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Abstract—Millimeter Wave (mmWave) band can be a solution
to serve the vast number of Internet of Things (IoT) and Vehicle
to Everything (V2X) devices. In this context, Cognitive Radio
(CR) is capable of managing the mmWave spectrum sharing
efficiently. However, Cognitive mmWave Radios are vulnerable to
malicious users due to the complex dynamic radio environment
and the shared access medium. This indicates the necessity to
implement techniques able to detect precisely any anomalous
behaviour in the spectrum to build secure and efficient radios.
In this work, we propose a comparison framework between deep
generative models: Conditional Generative Adversarial Network
(C-GAN), Auxiliary Classifier Generative Adversarial Network
(AC-GAN), and Variational Auto Encoder (VAE) used to detect
anomalies inside the dynamic radio spectrum. For the sake of the
evaluation, a real mmWave dataset is used, and results show that
all of the models achieve high probability in detecting spectrum
anomalies. Especially, AC-GAN that outperforms C-GAN and
VAE in terms of accuracy and probability of detection.

Index Terms—Deep Learning, Anomaly Detection, Cognitive
Radios, Millimeter Wave, Generative Models

I. INTRODUCTION

The explosive rise in the number of wireless equipment,
including Internet of Things (IoT) and Vehicle to Everything
(V2X) devices will support tremendous wireless connectiv-
ity causing the spectrum scarcity [1], [2]. Millimetre Wave
(mmWave) and Cognitive Radio (CR) are proposed to address
such issue and increase the radio spectrum utilization [3].
CR allows the secondary users to sense frequently and access
opportunistically the spectrum bands which are not in use by
the primary licensed users and without damaging the quality
of service [4]–[7]. The mmWave provides sizeable available
bandwidth at high frequencies which operate in the range of 30
to 300 GHz, offering low latency and high-speed data connec-
tion [8], [9]. Such frequencies impose several limitations due
to the fact that the signal will suffer from high propagation loss
and get distorted due to raindrops and humidity absorption as
well as its sensitivity to blockages, making the implementation
of the mmWave communications possible to a few kilometres
in small cells and heterogeneous networks which are efficient
to serve the IoT and V2X scenarios [10], [11]. Besides,
the fifth-generation (5G) technology will provide a system
structure for these emerging V2X and IoT applications that
require high reliability and strict delay for secure message
delivery between transmitters and receivers which impose the
need of an efficient hybrid access scheme for licensed and

unlicensed spectrum in mmWave bands. Thus, CR has been
proposed to manage the dynamic spectrum access in mmWave
communications [12].

The Physical Layer Security in Cognitive mmWave Radios
has attracted broad interest to achieve secured communications
that involve multiple signal transmissions due to the shared
wideband spectrum and the coexistence in tight integration
with different wireless systems [13], [14]. Such open ac-
cess medium and dynamic environment makes the system
vulnerable to malicious users that aim to manipulate the
radio spectrum by injecting anomalous signals and enforce
the system to learn wrong behaviours that lead the radio to
take mistaken actions [15], [16]. Autonomous learning is a
crucial component in CR system to adapt to the perceived
wireless environment and potentially maximize the utility of
the available spectrum resources and allow the radio to take
an optimal decision and act efficiently [17]. Therefore, precise
detection of spectrum anomalies is crucial to enhance the
physical layer security and improve the system’s performance.

Spectrum anomaly detection has been explored in literature.
However, it does not provide exhaustive work based on Deep
Learning techniques, making it still a challenging task. The
work in [18] investigates the wireless spectrum anomaly detec-
tion problem and design a module based on auto-encoder for
feature extraction then performs initial unsupervised anomaly
detection followed by anomaly feature module to optimize the
feature extraction that is further used for active anomaly clus-
tering and detection with user interaction. A deep predictive
coding neural network for radio-frequency anomaly detection
in wireless systems has been proposed in [19] where image
sequences generated from the spectrum by monitoring real-
time wireless signals. In [20], scaling deep learning models
are built to capture spectrum usage patterns and use them as
baselines to detect LTE spectrum usage anomalies resulting
from faults and misuse. An adversarial auto-encoder using
interpretable features as power spectral density data is pro-
posed in [21] for wireless spectrum anomaly detection. In
[19], [20], and [21], the data is relative to narrow ranges of
frequencies and is represented by bidimensional spectrograms.
Besides, anomalies are not related to changes in the dynamics
of the signals. Indeed, in the abnormal spectrum, there is
either an additional signal or the signal is corrupted con-
cerning the normal situation. A framework with two different



applications, according to the dimensionality of the data, is
presented in [22] where Dynamic Bayesian Network (DBN)
and Generative Adversarial Network (GAN) are investigated as
part of a self-awareness module with two levels in CR devices.
Furthermore, in [22] it is shown that the approaches employing
autonomous learning of deep features provide better results in
the anomaly detection context with respect to conventional
techniques, in particular the cyclostationary feature detector
(CFD). Here, in the proposed framework for spectrum anomaly
detection, we compare three deep generative models: the
Conditional Generative Adversarial Network (C-GAN), the
Auxiliary Classifier GAN (AC-GAN) and the Variational Auto
Encoder (VAE). These generative models (C-GAN, AC-GAN
and VAE) are investigated and employed in the mmWave
communications enabled by CR to learn a representation
of the dynamic spectrum following probabilistic reasoning.
A generalized state vector, consisting of the signal feature
(amplitude) extracted from the Stockwell Transform (ST) and
the corresponding derivatives, is formed and used to construct
the network that, consequently, detects any anomalous signals
related to abnormal behaviours inside the radio spectrum. The
motivation for using a generalized state vector is clarified in
[22]. To the best of our knowledge, this is the first time that
the generalized state vectors are investigated as input data for
a comparison between GAN and VAE models in the literature.
Making such a comparison lays the basis for an understanding
of the mechanisms for each of these generative models capable
of generating an anomaly measure, and highlighting strengths
and weaknesses in the conventional GAN and VAE models.

The rest of this paper is organized as follows. We described
the proposed framework in Section II and showed the exper-
iments and results in Section III. Finally, in Section IV we
conclude the paper by highlighting the future work.

II. PROPOSED FRAMEWORK
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Fig. 1. The deep model-based anomaly detection scheme for CR

The general scheme of the proposed research is depicted
in Fig. 1. The radio environment represents wireless commu-
nication in which transmissions are involved in the mmWave
band. A CR system observes and gathers information about the
spectrum occupancy where multiple signals dynamically oc-
cupy the available channels. However, processing and sensing
such dynamic spectrum in the considered scenario requires
suitable techniques. To this end, Stockwell Transform (ST)
is used to extract the time-frequency representation of the
spectrum following the approach proposed in [23]. From such
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Fig. 2. Generative Adversarial Networks

representation, a generalized state vector is formed, as defined
in [24]. It consists of the current state in terms of amplitude
(A) and its first-order derivative (Ȧ):

x = [Ach,k, Ȧch,k]; ch ∈ {1, . . . , N} (1)

where k is the time instant at which each value A related to the
ch-th channel is extracted from ST and N is the total number
of channels. From the generalized state vector, the proposed
deep models presented in the following section will learn the
dynamics of the radio environment and how they are evolving
with time.

A. Conditional Generative Adversarial Network (C-GAN)

By conditioning the basic GAN model [25] on additional
information y (e.g. class labels), it is possible to direct the data
generation process. This model is called C-GAN [26] shown
in Fig. 2(a).
Training Phase: the C-GAN consists of both a generative
model G that captures the data distribution and a discrim-
inative model D that estimates the probability of a sample
comes from that data distribution. Both G and D can be
represented by a non-linear mapping function that is learnt
during the training phase. G maps a random noise z to data
space x. This mapping is represented by G (z|y). While
D acts as a binary classifier and outputs a single scalar
represented by D (x|y). The training procedure for G is to
minimize the probability that D makes the correct decision.
While D is trained to maximize the probability of correctly
differentiating the training samples from generated samples.
This framework corresponds to a two-player min-max game.
The corresponding cost function is given by:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD (x|y)] +

+Ez∼pz(z) [log (1−D (G (z|y)))] (2)

where pdata (x) is the data distribution and pz (z) is the prior.
Testing Phase: the parameters of both G and D networks
are not updated through the optimization of the cost function
which is only utilized to detect deviations between prediction
and observation, based on the following anomaly measure-
ment:

db0 = |lreal − lfake| (3)

where lreal is the loss computed at the discriminator when the
input is the real data x while lfake is the loss when the input is



the one generated by the generator from G(z|y), respectively,
and | · | represents the absolute value function.

B. Auxiliary Classifier GAN (AC-GAN)

Alternatively, the discriminator can be modified with recon-
structing the class information ŷ. In this way, the discriminator
will contain an auxiliary decoder network that outputs the
class label for the training data. This variant of the GAN
architecture is called auxiliary classifier GAN (or AC-GAN)
[27] and shown in Fig. 2(b).
Training Phase: G uses both the class labels y and the
noise z to generate data samples (fake data), xfake. While,
the discriminator computes both the probability distribution of
the sources, p (s|x), and of the class labels, p (y|x) such that
D (x) = (p (s|x) , p (y|x)). The source of the data, s, refers
to the decision of the discriminator, namely either real data,
sreal, or fake data, sfake. Consequently, the objective function
consists of both the log-likelihood of the correct source, Ls,
and the log-likelihood of the correct class, Ly, as follows:

Ls = E [log p (sreal|xreal)] + E [log p (sfake|xfake)] (4)

Ly = E [log p (ŷ|xreal)] + E [log p (ŷ|xfake)] (5)

D maximizes the probability of correctly classifying real and
fake samples (Ls) and correctly predicting the class label (Ly)
of a real or fake sample (Ls+Ly). G minimizes the ability of
the discriminator to discriminate real and fake samples while
also maximizing the ability of the discriminator in predicting
the class label of real and fake samples (Ly–Ls).
Testing Phase: as in C-GAN, in this phase the parameters
of both G and D networks are not updated, and the anomaly
measurement defined in eq.(3) is utilized to detect deviations
where, in addition to the loss computed on data, both lreal
and lfake take also into account an auxiliary loss term from
real and fake class labels, respectively.

C. Variational Auto Encoder (VAE)

Training Phase: VAEs learn a stochastic mapping between
an observed data space x, whose empirical distribution is
typically complicated, and a latent space z, whose distribution
can be relatively simple [28]. z represents a compressed low
dimensional representation of the input x. VAEs consist of
two models, the encoder or inference model, and the decoder
or generative model (refer to Fig. 3). The generative model
(decoder) learns the joint distribution pθ (x, z). The inference
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Fig. 3. Diagram of the VAE

model (encoder) qφ (z|x), approximates the true but intractable
posterior pθ (z|x) of the generative model. The model param-
eters of the decoder and encoder are denoted by θ and φ,
respectively. While, µ and σ are the mean and standard devi-
ation of the multivariate distribution qφ (z|x). ε ∼ N (0, I) is
a noise random variable. Ideally, the reconstructed input x′ is
approximately identical to x, x ≈ x′.
VAEs provide a computationally efficient way for optimizing
the generative model jointly with the corresponding inference
model. The model parameters (φ), also called variational
parameters, are optimized such that:

qφ (z|x) ≈ pθ (z|x) (6)

by using the Evidence Lower Bound (ELBO) which is the
variational lower bound on the log-likelihood of the data.
It includes the Kullback-Leibler (KL) divergence between
qφ (z|x) and pθ (x, z). Maximization of the ELBO w.r.t. the
parameters θ and φ, will approximately maximize the marginal
likelihood pθ (x) and minimize the KL divergence of the
approximation qφ (z|x) from the true posterior pθ (z|x).
Testing Phase: the parameters θ and φ are not updated so that
the encoder and decoder are the ones learned during training.
In this phase, a way of measuring the similarity between the
observation and prediction is related to the reconstruction error
which gives the anomaly measurement db0 (refer to Fig. 3)
computed as follows:

db0 =
(
(µx − µ̂)T C−1σ̂2 (µx − µ̂)

)8
(7)

where µx is the mean vector from the input data with dimen-
sion d (for the sake of completeness, σx is the standard devia-
tion vector from the input data), and µ̂ and σ̂ are the mean and
standard deviation vectors from the reconstructed data vector
with the same dimension d. These quantities are the output of
neural networks whose input is x and x′, respectively. C−1σ̂2 is
a covariance matrix given by diag(σ̂2

1 , . . . , σ̂
2
d).

III. EXPERIMENTS

The following experiments have been performed on the
generative models described in Sec.II to demonstrate the
practical feasibility of the proposed approach for spectrum
anomaly detection. First, the mmWave testbed and the real
dataset are described, then results are presented.

A. mmWave Testbed

The National Instruments mmWave Transceiver System,
Fig.4, used to collect the dataset, is a Software Defined Radio
(SDR) platform consisting of hardware equipment and appli-
cation software that enables real-time over the air mmWave
communications. The transceiver system is comprised of
chassis, controllers, a clock distribution module, 192 MS/s
Field-Programmable Gate Array (FPGA) modules, high-speed
Digital-to-Analog Converters (DACs) and Analog-to-Digital
Converters (ADCs) (3.072 GS/s), Local Oscillator (LO) and
Intermediate Frequency (IF) modules, and mmWave radio
heads (24.25 - 33.4 GHz) for up-conversion from 12 GHz IF



Fig. 4. The mmWave testbed setup.
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Fig. 5. Four patterns performed by the signals inside the spectrum

to mmWave band and down-conversion from mmWave band
to 12 GHz IF. A detailed description can be found in [29].
The radio heads are connected to a Ka-band circular horn
transmitting antenna (26-40 GHz) and a slot antenna at 28.5
GHz for receiving the signal [30], respectively. The mmWave
transceiver operates at 28 GHz (central carrier frequency),
and the analysed spectrum consists of 8× 100 MHz channels
with 800 MHz total bandwidth. Complex I/Q data is collected
at base-band after the down-conversion process. Cyclic-Prefix
Orthogonal Frequency Division Multiplexing (CP-OFDM) sig-
nals with 1200 sub-carriers are transmitted inside the mmWave
band with 75 kHz sub-carrier spacing and 2048 FFT size.
Different modulation schemes are supported (BPSK, QPSK,
16-QAM, and 64-QAM). The sampling frequency is 3.072
GS/s (12-14 bits). The system specifications relative to the
observed spectrum and the signal pre-processing resulting in
the images of Fig. 5 are summarized in details in Table I and
Table II.

B. Real Dataset

The dataset is divided into two sets: one for the training
phase which represents the normal behaviour (no malicious
behaviour) of the signals inside the spectrum and the second
is used during the testing phase including three different
anomaly modalities in which the behaviour of the signal
is different from the normal one. Fig.5(a) shows the time-
frequency representation of the dynamic spectrum obtained by

TABLE I
DATA FROM THE SYSTEM SPECIFICATION DATASHEET

Maximum bandwidth 2 GHz

Central frequency 28 GHz in the mmWave band

Sampling Rate 3.072 GS/s, resampled to/from 153.6 MS/s

3.072 GS/s ÷ 153.6 MS/s = 20

Spectrum of interest 800 MHz bandwidth (27.6 GHz - 28.4 GHz)

Channels (width) 8 (100 MHz)

192 MS/s x 2 (I/Q) x 8 channels = 3.072 GS/s

OFDM signal 1200 subcarriers/channel with 75 kHz spacing for
each subcarrier (75 kHz x 1200 = 90 MHz)

Symbol Rate 153.6 MS/s (oversampling on each channel, I/Q data)

FFT for OFDM 2048 points (153.6 MHz / 75 kHz)

TABLE II
SIGNAL PRE-PROCESSING SPECIFICATIONS

Samples for each burst (I/Q signals) 4096

Stockwell transform size 512

Dual-resolution ST (frequency-time index) 512 (f) x 64 (k)

Sub-channel division (frequency-time index) 128 (f) x 64 (k)

ST in terms of amplitude (only one snapshot for each modality
is displayed due to space limitations). The k axis represents
the time domain in terms of 64 shifts of the sliding window
denoted as delay index. While the vertical axis represents the
frequency domain consisting of 8 channels divided into 128
sub-channels. And the corresponding derivatives are shown in
Fig.5(b). The generalized state vector is formed by inserting
the values relative to each vertical line from ST representation
and concatenated with the corresponding vertical line of the
derivative. The state vector is thus composed of 256 elements
(128 for amplitudes and 128 for the derivatives) at each time
instant k.
Normality data: the normal behaviour consists of a fixed signal
which occupies channel ch number 4 and a moving signal
jumping at four different channels: sequentially 8, 6, 3, and 1
as shown in the first pattern of Fig. 5(a).
Testing data: testing patterns with 3 different behavior modal-
ities are also shown in Fig. 5(a) and described as follows.

• Modality 1: a fixed signal is occupying ch-4 and a moving
signal jumps between ch-5, ch-7, ch-2, ch-5.

• Modality 2: a fixed signal is occupying ch-4 and a moving
signal jumps between ch-7, ch-5, ch-2, ch-1.

• Modality 3: a fixed signal is occupying ch-4 and a moving
signal jumps between ch-5, ch-7, ch-6, ch-5.

Specifically, in the observed spectrum, a signal is anomalous
when its behaviour (or dynamics) is different from the one
previously seen during the training phase. Namely, the strategy
by which the signal jumps in the spectrum changes with
respect to the normal behaviour. In this case, an anomaly is
said to have happened. This could be due to a new device in
the network or to a malicious user. In particular, our approach
is capable of learning the dynamics of signals and, each time
a change in the dynamics happens, the generative models
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Fig. 7. ROC curves (C-GAN model)

produce predictions that deviate from the observations that
are classified as anomalies, as demonstrated in next section.

C. Results

1) Training of the generative models: the training data con-
sists of 59520 k-samples in the time domain of the generalized
state vector and 256 in the frequency domain for C-GAN,
while 164480 k-samples and 256 for AC-GAN and VAE. By
providing the normality data, the generative models are learnt
in an unsupervised way. Indeed, in this work, the conditioning
information, y consists of a fictitious input label because it is
assigned the same value regardless of the input data x whether
normal or anomalous. The training data is used to train neurons
in the latent space of the networks, and it has been shown that
in generative models, each neuron learns to detect specific
types of features from the input data. Intrinsic clustering on
input data is also obtained thanks to neurons that learn to
detect similarity characteristics of groups of input samples.
The Adam optimizer is used to train G and D of C-GAN
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Fig. 9. ROC curves (AC-GAN model)

and AC-GAN as well as the encoder and decoder of VAE.
MSE loss is used as adversarial loss in C-GAN, while Lp loss
(with p = 8) in AC-GAN which also includes a Cross-Entropy
loss as an auxiliary loss. By setting p = 8, anomaly peaks
(when an anomaly happens) and fluctuations (when signals
in the spectrum follow a normal behaviour) in the indicator
signal are optimized. The KL divergence is included in the
loss function in VAE. Experiments have been performed on
’NVIDIA® GeForce® GTX 1080 Ti’ GPU.

2) Testing of the generative models: in this phase 25280
k-samples in time domain and 256 in frequency domain
forming the generalized state vector are tested and anomaly
measurement is obtained (Figs. 6-8-10) for each of the 3
models and modalities. It can be seen that, when the deep
model is given a generalized state vector as input, it is capable
of detecting abnormal patterns, when they happen, in which
malicious behaviour produces deviations of predictions from
observations. This would be a novel approach by applying a
generalized state vector to a deep model. These results can be
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Fig. 11. ROC curves (VAE model)

analyzed by considering that groups of samples in the testing
data could exhibit different types of features (anomalous
situation) from the ones observed during the training of the
generative network with normality data. In other words, since
no neuron in the latent space was trained to detect these
features, abnormality data cannot activate any neuron in the
neural networks and the consequent deviation of prediction
from observation produces high values of the abnormality
measurements. Additionally, to evaluate the performance of
the models, ROC curves are also shown in Figs. 7-9-11 that
confirm that each of the deep model can provide high detection
probability with low Pfa. In addition, the Pd can be optimized
through a sensible choice of the threshold in the binary testing.
Indeed, Area Under Curve (AUC) and Accuracy (ACC) values
are extracted and listed in the Table III where the AC-GAN
seems to provide better performance than C-GAN and VAE
models. From another point of view, when GAN-based models
are compared to VAE, it can be noticed that: in the first case,
since the generator is trained to learn a mapping between a

TABLE III
AUC AND ACC VALUES FOR THE 3 DEEP LEARNING MODELS

AUC ACC

modality 1 0.9566 0.9657
C-GAN modality 2 0.9737 0.9696

modality 3 0.9545 0.9668

modality 1 0.9741 0.9804
AC-GAN modality 2 0.9751 0.9757

modality 3 0.9742 0.9660

modality 1 0.9365 0.9356
VAE modality 2 0.9577 0.9551

modality 3 0.9232 0.9382

TABLE IV
COMPUTATIONAL TIMES FOR THE 3 DEEP LEARNING MODELS

Deep Learning Models Training time [mm:ss] Testing time [mm:ss]

C-GAN 15:16 01:36

AC-GAN 30:42 03:16

V AE 15:09 01:00

random noise vector, z in Fig. 2, and the generated data (by
learning hidden, complex structure in the real data x), then
G is able to capture the dynamics in the real data. In the
second case, a VAE model returns the posterior probability
that an observation belongs to a specific cluster by learning
the latent vector, z in Fig. 3. In this way, observations x
from different clusters will correspond to different z vectors
and the dynamics of x is captured according to the way and
the time instants the vector z changes. In effect, learning
from dynamic data as in the first case should provide better
performance as confirmed by the results. Alternatively, an
advantage of the VAE, with respect to GAN, is the possibility
to exploit the encoder’s output latent variables (µ and σ)
that represent probabilistic distributions. Indeed, such variables
can be clustered to learn temporal dependencies among them
and draw a probabilistic graphical representation. The latent
variables can also be used to reduce the complexity due to
high dimensionality data in wideband RF spectrum. Finally,
Table IV gives an idea about the time required to train and
test the models under investigation. Among the 3 analysed
models, VAE required less computational time to perform both
training and testing processes, since KL is faster than MSE and
Lp methods.

IV. CONCLUSION AND FUTURE WORK

This work has demonstrated the effective implementation
of C-GAN, AC-GAN, and VAE models to detect mmWave
spectrum anomalies in a CR system. A comparison framework
is proposed between deep generative models learned from
the generalized state vector which incorporates the signals
amplitude and the corresponding derivative extracted from
ST representation of the dynamic spectrum. Extensive exper-
iments have been conducted on a real dataset collected by
using a mmWave testbed. In all the tested modalities, anomaly
measurements showed good performance for the three mod-
els, particularly the AC-GAN. ROC curves confirmed that



the probability of detection is high with a low false alarm
probability. However, from computational time analysis, the
VAE resulted in being faster than the other two networks.
Moreover, in a VAE, the encoder’s output latent variables
could be clustered to learn temporal dependencies among them
and draw a probabilistic graphical representation. These latent
variables can also be used to reduce the complexity due to
high dimensionality data. As future work, these approaches
will be employed to characterize and classify the anomalous
signals.
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