Kp, Vf (k/2)⊗ χ−1

)
.

We would like to prove that this collection of cohomology classes is an anticyclotomic
Euler system with local condition LBK .

Proposition 6.3.6. The collection c′ := {c′n}n∈S is an anticyclotomic Euler system
with local condition LBK . Moreover, c′K = zχ−1.

Proof. If c′ is an anticyclotomic Euler system, then (5.5.4) implies that

c′K = CorKc/K(c′1) = CorKc/K(zc,χ−1) = zχ−1 .

By Propositions 4.10.2, 4.10.4, 4.10.5, we know that

1. CorKnc/Kmc(znc,χ−1) = a`(f) · zmc,χ−1 ;
2. loc`(znc,χ−1) = ResKmc,λ/Knc,λ(loc`(zmc,χ−1)Frob`);
3. zτnc,χ−1 = wf · ψ(σ) · zσnc,χ for some σ ∈ Gal(Knc/K).

It follows that c′ is an anticyclotomic Euler system.
The last thing we need to show is that c′ has local condition LBK . In analogy to

what was remarked at the beginning of §6.1.3, the results in [Nek00] ensure that

znc,χ−1 ∈ Sel(Knc, T ⊗ χ−1), zχ−1 ∈ Sel(K,T ⊗ χ−1) = SelLBK (K,T ⊗ χ−1).

Since τ induces an isomorphism

H1
f (Kp, T ⊗ χ−1)⊕H1

f (Kp, T ⊗ χ−1) ∼= H1
f (Kp, T ⊗ χ)⊕H1

f (Kp, T ⊗ χ),

we deduce that also c′K
τ = zτχ−1 ∈ SelL∗BK (K,T ⊗ χ). Furthermore, one has

locv

(
ResKc/Knc

(
DM (n)

))
= locv

(
p3M ′ redM

(
Dnznc,χ−1

))
∈ H1

f (Knc,v, TM ⊗ χ−1)

for v = p, p. In light of [CH, Lemma 7.5], it follows that

locv
(
DM (n)

)
∈ H1

f (Kc,v, TM ⊗ χ−1),

which implies that locp
(
PM,χ−1(n)

)
∈ LBK,M .
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6.4 Results on Selmer groups

In this final section, we use the anticyclotomic Euler system method to deduce results
on the Selmer group of Vf,χ. First of all, we recall notation and assumptions.

As usual, f ∈ Snew
2r (Γ0(N)) is our newform of weight k = 2r + 2 ≥ 4 and level

N , χ : Gal(Kc0p∞/K) → OF is a locally algebraic anticyclotomic character of infinity
type (j,−j) and conductor c0p

sOK with (c0, pN) = 1, Vf,χ := Vf (k/2)|GK
⊗ χ is the

twist of Vf (k/2) by χ, L(f, χ, s) is the associated Rankin L-series and Sel(K,Vf,χ) is
the Block–Kato Selmer group of Vf,χ over K. Assume that:

1. p - 2Nφ(N+);
2. c0 is prime to N ;
3. either DK > 3 is odd or 8 | DK ;
4. p = pp splits in K;
5. N = N+N− where N+ is a product of primes that split in K and N− is a square

free product of an even number of primes that are inert in K.

As before, the last condition can be expressed by saying that K satisfies a generalized
Heegner hypothesis relative to N .

Recall now the definition of the Bloch–Kato Selmer group. If v is a place of K
such that v - p, we consider the inertia group IKv ⊆ GKv . The unramified subgroup of
H1(Kv, Vf,χ) is defined by

H1
ur(Kv, Vf,χ) := ker

(
H1(Kv, Vf,χ) −→ H1(IKv , Vf,χ)

)
.

Set H1
f (Kv, Vf,χ) := H1

ur(Kv, Vf,χ). If v is a place of K such that v | p, then we set

H1
f (Kv, Vf,χ) := ker

(
H1(Kv, Vf,χ) −→ H1(Kv, Vf,χ ⊗Qp Bcris)

)
.

The global Bloch–Kato Selmer group Sel(K,Vf,χ) of Vf,χ over K is the subspace
of H1(K,Vf,χ) given by

Sel(K,Vf,χ) :=

{
x ∈ H1(K,Vf,χ)

∣∣∣∣ locv(x) ∈ H1
ur(Kv, Vf,χ) if v - p

locv(x) ∈ H1
f (Kv, Vf,χ) if v | p

}
.

Now we can prove our theorems on Selmer groups, the first of which is a vanishing
result.

Theorem 6.4.1. Suppose that f is p-ordinary. If L(f, χ, k/2) 6= 0, then

dimF Sel(K,Vf,χ) = 0.

Of course, we can equivalently assert that Sel(K,Vf,χ) = 0.

Proof. Let ε(Vf,χ) ∈ {±1} be the sign of the functional equation for L(f, χ, s). Then

ε(Vf,χ) = −1 ⇐⇒ −k/2 < j < k/2.

Indeed, ε(Vf,χ) is a product

ε(Vf,χ) =
∏
v

ε(1/2, πKv ⊗ χv)

76



6.4. Results on Selmer groups

of local signs, where πK is the base change to K of the automorphic representation
of GL2(AQ) associated with f , πKv are the local factors of πK and the local ε-factors
ε(1/2, πKv ⊗ χv) are defined as follows. If F is a finite extension of Q` and π′ is an
irreducible representation of GLn(F ), then

ε(s, π′) := ε(s, π′, ψF ),

where ψF = ψ ◦ TrF/Q` is the standard additive character. (see, e.g., [Schm] for the
definition). It follows that

ε(Vf,χ) =
∏
v

ε(1/2, πKv ⊗ χv, ψKv).

Each of these local factors is equal either to 1 or to −1. Because N− is an even product
of inert primes, the product of the local factors at the finite places is equal to 1. Thus,
the global ε-factor depends only on the infinite part. Furthermore, by [Ta, (3.2.5)], one
has

ε(
1

2
, π∞ ⊗ χ∞, ψK∞) = ε(

1

2
, µ( k

2
− 1

2
+j), ψK∞)ε(

1

2
, µ(− k

2
+ 1

2
+j), ψK∞) = i|k−1+2j|+|1−k+2j|,

where µ : z ∈ C× 7→ z
z ∈ C×. Hence, one can check that

ε(Vf,χ) = −1 ⇐⇒ −k/2 < j < k/2,

ε(Vf,χ) = +1 ⇐⇒ j ≤ −k/2 or j ≥ k/2.

Since L(f, χ, k/2) 6= 0, we know that ε(Vf,χ) = +1, therefore either j ≤ −k/2 or
j ≥ k/2. As before, let τ be complex conjugation; set χτ (g) := χ(τgτ). There is
an equality of L-functions L(f, χ, k/2) = L(f, χτ , k/2) and the action of τ induces an
isomorphism Sel(K,Vf,χ) ∼= Sel(K,Vf,χτ ). This shows that we can assume j ≥ k/2.

Finally, since L(f, χ, k/2) 6= 0, by Theorem 6.2.2 we know that locp
(
zχ
−1

f

)
6= 0, and

then Proposition 6.3.5 gives Sel(K,Vf,χ) = 0.

Our second theorem on Selmer groups gives a one-dimensonality result.

Theorem 6.4.2. If ε(Vf,χ) = −1 and zχ 6= 0, then

Sel(K,Vf,χ) = Fzχ.

Proof. Since zχ 6= 0, also z−1
χ 6= 0. Because ε(Vf,χ) = −1, we know that −k/2 < j <

k/2. Then, by Proposition 6.3.6, the collection c′ is an anticyclotomic Euler system for
T and χ−1 with local condition LBK . Since c′K = zχ−1 , applying Theorem 6.3.3, we
obtain that Sel(K,Vf,χ) = SelL∗BK (K,Vf,χ) = Fzχ.
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